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ABSTRACT

Policy gradient algorithms have been a driver of much recent advancement in lan-
guage model reasoning. One of their most appealing properties is the ability to
learn from exploration on their own trajectories, a process crucial for discovering
diverse approaches and fostering creative solutions. As we show in this paper,
most policy gradient algorithms naturally reduce the entropy—and thus the di-
versity of explored trajectories—as part of training, yielding a policy increasingly
limited in its ability to explore. However, not all algorithms exhibit this collapse
in entropy equally. In this paper, we formally analyze the contributions of lead-
ing policy gradient objectives on entropy, show which mechanisms they employ
to implicitly limit entropy collapse, and propose a new regularization method,
REPO, that stabilizes entropy over training through the use of an adaptive con-
troller. Models trained with REPO preserve entropy throughout training, yielding
final policies that are, on average, more performant. By preserving entropy in the
final policy, REPO-trained models can even be re-trained on evolving data distri-
butions in new environments, unlike their non-entropy-preserving counterparts.

1 INTRODUCTION

Online policy gradient reinforcement learning (RL) has become the standard for boosting the rea-
soning abilities of language models (Jaech et al., 2024; Comanici et al., 2025; Guo et al., 2025).
This approach involves sampling trajectories from the current policy within a given environment
and reward function, then using these to estimate a gradient that maximizes expected reward. Ef-
fective RL optimization requires balancing exploration and exploitation (Thrun, 1992; Sutton et al.,
1998), where a robust learner should generate diverse trajectories to cover the spectrum of potential
solutions. Maximum entropy reinforcement learning offers a framework for achieving this balance
(Ziebart et al., 2008; Haarnoja et al., 2017; 2018; Eysenbach & Levine, 2022). While trivially the
optimal solution to a finite Markov decision process (MDP) is a deterministic stationary policy,
optimization over the intermediate landscape requires a balance of exploration and exploitation.

A common issue observed in online algorithms like GRPO (Shao et al., 2024) is entropy collapse.
This phenomenon occurs when training excessively narrows the distribution around already high-
probability solutions from the base model, neglecting other correct but less probable options. This
often yields premature convergence to a local optimum, enhancing pass@1 relative to base model
at the expense of pass@k (Shao et al., 2024; Dang et al., 2025; Yue et al., 2025). This challenge
has spurred innovations in policy gradient algorithm design, e.g. directly optimizing for pass@k
performance (Chen et al., 2025b). Concurrently, research has highlighted GRPO’s training insta-
bility and the complex interplay between off-policy drift, importance weight clipping, and entropy,
inspiring modifications such as DAPO (Yu et al., 2025) and GSPO (Zheng et al., 2025).

In this work, we analyze entropy preservation as a unifying lens for understanding the successes of
recent algorithms and to propose a novel family of policy gradient objectives. An important observa-
tion from our work is that, while a correlation exists between final entropy and performance, a more
informative measure is the entropy trajectory throughout the optimization process. As the saying
goes, “it’s not the destination, it’s the journey.” Figure 1 tracks this effect. A trajectory characterized
by lower entropy throughout yields lower performance. Conversely, if entropy trajectories are sim-
ilar for most of the optimization but differ only in the final steps, performance is largely unaffected.

Given this observation, we turn to study the entropy behavior of various leading RL algorithms. We
begin by theoretically analyzing how the REINFORCE policy gradient objective modulates entropy
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Figure 1: Top: Evolution of the average per-token entropy and test accuracy during training for sev-
eral baseline (GRPO, LOOP, DAPO, GSPO) and their entropy regularized versions (REPO). Each
curve shows the average trajectory over several training runs with different seeds. Bottom: Cumu-
lative entropy experienced during training up to a given checkpoint is positively correlated with the
test accuracy. Each point is a checkpoint of a single training run (best-performing checkpoint per run
highlighted). Algorithms that collapse the entropy early (see Qwen-3-8B on AppWorld; middle
column) perform significantly worse than algorithms that maintain a steady entropy during training.
See App. E for a detailed study and breakdown of this phenomena across algorithms.

dynamics, explaining how entropy can decrease during training. This effect is amplified when talk-
ing multiple policy update steps, typical of GRPO and other PPO-like algorithms. We also show
how importance weight clipping and its modifications as seen in DAPO and GSPO, can mitigate
this pressure. Finally, we show that regularizing the entropy during training allows a broad family of
policy gradient algorithms to train more performant policies. Specifically, we introduce Regulated
Entropy Policy Optimization (REPO), an approach to policy gradient optimization that adaptively
reweighs advantages and log-probabilities online to preserve entropy. REPO uses an adaptive con-
troller, tracking entropy dynamics live, and adjusting regularization strength accordingly. Training
with REPO achieves state-of-the-art results on AppWorld and strong performance on AIME 2024
and AIME 2025. Furthermore, we demonstrate that policies trained with REPO retain their train-
ability, allowing for iterative learning on new tasks in novel environments, a capability often lost in
policies trained without explicit entropy preservation.

2 PRELIMINARIES

Language modeling. Let x ∈ X denote the tokens in a vocabulary and x ∈ X ∗ the
strings expressible via concatenation of those tokens. A language model (LM) πθ parameter-
ized by θ defines a probability distribution over strings that factors autoregressively such that
πθ(x) = πθ(2 | x)

∏|x|
i=1 πθ(xi | x<i), where 2 denotes an end of sequence (EOS) marker. Note

that for notational convenience we will use πθ to express probabilities on both tokens and strings.

Language modeling as a Markov decision process. Let the policy πθ sample actions a ∈ A =
X ∪ {2} (any token or EOS) given a state s ∈ X ∗ (a string context). Let state transitions append
generated actions to the state.1 Let τ denote a trajectory, a sequence of states and actions generated
by the policy and environment. Let τ ∼ πθ denote the trajectory distribution. We consider tasks
with terminal rewards R(c, τ ). Given some task context c sampled from some datasetD, the MDP
objective is to maximize JMDP

def= Ec∼D,τ∼πθ(·|c)[R(c, τ )].

1State transitions deterministically append the generated action to the context, terminating generation at
EOS or upon some other environment condition. In some domains, e.g., those involving tool calls, state transi-
tions may also append additional tokens to the state that were generated by some unobservable process such as
executing a code interpreter.
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Policy gradient reinforcement learning directly computes a gradient through the REINFORCE
algorithm (Williams, 1992), which is amenable to Monte Carlo estimation:

∇θJMDP = Ec∼D,τ∼πθ(·|c) [A(c, τ ) · ∇θ log πθ(τ | c)] ,

where A(c, τ ) = R(c, τ )− b is an advantage function shifting the return R(c, τ ) by a baseline b.

REINFORCE leave-one-out (RLOO) (Kool et al., 2019; Ahmadian et al., 2024; Kazemnejad et al.,
2024; Chen et al., 2025a) is one of the most popular estimates of advantage for language modeling.
It generates K independent samples on-policy τ 1, ..., τ k ∼ πθ(· | c) for each task c. The reward for
each trajectory may then be baselined against the remaining K − 1 independent samples, yielding
an unbiased, low variance advantage estimator:

ÂRLOO(c, τ i)
def= R(c, τ i)−

1

K − 1

K∑
j=1

R(c, τ j)1[i ̸=j] =
K

K − 1

R(c, τ i)−
1

K

K∑
j=1

R(c, τ j)

 .

Policy gradient algorithms are on-policy by nature: They rely on a new set of trajectories in each
context τ ∼ πθ(· | c) after each gradient update of the policy πθ.

Proximal policy optimization (PPO) allows the updated policy to deviate slightly from a sampling
policy (Schulman et al., 2017). It uses an importance weight to correct the magnitudes of parameter
updates such that the expected policy gradient remains unbiased. These importance weights are
typically clipped to avoid divergence from a local trust region (Schulman et al., 2015).

J PPO
def= Ec∼D,τ∼πθ(·|c)

[
1

|τ |
∑
at∈τ

min
(
A(c, τ ) · wt, A(c, τ ) · wt|1+ϵ

1−ϵ

)]
wt

def=
πθ

new(at | c,a<t)

πθ
old(at | c,a<t)

,

where wt|1+ϵ
1−ϵ clips the importance ratio from below 1−ϵ and above 1+ϵ. In our theoretical analysis,

we will examine PPO with and without clipping. The version studied will be clear from the context.

LOOP (Chen et al., 2025a) and GRPO (Shao et al., 2024) combine the above PPO objective with
RLOO leave-one-out advantage estimates. GRPO rescales advantages by the standard deviation of
the sample returns, which introduces a small bias (Liu et al., 2025b),

ÂGRPO(c, τ i)
def=

R(c, τ i)−mean(R(c, τ 1)), ... , R(c, τ k))

std(R(c, τ 1)), ... , R(c, τ k))

while LOOP uses ÂRLOO directly.

Group Sequence Policy Optimization (GSPO) Zheng et al. (2025) uses a trajectory-level trust
region defined by the geometric average of a sequence’s probability ratios

JGSPO
def= Ec∼D,τ∼πθ(·|c)

[
min

(
A(c, τ ) · wGSPO, A(c, τ ) · wGSPO|1+ϵ

1−ϵ

)]
wGSPO def=

(
πθ

new(τ | c)
πθ

old(τ | c)

) 1
|τ|

.

GSPO yields an equivalent gradient estimator to GRPO, LOOP, and RLOO on-policy, but clips
tokens and trajectories differently as the updated policy πθ

new drifts from the sampling policy πθ
old.

Policy entropy. The inherent uncertainty that a policy places over its generations may be ex-
pressed from an information theoretic standpoint as entropy – expected surprise: Hπθ

(D) =
−Ec∼D

[
Eτ∼πθ(·|c) [log πθ(τ | c)]

]
. In addition to global entropy, we may consider the entropy

over actions at any given state s = (c,a<t) asHπθ
(· | s) = −Ea∼πθ(·|s) [log πθ(a | s)].

In this paper, we show how state-wise entropy changes as variants of policy gradient optimize their
objectives. We show which variants are naturally entropy preserving, and which variants lead to a
rapid collapse. Finally, we show that a simple class of transformations applied to the advantages
lead to a very simple and effective regularization of entropy.

3 THE ENTROPY DYNAMICS OF POLICY GRADIENT

The entropy dynamics of policy gradient RL boils down to the relationship between two values:
(1) action log-probabilities, and (2) the advantages yielded by those actions. Intuitively, assigning
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a positive advantage to some action increases its probability. For high probability actions, this
effect sharpens the distribution, and entropy decreases. For low probability actions, this flattens the
distribution, increasing entropy. The opposite pattern holds for negative advantages. This effect is
quite natural. After all, sharpening an uncertain policy around correct actions directly maximizes
the expected return. However, as we will see, not all RL algorithms sharpen the distribution equally.

Formally, consider the policy gradient update with on-policy actions in state s. Under a first-order
Taylor approximation to the training dynamics, the expected change in entropy is as follows.

Theorem 1. Given a policy gradient update θ̂ := θ + α · ∇θJMDP(s), the expected change in
entropy is approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s),a′∼πθ(·|s)

[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
,

where L(s, a) def= log πθ(a | s)− Ea∼πθ(·|s)[log πθ(a | s)] denotes mean-centered log-probabilities
and u(s, a) def= ∇θ log πθ(a | s) denotes the score function for some policy πθ evaluated at state s
and action a.

[Proof in App. C.2]. The entropy change is driven by a multiplicative relationship between action
log-probabilities and the advantages yielded by those actions. In an exact derivation, these are
weighted by the score vector outer product. With additional independence assumptions or a tabular
softmax policy parameterization, this expression can be further simplified, resulting in a weighting
by the action probabilities. This yields the following corollary:

Corollary 1. Assuming u(s, a)⊤u(s, a′) = 0 for all a ̸= a′, the change in entropy is approximately:

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s) [A(s, a) · L(s, a) · πθ(a | s)]

[Proof in App. C.3]. This latter form encodes the dominant behavior of entropy dynamics in a
manner that is inherent to policy gradient. Using this form, we explain the observed behaviors of
various RL algorithms. A similar derivation can be shown for tabular softmax policies (Cui et al.,
2025, see Corollary 2 in App. C.4). Thm. 1 and Corollary 1 tell us that the change in entropy is
governed by a correlation between advantages and log-probabilities, weighted by action probability.

Entropy dynamics of PPO. The biggest feature of PPO is its ability to train on slightly off-
policy trajectories, given that the updated policy does not deviate from a trust region around the
current policy. This allows PPO to take multiple policy-improvement steps for a single set of
trajectories. The effect of these repeated updates are much larger policy updates between con-
secutive PPO steps, which empirically amplifies entropy collapse. This being said, the clipping
on PPO, when appropriately orchestrated, can protect against entropy collapse as well. Clip-
ping ensures that no policy gradient update is performed if the policy drifts outside a trust region
(1− ϵlow) · πold

θ (a | s) ≤ πnew
θ (a | s) ≤ (1+ ϵhigh) · πold

θ (a | s). This bounds the change in entropy:

Theorem 2. Proximal Policy Optimization (PPO) bounds the entropy Hπθ
new(· | s) of the updated

policy by the original policy entropyHπθ
old(· | s) such that:

(1− ϵlow) · Hπθ
old(· | s) ≤ Hπθ

new(· | s) ≤ (1 + ϵhigh) · Hπθ
old(· | s)

[Proof in App. C.5]. The clipping thresholds directly limit the maximum induced change in entropy
per token. Intuitively, the change in entropy per token is stochastic: some actions have a large
correlation between advantage and log probability; others do not, or even have an anti-correlation.
For a symmetric clipping regime, this results in an entropy change that largely follows the statistical
trends outlined above, but at a lower magnitude.

Entropy dynamics of DAPO. Now consider DAPO (Yu et al., 2025), with an asymmetric clipping
regime ϵlow < ϵhigh. This allows for larger entropy increases, while limiting the entropy decrease.
Due to the stochastic nature of the entropy changes, this directly contributes to an overall increase
in per-token entropy over sufficient samples. Threshold values ϵlow = 0.2 and ϵhigh = 0.28 proposed
in Yu et al. (2025) stabilize the entropy throughout training, as we show experimentally.
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Entropy dynamics of GSPO. GSPO defines a trust region 1− ϵGSPO
low ≤ wGSPO ≤ 1 + ϵGSPO

high , or

equivalently
(
1− ϵGSPO

low

)|τ | ≤ πθ
new(τ |c)

πθ
old(τ |c) ≤

(
1 + ϵGSPO

high

)|τ |
. This induces an equivalent bound to

Thm. 2; however, the bound now depends on the trajectory length |τ |. Longer trajectories may
induce a larger change in entropy, shorter trajectories induce a smaller change in entropy. With
parameter values suggested in Zheng et al. (2025), ϵGSPO

low = 3× 10−4 and ϵGSPO
high = 4× 10−4, the

entropy bound is tighter for trajectories |τ | < ln(1±ϵ)
ln(1±ϵGSPO)

≈ 600 tokens compared to DAPO. Like
DAPO, the clipping range is asymmetric ϵGSPO

low < ϵGSPO
high leading to a stochastic increase in entropy.

Regulated entropy policy optimization (REPO) changes the advantage function to include a
scaled policy log-likelihood term AREPO(s, a) = A(c, a) − βs · L(s, a) for each s = (c,a<t).
This updated advantage is no longer constant throughout the trajectory like in RLOO and variants,
but differs for individual tokens at ∈ τ . Following Thm. 1 by Prop. 3 the induced change in entropy
with AREPO is:

∆HREPO
πθ

(· | s) ≈ ∆Hπθ
(· | s) + βc · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2︸ ︷︷ ︸

≥0

.

This provides us with a direct mechanism to control the entropy. A positive βc > 0 increases the
entropy over actions in a state relative to the default dynamic. A value βc = 0 allows the natural
entropy decrease to proceed. A negative βc < 0 collapses the entropy. Note, this holds for any
parametrization of the policy and does not rely on approximations.

How should we choose βc to preserve entropy? One natural choice is to counter-act the entropy
collapse on a per-token level and set βREPO-D

c ∝ −∆Hπθ
(· | s) as approximated in Corollary 1, thus

neutralizing ∆Hπθ
and allowing ∆HREPO

πθ
to approach 0 with the right scale of the regularizer. We

call this variant REPO-D.

While the above heuristic provides us with an overall mechanism to control entropy, the exact scale
of the regularizer depends on many aspects of the policy gradient optimization: the learning rate,
the structure of the gradient, second order effects, etc. We learn the magnitude ζ of the regularizer
using a simple control heuristic similar to the adaptive DKL penalty presented in Schulman et al.
(2017). Let βREPO-D

c = −ζ ·∆Hπθ
(· | s). The heuristic proceeds as follows: (1) Estimate Hinit

πθ
, the

policy entropy over the experience collected in this first iteration. (2) Initialize ζ = 10−3. (3) On
each iteration, estimate Hπθ

, the current policy entropy, and compare it to Hinit
πθ

. If Hπθ
< Hinit

πθ
,

update ζ ← ζ × 2. IfHπθ
> Hinit

πθ
, update ζ ← ζ ÷ 2. (4) Clip ζ to the window ζmin ≤ ζ ≤ ζmax.

Supporting rare correct actions (REPO-R). Looking back through our learnings thus far, it ap-
pears that the most important bang-for-buck in preserving entropy is through raising low probability
correct actions. This intuitively corresponds to reinforcing rare but correct solutions under our policy
optimization, which is a behavior that we hope to encourage. We can thus apply an entropy regular-
izer on positive advantage actions only: βREPO-R

a,c = ζ ·max(A(c, a), 0). The effect of this is simple:
Wrong (negative-advantage) actions are unaffected and penalized by the negative advantage. For
correct actions (positive-advantage) the entropy regularizer reduces advantages for high-probability
outcomes, but amplifies low-probability samples (towards a higher entropy state). This does how-
ever introduce a small bias to the gradient estimate, as it treats positive and negative advantage
samples differently. Different scales of regularizers βREPO-D

c and βREPO-R
a,c demand different clipping

ranges [ζmin, ζmax]: [10−3, 101] for REPO-D and [10−5, 10−1] for REPO-R.

4 EXPERIMENTS

With the theory established, we evaluate whether training with REPO yields improvements to strong
models on challenging environments when compared to state-of-the-art learning algorithms. We
choose Qwen-3-8B and Qwen-3-32B as our starting policies (Yang et al., 2025).

Environments. Interactive tool-use agent. Training scenarios are drawn from the train split (90
problems) of the AppWorld benchmark (Trivedi et al., 2024). The AppWorld Test Normal (TN,

5
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Figure 2: Qwen-3-32BAppWorld test performance and token entropy across iterations of training.
Each curve shows a mean across multiple random seeds.
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Figure 3: Qwen-3-8B AppWorld test performance and token entropy across iterations of training.
Each curve shows a mean across multiple random seeds.

168 tasks) and Test Challenge (TC, 417 tasks) splits are used for evaluation. Terminal reward is
calculated via task-provided unit-tests that check the final state of the environment against ground
truth (additional details in App. D.1). Competition-level mathematics. Training scenarios are drawn
from a non-overlapping quality-filtered subset of the AMC/AIME section of NuminaMath-1.5 (563
problems; Li et al., 2024). AIME 2024 (30 problems) and AIME 2025 (30 problems) are used as
evaluation datasets. Terminal reward indicates whether the generated answer matches the reference.

Training details. We run training for 100 iterations on AppWorld, and 200 on AIME, where each
iteration consists of an experience collection stage followed by policy optimization on the collected
data. For each iteration, 64 (AppWorld) or 128 (AIME) scenarios are sampled without replacement
and K = 6 rollouts are generated per scenario. Model outputs are generated with the thinking
template enabled using temp = 1.0 and a maximum generation length of 16384 (AppWorld) or
4096 (AIME) tokens.2 All scenarios yielding identical in-group returns (ÂRLOO = 0) are filtered
out to increase throughput. Additional training details in App. D.2.

Algorithms. For each algorithm, we highlight its distinguishing features with otherwise minimal
deviations from the base policy gradient to aid reproducibility (thus, some details and hyperparam-
eter choices may differ slightly from original sources).

RLOO: REINFORCE with the ÂRLOO advantage estimator. The collected experience is trained
strictly on-policy for 1 epoch using a large minibatch that comprises all collected experience. GRPO:
Off-policy extension of RLOO that uses normalized Leave None Out (LNO) estimator ÂGRPO and
symmetric PPO clipping with ϵ = 0.2. With GRPO and all algorithms below we train on the col-
lected experience for 2 epochs with the minibatch size of 128 (AppWorld) or 256 (AIME) trajecto-
ries. LOOP: A variant of GRPO with non-normalized estimator ÂRLOO (RL SOTA on AppWorld at
the time of writing). DAPO: a variant of LOOP with asymmetric clipping (ϵlow = 0.2, ϵhigh = 0.28).
GSPO: An adjustment of LOOP using wGSPO importance weighting and trajectory-based clipping
with ϵGSPO

low = 3× 10−4 and ϵGSPO
high = 4× 10−4. REPO algorithms incorporate entropy control over

either DAPO (e.g. in REPO-R) or GSPO (in GSPO-REPO-R) as their base algorithm.

2This restricted context window was chosen for experiment iteration speed. Note that Qwen-3 models can
be trained to higher accuracy on AIME with increased token budget.
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Algorithm Test Normal Best TN Test Challenge Best TC H ∆H
RLOO 0.71 ± 0.02 0.73 0.52 ± 0.02 0.54 0.32 -0.19
GRPO 0.61 ± 0.01 0.62 0.42 ± 0.03 0.45 0.06 -0.45
LOOP 0.64 ± 0.04 0.67 0.40 ± 0.01 0.41 0.05 -0.46
DAPO 0.70 ± 0.03 0.73 0.48 ± 0.01 0.49 0.18 -0.33
GSPO 0.62 ± 0.06 0.68 0.51 ± 0.05 0.56 0.42 -0.09

REPO-R 0.73 ± 0.03 0.75 0.55 ± 0.05 0.62 0.48 -0.03
REPO-D 0.71 ± 0.03 0.74 0.54 ± 0.02 0.55 0.63 +0.12
GSPO-REPO-R 0.71 ± 0.00 0.71 0.54 ± 0.03 0.57 0.57 +0.06
GSPO-REPO-D 0.64 ± 0.02 0.66 0.41 ± 0.02 0.43 0.52 +0.01

Table 1: Task goal completion scores for AppWorld Qwen-3-32B by training algorithm.

Algorithm Test Normal Best TN Test Challenge Best TC H ∆H
RLOO 0.48 ± 0.07 0.54 0.25 ± 0.02 0.28 0.14 -0.00
GRPO 0.33 ± 0.01 0.34 0.14 ± 0.01 0.15 0.04 -0.10
LOOP 0.27 ± 0.01 0.28 0.14 ± 0.00 0.14 0.04 -0.10
DAPO 0.34 ± 0.02 0.36 0.17 ± 0.01 0.17 0.05 -0.09
GSPO 0.45 ± 0.01 0.46 0.21 ± 0.01 0.21 0.15 +0.01
H Bonus 0.42 ± 0.04 0.45 0.20 ± 0.01 0.22 0.22 +0.08

REPO-R 0.43 ± 0.01 0.45 0.21 ± 0.00 0.21 0.15 +0.01
REPO-D 0.43 ± 0.00 0.43 0.19 ± 0.01 0.20 0.14 -0.00
GSPO-REPO-R 0.48 ± 0.04 0.51 0.27 ± 0.01 0.28 0.21 +0.07
GSPO-REPO-D 0.44 ± 0.03 0.48 0.22 ± 0.02 0.24 0.17 +0.03

Table 2: Task goal completion scores for AppWorld Qwen-3-8B by training algorithm.

5 RESULTS AND DISCUSSION

5.1 DISTINCT ALGORITHMS SHOW VARIABLE ENTROPY DYNAMICS

Results for AppWorld are in Tabs. 1 and 2 and Figs. 2 and 3. Results for AIME are in Tab. 3. We nar-
rate these results bellow. The conclusions presented hold across all model and dataset combinations.

PPO-like algorithms deplete entropy faster than strictly on-policy. GRPO and LOOP reduce
entropy by nearly 90% over training. While RLOO loses considerably less.

Clipping modifications can protect entropy. Following the intuition provided in §3, both DAPO
and particularly GSPO retain more entropy than GRPO or LOOP. DAPO and GSPO are methods
that have been empirically found to perform better. Here we show that one possible explanation for
the improved performance of these methods is that they preserve entropy.

REPO is most effective at entropy preservation. The REPO-D and REPO-R variants, built on top
of DAPO and GSPO, consistently yield no loss or even gains in entropy over training. This confirms
the effectiveness of our proposed regularization and the understanding it builds upon.

REPO outperforms an entropy bonus. An entropy bonus in reinforcement learning is an addi-
tional term in the optimization objective that increase entropy directly (Williams, 1992; Mnih et al.,
2016). We compare DAPO with an entropy bonus3 with REPO. While an entropy bonus aids DAPO,
it is worse than REPO and uses more memory4 (Fig. 3).

3We use the same adaptive algorithm as REPO-D to set the coefficient β.
4Computing an entropy bonus requires storing the logits in GPU memory whereas computing the log-

probability for the select token does not with CCE (Wijmans et al., 2025). Modifying CCE is non-trivial.
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Model Algorithm AIME24@1 AIME24@64 AIME25@1 AIME25@64 Combined H ∆H

8B RLOO 0.62 0.79 0.44 0.67 0.63 0.280 -0.020
8B GRPO 0.59 0.80 0.41 0.53 0.58 0.107 -0.193
8B LOOP 0.58 0.81 0.41 0.60 0.60 0.074 -0.226
8B DAPO 0.63 0.80 0.42 0.63 0.62 0.239 -0.061
8B GSPO 0.63 0.82 0.43 0.67 0.64 0.193 -0.107

8B REPO-R 0.63 0.78 0.47 0.63 0.63 0.397 +0.097
8B REPO-D 0.63 0.83 0.42 0.63 0.63 0.353 +0.053
8B GSPO-REPO-R 0.64 0.81 0.40 0.62 0.62 0.336 +0.036
8B GSPO-REPO-D 0.64 0.80 0.46 0.66 0.64 0.332 +0.032

32B RLOO 0.68 0.88 0.50 0.66 0.68 0.145 -0.235
32B GRPO 0.64 0.82 0.48 0.64 0.65 0.047 -0.333
32B LOOP 0.67 0.80 0.50 0.68 0.66 0.033 -0.347
32B DAPO 0.65 0.87 0.55 0.68 0.69 0.319 -0.061
32B GSPO 0.63 0.83 0.47 0.70 0.66 0.297 -0.083

32B REPO-R 0.68 0.88 0.47 0.68 0.68 0.469 +0.089
32B REPO-D 0.64 0.84 0.50 0.72 0.68 0.442 +0.062
32B GSPO-REPO-R 0.68 0.87 0.50 0.72 0.69 0.422 +0.042
32B GSPO-REPO-D 0.70 0.86 0.47 0.66 0.67 0.343 -0.037

Table 3: AIME results by parameter count and training algorithm.
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Figure 4: Sequential learning experiment. Top row: We use an AIME-trained model for GRPO,
DAPO, REPO-R, and continue training the model on AppWorld. The left and middle plots show
Task Goal Completion (TGC) on the normal (TN) and challenging (TC) test sets. A collapsed model
(GRPO) does significantly worse than one in which entropy is preserved. Bottom row: We use an
AppWorld-trained model and continue training on AIME. The same trends hold. All curves reflect
the mean across multiple seeds.

5.2 ENTROPY PRESERVATION AND DOWNSTREAM PERFORMANCE

We evaluate the effect of entropy preservation on downstream performance. See Fig. 1 for a preview
of these results and App. E for a full breakdown and analysis. We find that methods that preserve
per-token entropy over the course of training tend to yield higher final test accuracy than those that
don’t. This is also captured in the cumulative entropy over training. Methods (and checkpoints)
that maintain a higher cumulative entropy over training yield a higher final test accuracy. These
trends are stronger on AppWorld than AIME. We hypothesize that this is due to the following:
The Qwen-3 family of models is already heavily optimized for AIME, and so this optimization
may have primarily involved sharpening around existing solutions. AppWorld, on the other hand,
requires discovering new capabilities (and thus requires more entropy to explore).

5.3 ENTROPY PRESERVATION ASSISTS SEQUENTIAL TRAINING

Entropy is critical for online reinforcement learning. In this regime, a policy must generate trajecto-
ries that yield different returns to collect non-zero advantage samples. If entropy is exhausted, then
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learning stops. Here we ask whether entropy collapse hinders the ability of a trained policy to be
re-trained in a novel environment.

We train Qwen-3-8B first on either the AIME or AppWorld using the same settings as §4. We
then take the best checkpoint as the starting point for training on the opposing environment. Fig. 4
shows that policies trained with GRPO in one environment have low entropy even once transferred
to the other. This results in a lower peak performance during re-training. On the other hand, DAPO,
and especially REPO, start re-training with ample entropy and retain more entropy over the course
of training. This results in performance comparable to starting training from Qwen-3-8B, thereby
demonstrating that collapsing entropy harms re-training.

6 RELATED WORK

Reinforcement learning has emerged as the dominant paradigm for aligning pre-trained language
models (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). This approach has been suc-
cessfully scaled in environments yielding verifiable rewards such as programming and mathematics
(Jaech et al., 2024; Lambert et al., 2024; Comanici et al., 2025; Guo et al., 2025; Team et al., 2025).

Empirically, training in this setting has typically been viewed as sharpening the base policy around
existing solutions rather than yielding new ones (Gandhi et al., 2025; Liu et al., 2025b; Yue et al.,
2025; Zhao et al., 2025). A good pre-trained base policy starts off already calibrated to many rea-
sonable reward functions, and post-training can be viewed as tempering this distribution (Kadavath
et al., 2022; Cui et al., 2025). In fact, several works directly exploit this calibration to drive accu-
racy improvements via unsupervised post-training. Agarwal et al. (2024) simply minimize entropy,
Prasad et al. (2024); Zhang et al. (2025); Zuo et al. (2025) align to the model’s majority vote dis-
tribution, Wang et al. (2025) get by with a single labeled sample, and Shao et al. (2025) even use
random rewards. All of these works can be explained by simply allowing policy gradient to sharpen
an already calibrated base policy. While this type of approach can help pass@1, it harms pass@k
(Shao et al., 2024; Dang et al., 2025; Yue et al., 2025).

Some works protect against this pathological entropy collapse using modified policy gradient objec-
tives. He et al. (2025) add auxiliary rewards to solutions as a function of their probability rank within
a batch. Yu et al. (2025) introduce wider PPO clipping to encourage stronger reinforcement of low
probability correct actions. Zheng et al. (2025) propose sequence-level clipping more independent
of individual action probabilities. Chen et al. (2025b) reformulate online policy gradient to optimize
pass@k as opposed to pass@1. Most similarly to our work, Cui et al. (2025) derive theoretical
results regarding the covariance between advantages and probabilities mediating entropy collapse
and then identify the individual tokens most responsible for sharpening and detach their gradients.

Other works impose a DKL penalty during training as an approach for preserving the base policy
(e.g., Ziegler et al., 2019; Guo et al., 2025, etc.). However, it has been shown that such an approach
limits how much the policy can learn (Korbak et al., 2022; Yang et al., 2024; Wu & Choi, 2025). For
this reason, Chen et al. (2025a); Yu et al. (2025) remove the DKL penalty, (Vassoyan et al., 2025)
ignore it for a subset of tokens, and (Liu et al., 2025a) iteratively reset the reference policy.

7 CONCLUSION

In this work, we begin with a theoretical explanation for entropy collapse under policy gradient.
We show that this process accelerates under PPO relative to strict on-policy, and how recent policy
gradient variants like GSPO or DAPO, implicitly prevent this collapse. We then propose REPO,
a novel approach to policy gradient optimization that uses an adaptive controller to stabilize en-
tropy dynamics online. We provide empirical evidence for REPO’s effectiveness, training in chal-
lenging environments and evaluating on AppWorld, AIME 2024, and AIME 2025. In addition to
strong benchmark performance, REPO-trained models yield final policies that have retained their
entropy, which we demonstrate enables sequential learning of trained checkpoints in new environ-
ments. Overall, we highlight the importance of entropy—and the corresponding online exploration
capabilities—for effective policy optimization.
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ETHICS STATEMENT

This paper investigates the properties of policy gradient algorithms for language model reasoning,
specifically focusing on the tendency for entropy collapse during training. Our research is primarily
theoretical and analytical, involving mathematical analysis and algorithm development. Our work
aims to improve entropy during reinforcement learning, which can lead to better exploration and
wider diversity in generated outputs. We acknowledge the potential for misuse of advanced lan-
guage models, including the generation of biased, harmful, or misleading content. We believe that
responsible research practices, including transparency in model limitations and potential societal
impacts, are crucial for mitigating these risks, and we hope that our research contributes to the
development of more robust, creative, and beneficial language models.

REPRODUCIBILITY STATEMENT

Complete proofs for all theoretical claims, along with experimental details and hyperparameters, are
included in the appendix. All data points presented in this work are the result of multiple repetitions
of each experiment using independent random seeds.

USE OF LARGE LANGUAGE MODELS FOR WRITING

We acknowledge the use of large language models to assist with typographical corrections, phrasing,
and self-review aimed at improving the clarity and structure of this manuscript.
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Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
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A NUMERICAL CONSIDERATIONS

After our initial round of experiments §5, we identified implementation details and numerical effects
that substantially influence the experimental results and the entropy dynamics of RL algorithms. We
believe similar numerical peculiarities can affect many practitioners and thus the overall story would
be incomplete without discussing them.

A.1 LOSS OF MODEL OUTPUT PRECISION FROM FSDP2 OUTPUT CASTING

As described in App. D.2, we use the FSDP2 framework for distributed training on multiple
GPUs (Zhang et al., 2024). In the HuggingFace Accelerate library, FSDP2 is configured to cast
all module outputs to the chosen floating-point type (e.g., BF16), including the final model out-
puts, even when the computations involving logits (such as softmax) are performed in full 32-bit
precision.

This is the default behavior of the library, and there is no single configuration parame-
ter to switch it off. To preserve full-precision log probabilities, the user must explic-
itly override the output dtype of the MixedPrecisionPolicy (MPP) object (see
fsdp/ fully shard/ fsdp api.py for details).

Naively, this cast should not affect the RL gradients, as the backward pass of such a casting opera-
tion is the identity function. Indeed, there appears to be no measurable difference for fully on-policy
algorithms like RLOO. The half-precision downcast, however, does measurably impact the numer-
ical stability of the importance weight and thus can affect off-policy algorithms that use clipping,
such as LOOP, GRPO, and DAPO.

Fig. 5 empirically demonstrates the clipping bias introduced by the 16-bit rounding when training
with DAPO. We observe that when the rounding is present (before the MixedPrecisionPolicy
fix), more tokens get clipped due to exceeding the higher end of the range ϵhigh preventing probability
increase for low probability tokens and thus reducing overall entropy. At the same time, fewer
tokens are clipped due to ϵlow. The overall effect is the tightening of the clipping on the higher end
of the range while relaxing it on the lower end, resulting in the reduced effectiveness of entropy
preservation from the asymmetric clipping. It can be further noted that the 16-bit rounding changes
the clipping outcome only for a tiny fraction of tokens, fewer than 0.1% of the total number of output
tokens. This suggests that a very small number of pivotal tokens play an essential role in learning
and warrants further study of this effect.

App. A.3 empirically confirms the significant impact of half-precision rounding on the overall per-
formance and entropy dynamics (see Fig. 7).

A.2 FLOAT16 TRAINING

In our original experiments, the models were trained exclusively in bfloat16 (BF16), which has
become common practice in LLM training because of its higher dynamic range. Recent publica-
tions (Qi et al., 2025) reported improved training with float16 (FP16) floating-point format as its
additional 3 mantissa bits enable more accurate gradient representation.

In addition, the choice of floating-point format affects the discrepancy between inference (vLLM)
and training policies. These discrepancies are inherent to RL systems with a separate inference
server and arise from small differences in model-layer implementations as well as from the lack of
batch-size invariance in GPU kernels. In our experiments, we find that FP16 training significantly
reduces the inference-training discrepancy (see Fig. 6).

A.3 ABLATION STUDY

Fig. 7 summarizes the ablation study of the numerical tweaks described in Apps. A.1 and A.2 per-
formed for DAPO training on Qwen3 8B. We observe that when the MPP fix and FP16 training
are used together, the entropy dynamics of DAPO change completely, from collapse and sub-par
exploration to a rapid increase in entropy over the course of training. More generally, we observed
improved training across models and algorithm variants when both of the above changes were ap-
plied (Tabs. 4 and 5).
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Figure 5: Ratio of clipped tokens before and after the MixedPrecisionPolicy fix. 16-bit
rounding introduces a subtle bias that causes more tokens to be clipped on the upper end and fewer
tokens to be clipped on the lower end of the clipping range [ϵlow, ϵhigh]. If not addressed, this asym-
metrical bias promotes entropy collapse in algorithms with asymmetric clipping like DAPO. Here
the measurements are shown for Qwen3 8B trained with DAPO on AppWorld.
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Figure 6: Differences between inference (vLLM) and training policies under BF16 and FP16 train-
ing. Additional mantissa bits in the FP16 setup enable much smaller deviations from the behavior
policy. Shown from left to right: average differences between token probabilities (lower is better),
minimal probability ratio between vLLM and training policies across the experience batch (closer
to 1.0 is better), and max. probability ratio (closer to 1.0 is better).

B BIDIRECTIONAL ENTROPY CONTROL

Results in App. A.3 show that entropy dynamics can vary significantly in response to relatively minor
modifications, and suggest that bidirectional entropy control, rather than simply collapse prevention,
is a better framing. We propose two algorithm variants designed to control entropy in both directions
in response to the observed behavior.

Bidirectional REPO-R. The first is the bidirectional variant of REPO-R. It is identical to the
REPO-R described in §3, except that the sign of the adaptive coefficient ζ flips when the entropy
exceeds the target value (e.g., the initial entropy), and the adaptive control is then applied in the
range [−ζmax,−ζmin] instead.

Note that REPO-R is base method agnostic and can be used even with a fully on-policy method like
RLOO.
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Figure 7: Cumulative effect of the MixedPrecisionPolicy (MPP) fix and FP16 training when applied
to DAPO algorithm with Qwen3 8B. Each curve represents the mean of three independent runs
(seeds).
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Figure 8: AppWorld test scores and token-level entropy for Qwen3 8B after numerical fixes.
ADAPO and REPO-R are used for bidirectional entropy control. GRPO performed very similarly
to LOOP and omitted for clarity. Curves show mean values across three seeds.

ADAPO. The second proposed algorithm for bidirectional entropy control is called ADAPO
(“Adaptive DAPO”). It utilizes the built-in ability of DAPO’s asymmetric clipping to affect en-
tropy and adds an adaptive controller similar to REPO-R. To stabilize entropy with ADAPO we set
ϵlow = 0.2 and allow ϵhigh to vary in [0.2, 0.3] range in response to the observed entropy. Specifically:

1. Estimate Hinit
πθ

, the policy entropy over the experience collected in this first iteration (same
as REPO-R).

2. Initialize ϵhigh = 0.28 (initial value used by DAPO).

3. On each iteration, estimate Hπθ
, the current policy entropy, and compare it to Hinit

πθ
. If

Hπθ
< Hinit

πθ
, update ϵhigh ← ϵhigh × 1.01. IfHπθ

> Hinit
πθ

, update ϵhigh ← ϵhigh ÷ 1.01.

4. Clip ϵhigh to the window [0.2, 0.3].

Note that this idea can be applied to any algorithm with asymmetric clipping (e.g. GSPO) therefore
an alternative disambiguation is “ADAptive Asymmetric Clipping Policy Optimization”

B.1 BIDIRECTIONAL ENTROPY CONTROL: EXPERIMENTS

We rerun a select subset of experiments with Qwen3 8B and 32B incorporating changes from App. A
and bidirectional entropy control mechanisms (see Figs. 8 and 9).

Key observations:

• Both the bidirectional version of REPO-R and ADAPO succeed at keeping entropy close
to Hinit

πθ
. This suggests that the adaptive nature of both methods is more important than the

specific entropy control lever.
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Figure 9: AppWorld test scores and token-level entropy for Qwen3 32B after numerical fixes.
ADAPO and REPO-R are used for bidirectional entropy control. GRPO performed very similarly to
LOOP and omitted for clarity. DAPO’s entropy explodes, leading to instability. Curves show mean
values across three seeds.

Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.59 ± 0.05 0.64 0.35 ± 0.06 0.41
LOOP 0.40 ± 0.02 0.42 0.19 ± 0.02 0.22
GSPO 0.56 ± 0.04 0.60 0.32 ± 0.03 0.36
DAPO 0.57 ± 0.03 0.62 0.33 ± 0.03 0.37

ADAPO 0.59 ± 0.01 0.60 0.34 ± 0.03 0.36
REPO-R 0.58 ± 0.07 0.67 0.32 ± 0.03 0.37

Table 4: Task goal completion scores for AppWorld Qwen3 8B by training algorithm after numerical
fixes. REPO-R is the bidirectional version. Test Normal and Test Challenge columns show mean and
standard deviation across three independent runs. Best TN/TC columns report the highest evaluation
score of any checkpoint across three runs.

• REPO-R and ADAPO are the best-performing off-policy methods in this domain.
• Entropy values oscillate for REPO-R suggesting it could benefit from further improvement

of the adaptive heuristic for precise control (e.g. exponential coefficient smaller than 2).
• For non-adaptive DAPO, the entropy explodes in the 32B setup which leads to early dete-

rioration of performance, highlighting the importance of bidirectional control.
• LOOP underperforms despite showing entropy dynamics similar to RLOO. LOOP uses

restrictive [0.9,1.1] clipping range for stability which may hinder promotion of high advan-
tage low probability tokens, slowing down learning.

• Remarkably, a fully on-policy method RLOO is firmly among the best methods after the
numerical fixes, albeit showing slower initial training in the 32B setup. The entropy dynam-
ics for RLOO changes even between two models in the same model family, highlighting
the complexity of exploration behavior.

We recorded the highest score among all our experiments using a simple on-policy algorithm
RLOO (Tab. 5) after introducing numerical tweaks described in App. A. We reach 78% success rate
on Test Normal and 71% on Test Challenge, significantly exceeding the highest previously reported
scores (https://appworld.dev/leaderboard) achieved with an agentic GPT-4.1-based
system (Marreed et al., 2025). We improve by 7% for TN and 26% for TC compared to previous RL
SOTA based on an open-weight model (Chen et al., 2025a).
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Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.78 ± 0.00 0.79 0.62 ± 0.07 0.71
LOOP 0.66 ± 0.02 0.68 0.45 ± 0.03 0.47
GSPO 0.69 ± 0.01 0.70 0.50 ± 0.01 0.51
DAPO 0.73 ± 0.04 0.77 0.52 ± 0.02 0.55

ADAPO 0.77 ± 0.01 0.78 0.59 ± 0.04 0.65
REPO-R 0.75 ± 0.02 0.78 0.56 ± 0.06 0.63

Table 5: Task goal completion scores for AppWorld Qwen3 32B by training algorithm after numer-
ical fixes. REPO-R is the bidirectional version.

C PROOFS & DERIVATIONS

C.1 BROADLY USED LEMMAS

Lemma 1. The expected score function of policy πθ at some state s is:

Ea∼πθ(·|s) [∇θ log πθ(a | s)] = 0

Proof.

Ea∼πθ(·|s) [∇θ log πθ(a | s)] =
∑
a

πθ(a | s) · ∇θ log πθ(a | s)

=
∑
a

∇θπθ(a | s)

= ∇θ

∑
a

πθ(a | s)

= ∇θ(1)

= 0

■

Lemma 2. The gradient of a sample estimate Ex∼Pθ
[fθ(x)] of function fθ over distribution Pθ is:

∇θEx∼Pθ
[fθ(x)] = Ex∼Pθ

[∇θfθ(x) + fθ(x) · ∇θ logPθ(x)]

Proof.

∇θEx∼Pθ
[fθ(x)] =

∑
x

∇θ (Pθ(x) · fθ(x))

=
∑
x

Pθ(x) · ∇θfθ(x) + fθ(x) · ∇θPθ(x)︸ ︷︷ ︸
Pθ(x)∇θ logPθ(x)


=

∑
x

Pθ(x) (∇θfθ(x) + fθ(x) · ∇θ logPθ(x))

= Ex∼Pθ
[∇θfθ(x) + fθ(x) · ∇θ logPθ(x)]

■

Lemma 3. The gradient of a sample estimate Ex∼Pθ
[fθ(x)] of function fθ over distribution Pθ can

be baselined for any arbitrary arbitrary b independent of x:

∇θEx∼Pθ
[fθ(x)− b] = ∇θEx∼Pθ

[fθ(x)]
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Proof.

∇θEx∼Pθ
[fθ(x)− b] = Ex∼Pθ

[(fθ(x)− b) · ∇θ logPθ(x)]

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]− Ex∼Pθ

[b · ∇θ logPθ(x)]

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]− b · Ex∼Pθ

[∇θ logPθ(x)]︸ ︷︷ ︸
0

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]

= ∇θEx∼Pθ
[fθ(x)]

■

Lemma 4. The gradient of MDP objective JMDP at some state s is:

∇θJMDP(s) = Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)]

for any arbitrary baseline b independent of a.

Proof. Largely following (Williams, 1992), Lemma 2, and Lemma 3

∇θJMDP(s) = ∇θEa∼πθ(·|s) [R(s, a)]

= ∇θEa∼πθ(·|s) [(R(s, a)− b)]

= Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)] + Ea∼πθ(·|s) [∇θ (R(s, a)− b)]︸ ︷︷ ︸
0

= Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)]

■

Lemma 5. The gradient of the policy entropy at some state s is:

∇θHπθ
(· | s) = −Ea∼πθ(·|s) [(log πθ(a | s)− b) · ∇θ log πθ(a | s)]

for any arbitrary baseline b independent of a.

Proof. Follows directly from Lemma 4 with R(s, a) = − log πθ(a | s).

∇θHπθ
(· | s) = −∇θEa∼πθ(·|s) [log πθ(a | s)]

= −Ea∼πθ(·|s) [(log πθ(a | s)− b) · ∇θ log πθ(a | s)]

■

Lemma 6. The expected advantage function A(s, a) def= R(s, a) − b, with baseline V (s) def=
Ea∼πθ(·|s)[R(s, a)], at some state s is:

Ea∼πθ(·|s)[A(s, a)] = 0

Proof.

Ea∼πθ(·|s)[A(s, a)] = Ea∼πθ(·|s)[R(s, a)− V (s)]

= Ea∼πθ(·|s)[R(s, a)]− V (s)

= V (s)− V (s)

= 0

■
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C.2 ENTROPY DYNAMICS UNDER POLICY GRADIENT

Theorem 1. Given a policy gradient update θ̂ := θ + α · ∇θJMDP(s), the expected change in
entropy is approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s),a′∼πθ(·|s)

[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
,

where L(s, a) def= log πθ(a | s)− Ea∼πθ(·|s)[log πθ(a | s)] denotes mean-centered log-probabilities
and u(s, a) def= ∇θ log πθ(a | s) denotes the score function for some policy πθ evaluated at state s
and action a.

Proof. Let L(s, a) def= log πθ(a | s) − Ea∼πθ(·|s)[log πθ(a | s)] denote mean-centered log-
probabilities and let u(s, a) def= ∇θ log πθ(a | s) denote the score function of policy πθ evaluated at
action a and state s. Let g(s) and h(s) denote the respective mean-baselined policy gradient and
entropy gradient evaluated on-policy in some state s:

g(s) = ∇θJMDP(s) = Ea∼πθ(·|s) [A(s, a) · u(s, a)]
h(s) = ∇θHπθ

(· | s) = −Ea∼πθ(·|s) [L(s, a) · u(s, a)]

Here, each estimator allows for an arbitrary baseline that cancels through the parameter gradient
∇θ. While the baseline does not influence the exact mathematical construction, it does influence
approximations to the change in entropy. Here we chose mean baselines to center the policy, mini-
mize variance in each gradient estimator, and to agree with a tabular softmax approximation of the
change in entropy (see Corollary 2).

Using the first-order Taylor approximation: Hπθ
(· | s ; θ + α · g) ≈ Hπθ

(· | s ; θ) + α · g⊤h, for
small learning rate α, the expected change in entropy from a policy gradient update in state s is:

∆Hπθ
(· | s) ≈ α · g(s)⊤h(s)

= −α ·
(
Ea∼πθ(·|s) [A(s, a) · u(s, a)]

)⊤ (
Ea′∼πθ(·|s) [L(s, a

′) · u(s, a′)]
)

= −α · Ea∼πθ(·|s),a′∼πθ(·|s)
[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
■

C.3 APPROXIMATE ENTROPY DYNAMICS UNDER POLICY GRADIENT

Corollary 1. Assuming u(s, a)⊤u(s, a′) = 0 for all a ̸= a′, the change in entropy is approximately:

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s) [A(s, a) · L(s, a) · πθ(a | s)]

Proof. Assuming the score vectors satisfy orthogonality of the off-diagonal terms such that
u(s, a)⊤u(s, a′) = 0 for a ̸= a′, the double expectation can be collapsed, yielding:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s)

[
πθ(a | s) ·A(s, a) · L(s, a) · ∥u(s, a)∥2

]
Assuming independence of the squared gradient norm magnitude, such that it can be treated as a
constant with respect to the expectation,

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s)[A(s, a) · L(s, a) · πθ(a | s)]

■

C.4 ENTROPY DYNAMICS UNDER POLICY GRADIENT FOR TABULAR SOFTMAX POLICIES

Proposition 1. For two functions f(x) and g(x) over samples x ∼ πS of a softmax distribution
πS(x) = exp(Sx)/

∑
k exp(Sk), the dot product of expected gradients is:〈

Ex∼πS
[f(x)·∇S log πS(x)] , Ey∼πS

[g(y)·∇S log πS(y)]
〉
= Ex∼πS

[πS(x)·(f(x)−f̄)·(g(x)−ḡ)],

where f̄ = Ex∼πS
[f(x)] and ḡ = Ex∼πS

[g(x)].
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Proof. First, let’s compute∇S log πS(x) for the softmax distribution:

log πS(x) = log
exp(Sx)∑
k exp(Sk)

= Sx − log
∑
k

exp(Sk)

∇Sz log πS(x) = 1x=z −
exp(Sz)∑
k exp(Sk)

= 1x=z − πS(z)

where 1x=y is the indicator function (1 if x = y, 0 otherwise).

Now let’s compute the dot product∇S log πS(x)
⊤∇S log πS(y):

∇S log πS(x)
⊤∇S log πS(y) =

∑
j

(1x=j − πS(j))(1y=j − πS(j))

=
∑
j

(1x=j · 1y=j − 1x=jπS(j)− πS(j) · 1y=j + πS(j)
2)

= 1x=y − πS(x)− πS(y) + Ez∼πS
[πS(z)]

Now we can compute the dot product of expected gradients:〈
Ex∼πS

[f(x) · ∇S log πS(x)],Ey∼πS
[g(y) · ∇S log πS(y)]

〉
= Ex∼πS ,y∼πS

[f(x) · g(y) · ∇S log πS(x)
⊤∇S log πS(y)]

= Ex∼πS ,y∼πS
[f(x) · g(y) · (1x=y − πS(x)− πS(y) + Ez∼πS

[πS(z)])]

Let’s compute each term separately:

Ex∼πS ,y∼πS
[f(x) · g(y) · 1x=y] = Ex∼πS

[πS(x) · f(x) · g(x)]
Ex∼πS ,y∼πS

[f(x) · g(y) · πS(x)] = Ex∼πS
[f(x) · πS(x)] · Ey∼πS

[g(y)] = Ex∼πS
[πS(x) · f(x)] · ḡ

Ex∼πS ,y∼πS
[f(x) · g(y) · πS(y)] = Ex∼πS

[f(x)] · Ey∼πS
[g(y) · πS(y)] = f̄Ey∼πS

[πS(y) · g(y)]
Ex∼πS ,y∼πS

[f(x) · g(y) · Ez∼πS
[πS(z)]] = Ez∼πS

[πS(z)] · Ex∼πS
[f(x)] · Ey∼πS

[g(y)] = Ex∼πS
[πS(x)] · f̄ · ḡ

Therefore:〈
Ex∼πS

[f(x) · ∇S log πS(x)],Ey∼πS
[g(y) · ∇S log πS(y)]

〉
= Ex∼πS

[πS(x) · f(x) · g(x)]− Ex∼πS
[πS(x) · f(x)] · ḡ − f̄ · Ex∼πS

[πS(x) · g(x)] + Ex∼πS
[πS(x)] · f̄ · ḡ

= Ex∼πS
[πS(x) · (f(x) · g(x)− f(x) · ḡ − f̄ · g(x) + f̄ · ḡ)]

= Ex∼πS
[πS(x) · (f(x)− f̄) · (g(x)− ḡ)]

where f̄ = Ex∼πS
[f(x)] and ḡ = Ex∼πS

[g(x)]. ■

The above proposition holds for simple softmax policies, but involves a much more complex gradient
term and inner product for generic transformer-based policies.

Corollary 2. Under a tabular softmax policy, a policy gradient update θ̂ := θ + α · ∇θJMDP

changes the entropy approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πS(·|s)

[
πS(a | s) ·

(
log πS(a | s)− log πS(· | s)

)
·
(
R(s, a)−R(s)

)]
where log πS(· | s) = Ea∼πθ(·|s) [log πS(a | s)] and R(s) = Ea∼πθ(·|s) [R(s, a)].

Proof. Let g(s) and h(s) denote the respective policy gradient and entropy gradient evaluated on-
policy in some state s:

g(s) = ∇θJMDP(s) = Ea∼πθ(·|s) [R(s, a) · ∇θ log πθ(a | s)]
h(s) = ∇θHπθ

(· | s) = −Ea∼πθ(·|s) [log πθ(a | s) · ∇θ log πθ(a | s)]
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Using the first-order Taylor approximation: Hπθ
(· | s ; θ + α · g) ≈ Hπθ

(· | s ; θ) + α · g⊤h, for
small learning rate α, the expected change in entropy from a policy gradient update in state s is:

∆Hπθ
(· | s) ≈ α · g(s)⊤h(s)

= −α · Ea∼πS(·|s)

[
πS(a | s) ·

(
log πS(a | s)− log πS(· | s)

)
·
(
R(s, a)−R(s)

)]

The second line follows Prop. 1. Note that gradient interactions through the softmax automatically
center the reward function, i.e., A(s, a) = R(s, a)− V s = R(s, a)− R(s). The log-probabilities,
too, are centered as here they reflect R(s, a) = − log πS(a | s). This yields a form equivalent to
Corollary 1. ■

C.5 ENTROPY DYNAMICS UNDER CLIPPED PPO

Proposition 2. Given two distributions π(x) and ϕ(x) with constraint π(x)
ϕ(x) ≤ 1 + ϵ for all x, their

relative entropy is bound by
H(π) ≤ (1 + ϵ) · H(ϕ)

Proof. Let’s parametrize π(x) = βxϕ(x) with βx ≥ 0 and compute its probability

H(π) = −Ex∼π [log π(a)]

= −Ex∼π [log ϕ(a)]− Ex∼π [log βx]

= −Ex∼π [log ϕ(a)]− Ex∼π

[
log

π(x)

ϕ(x)

]
︸ ︷︷ ︸

DKL(π∥ϕ)≥0

≤ −Ex∼π [log ϕ(a)]

= −Ex∼ϕ

[
π(a)

ϕ(a)
log ϕ(a)

]
= Ex∼ϕ [βx · − log ϕ(a)]

≤ Ex∼ϕ [(1 + ϵ) · − log ϕ(a)]

= (1 + ϵ) · H(ϕ)

The second-last line uses − log ϕ(a) ≥ 0 and βx ≤ (1 + ϵ) by definition, hence βx · − log ϕ(a) ≤
(1 + ϵ) · − log ϕ(a). ■

Theorem 2. Proximal Policy Optimization (PPO) bounds the entropy Hπθ
new(· | s) of the updated

policy by the original policy entropyHπθ
old(· | s) such that:

(1− ϵlow) · Hπθ
old(· | s) ≤ Hπθ

new(· | s) ≤ (1 + ϵhigh) · Hπθ
old(· | s)

Proof. Applying Prop. 2 to πθ
new

πθ
old ≤ 1 + ϵhigh yields the upper bound

Hπθ
new(· | s) ≤ (1 + ϵhigh) · Hπθ

old(· | s).

Applying Prop. 2 to 1− ϵlow ≤ πθ
new

πθ
old (eqivalently πθ

old

πθ
new ≤ 1

1−ϵlow
yields the lower bound

Hπθ
old(· | s) ≤ 1

1− ϵlow
· Hπθ

new(· | s)

or equivalently
(1− ϵlow) · Hπθ

old(· | s) ≤ Hπθ
new(· | s).

■
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C.6 ENTROPY CHANGE UNDER AREPO ADVANTAGE FUNCTION

Proposition 3. For advantage AREPO(s, a)
def= A(s, a) − βs · L(s, a), the first–order change in

entropy induced by a policy–gradient step is:

∆HREPO
πθ

(· | s) ≈ ∆Hπθ
(· | s) + βs · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2 .

Proof. Let g(s) = Ea∼πθ(·|s) [A(s, a) · u(s, a)] and h(s) = −Ea∼πθ(·|s) [L(s, a) · u(s, a)] denote
the respective policy gradient and entropy gradient evaluated on-policy in some state s.

Using AREPO, the policy gradient becomes:

gREPO(s) = Ea∼πθ(·|s) [(A(s, a)− βsL(s, a)) · u(s, a)]

The first–order entropy change is:

∆HREPO
πθ

(· | s) ≈ α · gREPO(s)
⊤h(s)

= α ·
(
Ea∼πθ(·|s) [(A(s, a)− βsL(s, a)) · u(s, a)]

)⊤
h(s)

= α ·
(
Ea∼πθ(·|s) [A(s, a) · u(s, a)]

)⊤
h(s)− βs · α ·

(
Ea∼πθ(·|s) [L(s, a)) · u(s, a)]

)⊤
h(s)

= α · g(s)⊤h(s) + βs · α · h(s)⊤h(s)

= ∆Hπθ
(· | s) + βs · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2 .

■
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D ADDITIONAL EXPERIMENT DETAILS

D.1 ENVIRONMENTS

Interactive tool-use agent. For the AppWorld benchmark, rollouts proceed in turns (up to 30 turns
during training and 50 during evaluation), in a manner akin to an interactive notebook.

During each turn, the model generations are parsed to extract any Python code blocks, potentially
containing calls to AppWorld API. These are executed to retrieve information or alter the environ-
ment state. The outputs of successful API calls or the error trace of incorrect calls appear in the
agent’s context after each turn. Once done, the agent may mark a task as completed at which point
it is assessed whether the task state was updated successfully. Failure to mark the task as complete
within the turn or context limit (32K) results in a failure. Sparse outcome-based rewards in [0, 1]
are assigned during training as the fraction of passing unit-tests. Binary rewards in {0, 1} are used
during evaluation requiring complete correctness.

Mathematical reasoning. For the AIME benchmarks, model responses are processed and scored
using the Eleuther AI lm-eval-harness Minerva math parsing utilities (Gao et al., 2024). The final
unnormalized answer is first identified and parsed, then the answer is normalized to remove units,
formatting, etc., and finally equivalence between the model answer and reference answer is deter-
mined using Sympy (Meurer et al., 2017).

D.2 TRAINING

Experiments are executed on 3 NVIDIA H100 8-GPU nodes. One node is used for rollout generation
one for learning, and one for evaluation. Rollouts are generated using two instances of vLLM (Kwon
et al., 2023) servers using 4 GPUs each with tensor parallelism. Custom RL implementation based
on FSDP2 (Zhang et al., 2024) is used for training. To account for any discrepancies between
sampling and training subsystems, the log-probabilities of rollout tokens are recalculated on the
training node to ensure accurate importance weights for backpropagation. Cut-Cross-Entropy (CCE)
is used to reduce the memory footprint during training by preventing the materialization of all logits
except the target (Wijmans et al., 2025). Models are fine-tuned with LoRA (rank = 16, α = 32)
on the self-attention (key, value, query, output) and MLP modules (Hu et al., 2022). We use an
AdamW optimizer with a constant learning rate of 5× 10−5, weight-decay = 0.01, and gradient
clipping with max-norm = 0.1. To speed up rollout collection, we introduce an early stopping
criteria. Once at least 4/6 rollouts per task and 90% of total rollouts are collected, we immediately
proceed to training to prevent bottlenecks caused by very few extra long generations (Wijmans et al.,
2020; Chen et al., 2025a).
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E ADDITIONAL RESULTS

E.1 GEOMETRIC INTERPRETATION OF REPO
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Figure 10: The REPO transformation rotates (A, log π) pairs, promoting low probability actions.
Original unmodified advantages shown in blue, advantages AREPO are shown in green for REPO-D
and in red for REPO-R.

The transformation induced by each REPO algorithm can be viewed in Fig. 10. REPO-D reflects
a consistent rotation across the space, boosting the advantages of actions proportional to their sur-
prisals (− log πθ). REPO-R instead rotates only positive advantage actions, and does so propor-
tionally, not only to the surprisal, but to the magnitude of the advantage. This strongly reinforces
low-probability correct actions, especially when they yield outcomes significantly better than aver-
age for a given batch of experience.

Fig. 10 uses data from the Qwen-3-8B AIME experiment. The parameters of the algorithm are
revealed in the structure of the data: there are 5 distinct positive and negative advantage values,
corresponding to 5 unique outcomes of group-based advantage estimation (1 success / 5 failures, 2
successes / 4 failures, etc.). Groups with zero advantages are filtered out.

With the appropriate value of ζ, REPO-D transformation counteracts the covariance-like term in
∆H approximation, therefore REPO-D is short for REPO-Decorrelate. REPO-R is a shorthand for
REPO-Rescale, as it rescales the advantages by 1− ζ · L(s, a).

E.2 DYNAMICS OF ENTROPY AND TEST-ACCURACY DURING TRAINING

We computed the average per-token entropy at each iteration of training for all of our training runs
(averaging over all tokens generated during a rollout, and averaging over all rollouts at a given
iteration). We studied how this quantity evolved over the course of training for several baseline
algorithms (RLOO, GRPO, LOOP, GSPO) and several variants of our REPO algorithm (REPO-
R, REPO-D, GSPO-REPO-R, and GSPO-REPO-D). Figure 11 shows how the per-token entropy
co-evolves with the test accuracy over the course of training for each algorithm. We first observe
that the REPO algorithms typically preserve much higher entropy than baselines. For challenging
model-task pairs where baselines reduce policy entropy prior to achieving high test accuracy (e.g.
Qwen-3-8B on all tasks, and Qwen-3-32B on AppWorld Test-Normal), REPO algorithms pre-
serve entropy for longer and achieve higher peak test accuracy. For model-task pairs where the
baselines reduce entropy late in training, after test accuracy is largely saturated, REPO achieves
comparable peak test accuracy to baselines.
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E.3 DEPENDENCE OF TEST ACCURACY ON CUMULATIVE ENTROPY DURING TRAINING

We hypothesized that the test accuracy at a given checkpoint is highly dependent on the cumulative
entropy (intuitively, the time integral of the average per-token entropy) experienced over the course
of previous training iterations. Figure 12 plots the test accuracy and cumulative entropy for each
checkpoint of each training run of each learning algorithm studied. We observe test accuracy on a
more difficult learning task (AppWorld Test-Normal) show sustained increases in test accuracy with
additional cumulative entropy even late into training, whereas AIME24 and AIME25 require less
cumulative entropy to achieve peak test accuracy. We quantified the dependence of test accuracy
on cumulative entropy via mutual information (Table 6). We estimated (i) the mutual information
between the test accuracy and the cumulative entropy and (ii) the mutual information between the
test accuracy and the iteration using histograms. We found that cumulative entropy is more predic-
tive than the iteration number. We also confirm the relatively stronger dependence of test accuracy
on cumulative entropy in AppWorld Test-Normal (MI=0.858 for Qwen-3-8B and MI=0.612 for
Qwen-3-32B) compared to the AIME24 and AIME25 environments (MI ≈ 0.2 for both models).

MI (Iteration) MI (Cumulative Entropy)
Qwen3 8B - AIME25 0.182 0.205
Qwen3 32B - AIME25 0.183 0.191
Qwen3 8B - AIME24 0.131 0.170
Qwen3 32B - AIME24 0.146 0.133
Qwen3 8B - AppWorld Test-Normal 0.566 0.858
Qwen3 32B - AppWorld Test-Normal 0.507 0.612

Table 6: Quantifying the dependence of test accuracy on cumulative entropy during training.
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Figure 11: Trajectory of per-token entropy and test accuracy during training for several baseline
algorithms several REPO algorithms in the AppWorld environment (top grid) and AIME (bottom
grid). Each curve shows the average trajectory over multiple training runs with different seeds.
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Figure 12: Accuracy on test set versus cumulative per-token entropy (sum of average per-token
entropies during the training run up to that point) for all training checkpoints. Dark points show
checkpoints with peak test accuracy. AppWorld test accuracy is measured on the Test-Normal set.
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F QWEN 2.5 EXPERIMENTS

In previous publications, methods like LOOP performed well with “non-thinking” models such as
Qwen 2.5 32B (Chen et al., 2025a). In our Qwen3 experiments however, LOOP (and very similarly,
GRPO) experienced early entropy collapse and underperformed compared to other RL methods.

We conducted additional experiments (see Fig. 13 and Tab. 7) to determine whether this discrepancy
arises from differences in model behavior or from implementation details. Key observations:

• Qwen 2.5 32B exhibits a significantly higher initial success rate (before the first training
iteration) compared to Qwen 3 models. For example, on Test Normal the initial success
rate is close to 40% versus under 10% for Qwen 3.

• The best results on the hardest test split (Test Challenge) are substantially lower for Qwen
2.5 compared to Qwen 3, most likely reflecting the limitations of the respective base mod-
els.

• We were able to replicate and exceed results reported in previous work for Qwen 2.5 32B:
the success rate of our best-performing LOOP checkpoints surpasses those in Chen et al.
(2025a) by approximately 7% on Test Normal and 9% on Test Challenge. This improve-
ment is most likely attributable to the numerical changes described in App. A, as our setup
and hyperparameters for Qwen 2.5 closely match those in Chen et al. (2025a) in all other
respects.

• Unlike in our Qwen 3 experiments, LOOP/GRPO do not experience rapid entropy col-
lapse, whereas RLOO does, suggesting that base-model characteristics play a major role in
entropy dynamics during training irrespective of the RL algorithm.
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Figure 13: Qwen 2.5 32B test performance and token entropy on AppWorld vs. training iterations.
Curves show mean across three independent seeds for each algorithm.

Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.72 0.78 0.47 0.50
LOOP 0.75 0.78 0.50 0.54
DAPO 0.74 0.77 0.50 0.56
ADAPO 0.73 0.78 0.51 0.59

Table 7: Task-goal completion scores for AppWorld Qwen-2.5-32B by training algorithm. For
each test split, we report the best average score across three seeds and the highest score among all
seeds and training iterations.
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