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Abstract

Solving large-scale vehicle routing problems (VRPs) is NP-hard and poses a computational
challenge in numerous applications such as logistics. Meanwhile, mean field control (MFC)
provides a tractable and rigorous approach to controlling many agents. We provide a
solution to pickup-and-delivery VRPs via scalable MFC. In combination with reinforcement
learning (RL) and clustering, our MFC approach efficiently scales to large-scale VRPs. We
perform a theoretical analysis of our MFC-based approximation, giving convergence results
for large VRP instances and error bounds for clustering-based approximations. We verify
our algorithms on different datasets and compare them against solutions such as OR-Tools,
PyVRP and heuristics, showing scalability in terms of speed for mean-field methods, for
the first time in discrete optimization. Overall, our work establishes a novel synthesis of
MFC-based RL techniques, vehicle routing problems and clustering approximations, to solve
a hard discrete optimization problem of practical use in a scalable way.

1 Introduction

Solving large-scale vehicle routing problems (VRPs) is an area of great practical interest in operations research.
There are numerous applications, ranging from dial-a-ride (Cordeau & Laporte, 2007; Ho et al., 2018) over
shared use of autonomous vehicles (Narayanan et al., 2020; Lin et al., 2012), or delivery logistics (Bortfeldt &
Yi, 2020; Wang et al., 2021; Arunapuram et al., 2003; Zhang & Lygeros, 2023) to agriculture (Bochtis &
Sørensen, 2009; 2010). Due to the large number of vehicles and customers, scalable solutions to VRPs remain
an active area of research (Konstantakopoulos et al., 2022; Zhang et al., 2022).

Motivated by complex applications with many vehicles and tasks, there has been growing interest in solving
large-scale VRPs via machine learning. Learning approaches for finding scalable VRP solutions are manifold
and differ in their conceptual design. Some learning techniques split the initial VRP into smaller and more
tractable subproblems and delegate their solution to subsolvers (Li et al., 2021b) to reduce the overall
computational complexity. Other research (Lei et al., 2022) uses transformers to increase the scalability of
learning algorithms. For recent overviews on learning VRPs, see Li et al. (2022); Bogyrbayeva et al. (2024).

1.1 Contribution

Scaling solutions for very large NP-hard problems can be difficult. For this reason, our approach is based on
mean field control (MFC) (Fornasier & Solombrino, 2014; Bensoussan et al., 2013) as the cooperative form of
mean field games (Lasry & Lions, 2007; Saldi et al., 2018). This will allow our method to scale to arbitrarily
large problem sizes, with constant problem complexity in the limiting problem, and linear complexity in the
number of agents / objectives for the actual finite problem, by sampling the agent routes. The idea of MFC
is to abstract a large number of small, indistinguishable agents – in our case vehicles – into their mean field
(MF) probability distribution. Working with the MF distribution entails both solid theoretical properties
as well as reduced computational complexity which, in turn, paves the way for scalable learning algorithms.
In contrast to existing works, our MF-based solution allows to solve arbitrarily large problems at constant
computational complexity. We propose MFC-based reinforcement learning (RL) for solving large-scale VRPs
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with pickup and delivery, where our learning approach scales to arbitrarily large numbers of vehicles and
deliveries.

Our contributions are summarized as: (i) We present a first formulation of vehicle routing – a hard discrete
optimization problem – as MFC & RL; (ii) We give general and special fine-tuned algorithms for solving
large-scale vehicle routing problems, considering both general pretraining as well as fine-tuning to problems;
(iii) We prove convergence to the MF limit for the case of large-scale VRPs with many vehicles and locations.
Moreover, we show approximate probable optimality of MFC solutions and give error bounds for general
metric spaces with clustering approximations; (iv) We empirically evaluate by comparing against OR-Tools
and heuristics, showing potential generalization capabilities and speeds of MFC for different large-scale
settings, where existing methods for discrete optimization can be expensive.

1.2 Related Work

In comparison to our work, a majority of recent related work does not consider pickup-delivery problems. We
also find that few other RL works allow sub-minute training times, which we provide. Moreover, very few
works consider large-scale VRPs with thousands of nodes and vehicles.

For example, (Zhou et al., 2024) considers different variants of VRPs, but no pickup-delivery, focusing on
multi-task settings with generalization and presented for up to 100 nodes. Similar smaller settings are found
in the following works, such as DPN Zheng et al. (2024), which considers min-max VRPs via sequential
RL-based partition and navigation methods. In contrast, we consider near-arbitrarily large VRP. In Liu et al.
(2024), VRP with heterogeneous capacities are considered via RL-based solutions, and evaluated for small
fleet and customer sizes of up to 7 and 100. As for other recent work, Wu et al. (2024) studies multi-objective
VRPs using collaborative RL, Xiao et al. (2024) demonstrates fast transformer-based solutions, and Kikuta
et al. (2024) considers smaller variants of VRP for electric vehicles. On the other hand, Min et al. (2024)
proposes graph-learning methods for traveling salesman problems (TSP), and Jiang et al. (2023) focuses
on out-of-distribution generalization. Furthermore, Xia et al. (2024) explores heuristics for the special case
of TSPs, highlighting the scalability issues with current solutions and proposing scalable Monte Carlo tree
search. Our contribution similarly is a method that provides an automatically scaling solution for another
special case of VRPs.

Lastly, most related to our setting, also known as pickup-delivery problems (PDP), Li et al. (2021a) and Zong
et al. (2022) solve single-agent and multi-agent PDP using deep attention-based (multi-agent) reinforcement
learning methods. As for literature specifically on large-scale VRP, recent works include meta-learning and
reinforcement learning for combinatorial optimization (Qiu et al., 2022), graph-based diffusion solvers (Sun &
Yang, 2023), and methods that generalize pre-trained models or learned heuristics to arbitrarily large TSP
or VRP instances (Fu et al., 2021; Hou et al., 2023). Other neural combinatorial optimization approaches
also aim for large-scale generalization via encoder-decoder architectures (Luo et al., 2023). In contrast, our
MFC-based RL method provides a methodology for reducing the multi-agent RL (MARL) problem to a
single-agent RL problem of constant complexity, regardless of the number of agents.

Modelling agent MFs is done in analogy to general MFC (Angiuli et al., 2022; Carmona et al., 2023; Cui et al.,
2021), with policy gradients (Angiuli et al., 2023; Carmona et al., 2019; Cui et al., 2024) as a solution for
the resulting high-dimensional RL problem. However, VRPs require a generalized formulation with delivery
distributions: We first suitably rewrite between VRP and multi-agent control with MFs. Moreover, we have
two MFs that cannot be modelled by existing MFC-based MARL, as the two MFs of agents & objects create
a double limit, which we resolve by introducing the ratio between objects and agents. Importantly, we also
obtain probable approximate optimality of any random realization in MFVRP that is not obtained from
results in general MFC, via embedding finite MFVRP into the limiting system. See also Section 2.5 for a
discussion.

2 Mathematical Framework

In this section, we connect VRP with MARL and MFC. Proofs for theoretical results may be found in the
Appendix.
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Figure 1: Simplified overview of the relation between finite VRP and MFVRP system. Examplary system
with four states, seven trucks and 14 packages and destinations. Orange (blue / green / purple) packages
should be delivered to orange (blue / green / purple) destinations / houses. In the case of Euclidean locations,
each location is assigned to one state via clustering, see Section 3.

Notation: For any integers k, l, let [k] := {1, 2, . . . , k} and [k] + l := {l + 1, . . . , l + k}. For any metric space
A, let B1(A) denote Borel measures bounded by 1 over A, with probability measures P(A) ⊆ B1(A).

2.1 Capacitated VRP with Pickup and Delivery

As a finite problem of interest, one may consider vehicle routing problems with pickup and delivery. We
consider a large number of N vehicles and M objects, each of which needs to be transported from one position
to another in some metric space X . The methodology applies to any metric space. For example, X can
be a subset of Euclidean space, or it could be nodes on a road graph with appropriate node distances. We
index vehicles and objects by indices in N := [N ] and M := [M ] + N respectively. We denote distances
between objects or vehicles at x, y ∈ X as d(x, y). For example, we consider Euclidean spaces X ⊆ R2 with
the Euclidean distance d(x, y) = ∥x − y∥2 as well as finite spaces embedded into the Euclidean space. More
generally, we also include positions on a road network or graph. Each object or transport mission j ∈ M is
specified by its source sj ∈ X and destination dj ∈ X , while each vehicle i ∈ N starts at an initial depot
si ∈ X .

For simplicity of exposition, consider vehicles with carrying capacity of one object. A more general setting
with larger capacities can be considered analogously, see also Section 2.5, though the state-action complexity
will be exponential in the transport capacity. The goal is to optimize which vehicles transport which objects in
which order, such that an overall global transport cost is minimized. Formally, the overall cost is given as the
total distances travelled by all vehicles. In other words, we define the set of all indices V := [N +M ] = N ∪M
and optimize the objective J :=

∑
k∈N

∑
i,j∈V dijbk

ij for binary decision variables b := (bk
ij)a∈N ,i,j∈V , where

bk
ij is one whenever vehicle k moves from depot or transport mission i to j with induced travel cost between

depots or mission sources i, j ∈ V

dij := d(si, di) + d(di, sj), (1)

where the depot’s source and destination are equal to the depot’s position.

We consider a standard tour length constraint C ∈ N as the maximum number of missions to be performed
by any single vehicle due to time or energy constraints. At least for a carrying capacity of one, the above
problem can also be solved via capacitated VRP (CVRP) by considering each mission as one location, but
with asymmetric non-Euclidean distances according to (1) due to differing pickup and delivery locations.
Solving the optimization is well known to be NP-hard. We introduce MF-approximations for the important
case of many missions and vehicles.
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2.2 VRP as Mean-Field Multi-Agent Control

We consider a sequential solution of VRPs formulated as a multi-agent control problem, i.e. performing
one delivery per vehicle in each “time step” t ∈ N (decision epoch, not real time). The multi-agent control
formulation of VRP is obtained by assuming an underlying distribution of vehicle and object locations, and
introducing both current vehicle states and remaining transportation missions. That is, we assume each
location xi

0 of vehicle i ∈ N – the vehicle state – is sampled from some initial distribution µ0 ∈ P(X ),
xi

0 ∼ µ0. Analogously, the source-destination tuples (sj , dj) of objects j ∈ [M ] are sampled from an object
distribution ν0 ∈ P(X 2), (sj , dj) ∼ ν0. Consider a fixed ratio R = M/N of objects per vehicle to transport.
Then, due to indiscernibility of objects and vehicles at the same locations, the entire information of a VRP is
contained in the parameter R and the empirical distribution of vehicle states µN

0 = 1
N

∑
i δxi

0
and source and

destination locations νN
0 = 1

M

∑
j δ(sj ,dj) – the empirical MFs at time zero. Here, the MFs can be understood

as “histograms” over X and X 2 respectively, with Dirac measures δ. For a visualization of the scenario,
see the left side of Fig. 1, which is the original VRP and is transformed into a problem of moving around
fractions of vehicles and objects.

The current intermediate state of a VRP solution during execution at any time t is given by counting the
remaining objects to be transported at each source and destination, as well as the current positions of vehicles.
Indeed, the current state is contained in νN

t = 1
M

∑
j not transported yet δ(sj ,dj) and µN

t = 1
N

∑
i δxi

t
. Here,

the states of vehicles xi
t are moved by vehicle actions ui

t ∈ X to xi
t+1 = ui

t. When moving, each vehicle i
transports a random object from xi

t to ui
t, if one exists. The reward is then given by the negative distance

travelled by all vehicles plus a reward for each delivered package, rN
t = cd · #t −

∑
i d(xi

t, ui
t), where #t is the

number of delivered objects in epoch t and constant cd > 2
M diam(X ) with the following reason: The choice

of cd ensures that an optimal undiscounted control maximizing JN = E
[∑

t rN
t

]
is also an optimal VRP

solution: For optimality, vehicles always deliver all objects to obtain positive rewards by cd > 2
M diam(X )

instead of avoiding deliveries, while also minimizing travelled distances. Analogously, we add a final cost for
moving back to the depot and award a larger final reward rbonus whenever all objects have been transported,
and a cost of cmiss times fraction of objects not delivered at the end of an episode. Here, we terminate an
episode when all objects are delivered or after reaching an episode time horizon of tmax = C to respect the
maximum tour length constraint C ∈ N.

2.3 Mean Field VRP

To obtain tractable MFVRP, in the infinite vehicle-object limit N → ∞ with M = R · N , R > 0 the initial
empirical MFs are given by µ0 and ν0 via the law of large numbers. It suffices to describe the system by the
limiting deterministic MFs µt ∈ P(X ), νt ∈ B1(X ) at all times t. Here, at each time t, the MFVRP action is
one transportation by each of the infinitely many vehicles. That is, we assign all vehicles from their current to
their next location and transport objects on the way. In general, the action at time t is therefore a transport
map Tt, a Markov kernel on X .

For finite X , the action can be numerically represented as a transition matrix Tt : X × X → [0, 1] with∑
d Tt(s, d) = 1 for all s ∈ X , encoding which fraction Tt(s, d) of vehicles at s ∈ X will move to d ∈ X .

Since the ratio between vehicles and objects is taken as some constant R > 0, the fraction of remaining
transportation tasks decreases according to

νt+1(s, d) = max(0, νt(s, d) − µt(s)Tt(s, d)/R) (2)

while the MF of vehicles evolves as

µt+1(d) =
∑
s∈X

µt(s)Tt(s, d). (3)

Hence, the MFC problem is a single-agent Markov decision problem, with states (µt, νt) and actions Tt, where
the reward is given by delivered objects minus distance travelled (on average per agent, which is equivalent
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to optimizing the total travelled distance)

rt =
∑

s,d∈X

cd min(νt(s, d), µt(s)Tt(s, d)/R) − d(s, d)µt(s)Tt(s, d). (4)

In other words, we learn an “upper-level” MFC policy π̂ via RL, such that Tt ∼ π̂(Tt | µt, νt). See also Fig. 1
for a visualization. Final rewards and costs are handled analogously. We choose cd > 2 diam(X ) to ensure
optimality of delivering all objects instead of waiting until termination.

2.4 Theoretical Guarantees

To show optimality of MFC in VRP, the three introduced models are rigorously analyzed. We first sketch
how the VRP objective is exactly given by the finite MARL system objective, and how the MARL objective
is approximately solved by the limiting MFVRP MDP.

The former connection is made by noticing that vehicle trajectories in the MARL system
(xi

0, ui
0, xi

1, ui
1, xi

2, . . .)i∈N correspond to a solution of the VRP. Any objects not transported by the tra-
jectory are handled by postprocessing, by transporting objects by random available vehicles at the end.
Assuming optimal behavior of vehicles in the MARL problem and therefore that all objects are transported,
the cost of the VRP as total distance travelled is exactly given by the negative sum of rewards J , up to a
constant episodic reward for delivering all objects. Therefore, optimally solving the MARL problem optimally
solves the VRP. In other words, for any vehicle i ∈ N , we assign bi

jk = 1 whenever it transports objects j and
then k, as well as bi

ij = 1 for moving from depot i to the first object j and bi
ji = 1 for the last object, thereby

removing any unnecessary in-between movements of each vehicle that does not transport objects.

The latter connection is shown in the following. A MFC solution solves the infinite-vehicle model, and
approximates optimal solutions in the finite MARL system by allowing the sampling from Tt – a random
realization of the deterministic MFC system (2) and (3) constitutes a MARL solution and therefore also VRP
solution. Vehicles take actions according to deterministic, or hence equivalently constant, πt ≡ Tt at all times
t ≤ tmax up to termination at time tmax, after which we randomly transport any remaining objects. For a
visualization see Fig. 1.

An error analysis of finite VRP gives us estimates of the asymptotic error of MFC assuming an infinitude of
vehicles and objects, instead of finitely many. We then learn a deterministic MFC policy π̂, e.g., after the
convergence of stochastic policy gradient methods (Schulman et al., 2017), or by using deterministic policy
gradients (Silver et al., 2014), which can be provably near-optimal in large finite problems. The proofs can be
found in the Appendix.
Theorem 2.1 (Propagation of Chaos). Let X be finite and consider some deterministic π̂. Then, at any
time t ∈ N,

∥µN
t − µt∥∞ → 0 and ∥νN

t − νt∥∞ → 0

in probability as N → ∞.
Corollary 2.2 (Probable Approximate Optimality). Let X be finite. Then, an optimal MFC solution is
probably approximately optimal in the finite N systems, i.e., for any ε, δ > 0, there is N ′ ∈ N s.t. for any
N ≥ N ′, the sampled MARL solution is ε-optimal with probability at least 1 − δ.

The advantage is constant RL problem size regardless of number of agents / clients around each cluster.

2.5 Discussion

The optimal MFC solution in Corollary 2.2 requires no additional assumptions because we may replace it by
an optimal constant MFC policy, leading to deterministic Tt. This works only for our MFVRP setting and
not for general MFC, since we show that any optimal VRP objective is also obtained exactly in the limiting
MFC by a suitable MFC policy, see the third inequality in the proof of Corollary 2.2.
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Generality. Even for unit-capacity, MFC-based RL is well-justified by virtue of scaling to arbitrarily
many agents. Moreover, we can naturally generalize the system to higher-than-unit-capacity problems by
exponentiating the state space of agents to model picked-up objects, and generalizing transition matrices
Tt with additional probabilities of picking up objects with particular destination, i.e. the state space is
exponential in the number of parcels per vehicle. The sequential formulation can also allow dynamic variants
of VRP which are not addressed by standard VRP solvers, e.g., with random arrival of new missions, or
stochastic failure of vehicles. MFVRP can also model heterogeneous vehicles, such as heterogeneous fleets with
different capacities or speeds, by duplicating the state space for each separate type of vehicle (i.e. integrating
the type into the state).

The methodology also applies to any metric space including non-Euclidean such as on graphs, in practice
by using generalized clustering methods. Finally, in case of uncountable X , such as a convex subset of R2,
transport maps Tt are replacable by couplings on X × X , but the resulting MFVRP MDP is of infinite
dimension. Instead, for algorithmic tractability, in the following we consider a discretization-based approach,
with guarantees of near optimality for sufficiently fine discretization.

Limitations. We note that MFC is not without limitations for solving discrete optimization problems,
which are discussed in the following. In particular, MFC remains hard to apply for non-pickup-delivery
VRPs: First, the special case of multiple traveling salesmen problem (mTSP) under MFC would boil down to
a clustered version of standard mTSP, since distances between points in the same cluster are zero so they
are immediately served by a single same agent. While this case can be considered, there is therefore no
methodological novelty in applying MFC to mTSP beyond clustering all the locations and replacing them
with their centroid. Meanwhile, constant finite capacities without pickup-delivery structure disappear in the
limit of infinite agents, and are therefore also difficult to model. For scaling capacities, we obtain back a
standard VRP with finite number of agents and not the RL problem we discuss. Meanwhile, time constraints
are hard to model for MFC. Heterogeneous-capacity VRP may be considered when considering non-unit
capacities, but we point out that the capacity scales the MFC problem complexity exponentially.

3 Mean Field Vehicle Routing RL

We present our algorithmic solution, visualized in Fig. 1. The idea is to solve the MFVRP as a single-agent
MDP, via single-agent RL. At the same time, the implementation is multi-agent RL if we directly learn on
the finite VRPs. Indeed, this gives us two approaches of implementing algorithms for MFVRP. But first,
we describe the clustering procedure required for handling general metric X , with a brief theoretical error
analysis as a motivation.

3.1 Discretization and Clustering

For locations on a road network or graph, a finite state space X suffices and we can avoid infinite-dimensional
MFC state-actions, but in general this is not the case. Therefore, one can use Voronoi partitions to trade-off
between accuracy of MF approximation and size of MFC problem. This is particularly useful when the
objects and vehicles are clustered around a few most relevant locations such as cities, which are not located
on a grid. Consider k ∈ [K] cell centroids ck ∈ X . Each centroid induces a cell Ck := {x ∈ X | d(x, ck) ∈
minj d(x, cj)} ⊆ X consisting of all points in X which are closest to that particular centroid out of all centroids.
Then, to minimize the error stemming from MFC approximation, we may use the empirical histogram with
cells instead of bins, giving us the approximate MF as fractions of objects to be delivered from one cell to
another. As a result, we produce an assignment ρ : M → [K]2 such that each object i is assigned to the
centroids closest to its source and destination location, ρ(i) ∈ arg mink d(si, ck) × arg minl d(di, cl), where ×
denotes the Cartesian product. In practice, for simplicity we use k-means to produce a clustering of all source
and destination locations, assigning each location to one of the clusters. In general one can use any clustering
method, e.g., instead minimizing the non-squared Euclidean distances via k-medoids (Kaufman & Rousseeuw,
2008). See Fig. 2 for a visualization.

We can then bound the maximum error of the MFC approximation by the maximum sizes of each cluster.
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Figure 2: Simplified overview of the clustering approach for Euclidean VRP in a toy example. Observe the
correspondence between limiting equations and real VRP, with clustering-based discretization.

Theorem 3.1. An optimal discretized MFC solution is probably approximately optimal in the finite N systems,
i.e., for any ε, δ > 0, there is N ′ ∈ N s.t. the sampled MARL solution for any N ≥ N ′ is (ε + ε′)-optimal
with probability at least 1 − δ, with additional discretization error

ε′ ≤ (4M + 2N) max
k

diam(Ck).

Our methodology is hence near-optimal whenever RL converges to an optimal MFC solution, for enough
agents and good discretization. Note that the time complexity becomes linear in the number of agents or
objects N, M , because we only need to count how many fall into each bin. In contrast, complexity is shifted
to quadratic in the number of clusters K. Thus, as shown in the experiments, we can achieve high scalability
in N, M .

3.2 Algorithm and Fine-Tuning

With the problem of general representation solved, RL can now solve the otherwise difficult-to-analyze
optimization or multi-agent control problem. The straightforward approach is to use the limiting equations
(2), (3) and (4) to define an environment, and apply single-agent policy gradients to the problem, see Alg. 1.

As discussed in Section 2.4, we obtain a valid VRP solution by sampling MARL actions for each vehicle, and
performing a postprocessing step where objects not delivered are appended to the route of some random
vehicles. Preprocessing is performed via k-means with negligible run time of less than a second per VRP
instance, i.e., we assume the data is already clustered into K clusters. Moreover, the depot is appended as an
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Algorithm 1 MFVRP-G
1: Input: µ0, ν0, distance matrix.
2: for iterations n = 1, 2, . . . do
3: for time steps t = 0, . . . , Blen − 1 do
4: Sample MFC action Tt ∼ π̂θ(Tt | µt, νt).
5: Compute reward r(µt) and next MFs µt+1, νt+1 as in Eqs. (2), (3), (4), and termination / reset flag

dt+1 ∈ {0, 1}.
6: end for
7: Update π̂θ on minibatch sampled from data {((µt, νt), Tt, rt, dt+1, (µt+1, νt+1))}t≥0.
8: end for

additional cluster centroid at runtime. Whenever a vehicle transports an object from cluster i to cluster j, we
randomly iterate through vehicles and assign the nearest not yet transported object from i to j, see Fig. 2.

For learning a general solution under fixed K, we dynamically generate every possible scenario by sampling
ν0 and cluster centroids randomly according to flat Dirichlet and uniform distributions respectively. This can
be understood as “pretraining” on all possible limiting MFC scenarios for given K. Alternatively, consider
learning on a large fixed data set, e.g. if real data is available and clustered.

Datasets Fine-Tuning Beyond learning to solve the general case, an improved approach is to specifically
consider and train on a fixed VRP instance. We can still take the pretrained general solution as a warm
start and fine-tune it on this particular instance to achieve improved results. Here, there are again two
possibilities: We can discretize the fixed VRP instance and perform further training on the limiting MFVRP
MDP (MFVRP-F). An alternative approach (MFVRP-FD) is to directly train on the VRP instance by the
procedure of obtaining a VRP solution, as discussed earlier. This would possibly avoid errors stemming
from the MFC approximation in smaller finite systems. However, we find that the latter gives similar results
and takes too much time. We thus mainly focus on the former MFVRP-F method. Overall, the discussed
approaches result in Algorithm 2. The advantage is possibly improved results, at the cost of time-expensive
training, which is ameliorated by parallelized and fast training code.

Algorithm 2 MFVRP-F/FD
1: Input: µN

0 , νN
0 , distance matrix, pretrained MFVRP-G model.

2: for iterations n = 1, 2, . . . do
3: for time steps t = 0, . . . , Blen − 1 do
4: Sample MFC action Tt ∼ π̂θ(Tt | µt, νt).
5: (F): Compute reward r(µt) and next MFs µt+1, νt+1 and flag dt+1 ∈ {0, 1} as in Alg. 2 for

specific VRP instance.
6: for vehicle i = 1, . . . , N do
7: (FD): Sample per-vehicle action ui

t ∼ Tt(ui
t | xi

t).
8: end for
9: (FD): Perform actions, observe reward rt, next MF µt+1, termination flag dt+1 ∈ {0, 1}

10: end for
11: Update π̂θ on minibatch sampled from data {((µt, νt), Tt, rt, dt+1, (µt+1, νt+1))}t≥0.
12: end for

In experiments, we consider datasets “finite”, “uniform” and “cities”. The former consists of a finite state
space |X | = K, with distances from randomly sampled locations on [−1, 1]2. The latter takes the latitude
and longitude of the 80 largest German cities and randomly samples K cities, around which source and
destination locations are normal distributed. For both of the above, we randomly sample a joint distribution
over source and destinations in [−1, 1]4 from a flat Dirichlet. Each object is then sampled from this joint
distribution, and in the case of “cities” they are additionally perturbed around the location of the city. Lastly,
for “uniform” we sample source and destination locations uniformly at random from [−1, 1]2, which gives us
a “worst-case” for clustering and MFVRP.
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4 Numerical Experiments

In the following, we perform an experimental evaluation of our algorithms on large problem instances. The
implementation can be found in the supplementary materials.

4.1 Implementation Details

For the implementation, we use JAX with PPO (Schulman et al., 2017) based on PureJaxRL (Lu et al., 2022).
We compare against the OR-Tools routing problem solver (Perron & Furnon, 2023), the recent state-of-the-art
PyVRP solver Wouda et al. (2024) and a greedy heuristic where vehicles always fly to the nearest next
mission. In the latter, we iterate through each agent until their maximum tour length is exhausted. For
OR-Tools and PyVRP, we solve the problem as a CVRP using scaled distances as described in Eq. (1) by
multiplying by 106 and rounding to the nearest integer.

For our training, we used a GPU with 40 GB VRAM and over 19 TFLOPS of FP32 compute performance for
a single hour for each fixed K in MFVRP-G (pretraining), and around two to three minutes per MFVRP-F or
MFVRP-FD run for a particular problem instance. We learned policies with two hidden layers of 256 nodes
and tanh activations. The discount factor is set to γ = 0.99, and with GAE λ = 0.95. The minibatch sizes
are 10000 for MFVRP-F, as well as annealed from 10000 to 250000 for MFVRP-G, with 8 PPO steps per
training batch. The clip parameter is set to 0.2. The learning rate was linearly annealed from 0.00003 down
to zero. As usual in RL, our implementation uses discounted objectives and stationary time-independent
policies (Guo et al., 2022), and we also transform the current time t into a one-hot observation. Unless stated
otherwise, we use the parameters K = 5, R = 5, C = 15, cd = 50, cmiss = 30, rbonus = 5 and datasets for
clustered and uniform scenarios with all locations in X = [−1, 1]2, generated as described in the Appendix.
We perform experiments on the aforementioned 3 types of datasets using the parameter K with 50 instances
each, to be able to assess the performance and generalization of our algorithms in different scenarios. For
uniform datasets, in the following K is merely a hyperparameter of the algorithm.

4.2 Experimental Results

In Fig. 3, we show the training curves for the general MFVRP-G trained on K = 3 and K = 5. The curve is
smooth as we chose a sufficiently high batch size (10000 to 250000), making gradient estimates less noisy.
We observe that the methodology converges in terms of episodic returns, and in turn that the maximization
of episodic returns indeed minimizes the travelled distances of vehicles while completing all episodes. The
results reach a close to 100% completion rate of deliveries while optimizing the distances travelled. This
verifies our reward function design.

We can also see that training takes longer as K increases, and uses a great number of time steps, as common
for RL methods. In particular, the batch sizes were chosen large to obtain stable training behavior, since the
MFVRP MDP has the unique RL challenge of high-dimensional continuous action spaces. Nevertheless, we
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Figure 3: Training curves for MFVRP-G. Comparison of returns, travelled distances, and percentage of
completed episodes for MFVRP-G.
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Figure 4: Training curves for MFVRP-F (single trial). Comparison of returns, travelled distances, episode
lengths and percentage of completed episodes for MFVRP-F on a particular VRP instance, for K = 3, M = 500
and K = 5, M = 1000.

observe that RL begins to reduce the return and fraction of completed episodes when training for too long,
and we apply early stopping.

Moreover, Fig. 4 contains the results for MFVRP-F with and without warm-starting from the pretrained
solution of MFVRP-G. For the training steps seen in the figure, around 3 minutes of GPU training time
were used, see Tables 1 and 2. The pretrained solution provides significant increases in performance for the
fine-tuned MFVRP-F solution, in contrast to cold-starting training on a given VRP instance.

As a result of the fast training time using a JAX-based learning implementation, our approach is applicable
even in time-critical scenarios despite the very large scale of vehicle routing problems, and therefore may
prove advantageous over classical methods such as OR-Tools.

Quantitative comparison of speed. In Table 1 and Table 2, we quantitatively compare the results of
our approach against OR-Tools and PyVRP as strong practical baselines.

We observe that both the general MFVRP-G and our fine-tuned MFVRP-F (including training time) are
faster than OR-Tools in large scenarios, which was configured with maximum computation times of 1 to over
120 minutes for small and larger problem configurations respectively. Training was performed on a GPU, but

Table 1: Comparison and evaluation of VRP methods on various datasets, each consisting of 50 problems
for each configuration (M, K). In the finite dataset, K = |X |, whereas in uniform it is a hyperparameter of
our methods, and in cities it is also the number of selected city locations. The confidence intervals for the
objectives are in the range of < 1.

Method M = 100, K = 3 M = 1000, K = 3 M = 5000, K = 3 M = 50000, K = 3
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

F
in

it
e Greedy 154.35 55.64 % 0.06 s 1548.87 61.20 % 1.02 s 7715.41 58.73 % 5.52 s 73700.7 52.16 % 276.79 s

OR-Tools 100.76 1.60 % 49.98 s 1056.95 9.99 % 300.00 s 5311.167 9.27 % 8001.01 s – – –
PyVRP 99.17 * 180.03 s 960.86 * 180.53 s 4860.81 * 192.88 s – – –
MFVRP-G 107.78 8.68 % 5.09 s 1056.68 9.97 % 12.24 s 5250.19 7.99 % 32.69 s 49692.9 2.59 % 502.47 s
MFVRP-F 105.72 6.61 % 173.2 s 1030.66 7.26 % 176.30 s 5076.18 4.43 % 199.82 s 48438.2 * 788.39 s

C
it

ie
s Greedy 79.43 55.99 % 0.06 s 795.35 49.26 % 0.78 s 3958.64 49.49 % 4.62 s 44404.7 49.83 % 278.56 s

OR-Tools 50.92 * 60.00 s 532.91 * 300.00 s 2647.75 * 8000.01 s – – –
PyVRP 58.63 15.14 % 180.02 s 576.70 8.22 % 181.02 s 2879.56 8.75 % 201.64 s – – –
MFVRP-G 58.09 14.08 % 6.6 s 551.25 3.44 % 14.39 s 2721.67 2.79 % 34.45 s 30743.2 3.73 % 523.10 s
MFVRP-F 56.90 11.74 % 173.03 s 544.26 2.13 % 180.66 s 2687.12 1.49 % 223.08 s 29635.9 * 775.41 s

U
ni

fo
rm

Greedy 217.76 73.09 % 0.06 s 2206.73 87.12 % 1.02 s 11032.74 89.65 % 5.62 s 110313.7 72.30 % 275.73 s
OR-Tools 131.35 4.40 % 60.00 s 1230.68 4.35 % 300.00 s 5919.15 1.74 % 8000.01 s – – –
PyVRP 125.81 * 180.03 s 1179.32 * 180.63 s 5817.59 * 194.11 s – – –
MFVRP-G 164.99 31.14 % 4.92 s 1406.12 19.23 % 9.73 s 6648.92 14.29 % 31.77 s 64394.3 0.58 % 494.12 s
MFVRP-F 164.71 30.92 % 159.38 s 1406.39 19.26 % 172.63 s 6633.06 14.02 % 193.26 s 64024.5 * 727.07 s
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Table 2: Comparison and evaluation of VRP methods for K = 5 as in Table 1.

Method M = 100, K = 5 M = 1000, K = 5 M = 5000, K = 5 M = 50000, K = 5
Obj. Gap Time Obj. Gap Time Obj. Gap Time Obj. Gap Time

F
in

it
e Greedy 182.28 78.62 % 0.06 s 1849.05 84.11 % 1.02 s 9208.56 83.27 % 5.64 s 86675.4 68.63 % 258.47 s

OR-Tools 113.00 10.73 % 57.12 s 1174.35 16.93 % 300.00 s 5978.828 18.99 % 8001.01 s – – –
PyVRP 102.05 * 180.03 s 1004.32 * 180.49 s 5024.67 * 191.90 s – – –
MFVRP-G 130.91 28.28 % 10.43 s 1222.37 21.72 % 14.99 s 6029.62 20.00 % 42.79 s 55017.1 7.03 % 507.06 s
MFVRP-F 128.68 26.10 % 215.68 s 1172.54 16.75 % 217.8 s 5766.29 14.76 % 241.85 s 51401.0 * 859.22 s

C
it

ie
s Greedy 105.87 68.69 % 0.08 s 1064.14 74.58 % 0.76 s 5333.94 75.25 % 4.32 s 51858.1 61.84 % 258.02 s

OR-Tools 64.70 3.09 % 60.00 s 670.29 9.97 % 300.00 s 3326.19 9.29 % 8000.01 s – – –
PyVRP 62.76 * 180.02 s 609.53 * 180.66 s 3043.34 * 198.39 s – – –
MFVRP-G 79.61 26.84 % 13.29 s 729.45 19.67 % 18.76 s 3581.63 17.69 % 53.36 s 34455.7 7.53 % 513.36 s
MFVRP-F 78.92 25.75 % 202.17 s 731.32 19.98 % 207.97 s 3563.57 17.09 % 228.8 s 32042.1 * 798.19 s

U
ni

fo
rm

Greedy 217.76 73.09 % 0.06 s 2206.73 87.13 % 1.02 s 11032.74 89.65 % 5.58 s 110313.7 72.28 % 262.77 s
OR-Tools 131.35 4.40 % 60.00 s 1230.67 4.36 % 300.00 s 5919.67 1.74 % 8000.01 s – – –
PyVRP 125.81 * 180.02 s 1179.24 * 180.73 s 5818.09 * 194.29 s – – –
MFVRP-G 171.04 35.95 % 9.64 s 1458.49 23.68 % 14.74 s 6836.91 17.51 % 43.35 s 66644.9 4.08 % 488.32 s
MFVRP-F 171.91 36.64 % 190.95 s 1453.92 23.30 % 174.96 s 6759.07 16.17 % 192.39 s 64029.3 * 806.69 s

evaluation was performed without. For MFVRP-G the time is the feedforward evaluation time on a standard
CPU, whereas for MFVRP-F the times also include the training time on the GPU. Meanwhile, we have
slight variation in training and postprocessing time taken, due to minor performance fluctuations. Moreover,
OR-Tools failed to produce a solution for very large scales, M = 5000, even when the computation time was
set to 30 minutes. Similarly, both PyVRP and OR-Tools failed to produce any solution for M = 50000 within
more than 120 minutes (including pre-processing time).

Overall, we conclude that in terms of speed and scalability, the MF approach can be advantageous for very
large scales. Moreover, we would like to point out that most of the increase in time over increasing M for
MFVRP solutions is due to inefficient Python postprocessing code where objects (also leftover objects) are
assigned to vehicles. This increase in time can be made significantly more efficient, as can the Python loops
required for adding all M2 edges between locations in PyVRP. We point out that MFVRP therefore scales to
near-arbitrarily many vehicles if required, with speeds nearly matching simple heuristics.

Quantitative comparison of objectives. As for the quality of objectives given by the total distance
travelled by all vehicles, we find that MFVRP-F is usually better than MFVRP-G as a result of fine-tuning
on the particular VRP instance of interest. In a separate test, we verify that MFVRP-FD gives results
in-between MFVRP-F and MFVRP-G (106.72 for M = 100, K = 3).

In comparison to baselines, we find that MFVRP usually outperforms simple heuristics but is behind OR-Tools
and PyVRP in smaller-sized problem instances. As the size of problems increases however, the gap to the
best method grows increasingly small. We also find that MFVRP can outperform OR-Tools and PyVRP
under the right circumstances (M = 5000, “finite” and “cities” respectively). Moreover, the method scales
automatically to arbitrary numbers of vehicles and objects, whereas OR-Tools and PyVRP take very long
to produce results at very large scales. Moreover, we find that for M = 1000 and M = 5000 in the finite
dataset, our approach achieves an increase in performance over OR-Tools. This shows that a mean-field-based
methodology to optimization problems can in fact outperform more standard methods in the case of (a)
accurate clustering (“finite” dataset), and (b) high numbers of vehicles.

Comparison between datasets. Comparing between different scenarios and parameters, we find an
increasingly good approximation of the MFVRP solution as the number of vehicles and objects becomes
large, M → ∞. In general, the gap between MFVRP and baseline performance becomes increasingly small or
disappears as M increases.

Additionally, we can see that the suboptimality of MFVRP is strongly associated with the clusteredness of the
dataset as expected. In the “finite” dataset, we find significantly better comparative performance due to the
finite space of locations |X | = K, whereas in “cities” the sources and destinations are scattered around the city
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centroids. Finally, in “uniform” we essentially have the worst-case for clustering-based approximations, with
accordingly worse gaps in performance. To further improve the gap stemming from discretization however,
we have to increase K, which in turn increases the hardness of the associated RL problem, since the action
space is of dimension K2. Scaling up RL towards very high-dimensional continuous action spaces is difficult
and left as future work.

5 Discussion and Conclusion

In this work, we have proposed a scalable RL methodology based on MFC for solving large-scale CVRP
with pickup and delivery. The proposed methods were not only theoretically motivated, but also empirically
evaluated and compared against existing baselines as a proof of concept. While the general case with many
clusters is yet difficult due to the unique challenge of high-dimensional actions, the solution of particular
cases remains useful. In particular, existing standard methods such as OR-Tools may take too long to find
a solution for high numbers of vehicles and locations (see Table 2), for which our method provides a fast
solution. While solving high-dimensional continuous RL such as the MFVRP remains difficult, we still obtain
RL complexities independent of the number of clients (or linear by sampling a VRP solution and routes
for each agent from the limiting solution, which is the minimal asymptotic complexity). Overall, we have
investigated the applicability of mean-field methods to discrete optimization settings and found that it is at
the very least feasible.

At the same time, we have also seen the limitations in applying mean field methods in standard discrete
optimization settings (e.g., Section 2.5 and experiments). In future work, one could consider how to
apply MFC-based solutions for general non-pickup-delivery VRP and other hard combinatorial optimization
problems. One could also scale up to more clusters, e.g. through the usage of curriculum learning and using
energy-based actor critic methods (Haarnoja et al., 2018). Further, it remains to be studied whether one can
apply appropriate inductive biases and representations of Tt, such as via graph neural networks to generalize
to any number of clusters. Finally, one may consider taking inspiration from related classical complexity
reduction such as the fast multipole method (Rokhlin, 1985), or avoiding discretization altogether by suitable
kernel-based parametrizations.
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A Dataset Details

In this study, we generate 3 different types of datasets, called uniform, finite and cities. For each type of
dataset we vary the amount of objects to be delivered M = {100, 1000, 5000, 50000}, and for the finite and
cities distribution we also vary the amount of clusters, K ∈ {3, 5}.

The positions of the K clusters in finite are sampled uniformly from [−1, 1]2. Meanwhile, in cities we sample
the positions from a list of rescaled longitudes and latitudes of the 80 most populated German cities. The
rescaling is performed by subtracting the mean longitude and latitude of (51, 10) and dividing by 5. The
source and destination cluster assignments are sampled from a flat Dirichlet distribution. The exact position
of the M targets and sources is then sampled from a Gaussian distribution around the positions of one of
the corresponding K clusters, with a standard deviation of 0 and 0.02 for finite and cities respectively, with
samples clipped between -1 and 1. For the latter, this standard deviation of 0.02 corresponds to a city radius
(95% of samples inside) of 16 km.

For the uniform dataset we sample M sources and destinations uniformly from [−1, 1]2. We generate 50
instances for each combination of M and k, resulting in 200 VRP instances for uniform, and 400 VRP
instances for cities and finite.

B Proofs

B.1 Mean Field Convergence

Proof of Theorem 2.1. First, note that with deterministic π̂ comes constant (non-random) Tt output over
all µt, νt. Indeed, even constant MFC policies are sufficient due to the deterministic evolution of µt, νt

given the initial state, and are equivalent to any trained RL policy π̂ for the limiting MFC problem with
open-loop control sequence T0, T1, T2, . . .. We therefore use an equivalent optimal, but constant MFC policy
π̂′

t(T |·, ·) = δTt
. Therefore, Tt is no longer random and entirely deterministic.

The statement is shown inductively by convergence in expectation, E
[
∥µN

t − µt∥∞
]

→ 0 and
E

[
∥νN

t − νt∥∞
]

→ 0. Convergence in probability then follows. At time t = 0, the statement is imme-
diate by weak law of large numbers (LLN). Assuming the statement at time t, then at time t + 1, as a short
sketch, we obtain
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t
(s)Tt(s, x)

∣∣∣∣∣∣∣


+ E


∣∣∣∣∣∣∣

1
N

∑
s∈X
i≤N

δxi
t
(s)Tt(s, x) −

∑
s∈X

µt(s)Tt(s, x)

∣∣∣∣∣∣∣
 ,

and can apply induction assumption for the latter term, and a weak LLN argument for the former. The same
holds for νN

t , νt.

More precisely, for the analysis, we lift the actions to a new action space X X (Carmona et al., 2018) and
note the equivalence in distribution to the original MARL system by using ui

t,x whenever vehicle i is in state
x. Then, we may apply the discussed constant MFC policies by sampling ui

t,x ∼ Tt(x, ·) for all x ∈ X and
using the corresponding component, instead of ui

t ∼ Tt(xi
t, ·). The advantage in analysis is that ui

t,x is i.i.d.
for all i, t, x. Then, νN

t+1(s, d) is given by subtracting from νN
t (s, d) the random variables 1

N 1xi
t=s,ui

t,s=d for
each of i ∈ N vehicles, up to at most NRνN

t+1(s, d) many.

The overall result is then obtained in two steps, which are shown in App. B.2 and B.3. The proof proceeds in
the above system where the actions are i.i.d., and the results follow for the original system by equivalence in
distribution of both systems for the two following lemmas.
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Lemma B.1 (Propagation of Chaos I). Consider finite X , tmax < ∞ and deterministic π̂. For each t ≤ tmax,
as N → ∞,

E
[
∥µN

t − µt∥∞
]

= O(1/
√

N) → 0 .

Lemma B.2 (Propagation of Chaos II). Consider finite X , tmax < ∞ and deterministic π̂. For each t ≤ tmax,
as N → ∞,

E
[
∥νN

t − νt∥∞
]

= O(1/
√

N) → 0

From the above lemmas, the proof of Theorem 2.1 follows: The desired statement was shown inductively
by convergence in expectation, E

[
∥µN

t − µt∥∞
]

→ 0 and E
[
∥νN

t − νt∥∞
]

→ 0 by Lemmas B.1 and B.2.
Convergence in probability then follows by Van der Vaart (2000, Theorem 2.7) and deterministic µt, νt.

B.2 Propagation of Chaos I

Proof of Lemma B.1. For the analysis, we lift the actions to a new action space X X (Carmona et al., 2018)
and note the equivalence in distribution to the original MARL system, as discussed in B.1. We prove the
statement via induction over t. For t = 0, the statement follows from a law of large numbers argument (see
induction step below, first term). Thus, it remains to show the induction step. Assume that the equation
holds at time t. Then, at time t + 1 we have

E
[
∥µN

t+1 − µt+1∥∞
]

= E
[
max
x∈X

|µN
t+1(x) − µt+1(x)|

]
≤ E

[∑
x∈X

|µN
t+1(x) − µt+1(x)|

]
=

∑
x∈X

E
[
|µN

t+1(x) − µt+1(x)|
]

=
∑
x∈X

E

∣∣∣∣∣∣
 1

N

∑
s∈X

∑
i≤N

δxi
t
(s)ui

t,s(x)

 −
∑
s∈X

µt(s)Tt(s, x)

∣∣∣∣∣∣


=
∑
x∈X

E

∣∣∣∣∣∣
 1

N

∑
s∈X

∑
i≤N

δxi
t
(s)ui

t,s(x)

 −

 1
N

∑
s∈X

∑
i≤N

δxi
t
(s)Tt(s, x)


+

 1
N

∑
s∈X

∑
i≤N

δxi
t
(s)Tt(s, x)

 −
∑
s∈X

µt(s)Tt(s, x)

∣∣∣∣∣∣


≤
∑
x∈X

E

∣∣∣∣∣∣
 1

N

∑
s∈X

∑
i≤N

δxi
t
(s)ui

t,s(x)

 − 1
N

∑
s∈X

∑
i≤N

δxi
t
(s)Tt(s, x)

∣∣∣∣∣∣


+ E

∣∣∣∣∣∣
 1

N

∑
s∈X

∑
i≤N

δxi
t
(s)Tt(s, x)

 −
∑
s∈X

µt(s)Tt(s, x)

∣∣∣∣∣∣


=
∑
x∈X

E

∣∣∣∣∣∣
 1

N

∑
s∈X

∑
i≤N

δxi
t
(s)ui

t,s(x)

 − 1
N

∑
i≤N

E
[
ui

t(x)
∣∣∣∣x1

t , . . . , xN
t

]∣∣∣∣∣∣


+ E

∣∣∣∣∣∣
∑
s∈X

Tt(s, x)

µt(s) − 1
N

∑
i≤N

δxi
t
(s)

∣∣∣∣∣∣


≤
∑
x∈X

E

 1
N2

∑
i≤N

ui
t(x) − E

[
ui

t(x)
∣∣∣∣x1

t , . . . , xN
t

]2


1/2

+
∑
s∈X

Tt(s, x)E

∣∣∣∣∣∣µt(s) − 1
N

∑
i≤N

δxi
t
(s)

∣∣∣∣∣∣


︸ ︷︷ ︸
≤O(1/

√
N) by IA
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=
∑
x∈X

E

 1
N2

∑
i≤N

(
ui

t(x) − E
[
ui

t(x)
∣∣∣∣x1

t , . . . , xN
t

])2
1/2

+ O(1/
√

N)

= 2|X |√
N

+ O(1/
√

N),

which concludes the proof.

B.3 Propagation of Chaos II

Proof of Lemma B.2. For the analysis, we lift the actions to a new action space X X (Carmona et al., 2018)
and note the equivalence in distribution to the original MARL system, as discussed in B.1. As before, we
prove the Lemma via induction over t and note that the induction start t = 0 holds by a law of large numbers
argument (alternatively, see induction step below). Now, the induction step is provided by the following
argument, where we assume that the statement holds for t:

E
[
∥νN

t+1 − νt+1∥∞
]

= E
[

max
s,d∈X

|νN
t+1(s, d) − νt+1(s, d)|

]

≤ E

 ∑
s,d∈X

|νN
t+1(s, d) − νt+1(s, d)|

 =
∑

s,d∈X

E
[
|νN

t+1(s, d) − νt+1(s, d)|
]

=
∑

s,d∈X

E


∣∣∣∣∣∣∣∣∣∣
max

0, νN
t (s, d) − 1

RN

∑
i≤N

δxi
t
(s)ui

t,s(d)︸ ︷︷ ︸
=:IN

 − max(0, νt(s, d) − µt(s)Tt(s, d)/R︸ ︷︷ ︸
=:II

)

∣∣∣∣∣∣∣∣∣∣

 (5)

For the next argument, fix some arbitrary tuple (s, d) ∈ X 2. For the moment, focus on

E

∣∣∣∣∣∣νN
t (s, d) − 1

RN

∑
i≤N

δxi
t
(s)ui

t,s(d) − (νt(s, d) − µt(s)Tt(s, d)/R)

∣∣∣∣∣∣


≤ E
[∣∣νN

t (s, d) − νt(s, d)
∣∣] + 1

R
E

∣∣∣∣∣∣µt(s)Tt(s, d) − 1
N

∑
i≤N

δxi
t
(s)ui

t,s(d)

∣∣∣∣∣∣
 = O(1/

√
N),

where the first summand converges to zero by the induction assumption and the second summand converges
to zero by an argument as in the proof of Theorem B.1. The above result implies convergence of equation (5)
to zero because for each arbitrary but fixed tuple (s, d) ∈ X 2 and any N ∈ N we have

|max(0, IN ) − max(0, II)| ≤ |IN − II| .

To see that the inequality is true, make a case distinction. If both IN and II are non-negative, the statement
trivially holds. If both IN and II are negative, the left side of the inequality is 0 and thereby the inequality is
obviously fulfilled since there is an absolute value on the right side. Finally, in the third case, assume that IN

is non-negative and II is negative (or vice versa). In the third case, the left side equals IN while the right side
equals IN − II > IN since II is negative. This completes the proof of Theorem B.2.

B.4 Approximate Optimality with High Probability

Proof of Corollary 2.2. The proof idea is to compare the objectives (sums of expected rewards) of the
respective policies and systems, and thereby establish the following sequence of inequalities for objectives,
holding at least with probability 1 − δ as N → ∞:

MARL
(1)
≥ MFC∗ − ε

(2)
≥ MFC′∗ − 2ε

(3)
≥ MARL∗ − 2ε .
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Let ε > 0 arbitrary and consider an optimal MFC solution where the corresponding objective value is denoted
by MFC∗ in the above inequality sequence. By Theorem 2.1, the probability of any positive fraction of
objects %rem =

∑
s,d νN

tmax
(s, d) ≥ 0 remaining after termination time tmax of the MFVRP MDP tends to

zero, or equivalently

P
(

%rem <
ε

8 diam(X )

)
= P

∣∣∣∣∣∣
∑
s,d

νN
tmax

(s, d) −
∑
s,d

νtmax(s, d)

∣∣∣∣∣∣ <
ε

8 diam(X )

 → 1

as N → ∞, as an optimal MFC solution transports all objects in the limit,
∑

s,d νtmax(s, d) = 0. Moreover,
by Theorem 2.1, the MARL trajectories’ rewards are close to the MFC rewards up to time tmax with high
probability,

P

∣∣∣∣∣∣
∑

t≤tmax

rN
t −

∑
t≤tmax

rt

∣∣∣∣∣∣ <
ε

4

 → 1.

Let the former event be A, and the latter B. Overall, therefore P(A ∧ B) ≥ max(0,P(A) + P(B) − 1) → 1.
Moreover, A ∧ B jointly implies that P

(∣∣∑
t rN

t −
∑

t rt

∣∣ < ε
2
)

→ 1 by definition of the reward, i.e. for
sufficiently large N the probability that a sampled solution’s return is approximately given by the optimal
MFC solution’s return tends to one and thus establishes the first inequality (1).

To prove the third inequality (3), note that the return of any optimal MARL solution can also be exactly
obtained in a MFC system with modified initial distributions, by using νN

0 , µN
0 as starting values instead

of ν0, µ0. Letting Tt(s, d) =
∑

i
1s(xi

t)1d(ui
t)∑

i
1s(xi

t)
obtains exactly the optimal MARL objective in the modified

MFC system denoted as MFC′∗ in the above inequality sequence. Therefore, the optimal MARL objective is
bounded by the optimal modified MFC objective which corresponds to inequality (3).

Finally, it remains to establish inequality (2). We point out that the optimal MFC objective is continuous
in its starting conditions, since Eqs. (2)–(4) are continuous. This implies that the optimal modified MFC
objective tends to the optimal MFC objective as νN

0 , µN
0 tend to ν0, µ0, and by Thm. 2.1, the probability

that νN
0 , µN

0 are close to ν0, µ0 tends to one which yields inequality (2).

Therefore, the probability that the sampled MARL solution is ε-optimal in the MARL system also tends to
one.

B.5 Approximate Optimality under Fine Discretization

Proof of Theorem 3.1. The proof structure consists of establishing the following five inequalities of objectives
as in Corollary 2.2,

MARL ≥ δ-MARL − ε′

≥ MFC∗ − ε′ − ε ≥ MFC′∗ − ε′ − 2ε

≥ δ-MARL∗ − ε′ − 2ε ≥ MARL∗ − 2ε′ − 2ε .

First, we obtain the center inequality sequence

δ-MARL − ε′ ≥ MFC∗ − ε′ − ε ≥ MFC′∗ − ε′ − 2ε ≥ δ-MARL∗ − ε′ − 2ε

by the same argument as in the proof of Corollary 2.2, where δ-MARL refers to the discretized VRP problem.

Therefore, it remains to establish the first and last inequality of the initial inequality sequence. These two
inequalities intuitively build on the observation that the discretized δ-MARL system is close to the initial,
continuous MARL system. Formally, we know that each of the M objects ’cause’ at most two vehicle moves:
one to be picked up and one to be delivered to the destination. In the worst case, all N vehicles have to
additionally fly back to their respective depots, which upper bounds the total number of travels by 2M + N .
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By the triangle inequality, we then know that each travel in the discretized system deviates at most
2 maxk diam(Ck) from the respective travel in the continuous system. Consequently, the overall sum of
deviations, and therefore the deviation of objective in the systems, is upper bounded by ε′ = 2 · (2M +
N) maxk diam(Ck). This argument holds uniformly for all solutions and hence establishes

MARL ≥ δ-MARL − ε′ and δ-MARL∗ ≥ MARL∗ − ε′

and thereby concludes the proof.
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