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Abstract

We present a unified framework for studying the identifiability of representations
learned from simultaneously observed views, such as different data modalities.
We allow a partially observed setting in which each view constitutes a nonlinear
mixture of a subset of underlying latent variables, which can be causally related.
We prove that the information shared across all subsets of any number of views can
be learned up to a smooth bijection using contrastive learning and a single encoder
per view. We also provide graphical criteria indicating which latent variables can be
identified through a simple set of rules, which we refer to as identifiability algebra.
Our general framework and theoretical results unify and extend several previous
works on multi-view nonlinear ICA, disentanglement, and causal representation
learning. We experimentally validate our claims on numerical, image, and multi-
modal data sets. Further, we demonstrate that the performance of prior methods
is recovered in different special cases of our setup. Overall, we find that access
to multiple partial views enables identifying a more fine-grained representation,
under the generally milder assumption of partial observability.

1 Introduction
Discovering latent structure underlying data has been important across many scientific disciplines,
spanning neuroscience [8, 59], communication theory [18, 47], natural sciences [12, 55, 63], and
countless more. The underlying assumption is that many natural phenomena measured by instruments
have a simple structure that is lost in raw measurements. In the famous cocktail party problem [14],
multiple speakers talk concurrently, and while we can easily record their overlapping voices, we are
interested in understanding what individual people are saying. From the methodological perspective,
such inverse problems became common in machine learning with breakthroughs in linear [15, 16, 28]
and non-linear [30] Independent Component Analysis (ICA), and developed into deep learning meth-
ods for disentanglement [5, 26]. More recently, approaches to causal representation learning [48]
began relaxing the key assumption of independent latents central to prior work (the independent
in ICA), allowing for and discovering (some) hidden causal relations [3, 7, 35, 37, 51, 58, 61, 68].

This problem is often modeled as a two-stage sampling procedure, where latent variables z are
sampled i.i.d. from a distribution pz, and the observations x are functions thereof. Intuitively, the
latent variables describe the causal structure underlying a specific environment, and they are only
observed through sensor measurements, entangling them via so-called “mixing functions”. Unfor-
tunately, if these mixing functions are non-linear, the recovery of the latent variables is generally
impossible, even if the latent variables are independent [29, 38]. Following these negative results,
the community has turned to settings that relax the i.i.d. condition in different ways. One particularly
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successful paradigm has been the assumption that data is not independently sampled, and in fact,
multiple observations may refer to the same realization of the latent variables. This multi-view setup
has generated a flurry of results in ICA [21, 46, 70], disentanglement [2, 19, 34, 36, 39], and causal
representation learning [7, 17, 60].

This paper provides a unified framework for several identifiability results in observational multi-view
causal representation learning under partial observability. We assume that different views need not be
functions of all the latent variables, but only of some of them. For example, a person may undertake
different medical exams, each shedding light on some of their overall health status (assumed constant
throughout the measurements), but none offering a comprehensive view. An X-ray may show a broken
bone, an MRI how the fracture affected nearby tissues, and a blood sample may inform about ongoing
infections. Our framework also allows for an arbitrary number of views, each measuring partially
overlapping latent variables. It includes multi-view ICA and disentanglement as special cases.

More technically, we prove that any shared information across arbitrary subsets of views and modal-
ities can be learned up to a smooth bijection using contrastive learning. Non-shared information
can also be identified if it is independent of other latent variables. With a single identifiability proof,
our result implies the identifiability of several prior works in causal representation learning [17, 60],
non-linear ICA [21], and disentangled representations [2, 39]. In addition to weaker assumptions,
our framework retains the algorithmic simplicity of prior contrastive multi-view [60] and multi-
modal [17] causal representation learning approaches. Allowing partial observability and arbitrarily
many views, our framework is significantly more flexible than prior work, allowing us to identify
shared information between all subsets of views and not just their joint intersection.
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Figure 1: Multi-View Setting with
Partial Observability, with K=4
views and N=6 latents. Each view
xk is generated by a subset zSk of
the latent variables through a view-
specific mixing function fk. Di-
rected arrows between latents indi-
cate causal relations.

We highlight the following contributions:

1. We provide a unified framework for identifiability in observa-
tional multi-view causal representation learning with partial
observability. This generalizes the multi-view setting in two
ways: allowing (i) any arbitrary number of views, and (ii) par-
tial observability with non-linear mixing functions. We prove
that any shared information across arbitrary subsets of views
and modalities can be learned up to a smooth bijection us-
ing contrastive learning and provide straightforward graphical
criteria to categorize which latents can be recovered.

2. With a single proof, our result implies the identifiability of
several prior works in causal representation learning, non-
linear ICA, and disentangled representations as special cases.

3. We conduct experiments for various unsupervised and super-
vised tasks and empirically show that (i) the performance of
prior works can be recovered using a special setup of our
framework and (ii) our method indicates promising disentan-
glement capabilities with encoder-only networks.

2 Problem Formulation
We formalize the data generating process as a latent variable model. Let z = (z1, ..., zN ) ∼ pz be
possibly dependent (causally related) latent variables taking values in Z = Z1 × ...× ZN , where
Z ⊆ RN is an open, simply connected latent space with associated probability density pz. Instead
of directly observing z, we observe a set of entangled measurements or views x := (x1, . . . ,xK).
Importantly, we assume that each observed view xk may only depend on some of the latent variables,
which we call “view-specific latents” zSk

, indexed by subsets S1, ..., SK ⊆ [N ] = {1, ..., N}. For
any A ⊆ [N ], the subset of latent variables zA and corresponding latent sub-space ZA are given by:

zA := {zj : j ∈ A}, ZA :=×j∈A
Zj .

Similarly, for any V ⊆ [K], the subset of views xV and corresponding observation space XV are:

xV := {xk : k ∈ V }, XV :=×k∈V
Xk .

The view-specific mixing functions {fk : ZSk
→ Xk}k∈[K] are smooth, invertible mappings from

the view-specific latent subspaces ZSk
to observation spaces Xk ⊆ Rdim(xk) with xk := fk(zSk

).

2



Formally, the generative process for the views {x1, . . . ,xK} is given by:

z ∼ pz, xk := fk(zSk
) ∀k ∈ [K],

i.e., each view xk depends on latents zSk
through a mixing function fk, as illustrated in Fig. 1.

Assumption 2.1 (General Assumptions). For the latent generative model defined above:

(i) Each view-specific mixing function fk is a diffeomorphism;

(ii) pz is a smooth and continuous density on Z with pz > 0 almost everywhere.

Consider a set xV of jointly observed views, and let V := {Vi ⊆ V : |Vi| ≥ 2} be the set of subsets
Vi ∈ V indexing two or more views. For any subset of views Vi, we refer to the set of shared latent
variables (i.e., those influencing each view in the set) as the “content” or “content block" of Vi.
Formally, content variables zCi

are obtained as intersections of view-specific indexing sets:

Ci =
⋂

k∈Vi
Sk . (2.1)

Similarly, for each view k ∈ V , we can define the non-shared (“style") variables as zSk\Ci
. We use

C and zC without subscript to refer to the joint content across all observed views xV .

Our goal is to show that we can simultaneously identify multiple content blocks given a set of
jointly observed views under weak assumptions. This extends previous work [17, 21, 60] where
only one block of content variables is considered. Isolating the shared content blocks from the
rest of the view-specific style information, the learned representation (estimated content) can
be used in downstream pipelines, such as classification tasks [19, 36]. In the best case, if each
latent component is represented as one individual content block, we can learn a fully disentangled
representation [2, 27, 39]. To this end, we restate the definition of block-identifiability [60, Defn
4.1] for the multi-modal, multi-view setting:

Definition 2.2 (Block-Identifiability). The true content variables c are block-identified by a function
g : X → Rdim(c) if the inferred content partition ĉ = g(x) contains all and only information about c,
i.e., if there exists some smooth invertible mapping h : Rdim(c) → Rdim(c) s.t. ĉ = h(c).

Note that the inferred content variables ĉ can be a set of entangled latent variables rather than a single
one. This differentiates our paper from the line of work on disentanglement [19, 36, 39], which can
be considered as special cases of our framework with content block sizes equal to one.

3 Identifiability Theory
High-Level Overview. This section presents a unified framework for studying identifiability from
multiple partial views: we start by establishing identifiability of the shared content block zC from any
number of partially observed views (Thm. 3.2). The downside of this approach is that if we seek to
learn content from different subsets, we need to train an exponential number of encoders for the same
modality, one for each subset of views. We, therefore, extend this result and show that by considering
any subset of the jointly observed views, various blocks of content variables can be identified by one
single view-specific encoder (Thm. 3.8). After recovering multiple content blocks simultaneously, we
show in Cors. 3.9 to 3.11 that a qualitative description of the data generative process such as in Fig. 1
can be sufficient to determine exactly the extent to which individual latents or groups thereof can be
identified and disentangled. Full proofs are included in App. D.

Definition 3.1 (Content Encoders). Assume that the content size |C| is given for any jointly observed
views xV . The content encoders G := {gk : Xk → (0, 1)|C|}k∈V consist of smooth functions
mapping from the respective observation spaces to the |C|-dimensional unit cube.

Theorem 3.2 (Identifiability from a Set of Views). Consider a set of views xV satisfying Asm. 2.1,
and let G be a set of content encoders (Defn. 3.1) that minimizes the following objective

L (G) =
∑

k<k′∈V
E [∥gk(xk)− gk′(xk′)∥2]︸ ︷︷ ︸

Content alignment

−∑
k∈V H (gk(xk))︸ ︷︷ ︸

Entropy regularization

, (3.1)

where the expectation is taken w.r.t. p(xV ) and H(·) denotes differential entropy. Then the shared
content variable zC := {zj : j ∈ C} is block-identified (Defn. 2.2) by gk ∈ G for any k ∈ V .
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Discussion. Thm. 3.2 provides a learning algorithm to infer one jointly shared content block for all
observed views in a set, extending prior results that only consider two views [17, 39, 60]. However,
to discover another content block Ci w.r.t. a subset of views Vi ⊂ V as defined in § 2, we need
to train another set of encoders, since the dimensionality of the content might change. Ideally, we
would like to learn one view-specific encoder rk that can block-identify all shared contents zCi

using
one training run, combined with separate content selectors.

Definition 3.3 (View-Specific Encoders). The view-specific encoders R := {rk : Xk → ZSk
}k∈V

consist of smooth functions mapping from the respective observation spaces to the view-specific
latent space, where the dimension of the kth latent space |Sk| is assumed known for all k ∈ V .

Definition 3.4 (Selection). A selection ⊘ operates between two vectors a ∈ {0, 1}d , b ∈ Rd s.t.

a⊘ b := [bj : aj = 1, j ∈ [d]]

Definition 3.5 (Content Selectors). The content selectors Φ := {ϕ(i,k)}Vi∈V,k∈Vi
with ϕ(i,k) ∈

{0, 1}|Sk| perform selection (Defn. 3.4) on the encoded information: for any subset Vi and view
k ∈ Vi we have the selected representation:

ϕ(i,k) ⊘ ẑSk
= ϕ(i,k) ⊘ rk(xk),

with
∥∥ϕ(i,k)∥∥

0
=

∥∥∥ϕ(i,k′)
∥∥∥
0

for all Vi ∈ V, k, k′ ∈ Vi.

What is missing? While aligning various content blocks based on the same representation rk(xk)
should promote disentanglement, maximizing the entropy H(rk(xk)) of the learned representation
(as in Thm. 3.2) promotes uniformity. The latter implies invertibility of the encoders [70], which is
necessary for block-identifiability (Defn. 2.2). However, since a uniform representation has indepen-
dent components by definition, disentanglement and uniformity cannot be achieved simultaneously
unless all ground truth latents are mutually independent (a strong assumption we are not willing
to make). Thus, to theoretically achieve invertibility while preserving disentanglement, we introduce
a set of auxiliary projection functions.

Definition 3.6 (Projections). The set of projections T := {tk}k∈V consist of functions tk : ZSk
→

(0, 1)|Sk| mapping each view-specific latent space to a hyper unit-cube of the same dimension |Sk|.
What if the content dimension is unknown? In Thm. 3.2 we assumed that the size |C| of the
shared content block is known, and the encoders map to a space of dimension |C|. In the following,
we do not assume that the content size is given. Instead, we will show that the correct content block
can still be discovered by ensuring that as much information as possible is shared across any given
subset of views. To this end, we define the following information-sharing regularizer.

Definition 3.7 (Information-Sharing Regularizer). The following regularizer penalizes the L0-
norm ∥·∥0 of the content selectors Φ:

Reg(Φ) := −∑
Vi∈V

∑
k∈Vi

∥∥ϕ(i,k)∥∥
0
. (3.2)

Theorem 3.8 (View-Specific Encoder for Identifiability). Let R,Φ, T respectively be any view-
specific encoders (Defn. 3.3), content selectors (Defn. 3.1) and projections (Defn. 3.6) that solve the
following constrained optimization problem:

min Reg(Φ) subject to: R,Φ, T ∈ argmin L (R,Φ, T ) (3.3)

where

L (R,Φ, T ) =
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ rk(xk)− ϕ(i,k

′) ⊘ rk′(xk′)
∥∥∥
2

]
︸ ︷︷ ︸

Content alignment

−
∑
k∈V

H (tk ◦ rk(xk))︸ ︷︷ ︸
Entropy

,

(3.4)
Then for any subset of views Vi ∈ V and any view k ∈ Vi , ϕ(i,k) ⊘ rk block-identifies (Defn. 2.2) the
shared content variables zCi , as defined in eq. (2.1).

Discussion. Note that Equation (3.3) can be rewritten as a regularized loss LReg (R,Φ, T ) =
L (R,Φ, T ) + α · Reg(Φ) with a sufficiently small regularization coefficient α ≥ 0. Overall,
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Thm. 3.8 further weakens the assumptions of Thm. 3.2 in that no content size is required. However,
minimizing the information-sharing regularizer is highly non-convex, and having only a finite
number of samples makes finding the global optimum challenging. In practice, we could use Gumbel
Softmax [31] for unsupervised learning, and consider content sizes as hyper-parameters or follow
the approach by Fumero et al. [19] for supervised classification tasks. Empirically, we will see
that some of the requirements that are needed in theory can be realistically dropped, and different
approximations are possible, e.g., incorporating problem-specific knowledge.

After discovering various content blocks, we are further interested in how to infer more information
from the learned content blocks. For example, can we identify zC3

:= {z1, z2, z3} = zC1∩C2
? This

perspective motivates our next results, which focus on how to infer new information based on the
previously identified blocks: Identifiability Algebra.

Let zC1
, zC2

with C1, C2 ⊆ [N ] be two identified blocks of latents. Then it holds for C1, C2 that:

Corollary 3.9 (Identifiability Algebra: Intersection). The intersection zC1∩C2
can be block-identified.

Corollary 3.10 (Identifiability Algebra: Complement). If C1∩C2 is independent of C1\C2, then the
complement zC1\C2

can be block-identified.

Corollary 3.11 (Identifiability Algebra: Union). If C1∩C2, C1\C2 and C2\C1 are mutually inde-
pendent, then the union zC1∪C2

can be block-identified.

Discussion. While Cor. 3.9 refines the identified block of information into smaller intersections,
Cors. 3.10 and 3.11 allows to extract “style” variables as defined w.r.t. some specific views, under
the assumption that they are independent of the content block, as discussed by Lyu et al. [41].
However, our setup is more general, as we can not only explain the independent style variables
between pairs of observations, but also between learned content representations. Thus, by iteratively
applying Cor. 3.10 we can generalize the statement to any number of identified content blocks.
Combining Cors. 3.9 to 3.11 we can immediately tell which part can be block-identified from a set of
views V , given a graphical model representation such as Fig. 1 and subject to technical assumptions
underlying our main results. Applying Cors. 3.9 to 3.11 iteratively on identified blocks can possibly
disentangle each individual factors of variation, providing a novel approach for disentanglement.

4 Experiments
First, we validate Thms. 3.2 and 3.8 using numerical simulations in a fully controlled synthetic setting.
Next, we conduct experiments on visual (and text) data demonstrating different special cases that
are unified by our theoretical framework (App. C) and how we extend them. We use InfoNCE [44]
and BarlowTwins [67] to estimate eqs. (3.1) and (3.3). For the evaluation, we follow a standard
evaluation protocol [60] and predict the ground truth latents from the learned representation gk(xk),
using kernel ridge regression for continuous latent variables, and logistic regression for discrete ones,
respectively. Then, we report the coefficient of determination R2 to show the correlation between
the learned and ground truth latent variables. An R2 close to one between the learned and ground
truth variables means that the learned variables are modelling correctly the ground truth, indicating
block-identifiability (Defn. 2.2).

4.1 Numerical Experiment
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Figure 2: Theory Validation: Average R2 across mul-
tiple views generated from independent latents.

Experimental Setup. We generate synthetic
data following Fig. 1. The latent variables
are sampled from a Gaussian distribution
z ∼ N (0,Σz), where possible causal de-
pendencies can be encoded through Σz. The
view-specific mixing functions fk are imple-
mented by randomly initialized invertible MLPs
for each view k ∈ {1, . . . 4}. We report here the
R2 scores for the case of independent variables,
because it is easier to interpret than the R2

scores in the causally dependent case, for which
we show that the learned representation still contains all and only the content information in App. E.1.

Discussion. Fig. 2 shows how the averaged R2 changes when including more views, with the y-axis
denoting the ground truth latents and the x-axis showing learned representation from different subsets
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Figure 3: Simultaneous Multi-Content Identification using View-Specific Encoders. Experimental results
on Multimodal3DIdent. Left: Image latents (averaged between two image views) Right: Text latents.

of views. As shown in Example B.1 and Fig. 1, the content variables are consistently identified,
having R2 ≈ 1, while the independent style variables are non-predictable (R2 ≈ 0). This numerical
result shows that the learned representation explains almost all variation in the content block but
nothing from the independent styles, which validates Thms. 3.2 and 3.8.

4.2 Self-Supervised Disentanglement
Table 1: Self-Supervised Disentanglement
Performance Comparison on MPI-3D com-
plex [20] and 3DIdent [70], between our
method and Ada-GVAE [39].

DCI disentanglement ↑
MPI3D complex 3DIdent

Ada-GVAE∗ 0.11± 0.008 0.09± 0.019
Ours 0.42± 0.020 0.30± 0.04

Experimental Setup. We compare our method (Thm. 3.8)
with Ada-GVAE [38], on MPI-3D complex [20] and 3DI-
dent [70] image datasets. We did not compare with Ahuja
et al. [2], since their method needs to know which latent is
perturbed, even when guessing the offset. We experiment
on a pair of views (x1,x2) where the second view x2 is
obtained by randomly perturbing a subset of latent factors
of x1, following [38]. We provide more details about the
datasets and the experiment setup in App. E.2. As shown in Tab. 1, our method outperformed the
autoencoder-based Ada-GVAE [39], using only an encoder and contrastive learning.

Discussion. As both methods are theoretically identifiable, we hypothesize that the improvement
comes from avoiding reconstructing the image, which is more difficult on visually complex data.
This hypothesis is supported by the fact that self-supervised contrastive learning has far exceeded
the performance of autoencoder-based representation learning in various tasks [11, 13, 45, 49]

4.3 Multi-Modal Content-Style Identifiability under Partial Observability
Experimental setup. We experiment on a set of three views (img0, img1, txt0) extending both [17,
60], which are limited to two views, either two images or one image and its caption. The second image
view img1 is generated by perturbing a subset of latents of img0 as in [60]. Notice that this setup pro-
vides perfect partial observability because the text is generated using text-specific modality variables
that are not involved in any image views e.g., text phrasing. We train view-specific encoders to learn all
content blocks simultaneously and predict individual latent variables from each learned content blocks.

Discussion. Fig. 3 reports the R2 on the ground truth latent values, predicted from the simultane-
ously learned multiple content blocks (Cx0,x1 , Cx0,x2 , Cx1,x2 , Cx0,x1,x2 , respectively). We remark
that this single experiment recovers both experimental setups from [60, Sec 5.2], [17, Sec 5.2]:
Cx0,x1 represents the content block from the image pairs (img0, img1), which aligns with the setting
in [60] and Cx0,x2 shows the content block from the multi-modal pair (img0, txt0), which is studied
by Daunhawer et al. [17]. We observe that the same performance for both prior works [17, 60] has
been successfully reproduced from our single training process, which verifies the effectiveness and
efficiency of Thm. 3.8. Extended evaluation and more experimental details are provided in App. E.4.

5 Discussion and Conclusion
This paper revisits the problem of identifying possibly dependent latent variables under multiple
partial non-linear measurements. Our theoretical results extend to an arbitrary number of views,
each potentially measuring a strict subset of the latent variables. In our experiments, we validate our
claims and demonstrate how prior work can be obtained as a special case of our setting. While our
assumptions are relatively mild, we still have notable gaps between theory and practice, thoroughly
discussed in App. F. In particular, we highlight discrete variables and finite-sample errors as common
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gaps, which we address only empirically. Interestingly, our work offers potential connections with
work in the causality literature [22, 23, 42, 56]. Discovering hidden causal structures from overlap-
ping but not simultaneously observed marginals (e.g., via views collected in different experimental
studies at different times) remains open for future works.
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A Notation and Terminology
C Index set for shared content variables

zC Shared content variables

V Collection of subset of views from V

Vi Index set for subset of views in set of views V

Ci Index set for shared content variables from subset of views Vi ∈ V
zCi Shared content variables from subset of views Vi
N Number of latents

K Number of views

j Index for latent variables

k Index for views

Z Latent space

Xk Observational space for k-th view

xk Observed k-th view

Sk Index set for k-th view-specific latents

V {1, . . . , l}

B Intuition and Explanations of Our Theory
This section provides explanation for each definition and theorem in § 3, following Example B.1.

Example B.1. Throughout, we illustrate key concepts and results using the following example with
K=4 views, N=6 latents, and dependencies among the zk shown as a graphical model in Fig. 1.

x1 = f1(z1, z2, z3, z4, z5), x2 = f2(z1, z2, z3, z5, z6),

x3 = f3(z1, z2, z3, z4, z6), x4 = f4(z1, z2, z4, z5, z6).
(B.1)
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For Example B.1, the content of xV1 = (x1,x2) are zC1 = (z1, z2, z3, z5); the content for all four
views x = (x1,x2,x3,x4) jointly is zC = (z1, z2) and the styles for x1 is zS1\C = (z3, z4, z5).

Intuition for Thm. 3.2. The alignment enforces the content encoders gk only to encode content
and discard styles, while the maximized entropy implies uniformity and thus invertibility. For Exam-
ple B.1, recall that the joint content is C = ∩k∈[4]{Sk} = {1, 2}. Thm. 3.2 then states that, for each
k = 1, 2, 3, 4, the content encoders G = {gk : Xk → (0, 1)|C|} which minimize the loss in eq. (3.1)
are actually invertible mappings of the ground truth content {z1, z2}, i.e., gk(xk) = hk(z1, z2) for
smooth invertible functions hk : Z1 ×Z2 → (0, 1)2.

Intuition for Defn. 3.3 The view-specific encoders learn all view-related content blocks simulta-
neously, instead of training a combinatorial number of networks (as would be implied by Thm. 3.2).
The view-specific encoders should learn not only a single block of content variables, but instead
learn to recover all shared latents in a way that makes it easy to extract various different content
blocks using simple readout functions. This is possible by construction, e.g., if each rk learns to
invert the ground truth mixing fk. Inspired by this idea, we introduce content selectors.

Intuition for Defn. 3.5. Using learnable binary weights Φ, the content selectors ϕ(i,k) should pick
out those latents among the representation ẑSk

extracted by rk that belong to the content block Ci

shared among Vi. For Example B.1, consider a learned representation r1(x1) = (ẑ1, ẑ2, ẑ3, ẑ4, ẑ5).
Applying a content selector with weight ϕ(i=1,k=1) = [1, 1, 1, 0, 1] then yields: (ẑ1, ẑ2, ẑ3, ẑ5).

Intuition for Defn. 3.6. The projection functions can be understood as mathematical tools: by
maximizing the entropy and thus enforcing uniformity of projected representations tk ◦ rk(xk), we
can show that rk needs to be invertible without interfering with the disentanglement of different
content blocks.

Intuition for Defn. 3.7. Reg(Φ) sums the number of shared latents over Vi ⊆ V and k ∈ Vi. It
decreases when ϕ(i,k) contains more ones, i.e., more latents are shared across views k ∈ Vi. Thus,
Reg(Φ) encourages the encoders to reuse the learned latents and maximize the shared information
content.

Intuition for Thm. 3.8. For Example B.1, the representation for x1 obtained by minimizing eq. (3.3)
is given by ẑ := r1(x1) = r1(f1(zS1

)) = r1 ◦ f1(z1, z2, z3, z4, z5). Consider the following two
subsets of views V1, V2 ∈ V containing x1, but sharing different content blocks C1, C2:

xV1
= {x1,x2} , zC1

= {z1, z2, z3, z5} , xV2
= {x1,x3} , zC2

= {z1, z2, z3, z4} .
Then one of the optimal solutions of the selectors learned by Thm. 3.8 could be

ϕ(i=1,k=1) = [1, 1, 1, 0, 1] , ϕ(i=2,k=1) = [1, 1, 1, 1, 0].

Hence, the composed results of the selectors and the view-specific encoder r1 give:

ϕ(i=1,k=1) ⊘ ẑ = hi=1,k=1(z1, z2, z3, z5) , ϕ(i=2,k=1) ⊘ ẑ = hi=2,k=1(z1, z2, z3, z4)

where hi,k=1 is some smooth bijection, for both i = 1, 2.

C Related Work and Special Cases of Our Theory
Our framework unifies several prior work, including multi-view nonlinear ICA [21], weakly-
supervised disentanglement [2, 39] and content-style identification [17, 60]. Tab. 2 shows a sum-
marized (non-exhaustive) list of related works and their respective graphical models that can be
considered as special cases. The graphical setups of the individual works can be recovered from our
framework (Fig. 1) by varying the number of observed views and causal relations.

In addition, we present a short overview of other related work which can be connected with our
theoretical results, including causal representation learning [1, 10, 33, 50, 52, 64, 65], mutual
information-based contrastive learning [53, 54, 57], latent correlation maximization [4, 6, 40, 41],
nonlinear ICA without auxiliary variables [62] and multitask disentanglement with sparse classi-
fiers [19, 36]. We remark that several approaches here consider the setting where two observations
are generated through an intervention on some latent variable(s). This is sometimes written in the
graphical model as two nodes connected by an arrow (shown in the graphs in Tab. 2 as dashed lines
99K) indicating the pre- and post-intervention versions of the same variable(s). We stress that this
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Table 2: A non-exhaustive summary of special cases of our theory and their graphical models. An
asterisk (∗) indicates works that have view-specific latents that are not of interest for identifiability.

Method Graph Dependent Latents Multi-Modal Partial Observability > 2 Views

Gresele et al. [21]

ni

c

xi

i = 1, . . . ,K

✗ ✓ ✗∗ ✓

Locatello et al. [39]

z1 z2 z3 z̃3

x1 x2
✗ ✗ ✗ ✗

Ahuja et al. [2]
z1 z2 z̃1 z̃2

x1 x2 x3

✓ ✗ ✗ ✓

von Kügelgen et al. [60]
s c s̃

x1 x2

✓ ✗ ✗ ✗

Daunhawer et al. [17]
m s c s̃ m̃

x1 x2

✓ ✓ ✗∗ ✗

Ours Fig. 1 ✓ ✓ ✓ ✓

does not constitute an example of partial observability. In our setting, latent variables can be simply
unobserved, regardless of whether or not they were subject to an intervention.

Causal representation learning. In the context of causal representation learning (CRL), Sturma
et al. [52] also explicitly consider partial observability in a linear, multi-domain setting, Buchholz
et al. [9] explores linear representation learning from single-node interventional data, which could be
considered as varying views under distinct interventions. Several other works on linear CRL from
i.i.d. data could also be viewed as assuming partial observability, since they often rely on graphical
conditions which enforce each measured variable to depend on a single (a “pure” child) or only a
few latents [1, 10, 33, 50, 64, 65]. In our framework, each view xk instead constitutes a nonlinear
mixture of several latents. Merging partially observed causal structure has been studied without a
representation learning component by Gresele et al. [22], Guo et al. [23], Mejia et al. [42].

Mutual Information-based Contrastive Learning. Tian et al. [53], Tosh et al. [54], Tsai et al.
[57] empirically showcase the success of contrastive learning in extracting task-related information
across multiple views, mostly by maximizing the mutual information between the extracted repre-
sentation and the self-supervised signal, meanwhile discarding the task-irrelevant information. Since
the optimally designed self-supervised signal should be redundant to the original data regarding
task-related information [53], extracting the task-related information is equivalent to learning the
shared content between the original and augmented samples. Hence, our theory (Thms. 3.2 and 3.8)
may provide theoretical explanations for the improved performance in downstream tasks of mutual
information-based contrastive learning methods.

Latent Correlation Maximization. Prior work [4, 6, 40, 41] showed that maximizing the correlation
between the learned representation is equivalent to our content alignment principle (eq. (3.1)). The
additional invertibility constraint on the learned encoder in their setting is enforced by entropy
regularization (eq. (3.1)), as explained by Zimmermann et al. [70]. However, their theory is limited to
pairs of views and full observability, while we generalize it to any number of partially observed views.

Nonlinear ICA without Auxiliary Variables. Willetts and Paige [62] shows nonlinear ICA problem
can be solved using non-observable, learnable, clustering task variables u, to replace the observed
auxiliary variable in traditional nonlinear ICA approaches [30]. While we explicitly require the
learned representation to be aligned in a continuous space within the content block, Willetts and Paige
[62] imposes a soft alignment constraint to encourage the encoded information to be similar within a
cluster. In practice, the soft alignment requirement can be easily coded in our framework by relaxing
the content alignment with an equivalence class in terms of cluster membership. Zheng et al. [69] has
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proven identifiability in nonlinear ICA by assuming structural sparsity, differing from our setup, they
only consider mutually independent latents, while we allow arbitrary dependencies in the latent space.

Multi-task Disentanglement with Sparse Classifiers. Our setup is slightly different from that
of Fumero et al. [19], Lachapelle et al. [36] as they focus on multiple classification tasks using
shared encoding and sparse linear readouts. Their sparse classifier head jointly enforces the sufficient
representation (regarding the specific classification task, while we aim for the invertibility of the
encoders) and a soft alignment up to a linear equivalence class (relaxing our hard alignment).
However, the identifiability principles we use are similar: sufficient representation (eq. (3.1), Fumero
et al. [19, eq. (4, 5)], Lachapelle et al. [36, Sec 3.3]), alignment (eq. (3.1), Fumero et al. [19, eq.
(4, 5)], Lachapelle et al. [36, eq. (4)]) and information sharing (Defn. 3.7, Fumero et al. [19, eq. (3)].
While our results can be easily extended to allow for alignment up to a linear equivalence class, their
identifiability theory crucially only covers independent latents.

D Proofs
D.1 Proof for Thm. 3.2
Our proof follows the steps from von Kügelgen et al. [60] with slight adaptation:

1. We show in Lemma D.1 that the lower bound of the loss eq. (3.1) is zero and construct
encoders {g∗k : Xk → (0, 1)|C|}k∈V that reach this lower bound;

2. Next, we show in Lemma D.3 that for any set of encoders {gk}k∈V that minimizes the loss,
each learned gk(xk) depends only on the shared content variables zC , i.e. gk(xk) = hk(zC)
for some smooth function hk : ZC → (0, 1)|C|.

3. We conclude the proof by showing that every hk is invertible using Proposition D.4 [70,
Proposition 5.].

We rephrase each step as a separate lemma and use them to complete the final proof for Thm. 3.2.

Lemma D.1 (Existence of Optimal Encoders). Consider a jointly observed set of views xV , sat-
isfying Asm. 2.1. Let Sk ⊆ [N ], k ∈ V be view-specific indexing sets of latent variables and
define the shared coordinates C :=

⋂
k∈V Sk. For any content encoders G := {gk : Xk →

(0, 1)|C|}k∈V (Defn. 3.1), we define the following objective:

L (G) =
∑

k,k′∈V
k<k′

E [∥gk(xk)− gk′(xk′)∥2]−
∑
k∈V

H (gk(xk)) (D.1)

where the expectation is taken with respect to p(xV ) and where H(·) denotes differential entropy.
Then the global minimum of the loss (eq. (D.1)) is lower bounded by zero, and there exists a set of
content encoders Defn. 3.1 which obtains this global minimum.

Proof. Consider the objective function L(G) defined in eq. (D.1), the global minimum of L(G) is
obtained when the first term (alignment) is minimized and the second term (entropy) is maximized.
The alignment term is minimized to zero when gk are perfectly aligned for all k ∈ V , i.e., gk(xk) =
gk′(xk′) for all xV ∼ pxV

. The second term (entropy) is maximized to zero only when gk(xk) is
uniformly distributed on (0, 1)|C| for all views k ∈ V .

To show that there exists a set of smooth functions: G := {gk}k∈V that minimizes L(G), we
consider the inverse function of the ground truth mixing function f−1

k 1:|C|, w.l.o.g. we assume that
the content variables are at indices 1 : |C|. This inverse function exists and is a smooth function
given by Asm. 2.1(i) that each mixing function fk is a smooth invertible function. By definition, we
have f−1

k 1:|C|(xk) = zC for k ∈ V .

Next, we define a function d using Darmois construction [16] as follows:

dj (zC) := Fj (zj |z1:j−1) j ∈ {1, . . . , |C|}, (D.2)

where Fj denotes the conditional cumulative distribution function (CDF) of zj given z1:j−1, i.e.
Fj (zj |z1:j−1) := P (Zj ≤ zj |z1:j−1). By construction, d (zC) is uniformly distributed on (0, 1)|C|.
Moreover, d is smooth because pz is a smooth density by Asm. 2.1(ii) and because conditional CDF
of smooth densities is smooth
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Finally, we define
gk := d ◦ f−1

k 1:|C| : Xk → (0, 1)|C|, k ∈ V, (D.3)

which is a smooth function as a composition of two smooth functions.

Next, we show that the function set G as constructed above attains the global minimum of L(G).
Given that f−1

k 1:|C|(xk) = f−1
k′ 1:|C|(xk′) = zC , ∀k, k′ ∈ V , we have:

L (G) =
∑

k,k′∈V
k<k′

E [∥gk(xk)− gk′(xk′)∥2]−
∑
k∈V

H (gk(xk))

=
∑

k,k′∈V
k<k′

E [∥d (zC)− d (zC)∥2]−
∑
k∈V

H (d (zC))

=0,

(D.4)

where zC is the shared content variables thus the first term (alignment) equals zero; and since d (zC)
is uniformly distributed on (0, 1)|C|, the second term (entropy) is also zero.

To this end, we have shown that there exists a set of smooth encoders G := {gk}k∈V with gk as
defined in eq. (D.3) which minimizes the objective L(G) in eq. (D.1).

Lemma D.2 (Conditions of Optimal Encoders). Assume the same set of views xV as introduced in
Lemma D.1, then for any set of smooth encodersG := {gk : Xk → (0, 1)|C|}k∈V to obtain the global
minimum (zero) of the objective L(G) in eq. (D.1), the following two conditions have to be fulfilled:

• Invariance: All extracted representations ẑk := gk(xk) must align across the views from
the set V almost surely:

gk(xk) = gk′(xk′) ∀k, k′ ∈ V a.s. (D.5)

• Uniformity: All extracted representations ẑk := gk(xk) must be uniformly distributed over
the hyper-cube (0, 1)|C|.

Proof. Given that G = argminL(G), we have by Lemma C.1:

L (G) =
∑

k,k′∈V

E [∥gk(xk)− gk′(xk′)∥2]−
∑
k∈V

H (gk(xk)) = 0 (D.6)

The minimum L(G) = 0 leads to following conditions:

E [∥gk(xk)− gk′(xk′)∥2] = 0 ∀k, k′ ∈ V, k < k′ (D.7)
H (gk(xk)) = 0 ∀k ∈ V (D.8)

where eq. (D.7) indicates the invariance condition holds for all views xk and smooth encoders
gk ∈ G almost surely; and eq. (D.8) implies that the encoded information gk(xk) must be uniformly
distributed on (0, 1)|C|.

Lemma D.3 (Content-Style Isolation from Set of Views). Assume the same set of views xV as
introduced in Lemma D.1, then for any set of smooth encoders G := {gk : Xk → (0, 1)|C|}k∈V that
satisfies the Invariance condition (eq. (D.5)), the learned representation can only be dependent on
the content variables zC := {zj : j ∈ C}, not any style variables zsk := zSk\C for all k ∈ V .

Proof. Note that the learned representation can be rewritten as:

gk(xk) = gk(fk(zSk
)) k ∈ V, (D.9)

we define
hk := gk ◦ fk k ∈ V. (D.10)

Following the second step of the proof from von Kügelgen et al. [60, Thm. 4.2], we show by
contradiction that both hk(zSk

) for all k ∈ V can only depend on the shared content variables zC .
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Let k ∈ V be any view from the jointly observed set, suppose for a contradiction that hck :=
hk(zSk

)1:|C| depends on some component zq from the view-specific latent variables zsk:

∃q ∈ {1, . . . ,dim(zsk)}, zSk
= (z∗C , z

s∗
k ) ∈ Zk, s.t.

∂hck
∂zq

(z∗C , z
s∗
k ) ̸= 0, (D.11)

which means that partial derivative of hck w.r.t. some latent variable zq ∈ zsk is non-zero at some point
zSk

= (z∗C , z
s∗
k ) ∈ Zk. Since hck is smooth, its first-order (partial) derivatives are continuous. By

continuity of the partial derivatives, ∂hc
1

∂zq
must be non-zero in a neighborhood of (z∗C , z

s∗
k ), i.e.,

∃η > 0 s.t. zq → hck(z
∗
C , z

s∗
k−q

, zq) is strictly monotonic on (zq − η, zq + η), (D.12)

where zs∗k−q
denotes the remaining view-specific style variables except zq .

Next, we define an auxiliary function for each pair of views (k, k′) with k, k′ ∈ V, k < k′: ψk,k′ :
ZC ×ZSk\C ×ZSk′\C → R≥0

ψk,k′(zC , z
s
k, z

s
k′) : = |hck (zC , zsk)− hk′ (zC , z

s
k′)|

=
∣∣hck (zSk′

)
− hck′

(
zSk′

)∣∣ ≥ 0.
(D.13)

Summarizing the pairwise auxiliary functions, we have ψ : ZC ×∏
k∈V ZSk\C → R≥0 as follows:

ψ(zC , {zsk}k∈V ) : =
∑

k,k′∈V
k<k′

|hck (zC , zsk)− hk′ (zC , z
s
k′)|

=
∑

k,k′∈V
k<k′

∣∣hck (zSk′

)
− hck′

(
zSk′

)∣∣ ≥ 0
(D.14)

To obtain a contradiction to the invariance condition in Lemma D.2, it remains to show that ψ
from eq. (D.14) is strictly positive with a probability greater than zero w.r.t. the true generating
process p; in other words, there has to exist at least one pair of views (k, k′) s.t. ψk,k′ > 0 with a
probability greater than zero regarding p.

Since q ∈ Sk \ C, there exists at least one view k′ ̸= k s.t. q /∈ Sk′ (otherwise the content block C
would contain q). We choose exactly such a pair of views k, k′.

Depending whether there is a zero point z0q of ψ within the region (zq − η, zq + η), there are two
cases to consider:

• If there is no zero-point z0q ∈ (zq − η, zq + η) s.t. ψk,k′

(
z∗C , (z

s∗
k−q

, z0q ), z
s∗
k′

)
= 0, then it

implies
ψk,k′

(
z∗C , (z

s∗
k−q

, zq), z
s∗
k′

)
> 0 ∀zq ∈ (zq − η, zq + η). (D.15)

So there is an open set A := (zq − η, zq + η) ⊆ Zq such that the equation ψ in eq. (D.14) is
strictly positive.

• Otherwise, there is a zero point z0q from the interval (zq − η, zq + η) with

ψk,k′

(
z∗C , (z

s∗
k−q

, z0q ), z
s∗
k′

)
= 0 z0q ∈ (zq − η, zq + η), (D.16)

then strict monotonicity from eq. (D.12) implies that ψk,k′ > 0 for all zq in the neighborhood
of z0q , therefore:

ψ(zC , {zsk}k∈V ) > 0 ∀zq ∈ A := (zq − η, z0q ) ∪ (z0q , zq + η). (D.17)

Sinceψ is a sum of compositions of two smooth functions (absolute different of two smooth functions),
ψ is also smooth. Consider the open set R>0 and note that, under a continuous function, pre-images of
open sets are always open. For the continuous function ψ, its pre-image U corresponds to an open set:

U ⊆ ZC ×
∏
k∈V

ZSk\C (D.18)
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in the domain of ψ on which ψ is strictly positive. Moreover, since eq. (D.17) indicated that for all
zq ∈ A, the function ψ is strictly positive, which means:

{z∗C} ×
∏

k:q∈Sk\C

(
{zs∗k−q

} ×A
)
×

∏
k:q/∈Sk

{zs∗k } ⊆ U , (D.19)

hence, U is non-empty.

Given by Asm. 2.1 (ii) that pz is smooth and fully supported (pz > 0 almost everywhere), the
non-empty set U is also fully supported by pz, which indicates:

P (ψ(zC , {zsk}k∈V ) > 0) ≥ P (U) > 0, (D.20)

where P denotes the probability w.r.t. the true generative process p.

According to Lemma D.2, the invariance condition and uniformity conditions has to be fulfilled. To
this end, we have shown that the assumption eq. (D.11) leads to an contradiction to the invariance
condition eq. (D.5). Hence, assumption eq. (D.11) cannot hold, i.e., hck does not depend on any
view-specific style variable zq from zsk. It is only a function of the shared content variables zC , that
is, ẑck = hck(zC).

We list Zimmermann et al. [70, Proposition 5.] for future use in our proof:

Proposition D.4 (Proposition 5 of Zimmermann et al. [70].). Let M,N be simply connected and
oriented C1 manifolds without boundaries and h : M → N be a differentiable map. Further, let the
random variable z ∈ M be distributed according to z ∼ p(z) for a regular density function p, i.e.,
0 < p < ∞. If the push-forward p#h(z) through h is also a regular density, i.e., 0 < p#h < ∞,
then h is a bijection.

Theorem 3.2 (Identifiability from a Set of Views). Consider a set of views xV satisfying Asm. 2.1,
and let G be a set of content encoders (Defn. 3.1) that minimizes the following objective

L (G) =
∑

k<k′∈V
E [∥gk(xk)− gk′(xk′)∥2]︸ ︷︷ ︸

Content alignment

−∑
k∈V H (gk(xk))︸ ︷︷ ︸

Entropy regularization

, (3.1)

where the expectation is taken w.r.t. p(xV ) and H(·) denotes differential entropy. Then the shared
content variable zC := {zj : j ∈ C} is block-identified (Defn. 2.2) by gk ∈ G for any k ∈ V .

Proof. Lemma D.1 verifies the existence of such a set of smooth encoders that obtains the global
minimum of eq. (3.1) zero; Lemma D.2 derives the invariance conditions and the uniformity that
the learned representations gk(xk) have to satisfy for all views k ∈ V . Based on the invariance
condition eq. (D.5), Lemma D.3 shows that the learned representation gk(xk), k ∈ V can only
depend on the content block, not on any style variables, namely gk(xk) = hk(zC) for some smooth
function hk : ZC → (0, 1)|C|.

We now apply Zimmermann et al. [70, Proposition 5.] to show that all of the functions hk, k ∈ V are
bijections. Note that both ZC and (0, 1)|C| are simply connected and oriented C1 manifolds, and hk
are smooth, thus differentiable, functions that map the intersection set of random variables zC from
C to (0, 1)|C|. Given by Asm. 2.1(ii) that pzC

and the push-forward function through hk (uniform
distributions) are regular densities, we conclude that all hk are diffeomorphisms for all k ∈ V .

Thus we have shown that any content set of encoders G that minimizes L(G) (eq. (3.1)) can extract
the ground-truth content variables zC from view xk ∈ Xk up to a bijection hk : ZC → (0, 1)|C|:

gk(xk) = hk(zC), (D.21)

That is, shared content zC is block-identified by the content encoders G = {gk}k∈V .

D.2 Proof for Thm. 3.8
Our proof consists of the following steps:

1. We show in Lemma D.5 the loss eq. (D.22) is lower bounded by zero and construct optimal
R∗ (Defn. 3.3), Φ∗ (Defn. 3.5), T ∗ (Defn. 3.6) that reach this lower bound;
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2. Next, we show in Lemma D.7 that, if the content sizes |Ci| are known for all Vi ∈ V , then
any view-specific encoders, content selectors, and projections (R,Φ, T ) that minimize the
loss eq. (D.22), block-identify the content variables zCi for any Vi ∈ V , using similar steps
as in the proof for Thm. 3.2.

3. As the third step, we show that any minimizer R (Defn. 3.3), Φ (Defn. 3.5), T (Defn. 3.6)
of eq. (D.22) also minimizes the information-sharing regularizer (Defn. 3.7); and show that
the optimal solution (R∗,Φ∗, T ∗) we constructed in the first step reaches this lower bound
of Defn. 3.7.

4. Then, we show by contradiction that any optimal content selector Φ∗ that solves the con-
straint optimization problem in eq. (3.3) recovers the correct content size |Ci| for each subset
Vi, using the invariance condition in Lemma D.6.

5. Lastly, we apply the results from Lemma D.7 and conclude our proof for Thm. 3.8.

We rephrase each step as a separate lemma and use them to complete the final proof for Thm. 3.8.

Lemma D.5 (Existence of Encoders, Selectors and Projections). Consider a jointly observed set of
views xV satisfying Asm. 2.1. For any set of view-specific encoders R (Defn. 3.3), content selectors
RΦ (Defn. 3.5) and projections T (Defn. 3.6), we define the following objective:

L (R,Φ, T ) =
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ rk(xk)− ϕ(i,k

′) ⊘ rk′(xk′)
∥∥∥
2

]
−

∑
k∈V

H (tk ◦ rk(xk)) .

(D.22)

which is lower bounded by zero; and there exists such combination of R,Φ, T that obtains this global
minimum zero.

Proof. Consider the objective function L(R,Φ, T ) (eq. (D.22)), the global minimum of L(R,Φ, T )
is obtained when the first term (alignment) is minimized and the second term (entropy) is maximized.
The alignment term is minimized to zero when selected representations ϕ(i,k) ⊘ rk are perfectly
aligned for all k ∈ V almost surely. The second term (entropy) is maximized to zero only when
tk ◦ rk(xk) is uniformly distributed on (0, 1)|Sk| for all view k ∈ V . Thus we have shown that the
loss (eq. (D.22)) is lower-bounded by zero.

The optimal view-specific encoders can be defined via the inverse of the view-specific mixing
functions {fk}k∈V , which by Asm. 2.1(i) are smooth and invertible. By definition, we have
f−1
k (xk) = zSk

for all k ∈ V . Formally, we define the set of optimal view-specific encoders

R := {f−1
k }k∈V ]. (D.23)

Next, we define the optimal auxiliary transformation tk for each view k using Darmois construction,
writing tk ◦ rk(xk) = tk ◦ f−1

k (xk) = tjk (zSk
), we have:

tjk (zSk
) := F k

j ([zSk
]j |[zSk

]1:j−1) = P ([ZSk
]j ≤ [zSk

]j |[zSk
]1:j−1) j ∈ {1, . . . , |Sk|},

(D.24)
where F k

j denotes the conditional cumulative distribution function (CDF) of [zSk
]j given [zSk

]1:j−1.
Thus, tk (zSk

) is uniformly distributed on (0, 1)|Sk| and tk is smooth by Asm. 2.1(ii) which states
that pz is a smooth density.

As for the optimal content selectors Φ = {ϕ(i,k)}Vi∈V,k∈Vi
, choose ϕ(i,k) such that

ϕ(i,k) ⊘ ẑSk
:= ẑCi

(D.25)
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Writing f−1
k (xk) = zSk

, the loss L(R,Φ, T ) from eq. (D.22) takes the value:

L (R,Φ, T ) =
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ rk(xk)− ϕ(i,k

′) ⊘ rk′(xk′)
∥∥∥
2

]
−

∑
k∈V

H (tk ◦ rk(xk))

=
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ f−1

k (xk)− ϕ(i,k
′) ⊘ f−1

k′ (xk′)
∥∥∥
2

]
−

∑
k∈V

H
(
tk ◦ f−1

k (xk)
)

=
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ zSk

− ϕ(i,k
′) ⊘ zSk′

∥∥∥
2

]
−

∑
k∈V

H (tk(zSk
))

=
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E [∥zCi
− zCi

∥2]−
∑
k∈V

H (tk (zSk
))

=0
(D.26)

Note that the first term is minimized to zero because the shared content values zCi
align among the

views in one subset Vi ∈ V; the second term is maximized to zero because tk (zSk
) is uniformly

distributed on (0, 1)|Sk| given by the property of Darmois construction [16]. To this end, we have
shown that there exists such optimum R,Φ, T as defined in eqs. (D.23) to (D.25) that minimizes the
objective in eq. (D.22).

Lemma D.6 (Conditions of Optimal Encoders, Selectors and projections). Given the same set
of views xV as introduced in Lemma D.5, to minimize L(R,Φ, T ) in eq. (D.22), any optimum
R,Φ, T (Defns. 3.3, 3.5 and 3.6) has to satisfy similar invariance and uniformity conditions
from Lemma D.2:

• Invariance: All selected representations ϕ(i,k) ⊘ rk(xk), k ∈ V must align across the views
from the set Vi ∈ V almost surely:

ϕ(i,k) ⊘ rk(xk) = ϕ(i,k
′) ⊘ rk′(xk′) ∀Vi ∈ V ∀k, k′ ∈ Vi a.s. (D.27)

• Uniformity: All extracted representations tk ◦ rk(xk), k ∈ V must be uniformly distributed
over the hyper unit-cube (0, 1)|Sk|.

Proof. The minimum of L(R,Φ, T ) = 0 can only be obtained when both terms are zero. For the first
term (alignment) to be zero, it is necessary that ϕ(i,k)⊘ rk(xk) = ϕ(i,k

′)⊘ rk′(xk′) almost surely for
all Vi ∈ V , k, k′ ∈ Vi w.r.t. the true generating process. The second term (entropy) is upper-bounded
by zero; this maximum can only be obtained when the auxiliary encoding tk ◦ rk(xk), k ∈ V follows
uniformity, as also indicated by Lemma D.2.

Lemma D.7 (View-Specific Encoder for Identifiability Given Content Sizes). Consider a jointly
observed set of views xV satisfying Asm. 2.1 and assume that the dimensionality of the subset-specific
content |Ci| is given for all subset Vi ∈ V . We consider a special type of content selectors Φ with∥∥ϕ(i,k)∥∥

0
= |Ci| for all k ∈ Vi. LetR, T respectively denote some view-specific encoders (Defn. 3.3),

and projections (Defn. 3.6), which jointly minimize the following objective together with the special
content selectors Φ:

L (R,Φ, T ) =
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ rk(xk)− ϕ(i,k

′) ⊘ rk′(xk′)
∥∥∥
2

]
−

∑
k∈V

H (tk ◦ rk(xk)) .

(D.28)

Then for any view k ∈ V , any subset of views Vi ∈ V with k ∈ Vi, the composed function ϕ(i,k) ⊘ rk
block-identifies the shared content variables zCi

in the sense that the learned representation ẑ
(i)
k :=

ϕ(i,k) ⊘ rk(xk) is related to the ground truth content variables through some smooth invertible
mapping hk : ZCi

→ ZCi
with ẑ

(i)
k = h

(i)
k (zCi

).
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Proof. Lemma D.5 verifies that there exists such optimum which minimizes the loss eq. (D.28) to
zero; the invariance and uniformity conditions have to be satisfied by any optimum, as shown in
Lemma D.6. Following Lemma D.3, the composition r(i)k := ϕ(i,k)⊘rk can only encode information
related to the subset-specific content Ci for any subset Vi ∈ V otherwise it will lead to a contradiction
to the invariance condition from Lemma D.6. The last step is to prove the invertibility of the encoders
G. Notice that

tk ◦ rk(xk) = tk ◦ rk ◦ fk(zSk
)

By applying Zimmermann et al. [70, Proposition 5.] with similar arguments as in the proof
for Thm. 3.2, we can show that composition tk ◦ rk ◦ fk is a smooth bijection of the subset-specific
content zCi

. Since fk is a smooth invertible mapping by Asm. 2.1 (i), we have:

(tk ◦ rk ◦ fk) ◦ f−1
k = (tk ◦ rk) ◦ (fk ◦ f−1

k ) = tk ◦ rk,
Hence, tk ◦ rk is bijective as the composition of bijections is a bijection. Next, we show that rk
is bijective. Showing that rk is bijective on its image is equivalent to showing that it is injective.
By contradiction, suppose rk is not injective. Thus there exists distinct values x1

k,x
2
k ∈ Xk s.t.

rk(x
1
k) = rk(x

2
k). This implies that tk ◦ rk(x1

k) = tk ◦ rk(x2
k), which violate injectivity of tk ◦ rk.

Thus, rk must be injective.

To this end, we conclude that any R,Φ, T that minimizes eq. (D.28) block-identifies the shared
content variables zCi for any subset of views Vi ∈ V .

Claim D.8. For any (R,Φ, T ) (Defns. 3.1, 3.3and 3.6) that minimizes the loss eq. (D.22), the
Reg(Φ) (Defn. 3.7) is lower bounded by −∑

Vi∈V |Ci| · |Vi| and this minimum is obtained at the
optimal content selectors defined in eq. (D.25).

Proof. Suppose for a contradiction that there exists some binary weight parameters Φ̃ ̸= Φ with

Reg(Φ̃) = −
∑
Vi∈V

∑
k∈Vi

∥∥∥ϕ̃(i,k)∥∥∥
0
< Reg(Φ), (D.29)

which means, there exists at least one vector ϕ̃(i,k) for some view k ∈ V , subset Vi ∈ V , such that

ϕ̃(i,k) ⊘ rk(xk) = ẑA |A| > |Ci|, (D.30)

where A ⊆ Sk is an index subset of the view-specific latents Sk. Given that R,Φ, T minimizes
L(R,Φ, T ) from eq. (D.22), these minimizers have to satisfy the invariance and uniformity constraint
as shown in Lemma D.6. Since uniformity implies invertibility [70], the learned representation rk(xk)
contains sufficient information about the original view xk s.t. the view xk can be reconstructed by
some decoder given enough capacity. Given that the number of selected dimensions |A| > |Ci|, at
least one latent component j ∈ A will contain information that is not jointly shared by Vi. That
means the composition r(i)k := ϕ(i,k) ⊘ rk encodes some information other than just content Ci. As
shown in Lemma D.3, any dependency from the learned representation on non-content variables
leads to contradiction to the invariance condition as derived in Lemma D.6. Therefore, the optimal
content selectors Φ following the definition in eq. (D.25) must obtain the global minimum of the
information-sharing regularizer (Defn. 3.7), which equals −∑

Vi∈V
∑

k∈Vi
|Ci|.

Theorem 3.8 (View-Specific Encoder for Identifiability). Let R,Φ, T respectively be any view-
specific encoders (Defn. 3.3), content selectors (Defn. 3.1) and projections (Defn. 3.6) that solve the
following constrained optimization problem:

min Reg(Φ) subject to: R,Φ, T ∈ argmin L (R,Φ, T ) (3.3)

where

L (R,Φ, T ) =
∑
Vi∈V

∑
k,k′∈Vi

k<k′

E
[∥∥∥ϕ(i,k) ⊘ rk(xk)− ϕ(i,k

′) ⊘ rk′(xk′)
∥∥∥
2

]
︸ ︷︷ ︸

Content alignment

−
∑
k∈V

H (tk ◦ rk(xk))︸ ︷︷ ︸
Entropy

,

(3.4)
Then for any subset of views Vi ∈ V and any view k ∈ Vi , ϕ(i,k) ⊘ rk block-identifies (Defn. 2.2) the
shared content variables zCi

, as defined in eq. (2.1).
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Proof. Lemma D.5 confirms that there exist view-specific encoders R, content selectors Φ, and
projections T that obtain the minimum of the unregularized loss eq. (D.22) (equals zero); Additionally,
any optimal R,Φ, T fulfills the invariance condition and uniformity (Lemma D.6) s.t. they obtain
the global minimum zero. Using the invariance condition, Claim D.8 substantiates that the optimal
content selectors as defined in eq. (D.25) minimizes the regularization term (Defn. 3.7). We have thus
shown that with R,Φ, T (as defined in eqs. (D.23) to (D.25)), eq. (3.3) obtains the global minimum.

Next, we show that the number of selected dimensions from each selector ϕ(i,k), i.e., the L0 norm of
ϕ(i,k), align with the size of the shared content |Ci|.
Among the content selectors that minimize the unregularized loss (eq. (D.22)), we consider some
content selectors Φ∗ ∈ argminReg(Φ) that also minimize the information-sharing regulariser defined
in Defn. 3.7, that is:

Reg(Φ∗) = −
∑
Vi∈V

∑
k∈Vi

|Ci|.

Suppose for a contradiction that there exists a pair of binary selectors (ϕ(i,k), ϕ(i
′,k′)) with ϕ(i,k) ∈

{0, 1}|Sk| and ϕ(i
′,k′) ∈ {0, 1}|Sk′ | such that∥∥∥ϕ(i,k)∥∥∥

0
> |Ci|;

∥∥∥ϕ(i,k′)
∥∥∥
0
< |Ci′ |, (D.31)

which indicates that there exists at least one latent component j ∈ Sk \ Ci being selected by ϕ(i,k);
similarly, this contradicts the invariance condition as shown in Lemma D.3. Hence, the number of
dimensions selected by each ϕ(i,k) has to equal the content size |Ci|.
At this stage, the problem setup is reduced to the case in Lemma D.7 where the size of the content
variables |Ci| are given for all subset of views Vi ∈ V . Hence, applying Lemma D.7, we conclude
that any R,Φ, T (Defns. 3.3, 3.5 and 3.6) that minimize eq. (3.3) block-identify the shared content
variables zCi

for any subset of views Vi ∈ V and for all views k ∈ Vi.

D.3 Proofs for Identifiability Algebra
Let zC1

, zC2
be two sets of content variables indexed by C1, C2 ⊆ [N ] that are block-identified by

some smooth encoders g1 : X1 → ZC1
, g2 : X2 → ZC2

, then it holds for C1, C2 that:

Corollary 3.9 (Identifiability Algebra: Intersection). The intersection zC1∩C2
can be block-identified.

Proof. By the definition of block-identifiability, we construct two synthetic views using the learned
representation from x1 and x2:

x(1) := g1(x1) = h1(zC1
)

x(2) := g2(x2) = h2(zC2)
(D.32)

for some smooth invertible mapping hk : ZCk
→ ZCk

k ∈ {1, 2}. Applying the Thm. 3.2 with two
views, we can block-identify the intersection C1 ∩ C2 using this pair of views (x(1),x(2)).

Corollary 3.10 (Identifiability Algebra: Complement). If C1∩C2 is independent of C1\C2, then the
complement zC1\C2

can be block-identified.

Proof. Construct the same synthetic views x(1),x(2) as in the proof for Cor. 3.9. We then can
consider the intersection C1 ∩C2 as the content variable and C1 \C2 as the style variable from these
two synthetic views (x(1),x(2)). Private Component Extraction from Lyu et al. [Theorem 2. 41] has
shown that if the style variable is independent of the content, then the style variables can also be
extracted up to a smooth invertible mapping. Therefore, we conclude that the complement zC1\C2

can also be block-identified.

Corollary 3.11 (Identifiability Algebra: Union). If C1∩C2, C1\C2 and C2\C1 are mutually inde-
pendent, then the union zC1∪C2

can be block-identified.
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Proof. We rephrase C1∪C2 as a union of the following disjoint parts:

C1∪C2 = (C1∩C2)∪(C1\C2)∪(C2\C1) (D.33)

Following the definition from Cors. 3.9 and 3.10 have shown that:

ẑ∩ := h∩(zC1∩C2)

ẑ1\2 := h1\2(zC1\C2
)

ẑ2\1 := h2\1(zC2\C1
),

(D.34)

By concatenate the learned representations, we define h∪ : ZC1∪C2 → ZC1∪C2 as

h∪(zC , z1\2, z2\1) := [ẑC , ẑ1\2, ẑ2\1] = h∪(zC1∪C2
), (D.35)

hence, the union C1∩C2 can be block-identified.

E Experimental Results
This section provides further details about the datasets and implementation details in § 4. The
implementation is built upon the code open-sourced by Daunhawer et al. [17], von Kügelgen et al.
[60], Zimmermann et al. [70].

E.1 Numerical Experiment – Theory Validation
Data Generation. For completeness, we summarize the setting of our numerical experiments. We
generate synthetic data following Example B.1, which we also report below. The latent variables
are sampled from a Gaussian distribution z ∼ N (0,Σz), where possible causal dependencies are
encoded through Σz. Note that in this setting the ground truth causal variables will be related linearly
to each other.

x1 = f1(z1, z2, z3, z4, z5), x2 = f2(z1, z2, z3, z5, z6),

x3 = f3(z1, z2, z3, z4, z6), x4 = f4(z1, z2, z4, z5, z6).
(E.1)

Implementation Details. We implement each view-specific mixing function fk, for each view
k = 1, 2, 3, 4, using a 3-layer invertible, untrainable MLP [24] with LeakyReLU [66](α = 0.2). The
weight parameters in the mixing functions are randomly initialized. For the learnable view-specific
encoders, we use a 7-layer MLP with LeakyReLU (α = 0.01) for each view. The encoders are trained
using the Adam optimizer [32] with lr=1e-4. All implementation details are summarized in Tab. 3.

Additional Experiments. We experiment on causally dependent synthetic data, generated by
z ∼ N (0,Σz) with Σz ∼ Wishart(0, I). The results are shown in Fig. 4. The rows denote the
ground truth latent factors, and the columns represent the learned representation from different
subsets of views. Each cell reports the R2 score between the respective ground truth factors and
the learned representation. For example, the cell with col={x1,x2} and row=z1 shows the R2 score
when trying to predict z1 using the learned representation from subset {x1,x2}. Since dependent
style variables become predictable, as discussed in App. E.1, we aim to verify that the learned rep-
resentation contains all and only content variables. In other words, it block-identifies the ground truth
content factors. For that, we consider all the views {x1, . . . ,x4} and train a linear regression from
the ground truth content variables z1, z2 to the individual style variables z3, z4, z5, z5. We report the
coefficient of determination R2 in Tab. 5. We observe that the R2 values obtained from the ground
truth content are highly similar to the ones in the last column of the heatmap (Fig. 4). Based on
this, we have showcased that the learned representation indeed block-identifies the content variables.

E.2 Self-Supervised Disentanglement
Datasets. In this experiment, we test on MPI-3D complex [20] and 3DIdent [70]. Both are
high-dimensional image datasets generated from mutually independent latent factors: MPI-3D
complex contains real-world complex shaped images with ten discretized latent factors while 3DIdent
renders a teapot conditioned on ten continuous latent factors.

Implementation Details. We used the implementation from [43] for Ada-GVAE [39], following the
same architecture as [39, Tab. 1 Appendix ]. For our method, we use ResNet-18 [25] as the image
encoder, details given in Tab. 7. For both approaches, we set ENCODING SIZE=10, following the
setup in Locatello et al. [39].
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Table 3: Parameters for numerical simu-
lation (§ 4.1 and App. E.1).

Parameter Value
Mixing function 3-layer MLP
Encoder 7-layer MLP
Optimizer Adam
Adam: learning rate 1e-4
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Batch size 4096
Temperature τ 1.0
# Iterations 100,000
# Seeds 3
Similarity metric Euclidian

Table 4: Parameters for experiments §§ 4.2 and 4.3
and Apps. E.3 and E.4. ∗: for both image and text en-
coders. ∗∗: hyper-arapmeter for BarlowTwins [67].

Parameter Values
Content encoding size∗ 8
View-specific encoding size∗ 11
Image hidden size 100
Text embedding dim 128
Text vocab size 111
Text fbase 25
Batch size 128
Temperature 1.0
Off-diagonal constant λ∗∗ 1.0
Optimizer Adam
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Adam: learning rate 1e-4
# Iterations 300,000
# Seeds 3
Similarity metric Cosine similarity
Gradient clipping 2-norm; max value 2
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Figure 4: Theory Verfication: Average R2 across
multiple views generated from causally dependent
latents.

Table 5: Linear R2 from ground truth
content variables to styles when consider
{x1,x2,x3,x4}, these values align with the
last column of Fig. 4, showing that we have
block-identified the content variables {z1, z2}

content style
{z1, z2} z3 z4 z5 z6

1.0 0.32 0.65 0.58 0.71

Original view Augmeted view

(a) Example Input: MPI-3D complex

Original view Augmeted view

(b) Example Input: 3DIdent
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Table 6: Thm. 3.2 Validation on Causal3DIdent: R2 mean±std. Green: content, bold: R2 > 0.50.
positions hues rotationsViews generated

by changing
class

x y z spotl obj spotl bkg ϕ θ ψ

hues 1.00±0.00 0.76±0.01 0.56±0.02 0.00±0.00 0.82±0.01 0.27±0.03 0.00±0.01 0.00±0.00 0.25±0.02 0.27±0.02 0.27±0.02
positions 1.00±0.00 0.00±0.01 0.46±0.02 0.00±0.01 0.00±0.01 0.32±0.02 0.00±0.01 0.92±0.00 0.26±0.02 0.29±0.02 0.27±0.02
rotations 1.00±0.00 0.11±0.01 0.50±0.02 0.00±0.00 0.06±0.01 0.31±0.02 0.00±0.01 0.83±0.01 0.25±0.01 0.27±0.02 0.06±0.01
hues+pos 1.00±0.00 0.00±0.00 0.20±0.02 0.00±0.01 0.00±0.01 0.14±0.02 0.00±0.00 0.00±0.01 0.07±0.01 0.18±0.02 0.12±0.02
hues+rot 1.00±0.00 0.09±0.02 0.36±0.02 0.00±0.00 0.51±0.01 0.25±0.02 0.00±0.01 0.00±0.01 0.00±0.01 0.25±0.02 0.25±0.01
pos+rot 1.00±0.00 0.00±0.00 0.21±0.02 0.00±0.01 0.00±0.00 0.07±0.01 0.00±0.01 0.23±0.02 0.05±0.01 0.20±0.02 0.13±0.02

hues+pos+rot 1.00±0.00 0.00±0.00 0.42±0.02 0.00±0.01 0.00±0.00 0.25±0.02 0.00±0.00 0.00±0.00 0.01±0.01 0.26±0.02 0.26±0.02

E.3 Content-Style Identifiability on Images
Datasets. Causal3DIdent [60] extends 3Dident [70] by introducing different classes of objects, thus
object shape (or class) is added as an additional discrete factor of variation. We extend the image
pairs experiments from [60] by inputting three views, as shown in Fig. 6b, where the second and
third images are obtained by perturbing different subsets of latent factors of the first image. To
perturb one specific latent component, we uniformly sample one latent in the predefined latent space
(Unif [−1, 1], details see [60, App. B]), then we use indexing search to retrieve the image in the
dataset that has the closest latent values as the sampled ones. Note that only a finite number of
images are available; thus, there is not always a perfect match. More frequently, we observe slight
changes in the non-perturbing latent dimensions. For instance, the hues of the third view is slightly
different than the original view, although we intended to share the same hue values.

(a) Underlying causal relation in Causal3DIdent and
Multimodal3DIdent images. Figure adopted from [60,
Fig. 2]

Original view Change hues Change pos + rot

(b) Example Input: Causal3DIdent

Figure 6: Causal3DIdent: Underlying causal relations and input examples.

Implementation Details. The encoder structure and parameters are summarized in (Tabs. 4 and 7).
We train using BarlowTwins [67] with cosine similarity and off-diagonal importance constant
λ = 1. BarlowTwins is another contrastive loss that jointly encourages alignment and uniformity, by
enforcing the cross-correlation matrix of the learned representations to be identity. The on-diagonal
elements represent the content alignment while the off-diagonal elements approximate the entropy
regularization.

Thm. 3.2 Validation. We train content encoders (Defn. 3.1) on Causal3DIdent to verify Thm. 3.2.
Note that we experiment on three views [60] cannot naively handle. Tab. 6 summarizes results
for all possible perturbations among the three views. We can observe that the discrete factor class
learned perfectly; dependent style variables become predictable from the content (class) latent causal
dependence. Note that this table shows similar results as in [60, Table 6. Latent Transformation (LT)].
We remark that there is a reality between theory in practice: In theory, we assume that the content
variables share the exact same value across all views; however, in practice, finding a perfect match of
all of the continuous content values become impossible, since there is only a finite number of training
data available. We believe this reality gap negatively influenced the learning performance on the
content variables, thus preventing efficient prediction on certain content variables, such as object hues.

E.4 Multi-modal Content-Style Identifiability under Partial Observability
Dataset. Multimodal3DIdent [17] augments Causal3DIdent [60] with text annotations for each
image view, and discretizes the objection positions (x, y, z) to categorical variables. In particular,
object-zpos is a constant and thus not shown in our evaluation (Fig. 3). Our experiment extends [17]
by adding one additional image to the original image-text pair, perturbing the hues, object rota-
tions and spotlight positions of the original image (Uniformly sample from Unif [0, 1]). Thus,
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Table 7: Encoder Architectures for Causal3DIdent and Multimodal3DIdent.
Image Encoder Text Encoder
Input size = H × W × 3 Input size = vocab size
ResNet-18(hidden size) Linear(fbase, text embedding dim)
LeakyReLu(α = 0.01) Conv2D(1, fbase, 4, 2, 1, bias=True)
Linear(hidden size, image encoding size) BatchNorm(fbase); ReLU

Conv2D(fbase, fbase·2, 4, 2, 1, bias=True)
BatchNorm(fbase·2); ReLU
Conv2D(fbase·2, fbase·4, 4, 2, 1, bias=True)
BatchNorm(fbase·4); ReLU
Linear(fbase·4·3·16, text encoding size)

Table 8: Thm. 3.2 Validation on Multimodal3DIdent: R2 mean±std. Green: content, bold:
R2 > 0.50.

views generated
class

img pos img hues
txt class

txt pos txt hue
txt phrasing

by changing x y spotl obj spotl bkg x y obj_color_idx

hues + rot 0.82 ±0.01 1.00 ±0.00 1.00 ±0.00 0.00 ±0.00 0.87 ±0.01 0.00 ±0.00 - 0.85 ±0.03 1.00 ±0.00 1.00 ±0.00 0.15 ±0.02 0.21 ±0.02
pos 1.00 ±0.00 0.47 ±0.02 0.64 ±0.01 0.00±0.00 0.67 ±0.02 0.00 ±0.00 - 1.00 ±0.00 0.34 ±0.02 0.94±0.01 0.16 ±0.03 0.21 ±0.02

(img0, img1) share object shape and background color; Thus, (img0, txt0) share object shape and
object x-y positions; both (img1, txt0) and the joint set (img0, img1, txt0) share only the object
shape. One example input is shown in Fig. 7.

Original view Change hues + rot

Text description: A
hare of bright yel-
low green color is
visible, positioned
at the mid-left of
the image.

Figure 7: Example input: Multimodal3DIdent. Left: pair of
images that are original and perturbed images. Right: Text
annotation for the original view.

Implementation Details. Tabs. 4
and 7 shows the network architec-
ture and implementation details,
mostly following [17]. Note that
we use the same encoding size for
both image and text encoders for
the convenience of implementa-
tion. We train using BarlowTwins
with λ = 1. In practice, we treat
the unknown content sizes as a list
of hyper-parameters and optimize
it over different validations.

Further Discussion about § 4.3. The fundamental difference between the Multimodal3D and
Causal3DIdent datasets, as mentioned above, makes a direct comparison between our results in Fig. 3
and [60] harder. However, Tab. 6 shows similar R2 scores as the results given in von Kügelgen
et al. [60, Sec 5.2], which verifies the correctness of our method.

Thm. 3.2 Validation. We additionally learn content encoders on three partially observed views
(img0, img1, txt0) using the loss from Zbontar et al. [67], to justify Thm. 3.2. We use the same
architecture and parameters as summarized in Tabs. 4 and 7. Tab. 8 shows the content encoders
consistently predict the content variables well and that our evaluation results highly align with [17,
Fig. 3] on image-text pairs (img0, txt0) as inputs, which empirically validates Thm. 3.2.

E.5 Multi-Task Disentanglement with Sparse Classifiers
Experimental setup We follow Example B.1 with latent causal relations to verify that: (i) the
improved classification performance from [19, 36] originates from the fact that the task-related
information is shared across multiple views (different observations from the same class) and (ii)
this information can be identified (Thm. 3.2), even though the latent variables are not independent.
This explains the good performance of [19] on real-world data sets, where the latent variables are
likely not independent, violating their theory. In our experimental setup, an input gets a label 1 when
the following labeling function value is greater than zero:

• Linear:
∑d

j=1 ẑj where d denotes the encoding size.
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• Nonlinear: tanh
(∑d

j=1 ẑ
3
j

)
Discussion. We synthetically generate the labels by linear/nonlinear labeling functions on the shared
content values to resemble [19, 36]. As expected, the learned representation significantly eases the
classification task and achieves an accuracy of 0.99 with linear and nonlinear labeling functions within
1k update steps, even with latent causal relations. This experimental result justifies that the success in
the empirical evaluation of [19] can be explained by our theoretical framework, as discussed in App. C.

F Discussion
The Theory-Practice Gap It is noticeable that some of the technical assumptions we made in the
theory may not exactly hold in practice. A common assumption in identifiability literature is that the
latent variables z are continuous, while this is not true for e.g. the object shape in Causal3DIdent [60]
and object shape, positions in Multimodal3DIdent [17]. Another related gap regarding the dataset is
that the additional views are generated by uniformly sampling a subset of latents from the original
view and then trying to retrieve an image among the existing finite dataset, whose latent value is
closest to the proposed one. However, having only a finite number of images implies that always
finding a perfect match for each perturbed latents is almost impossible in practice. As a consequence,
the designed to be strictly aligned content values between different views could differ from each
other by a certain margin. Also, both Thms. 3.2 and 3.8 holds asymptotically and the global
minimum is obtained only when given infinitely amount of data. Given that there is no closed-form
solution for entropy regularization term eqs. (3.1) and (3.3), it is approximated either using negative
samples [13, 44] or by optimizing the cross-correlation between the encoded information to be close
to Identity matrix [67]; in both cases there is only a finite number of samples available, which makes
converging to global minimum almost impossible in practice.

Discovering Hidden Causal Structure from Overlapping Marginals. Identifying latent blocks
{zBi

} provides us with access to the marginal distributions over the corresponding subsets of latents
{p(zBi

)}. With observed variables and known graph, this has been termed the “causal marginal
problem” [22], and our setup could therefore also been seen as generalization along those dimensions.
It may be possible to extract some causal relations from the inferred marginal distributions over
blocks, either by imposing additional assumptions or through constraint-based approaches [56].

How to Learn the Content Sizes? Thm. 3.8 shows that content blocks from any arbitrary subset
of views can be discovered simultaneously using view-specific encoders (Defn. 3.3),content selec-
tors (Defn. 3.5) and some projections (Defn. 3.6). We remarked in the main text that optimizing
the information-sharing regularizer (Defn. 3.7) is highly non-convex and thus impractical. We pro-
posed alternatives for both unsupervised and supervised cases: for self-supervised representation
learning, one could employ Gumble-Softmax to learn the hard mask. We hypothesize that if there
is an additional inclusion relation about the content blocks available, for example, we know that
C1 ⊆ C2 ⊆ C3, then the learning process could be eased by coding this inclusion relation in the
mask implementation. This additional information is naturally inherited from the fact that the more
views we include, the smaller the shared content will be. In classification tasks, the hard alignment
constraint is relaxed to some soft constraint within one equivalence class e.g. samples which have the
same label. In this case, we can replace the binary content selector with linear readouts, as studied
and implemented by Fumero et al. [19]. Another, yet the most common approach to deal with this
problem is to treat the content sizes as hyperparameters, as shown in [17, 60].

Trade-off between Invertibility and Feature Sharing. An invertible encoder implies that the
extracted representation is a lossless compression, which means that the original observation can
be reconstructed using this learned representation, given enough capacity. On the one hand, the
invertibility of the encoders is enforced by the entropy regularization, such that the encoder preserves
all information about the content variables; on the other hand, the info-sharing regularizer (Defn. 3.7)
encourages reuse of the learned feature, which potentially prevents perfect reconstruction for each
individual view. Intuitively, Thm. 3.8 seeks the sweet spot between invertibility and feature sharing:
When the encoder shares more than the ground truth, then it loses information about certain views,
and thus the compression is not lossless; When the invertibility is fulfilled but the info-sharing is not
maximized, then the learned encoder is not an optimal solution either, given by the regularization
penalty from the infor-sharing regularizer.
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