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ABSTRACT

The growth of the Android ecosystem has amplified the impact of mobile ran-
somware variants and exposed the limitations of traditional signature-based so-
lutions. Network traffic analysis presents a promising data source for detection,
but it introduces new challenges, as ransomware often disguises malicious com-
munication patterns within standard app behavior. Traditional detection mecha-
nisms, which rely on static signatures or handcrafted rules, struggle to counter
modern Android ransomware that employs obfuscation and event-driven triggers.
This limitation is particularly significant for devices with limited computational
resources, where lightweight yet accurate detection is paramount. This paper pro-
poses a pipeline that uses a network traffic dataset to extract relevant features,
compares classic and hybrid classifiers (RF, SVM, XGBoost, and lightweight
architectures), quantifies cost and energy efficiency on CPU versus GPU. The
methodology employs a stratified training/validation/test split (70/15/15), vector-
ization, grid search with cross-validation, and a set of technical metrics includ-
ing Accuracy, Recall, F1-Score, and ROC AUC. Experiments demonstrate that
the proposed models outperform baselines reported in the literature, yielding im-
proved metric values even under adversarial scenarios. The pipeline also strikes a
balance between computational cost and energy efficiency, underscoring the mod-
els’ cost-effectiveness for different environments: while GPUs accelerate training
in the cloud, lightweight models remain competitive for edge deployment. To-
gether, these findings confirm the feasibility of combining high detection accuracy
with practical considerations, creating powerful and deployable models to detect
ransomware on Android.

1 INTRODUCTION

The rapid expansion of the Android user base, in conjunction with the ecosystem’s openness and
inherent fragmentation, has led to a significant surge in the volume and complexity of mobile threats.
Among these, Android ransomware poses a direct and severe threat to users and organizations,
with its capability to block devices or encrypt data and demand payment for its release. A critical
vulnerability in current defenses is that traditional signature-based tools, such as antivirus and IDS,
often fail against polymorphic variants and advanced obfuscation techniques Ye et al. (2017).

The core of this challenge lies in continuous evasion: mobile ransomware families evolve rapidly,
abuse sensitive permissions, trigger system events, and employ persistence mechanisms to remain
undetected. These sophisticated tactics render purely static or rule-based detection mechanisms
ineffective, creating an urgent need for more dynamic and intelligent solutions.

In response to this pressing issue, this paper proposes a supervised machine learning solution built
upon a reproducible and explainable pipeline. To this end, we focus on the curation and vectorization
of network data from both benign and malicious samples, extracting features unique to the Android
platform. Our approach is trained on an enriched Android Ransomware Detection dataset and is de-
signed to classify ransomware in real-world scenarios, where precision, agility, and interpretability
are essential for effective incident detection and response.

This paper makes four main contributions. First, we provide a curated and annotated set of samples
for Android Ransomware Detection. Second, we detail the extraction of key features for this task.
Third, we describe the vectorization and training process for multiple classifiers, including Random
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Forest, SVM, MLP, and XGBoost. Fourth, finally we conduct a comparative evaluation of these
models in both CPU and GPU scenarios, analyzing their associated cost and energy consumption.

2 RELATED WORK

Hossain et al. (2025) This work presents a machine learning approach based on ensemble models for
ransomware detection on Android devices. The methodology involved detailed data preprocessing,
feature selection using the Random Forest algorithm, and the application of various ensemble clas-
sifiers, such as Bagging, XGBoost, and CatBoost. The objective was to improve detection accuracy
and robustness compared to traditional methods, addressing both binary and multi-class classifica-
tion tasks.

Table 5 from the Hossain et al. (2025) study details the performance metrics for the ensemble clas-
sifiers, both before and after feature selection. The results show that the Bagging classifier achieved
the best performance in both scenarios, demonstrating high robustness. With the selection of just 10
features, Bagging maintained near-perfect performance, with an accuracy of 0.99818±0.00018. In
contrast, other models like Extra Trees and Gradient Boost showed a significant drop in performance
before feature selection, indicating that feature optimization was crucial for their performance. The
AdaBoost model showed the lowest performance in both configurations.

Hossain et al. (2025) presents the following table:

Table 1: Evaluation Metrics for Ensemble Classifiers (Table 5 from the Article)
2*Classifier Accuracy Precision Macro Recall Macro F1 Macro

Before After Before After Before After Before After

Bagging 0.99808±0.00012 0.99818±0.00018 0.99700±0.00022 0.99722±0.00029 0.99687±0.00029 0.99744±0.00047 0.99694±0.00021 0.99733±0.00035
XGBoost 0.97023±0.00353 0.99468±0.00031 0.97031±0.00431 0.99315±0.00082 0.94155±0.00392 0.99179±0.00065 0.95258±0.00435 0.99246±0.00059
Extra Trees 0.87664±0.00344 0.99405±0.00034 0.86899±0.00371 0.99270±0.00051 0.85905±0.00389 0.99066±0.00069 0.86315±0.00380 0.99166±0.00049
Random Forest 0.94786±0.00357 0.99756±0.00018 0.94192±0.00466 0.99668±0.00018 0.92924±0.00491 0.99531±0.00067 0.93479±0.00487 0.99598±0.00043
AdaBoost 0.57985±0.00054 0.54897±0.00058 0.35187±0.00057 0.37624±0.00028 0.46239±0.00040 0.46069±0.00057 0.38810±0.00039 0.39699±0.00037
Gradient Boost 0.93353±0.00124 0.99769±0.00016 0.91755±0.01029 0.99686±0.00048 0.90389±0.00311 0.99642±0.00024 0.90732±0.00361 0.99664±0.00032
CatBoost 0.98240±0.00270 0.99461±0.00040 0.97827±0.00238 0.99364±0.00037 0.97383±0.00370 0.99202±0.00114 0.97589±0.00294 0.99281±0.00066

Another work analysed is Albin Ahmed et al. (2024), this study aimed to address the growing threat
of Android ransomware by developing machine learning (ML) and deep learning (DL) models ca-
pable of detecting ransomware attacks through traffic analysis. Using a large dataset of benign and
malicious samples, the authors evaluated multiple algorithms, including Decision Tree (DT), Sup-
port Vector Machine (SVM), k-Nearest Neighbors (KNN), an ensemble of DT, SVM, and KNN,
Feedforward Neural Network (FNN), and TabNet. Two experiments were conducted: the first with
all 70 features and the second with the 19 most relevant features selected through feature engineer-
ing. The models were assessed using accuracy, precision, recall, and F1-score, with DT and SVM
showing the most promising performance across the experiments. The results of Albin Ahmed et al.
(2024) are presented in this table:

Table 2: Performance comparison of different classifiers using all features and the best 19 features.
DT SVM KNN Ensemble (DT, SVM, KNN) FNN TabNet

All Best 19 All Best 19 All Best 19 All Best 19 All Best 19 All Best 19

Accuracy 96.89% 97.24% 89.05% 89.05% 88.79% 88.43% 90.44% 90.24% 89.09% 89.10% 89.04% 86.84%
Precision 98.29% 98.50% 89.05% 89.05% 90.49% 90.10% 90.37% 90.17% 89.12% 89.13% 89.05% 88.96%
Recall 98.22% 98.40% 100% 100% 97.68% 97.74% 99.91% 99.93% 99.95% 99.95% 99.99% 97.28%
F1-score 98.25% 98.45% 94.21% 94.21% 93.95% 93.77% 94.90% 94.80% 94.22% 94.23% 94.20% 92.94%

3 METHODOLOGY

We evaluated the effectiveness of different machine learning models for ransomware detection on
Android, prioritizing reproducibility and energy efficiency (CPU vs. GPU). To do this, we developed
an AI model in Python using machine learning libraries and trained it with a dataset of network flow
of ransomware on Android devices. We compared our model to two previous studies with a similar
approach. We achieved superior performance, which is significant as it demonstrates the potential
of our model in real-world ransomware detection scenarios.
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Our evaluation of the model’s behavior on CPU and GPU was conducted with meticulous attention
to detail, considering scenarios with all features and with reduced subsets. This thorough evaluation
process instills confidence in the model’s performance.

Figure 1 illustrates the process: (1) acquisition and annotation of the dataset (Android Ransomware
Detection) with the specific label ransomware; (2) decompilation and preprocessing; (3) fea-
ture extraction;(4) model selection; (5) CPU/GPU training; (6) technical, operational, and energy
evaluation;

Start

Android Ransomware Detection Dataset

Preprocessing

Feature Extraction

Model Selection

Training (CPU/GPU)

Technical, Operational And Energy Evaluation

Satisfactory Results? Optimization

End

No

Yes

Figure 1: Methodological workflow for Android ransomware classification.

3.1 DATASET DESCRIPTION

The dataset used in this research is the Android Ransomware Detection dataset (Subhajournal,
2023), which is publicly available on the Kaggle platform. This means that you, as a member of
the research community, can access and use this dataset for your own research. It collects network
traffic records from Android devices and includes samples of both malicious applications (such as
ransomware) and benign applications. The ransomware samples correspond to applications that en-
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crypt user data and demand payment to release it. In contrast, the benign samples provide the basis
for comparison needed to train and validate the detection models.

For illustration purposes in the text, we selected only the first five columns of the dataset (Flow
ID, Source IP, Source Port, Destination IP, and Destination Port), in addition to the label column.
We took care to shuffle the rows so that the different label types (Benign and ransomware variants)
appeared in a representative, fair sample, ensuring the fairness and accuracy of the dataset.

Flow ID Source IP Source Port Destination IP Destination Port Label

10.42.0.211-23.208.35.210-46599-80-6 10.42.0.211 46599 23.208.35.210 80 Charger
10.42.0.211-64.71.142.124-44210-443-6 64.71.142.124 443 10.42.0.211 44210 Charger
10.42.0.151-104.192.110.245-41286-80-6 104.192.110.245 80 10.42.0.151 41286 Benign
10.42.0.211-46.166.184.102-37277-80-6 10.42.0.211 37277 46.166.184.102 80 PornDroid
137.116.195.37-10.42.0.151-443-59201-6 10.42.0.151 59201 137.116.195.37 443 Simplocker
10.42.0.42-104.25.82.112-34404-80-6 10.42.0.42 34404 104.25.82.112 80 SVpeng
10.42.0.151-111.202.114.77-37323-443-6 10.42.0.151 37323 111.202.114.77 443 Benign
10.42.0.211-10.42.0.1-1771-53-17 10.42.0.211 1771 10.42.0.1 53 Charger
172.217.11.46-10.42.0.151-443-55389-6 10.42.0.151 55389 172.217.11.46 443 Benign
10.42.0.211-10.42.0.1-1805-53-17 10.42.0.211 1805 10.42.0.1 53 PornDroid

The distribution of labels in the Android Ransomware Detection dataset (Subhajournal, 2023) is as
follows:

Label Count

SVpeng 54,161
PornDroid 46,082
Koler 44,555
Benign 43,091
RansomBO 39,859
Charger 39,551
Simplocker 36,340
WannaLocker 32,701
Jisut 25,672
Lockerpin 25,307
Pletor 4,715

3.2 PREPROCESSING AND FEATURE SELECTION

From the Android Ransomware Detection dataset, which contains 85 columns (80 numeric and five
categorical), we separated the 80 numeric columns and normalized them using StandardScaler. We
encoded the five categorical columns using the LabelEncoder from the scikit-learn library.

To prepare the Android Ransomware Detection dataset for machine learning models, we prepro-
cessed its 85 columns. The 80 numerical features were normalized using StandardScaler, while the
five categorical columns were converted into numerical integers using LabelEncoder.

For feature selection, we estimated importance using a Random Forest model (100 trees), which
allowed us to evaluate the contribution of each feature to label prediction. Based on this analysis,
we selected the 11 most practical features, which capture essential information about network traffic
and flow identity. The 11 selected features were:

• Flow Packets/s
• Flow IAT Max
• Flow Duration
• Flow IAT Mean
• Flow IAT Min
• Source Port

• Destination IP
• Flow ID
• Source IP
• Timestamp
• Label

3.3 MODELS AND LIBRARIES USED

To train and evaluate the models, we conducted four rounds of experimentation, testing two distinct
feature sets (one with 11 selected features and another with all features) on both CPU and GPU.
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Algorithm Library CPU GPU

Decision Tree scikit-learn ✓
Random Forest scikit-learn ✓ ✓
Extra Trees scikit-learn ✓
Bagging scikit-learn ✓
AdaBoost scikit-learn ✓
GradientBoost scikit-learn ✓
XGBoost xgboost ✓ ✓
CatBoost catboost ✓

We chose these algorithms because of their widespread adoption in the literature on network traffic
classification and malware detection problems. For GPU execution, due to the native compatibility
limitations of some libraries, we only use the following algorithms.

3.4 PARAMETER CONFIGURATION

To ensure reproducibility of results and perform a fair comparison between different algorithms,
a standardized parameter configuration was adopted. In most ensemble models, such as Random
Forest, Extra Trees, Bagging, AdaBoost, and Gradient Boost, the number of estimators is typically
set to 100. For algorithms such as CatBoost, an equivalent number of 100 iterations was used to
maintain consistency. The other hyperparameters, such as maximum tree depth, learning rate, and
number of samples per leaf, were kept at their default values, a testament to the thoroughness of our
research.

3.5 HARDWARE CONFIGURATION (CPU VS GPU)

We conducted the experiments on Google Colab virtual machines equipped with NVIDIA Tesla T4
GPUs and CPU execution support. We performed all tests in Python 3.10. The execution envi-
ronment included machine learning libraries such as scikit-learn, xgboost, and catboost. We chose
Google Colab for its ease of access to GPU resources and the reproducibility of experiments in a
standardized environment. We utilized the GPU configuration to evaluate significant performance
gains in algorithms that benefit from massive parallelism. In contrast, the CPU configuration served
as a baseline, allowing us to measure the differences in training and prediction times between the
two scenarios.

4 RESULTS AND DISCUSSION

In this section, we present and analyze the results obtained in the four experimental scenarios. We
structure the discussion around three axes: (i) the predictive performance of the models; (ii) the im-
pact of feature selection on efficiency and accuracy; and (iii) the comparative performance analysis
between CPU and GPU.

4.1 MODEL PERFORMANCE (METRICS)

The results revealed exceptional performance for most ensemble-based models. The GradientBoost,
Bagging, and XGBoost algorithms consistently achieved Accuracies, F1-scores, Recalls, and Pre-
cisions above 0.997, as shown in the following tables. The highest accuracy was achieved by Gra-
dientBoost (0.9980), although at a high computational cost (more than 1 hour and 25 minutes of
wall time). Bagging, on the other hand, stood out not only for its accuracy of 0.9978 in the selected
features but also for its excellent balance between performance and training time (3m41s).
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Results with selected features (CPU):

Algorithm Accuracy F1 Score Precision Recall CPU Time Wall Time
XGBoost 0.996595 0.996595 0.996596 0.996595 49.5 s 28.1 s
Bagging 0.997870 0.997870 0.997871 0.997870 3m 37s 3m 41s
ExtraTrees 0.993967 0.993959 0.993971 0.993967 31.7 s 31.9 s
RandomForest 0.988891 0.988897 0.988947 0.988891 4.1 s 4.1 s
AdaBoost 0.557540 0.461231 0.447596 0.557540 56.5 s 56.9 s
GradientBoost 0.997653 0.997652 0.997654 0.997653 26m 24s 26m 33s
CatBoost 0.993330 0.993332 0.993339 0.993330 1m 44s 1m 00s
DecisionTree 0.997819 0.997819 0.997820 0.997819 3.4 s 3.4 s

Results with all features (CPU):

Algorithm Accuracy F1 Score Precision Recall CPU Time Wall Time
XGBoost 0.996799 0.996798 0.996799 0.996799 4m 27s 2m 33s
Bagging 0.997730 0.997730 0.997730 0.997730 12m 10s 12m 14s
ExtraTrees 0.914217 0.913419 0.913560 0.914217 1m 43s 1m 43s
RandomForest 0.941740 0.940511 0.944042 0.941740 6.4 s 6.2 s
AdaBoost 0.557540 0.461231 0.447596 0.557540 3m 00s 3m 01s
GradientBoost 0.998049 0.998048 0.998048 0.998049 1h 24m 53s 1h 25m 29s
CatBoost 0.994324 0.994332 0.994351 0.994324 8m 17s 4m 53s
DecisionTree 0.997334 0.997335 0.997336 0.997334 11.5 s 11.6 s

Results with selected features (GPU):

Algorithm Accuracy F1 Score Precision Recall CPU Time Wall Time
XGBoost 0.996811 0.996813 0.996815 0.996811 3.01 s 2.98 s
RandomForest 0.988317 0.988334 0.988417 0.988317 4.23 s 2.93 s

Results with all features (GPU):

Algorithm Accuracy F1 Score Precision Recall CPU Time Wall Time
XGBoost 0.997041 0.997042 0.997046 0.997041 8.60 s 8.76 s
RandomForest 0.939112 0.937571 0.941474 0.939112 7.01 s 4.51 s

4.2 CPU VS GPU PERFORMANCE ANALYSIS

The use of GPU acceleration has proven to be a game-changer, significantly improving performance
with compatible algorithms, such as XGBoost. The comparative analysis underscores the potential
of specialized hardware to expedite large-scale training and inference cycles. For instance, in the
case of XGBoost with the selected features, training time was slashed from 28.1 seconds on the CPU
to a mere 2.98 seconds on the GPU, a 9.4-fold acceleration. This efficiency gain becomes even more
pronounced when all features are used, with the speedup reaching 17.5 times (from 2 minutes and
33 seconds on the CPU to 8.76 seconds on the GPU), saving valuable time and resources.

This acceleration in training speed is a game-changer in production scenarios, where the ability to
retrain models quickly is a non-functional and operational requirement. But the real impact is seen
in the agility it brings to experimentation and hyperparameter tuning cycles. With the ability to
train models faster, researchers and engineers can now find optimal models in a fraction of the time,
significantly boosting productivity and efficiency.

4.3 IMPACT OF FEATURE SELECTION

The selection of features had a significant impact on optimizing the process without sacrificing
predictive performance. When we compare the results of XGBoost, we can see that the model
trained with only 11 features achieved an accuracy of 0.9965, which is practically identical to the
version with all features (0.9967). This reassures us that the model’s efficiency is not compromised
with reduced features.

The most significant advantage, however, was the drastic reduction in CPU training time. The
Wall Time of XGBoost decreased from 2m 33s to 28.1s, representing a more than 80% reduction in
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computational cost. This result validates the hypothesis that fewer high-impact features are sufficient
for the task, making the model not only efficient but also practical for implementation in scenarios
where resources are limited, instilling optimism about its real-world applicability.

5 CONCLUSIONS AND FUTURE WORK

This study demonstrates the effectiveness of a model of machine learning pipeline for detecting
Android Ransomware using network traffic data. Our results indicate that ensemble models, partic-
ularly bagging and XGBoost, achieve very good accuracy levels, exceeding 0.997.

A key contribution was showing that a strategic selection of a subset of 11 high impact features
drastically reduces training time (by over 80% for XGBoost) without significantly compromising
predictive power. The GPU acceleration also proved critical for operational efficiency, reducing
training times by up to 17.5x and enabling rapid model iteration and retraining in production scenar-
ios. Together, these findings confirm that an optimal balance between high accuracy, computational
efficiency and deployment feasibility is achievable.

Although previous works (Hossain et al. (2025), Albin Ahmed et al. (2024)) presented classifica-
tion models with very good performance, our experiments show that our model outperforms these
approaches in the overall context, taking into account not only accuracy but also F1-score, recall,
precision, training time, and computational efficiency.

This broader evaluation demonstrates that high individual metrics alone do not guarantee the prac-
ticality of a model, especially for deployment scenarios on mobile devices or edge computing en-
vironments. In the following sections, we provide a detailed analysis confirming that our pipeline
combines high predictive performance with operational efficiency, making it more robust and appli-
cable in real-world situations.

Despite the promising results, our study has some limitations. First, the hardware comparison anal-
ysis was restricted to algorithms with native GPU implementations (XGBoost and Random Forest),
as libraries like scikit-learn are primarily optimized for CPUs. Second, ”energy efficiency” was
evaluated indirectly using execution time as a proxy. Direct measurements of power consumption
(in Watts) were not performed, which would provide a more precise analysis.

For future works, we plan to expand the research in several directions. First we intend to validate
the model’s robustness across different datasets and against emerging ransomware samples. Second,
we plan to study algorithms that can run both on GPU and CPU, so that we can include them in our
study. Third, we aim to conduct direct energy consumption measurements to accurately quantify the
models’ efficiency, especially for deployment on resource-constrained edge devices.
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