
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ENTROPY-PRESERVING REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Policy gradient algorithms have been a driver of much recent advancement in lan-
guage model reasoning. One of their most appealing properties is the ability to
learn from exploration on their own trajectories, a process crucial for discovering
diverse approaches and fostering creative solutions. As we show in this paper,
most policy gradient algorithms naturally reduce the entropy—and thus the di-
versity of explored trajectories—as part of training, yielding a policy increasingly
limited in its ability to explore. However, not all algorithms exhibit this collapse
in entropy equally. In this paper, we formally analyze the contributions of lead-
ing policy gradient objectives on entropy, show which mechanisms they employ
to implicitly limit entropy collapse, and propose a new regularization method,
REPO, that stabilizes entropy over training through the use of an adaptive con-
troller. Models trained with REPO preserve entropy throughout training, yielding
final policies that are, on average, more performant. By preserving entropy in the
final policy, REPO-trained models can even be re-trained on evolving data distri-
butions in new environments, unlike their non-entropy-preserving counterparts.

1 INTRODUCTION

Online policy gradient reinforcement learning (RL) has become the standard for boosting the rea-
soning abilities of language models (Jaech et al., 2024; Comanici et al., 2025; Guo et al., 2025).
This approach involves sampling trajectories from the current policy within a given environment
and reward function, then using these to estimate a gradient that maximizes expected reward. Ef-
fective RL optimization requires balancing exploration and exploitation (Thrun, 1992; Sutton et al.,
1998), where a robust learner should generate diverse trajectories to cover the spectrum of potential
solutions. Maximum entropy reinforcement learning offers a framework for achieving this balance
(Ziebart et al., 2008; Haarnoja et al., 2017; 2018; Eysenbach & Levine, 2022). While trivially the
optimal solution to a finite Markov decision process (MDP) is a deterministic stationary policy,
optimization over the intermediate landscape requires a balance of exploration and exploitation.

A common issue observed in online algorithms like GRPO (Shao et al., 2024) is entropy collapse.
This phenomenon occurs when training excessively narrows the distribution around already high-
probability solutions from the base model, neglecting other correct but less probable options. This
often yields premature convergence to a local optimum, enhancing pass@1 relative to base model
at the expense of pass@k (Shao et al., 2024; Dang et al., 2025; Yue et al., 2025). This challenge
has spurred innovations in policy gradient algorithm design, e.g. directly optimizing for pass@k
performance (Chen et al., 2025b). Concurrently, research has highlighted GRPO’s training insta-
bility and the complex interplay between off-policy drift, importance weight clipping, and entropy,
inspiring modifications such as DAPO (Yu et al., 2025) and GSPO (Zheng et al., 2025).

In this work, we analyze entropy preservation as a unifying lens for understanding the successes of
recent algorithms and to propose a novel family of policy gradient objectives. An important observa-
tion from our work is that, while a correlation exists between final entropy and performance, a more
informative measure is the entropy trajectory throughout the optimization process. As the saying
goes, “it’s not the destination, it’s the journey.” Figure 1 tracks this effect. A trajectory characterized
by lower entropy throughout yields lower performance. Conversely, if entropy trajectories are sim-
ilar for most of the optimization but differ only in the final steps, performance is largely unaffected.

Given this observation, we turn to study the entropy behavior of various leading RL algorithms. We
begin by theoretically analyzing how the REINFORCE policy gradient objective modulates entropy

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.0 0.8Per-token entropy
0.0

0.8

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AppWorld Test-Normal)

0.0 0.3Per-token entropy
0.0

0.6

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AppWorld Test-Normal)

0.0 0.4Per-token entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AIME24)

0 70Cumulative entropy
0.0

0.9

Te
st

 a
cc

ur
ac

y

0 50Cumulative entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

0 80Cumulative entropy
0.0

0.8

Te
st

 a
cc

ur
ac

y

Figure 1: Top: Evolution of the average per-token entropy and test accuracy during training for sev-
eral baseline (GRPO, LOOP, DAPO, GSPO) and their entropy regularized versions (REPO). Each
curve shows the average trajectory over several training runs with different seeds. Bottom: Cumu-
lative entropy experienced during training up to a given checkpoint is positively correlated with the
test accuracy. Each point is a checkpoint of a single training run (best-performing checkpoint per run
highlighted). Algorithms that collapse the entropy early (see Qwen-3-8B on AppWorld; middle
column) perform significantly worse than algorithms that maintain a steady entropy during training.
See App. E for a detailed study and breakdown of this phenomena across algorithms.

dynamics, explaining how entropy can decrease during training. This effect is amplified when talk-
ing multiple policy update steps, typical of GRPO and other PPO-like algorithms. We also show
how importance weight clipping and its modifications as seen in DAPO and GSPO, can mitigate
this pressure. Finally, we show that regularizing the entropy during training allows a broad family of
policy gradient algorithms to train more performant policies. Specifically, we introduce Regulated
Entropy Policy Optimization (REPO), an approach to policy gradient optimization that adaptively
reweighs advantages and log-probabilities online to preserve entropy. REPO uses an adaptive con-
troller, tracking entropy dynamics live, and adjusting regularization strength accordingly. Training
with REPO achieves state-of-the-art results on AppWorld and strong performance on AIME 2024
and AIME 2025. Furthermore, we demonstrate that policies trained with REPO retain their train-
ability, allowing for iterative learning on new tasks in novel environments, a capability often lost in
policies trained without explicit entropy preservation.

2 PRELIMINARIES

Language modeling. Let x ∈ X denote the tokens in a vocabulary and x ∈ X ∗ the
strings expressible via concatenation of those tokens. A language model (LM) πθ parameter-
ized by θ defines a probability distribution over strings that factors autoregressively such that
πθ(x) = πθ(2 | x)

∏|x|
i=1 πθ(xi | x<i), where 2 denotes an end of sequence (EOS) marker. Note

that for notational convenience we will use πθ to express probabilities on both tokens and strings.

Language modeling as a Markov decision process. Let the policy πθ sample actions a ∈ A =
X ∪ {2} (any token or EOS) given a state s ∈ X ∗ (a string context). Let state transitions append
generated actions to the state.1 Let τ denote a trajectory, a sequence of states and actions generated
by the policy and environment. Let τ ∼ πθ denote the trajectory distribution. We consider tasks
with terminal rewards R(c, τ). Given some task context c sampled from some datasetD, the MDP
objective is to maximize JMDP

def= Ec∼D,τ∼πθ(·|c)[R(c, τ)].

1State transitions deterministically append the generated action to the context, terminating generation at
EOS or upon some other environment condition. In some domains, e.g., those involving tool calls, state transi-
tions may also append additional tokens to the state that were generated by some unobservable process such as
executing a code interpreter.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Policy gradient reinforcement learning directly computes a gradient through the REINFORCE
algorithm (Williams, 1992), which is amenable to Monte Carlo estimation:

∇θJMDP = Ec∼D,τ∼πθ(·|c) [A(c, τ) · ∇θ log πθ(τ | c)] ,

where A(c, τ) = R(c, τ)− b is an advantage function shifting the return R(c, τ) by a baseline b.

REINFORCE leave-one-out (RLOO) (Kool et al., 2019; Ahmadian et al., 2024; Kazemnejad et al.,
2024; Chen et al., 2025a) is one of the most popular estimates of advantage for language modeling.
It generates K independent samples on-policy τ 1, ..., τ k ∼ πθ(· | c) for each task c. The reward for
each trajectory may then be baselined against the remaining K − 1 independent samples, yielding
an unbiased, low variance advantage estimator:

ÂRLOO(c, τ i)
def= R(c, τ i)−

1

K − 1

K∑
j=1

R(c, τ j)1[i ̸=j] =
K

K − 1

R(c, τ i)−
1

K

K∑
j=1

R(c, τ j)

 .

Policy gradient algorithms are on-policy by nature: They rely on a new set of trajectories in each
context τ ∼ πθ(· | c) after each gradient update of the policy πθ.

Proximal policy optimization (PPO) allows the updated policy to deviate slightly from a sampling
policy (Schulman et al., 2017). It uses an importance weight to correct the magnitudes of parameter
updates such that the expected policy gradient remains unbiased. These importance weights are
typically clipped to avoid divergence from a local trust region (Schulman et al., 2015).

J PPO
def= Ec∼D,τ∼πθ(·|c)

[
1

|τ |
∑
at∈τ

min
(
A(c, τ) · wt, A(c, τ) · wt|1+ϵ

1−ϵ

)]
wt

def=
πθ

new(at | c,a<t)

πθ
old(at | c,a<t)

,

where wt|1+ϵ
1−ϵ clips the importance ratio from below 1−ϵ and above 1+ϵ. In our theoretical analysis,

we will examine PPO with and without clipping. The version studied will be clear from the context.

LOOP (Chen et al., 2025a) and GRPO (Shao et al., 2024) combine the above PPO objective with
RLOO leave-one-out advantage estimates. GRPO rescales advantages by the standard deviation of
the sample returns, which introduces a small bias (Liu et al., 2025b),

ÂGRPO(c, τ i)
def=

R(c, τ i)−mean(R(c, τ 1)), ... , R(c, τ k))

std(R(c, τ 1)), ... , R(c, τ k))

while LOOP uses ÂRLOO directly.

Group Sequence Policy Optimization (GSPO) Zheng et al. (2025) uses a trajectory-level trust
region defined by the geometric average of a sequence’s probability ratios

JGSPO
def= Ec∼D,τ∼πθ(·|c)

[
min

(
A(c, τ) · wGSPO, A(c, τ) · wGSPO|1+ϵ

1−ϵ

)]
wGSPO def=

(
πθ

new(τ | c)
πθ

old(τ | c)

) 1
|τ|

.

GSPO yields an equivalent gradient estimator to GRPO, LOOP, and RLOO on-policy, but clips
tokens and trajectories differently as the updated policy πθ

new drifts from the sampling policy πθ
old.

Policy entropy. The inherent uncertainty that a policy places over its generations may be ex-
pressed from an information theoretic standpoint as entropy – expected surprise: Hπθ

(D) =
−Ec∼D

[
Eτ∼πθ(·|c) [log πθ(τ | c)]

]
. In addition to global entropy, we may consider the entropy

over actions at any given state s = (c,a<t) asHπθ
(· | s) = −Ea∼πθ(·|s) [log πθ(a | s)].

In this paper, we show how state-wise entropy changes as variants of policy gradient optimize their
objectives. We show which variants are naturally entropy preserving, and which variants lead to a
rapid collapse. Finally, we show that a simple class of transformations applied to the advantages
lead to a very simple and effective regularization of entropy.

3 THE ENTROPY DYNAMICS OF POLICY GRADIENT

The entropy dynamics of policy gradient RL boils down to the relationship between two values:
(1) action log-probabilities, and (2) the advantages yielded by those actions. Intuitively, assigning

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

a positive advantage to some action increases its probability. For high probability actions, this
effect sharpens the distribution, and entropy decreases. For low probability actions, this flattens the
distribution, increasing entropy. The opposite pattern holds for negative advantages. This effect is
quite natural. After all, sharpening an uncertain policy around correct actions directly maximizes
the expected return. However, as we will see, not all RL algorithms sharpen the distribution equally.

Formally, consider the policy gradient update with on-policy actions in state s. Under a first-order
Taylor approximation to the training dynamics, the expected change in entropy is as follows.

Theorem 1. Given a policy gradient update θ̂ := θ + α · ∇θJMDP(s), the expected change in
entropy is approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s),a′∼πθ(·|s)

[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
,

where L(s, a) def= log πθ(a | s)− Ea∼πθ(·|s)[log πθ(a | s)] denotes mean-centered log-probabilities
and u(s, a) def= ∇θ log πθ(a | s) denotes the score function for some policy πθ evaluated at state s
and action a.

[Proof in App. C.2]. The entropy change is driven by a multiplicative relationship between action
log-probabilities and the advantages yielded by those actions. In an exact derivation, these are
weighted by the score vector outer product. With additional independence assumptions or a tabular
softmax policy parameterization, this expression can be further simplified, resulting in a weighting
by the action probabilities. This yields the following corollary:

Corollary 1. Assuming u(s, a)⊤u(s, a′) = 0 for all a ̸= a′, the change in entropy is approximately:

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s) [A(s, a) · L(s, a) · πθ(a | s)]

[Proof in App. C.3]. This latter form encodes the dominant behavior of entropy dynamics in a
manner that is inherent to policy gradient. Using this form, we explain the observed behaviors of
various RL algorithms. A similar derivation can be shown for tabular softmax policies (Cui et al.,
2025, see Corollary 2 in App. C.4). Thm. 1 and Corollary 1 tell us that the change in entropy is
governed by a correlation between advantages and log-probabilities, weighted by action probability.

Entropy dynamics of PPO. The biggest feature of PPO is its ability to train on slightly off-
policy trajectories, given that the updated policy does not deviate from a trust region around the
current policy. This allows PPO to take multiple policy-improvement steps for a single set of
trajectories. The effect of these repeated updates are much larger policy updates between con-
secutive PPO steps, which empirically amplifies entropy collapse. This being said, the clipping
on PPO, when appropriately orchestrated, can protect against entropy collapse as well. Clip-
ping ensures that no policy gradient update is performed if the policy drifts outside a trust region
(1− ϵlow) · πold

θ (a | s) ≤ πnew
θ (a | s) ≤ (1+ ϵhigh) · πold

θ (a | s). This bounds the change in entropy:

Theorem 2. Proximal Policy Optimization (PPO) bounds the entropy Hπθ
new(· | s) of the updated

policy by the original policy entropyHπθ
old(· | s) such that:

(1− ϵlow) · Hπθ
old(· | s) ≤ Hπθ

new(· | s) ≤ (1 + ϵhigh) · Hπθ
old(· | s)

[Proof in App. C.5]. The clipping thresholds directly limit the maximum induced change in entropy
per token. Intuitively, the change in entropy per token is stochastic: some actions have a large
correlation between advantage and log probability; others do not, or even have an anti-correlation.
For a symmetric clipping regime, this results in an entropy change that largely follows the statistical
trends outlined above, but at a lower magnitude.

Entropy dynamics of DAPO. Now consider DAPO (Yu et al., 2025), with an asymmetric clipping
regime ϵlow < ϵhigh. This allows for larger entropy increases, while limiting the entropy decrease.
Due to the stochastic nature of the entropy changes, this directly contributes to an overall increase
in per-token entropy over sufficient samples. Threshold values ϵlow = 0.2 and ϵhigh = 0.28 proposed
in Yu et al. (2025) stabilize the entropy throughout training, as we show experimentally.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Entropy dynamics of GSPO. GSPO defines a trust region 1− ϵGSPO
low ≤ wGSPO ≤ 1 + ϵGSPO

high , or

equivalently
(
1− ϵGSPO

low

)|τ | ≤ πθ
new(τ |c)

πθ
old(τ |c) ≤

(
1 + ϵGSPO

high

)|τ |
. This induces an equivalent bound to

Thm. 2; however, the bound now depends on the trajectory length |τ |. Longer trajectories may
induce a larger change in entropy, shorter trajectories induce a smaller change in entropy. With
parameter values suggested in Zheng et al. (2025), ϵGSPO

low = 3× 10−4 and ϵGSPO
high = 4× 10−4, the

entropy bound is tighter for trajectories |τ | < ln(1±ϵ)
ln(1±ϵGSPO)

≈ 600 tokens compared to DAPO. Like
DAPO, the clipping range is asymmetric ϵGSPO

low < ϵGSPO
high leading to a stochastic increase in entropy.

Regulated entropy policy optimization (REPO) changes the advantage function to include a
scaled policy log-likelihood term AREPO(s, a) = A(c, a) − βs · L(s, a) for each s = (c,a<t).
This updated advantage is no longer constant throughout the trajectory like in RLOO and variants,
but differs for individual tokens at ∈ τ . Following Thm. 1 by Prop. 3 the induced change in entropy
with AREPO is:

∆HREPO
πθ

(· | s) ≈ ∆Hπθ
(· | s) + βc · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2︸ ︷︷ ︸

≥0

.

This provides us with a direct mechanism to control the entropy. A positive βc > 0 increases the
entropy over actions in a state relative to the default dynamic. A value βc = 0 allows the natural
entropy decrease to proceed. A negative βc < 0 collapses the entropy. Note, this holds for any
parametrization of the policy and does not rely on approximations.

How should we choose βc to preserve entropy? One natural choice is to counter-act the entropy
collapse on a per-token level and set βREPO-D

c ∝ −∆Hπθ
(· | s) as approximated in Corollary 1, thus

neutralizing ∆Hπθ
and allowing ∆HREPO

πθ
to approach 0 with the right scale of the regularizer. We

call this variant REPO-D.

While the above heuristic provides us with an overall mechanism to control entropy, the exact scale
of the regularizer depends on many aspects of the policy gradient optimization: the learning rate,
the structure of the gradient, second order effects, etc. We learn the magnitude ζ of the regularizer
using a simple control heuristic similar to the adaptive DKL penalty presented in Schulman et al.
(2017). Let βREPO-D

c = −ζ ·∆Hπθ
(· | s). The heuristic proceeds as follows: (1) Estimate Hinit

πθ
, the

policy entropy over the experience collected in this first iteration. (2) Initialize ζ = 10−3. (3) On
each iteration, estimate Hπθ

, the current policy entropy, and compare it to Hinit
πθ

. If Hπθ
< Hinit

πθ
,

update ζ ← ζ × 2. IfHπθ
> Hinit

πθ
, update ζ ← ζ ÷ 2. (4) Clip ζ to the window ζmin ≤ ζ ≤ ζmax.

Supporting rare correct actions (REPO-R). Looking back through our learnings thus far, it ap-
pears that the most important bang-for-buck in preserving entropy is through raising low probability
correct actions. This intuitively corresponds to reinforcing rare but correct solutions under our policy
optimization, which is a behavior that we hope to encourage. We can thus apply an entropy regular-
izer on positive advantage actions only: βREPO-R

a,c = ζ ·max(A(c, a), 0). The effect of this is simple:
Wrong (negative-advantage) actions are unaffected and penalized by the negative advantage. For
correct actions (positive-advantage) the entropy regularizer reduces advantages for high-probability
outcomes, but amplifies low-probability samples (towards a higher entropy state). This does how-
ever introduce a small bias to the gradient estimate, as it treats positive and negative advantage
samples differently. Different scales of regularizers βREPO-D

c and βREPO-R
a,c demand different clipping

ranges [ζmin, ζmax]: [10−3, 101] for REPO-D and [10−5, 10−1] for REPO-R.

4 EXPERIMENTS

With the theory established, we evaluate whether training with REPO yields improvements to strong
models on challenging environments when compared to state-of-the-art learning algorithms. We
choose Qwen-3-8B and Qwen-3-32B as our starting policies (Yang et al., 2025).

Environments. Interactive tool-use agent. Training scenarios are drawn from the train split (90
problems) of the AppWorld benchmark (Trivedi et al., 2024). The AppWorld Test Normal (TN,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 30 60 90
0.0

0.2

0.4

0.6

0.8

Te
st

 N
or

m
al

 T
GC

RLOO
GRPO
DAPO
REPO-R
REPO-D

0 30 60 90
Iterations

0.00

0.15

0.30

0.45

0.60

Te
st

 C
ha

lle
ng

e
TG

C

0 30 60 90
0.0

0.2

0.4

0.6

0.8

En
tro

py

Figure 2: Qwen-3-32BAppWorld test performance and token entropy across iterations of training.
Each curve shows a mean across multiple random seeds.

0 30 60 90

0.15

0.30

0.45

Te
st

 N
or

m
al

 T
GC

0 30 60 90
Iterations

0.08

0.16

0.24
Te

st
 C

ha
lle

ng
e

TG
C

0 30 60 90

0.06

0.12

0.18

0.24

En
tro

py

RLOO GRPO DAPO GSPO GSPO-REPO-R Entropy bonus

Figure 3: Qwen-3-8B AppWorld test performance and token entropy across iterations of training.
Each curve shows a mean across multiple random seeds.

168 tasks) and Test Challenge (TC, 417 tasks) splits are used for evaluation. Terminal reward is
calculated via task-provided unit-tests that check the final state of the environment against ground
truth (additional details in App. D.1). Competition-level mathematics. Training scenarios are drawn
from a non-overlapping quality-filtered subset of the AMC/AIME section of NuminaMath-1.5 (563
problems; Li et al., 2024). AIME 2024 (30 problems) and AIME 2025 (30 problems) are used as
evaluation datasets. Terminal reward indicates whether the generated answer matches the reference.

Training details. We run training for 100 iterations on AppWorld, and 200 on AIME, where each
iteration consists of an experience collection stage followed by policy optimization on the collected
data. For each iteration, 64 (AppWorld) or 128 (AIME) scenarios are sampled without replacement
and K = 6 rollouts are generated per scenario. Model outputs are generated with the thinking
template enabled using temp = 1.0 and a maximum generation length of 16384 (AppWorld) or
4096 (AIME) tokens.2 All scenarios yielding identical in-group returns (ÂRLOO = 0) are filtered
out to increase throughput. Additional training details in App. D.2.

Algorithms. For each algorithm, we highlight its distinguishing features with otherwise minimal
deviations from the base policy gradient to aid reproducibility (thus, some details and hyperparam-
eter choices may differ slightly from original sources).

RLOO: REINFORCE with the ÂRLOO advantage estimator. The collected experience is trained
strictly on-policy for 1 epoch using a large minibatch that comprises all collected experience. GRPO:
Off-policy extension of RLOO that uses normalized Leave None Out (LNO) estimator ÂGRPO and
symmetric PPO clipping with ϵ = 0.2. With GRPO and all algorithms below we train on the col-
lected experience for 2 epochs with the minibatch size of 128 (AppWorld) or 256 (AIME) trajecto-
ries. LOOP: A variant of GRPO with non-normalized estimator ÂRLOO (RL SOTA on AppWorld at
the time of writing). DAPO: a variant of LOOP with asymmetric clipping (ϵlow = 0.2, ϵhigh = 0.28).
GSPO: An adjustment of LOOP using wGSPO importance weighting and trajectory-based clipping
with ϵGSPO

low = 3× 10−4 and ϵGSPO
high = 4× 10−4. REPO algorithms incorporate entropy control over

either DAPO (e.g. in REPO-R) or GSPO (in GSPO-REPO-R) as their base algorithm.

2This restricted context window was chosen for experiment iteration speed. Note that Qwen-3 models can
be trained to higher accuracy on AIME with increased token budget.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm Test Normal Best TN Test Challenge Best TC H ∆H
RLOO 0.71 ± 0.02 0.73 0.52 ± 0.02 0.54 0.32 -0.19
GRPO 0.61 ± 0.01 0.62 0.42 ± 0.03 0.45 0.06 -0.45
LOOP 0.64 ± 0.04 0.67 0.40 ± 0.01 0.41 0.05 -0.46
DAPO 0.70 ± 0.03 0.73 0.48 ± 0.01 0.49 0.18 -0.33
GSPO 0.62 ± 0.06 0.68 0.51 ± 0.05 0.56 0.42 -0.09

REPO-R 0.73 ± 0.03 0.75 0.55 ± 0.05 0.62 0.48 -0.03
REPO-D 0.71 ± 0.03 0.74 0.54 ± 0.02 0.55 0.63 +0.12
GSPO-REPO-R 0.71 ± 0.00 0.71 0.54 ± 0.03 0.57 0.57 +0.06
GSPO-REPO-D 0.64 ± 0.02 0.66 0.41 ± 0.02 0.43 0.52 +0.01

Table 1: Task goal completion scores for AppWorld Qwen-3-32B by training algorithm.

Algorithm Test Normal Best TN Test Challenge Best TC H ∆H
RLOO 0.48 ± 0.07 0.54 0.25 ± 0.02 0.28 0.14 -0.00
GRPO 0.33 ± 0.01 0.34 0.14 ± 0.01 0.15 0.04 -0.10
LOOP 0.27 ± 0.01 0.28 0.14 ± 0.00 0.14 0.04 -0.10
DAPO 0.34 ± 0.02 0.36 0.17 ± 0.01 0.17 0.05 -0.09
GSPO 0.45 ± 0.01 0.46 0.21 ± 0.01 0.21 0.15 +0.01
H Bonus 0.42 ± 0.04 0.45 0.20 ± 0.01 0.22 0.22 +0.08

REPO-R 0.43 ± 0.01 0.45 0.21 ± 0.00 0.21 0.15 +0.01
REPO-D 0.43 ± 0.00 0.43 0.19 ± 0.01 0.20 0.14 -0.00
GSPO-REPO-R 0.48 ± 0.04 0.51 0.27 ± 0.01 0.28 0.21 +0.07
GSPO-REPO-D 0.44 ± 0.03 0.48 0.22 ± 0.02 0.24 0.17 +0.03

Table 2: Task goal completion scores for AppWorld Qwen-3-8B by training algorithm.

5 RESULTS AND DISCUSSION

5.1 DISTINCT ALGORITHMS SHOW VARIABLE ENTROPY DYNAMICS

Results for AppWorld are in Tabs. 1 and 2 and Figs. 2 and 3. Results for AIME are in Tab. 3. We nar-
rate these results bellow. The conclusions presented hold across all model and dataset combinations.

PPO-like algorithms deplete entropy faster than strictly on-policy. GRPO and LOOP reduce
entropy by nearly 90% over training. While RLOO loses considerably less.

Clipping modifications can protect entropy. Following the intuition provided in §3, both DAPO
and particularly GSPO retain more entropy than GRPO or LOOP. DAPO and GSPO are methods
that have been empirically found to perform better. Here we show that one possible explanation for
the improved performance of these methods is that they preserve entropy.

REPO is most effective at entropy preservation. The REPO-D and REPO-R variants, built on top
of DAPO and GSPO, consistently yield no loss or even gains in entropy over training. This confirms
the effectiveness of our proposed regularization and the understanding it builds upon.

REPO outperforms an entropy bonus. An entropy bonus in reinforcement learning is an addi-
tional term in the optimization objective that increase entropy directly (Williams, 1992; Mnih et al.,
2016). We compare DAPO with an entropy bonus3 with REPO. While an entropy bonus aids DAPO,
it is worse than REPO and uses more memory4 (Fig. 3).

3We use the same adaptive algorithm as REPO-D to set the coefficient β.
4Computing an entropy bonus requires storing the logits in GPU memory whereas computing the log-

probability for the select token does not with CCE (Wijmans et al., 2025). Modifying CCE is non-trivial.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Algorithm AIME24@1 AIME24@64 AIME25@1 AIME25@64 Combined H ∆H

8B RLOO 0.62 0.79 0.44 0.67 0.63 0.280 -0.020
8B GRPO 0.59 0.80 0.41 0.53 0.58 0.107 -0.193
8B LOOP 0.58 0.81 0.41 0.60 0.60 0.074 -0.226
8B DAPO 0.63 0.80 0.42 0.63 0.62 0.239 -0.061
8B GSPO 0.63 0.82 0.43 0.67 0.64 0.193 -0.107

8B REPO-R 0.63 0.78 0.47 0.63 0.63 0.397 +0.097
8B REPO-D 0.63 0.83 0.42 0.63 0.63 0.353 +0.053
8B GSPO-REPO-R 0.64 0.81 0.40 0.62 0.62 0.336 +0.036
8B GSPO-REPO-D 0.64 0.80 0.46 0.66 0.64 0.332 +0.032

32B RLOO 0.68 0.88 0.50 0.66 0.68 0.145 -0.235
32B GRPO 0.64 0.82 0.48 0.64 0.65 0.047 -0.333
32B LOOP 0.67 0.80 0.50 0.68 0.66 0.033 -0.347
32B DAPO 0.65 0.87 0.55 0.68 0.69 0.319 -0.061
32B GSPO 0.63 0.83 0.47 0.70 0.66 0.297 -0.083

32B REPO-R 0.68 0.88 0.47 0.68 0.68 0.469 +0.089
32B REPO-D 0.64 0.84 0.50 0.72 0.68 0.442 +0.062
32B GSPO-REPO-R 0.68 0.87 0.50 0.72 0.69 0.422 +0.042
32B GSPO-REPO-D 0.70 0.86 0.47 0.66 0.67 0.343 -0.037

Table 3: AIME results by parameter count and training algorithm.

0 30 60 90

0.1

0.2

0.3

Ap
pW

or
ld

 T
N

TG
C

0 30 60 90

0.04

0.08

0.12

0.16

Ap
pW

or
ld

 T
C

TG
C

0 30 60 90
0.04

0.06

0.08

0.10

En
tro

py

0 30 60 90

0.2

0.4

0.6

AI
M

E
20

24
 P

as
s@

1

0 30 60 90
Iterations

0.1

0.2

0.3

0.4

AI
M

E
20

25
 P

as
s@

1

GRPO
DAPO
REPO-R

0 30 60 90

0.2

0.4

0.6
En

tro
py

Figure 4: Sequential learning experiment. Top row: We use an AIME-trained model for GRPO,
DAPO, REPO-R, and continue training the model on AppWorld. The left and middle plots show
Task Goal Completion (TGC) on the normal (TN) and challenging (TC) test sets. A collapsed model
(GRPO) does significantly worse than one in which entropy is preserved. Bottom row: We use an
AppWorld-trained model and continue training on AIME. The same trends hold. All curves reflect
the mean across multiple seeds.

5.2 ENTROPY PRESERVATION AND DOWNSTREAM PERFORMANCE

We evaluate the effect of entropy preservation on downstream performance. See Fig. 1 for a preview
of these results and App. E for a full breakdown and analysis. We find that methods that preserve
per-token entropy over the course of training tend to yield higher final test accuracy than those that
don’t. This is also captured in the cumulative entropy over training. Methods (and checkpoints)
that maintain a higher cumulative entropy over training yield a higher final test accuracy. These
trends are stronger on AppWorld than AIME. We hypothesize that this is due to the following:
The Qwen-3 family of models is already heavily optimized for AIME, and so this optimization
may have primarily involved sharpening around existing solutions. AppWorld, on the other hand,
requires discovering new capabilities (and thus requires more entropy to explore).

5.3 ENTROPY PRESERVATION ASSISTS SEQUENTIAL TRAINING

Entropy is critical for online reinforcement learning. In this regime, a policy must generate trajecto-
ries that yield different returns to collect non-zero advantage samples. If entropy is exhausted, then

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

learning stops. Here we ask whether entropy collapse hinders the ability of a trained policy to be
re-trained in a novel environment.

We train Qwen-3-8B first on either the AIME or AppWorld using the same settings as §4. We
then take the best checkpoint as the starting point for training on the opposing environment. Fig. 4
shows that policies trained with GRPO in one environment have low entropy even once transferred
to the other. This results in a lower peak performance during re-training. On the other hand, DAPO,
and especially REPO, start re-training with ample entropy and retain more entropy over the course
of training. This results in performance comparable to starting training from Qwen-3-8B, thereby
demonstrating that collapsing entropy harms re-training.

6 RELATED WORK

Reinforcement learning has emerged as the dominant paradigm for aligning pre-trained language
models (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022). This approach has been suc-
cessfully scaled in environments yielding verifiable rewards such as programming and mathematics
(Jaech et al., 2024; Lambert et al., 2024; Comanici et al., 2025; Guo et al., 2025; Team et al., 2025).

Empirically, training in this setting has typically been viewed as sharpening the base policy around
existing solutions rather than yielding new ones (Gandhi et al., 2025; Liu et al., 2025b; Yue et al.,
2025; Zhao et al., 2025). A good pre-trained base policy starts off already calibrated to many rea-
sonable reward functions, and post-training can be viewed as tempering this distribution (Kadavath
et al., 2022; Cui et al., 2025). In fact, several works directly exploit this calibration to drive accu-
racy improvements via unsupervised post-training. Agarwal et al. (2024) simply minimize entropy,
Prasad et al. (2024); Zhang et al. (2025); Zuo et al. (2025) align to the model’s majority vote dis-
tribution, Wang et al. (2025) get by with a single labeled sample, and Shao et al. (2025) even use
random rewards. All of these works can be explained by simply allowing policy gradient to sharpen
an already calibrated base policy. While this type of approach can help pass@1, it harms pass@k
(Shao et al., 2024; Dang et al., 2025; Yue et al., 2025).

Some works protect against this pathological entropy collapse using modified policy gradient objec-
tives. He et al. (2025) add auxiliary rewards to solutions as a function of their probability rank within
a batch. Yu et al. (2025) introduce wider PPO clipping to encourage stronger reinforcement of low
probability correct actions. Zheng et al. (2025) propose sequence-level clipping more independent
of individual action probabilities. Chen et al. (2025b) reformulate online policy gradient to optimize
pass@k as opposed to pass@1. Most similarly to our work, Cui et al. (2025) derive theoretical
results regarding the covariance between advantages and probabilities mediating entropy collapse
and then identify the individual tokens most responsible for sharpening and detach their gradients.

Other works impose a DKL penalty during training as an approach for preserving the base policy
(e.g., Ziegler et al., 2019; Guo et al., 2025, etc.). However, it has been shown that such an approach
limits how much the policy can learn (Korbak et al., 2022; Yang et al., 2024; Wu & Choi, 2025). For
this reason, Chen et al. (2025a); Yu et al. (2025) remove the DKL penalty, (Vassoyan et al., 2025)
ignore it for a subset of tokens, and (Liu et al., 2025a) iteratively reset the reference policy.

7 CONCLUSION

In this work, we begin with a theoretical explanation for entropy collapse under policy gradient.
We show that this process accelerates under PPO relative to strict on-policy, and how recent policy
gradient variants like GSPO or DAPO, implicitly prevent this collapse. We then propose REPO,
a novel approach to policy gradient optimization that uses an adaptive controller to stabilize en-
tropy dynamics online. We provide empirical evidence for REPO’s effectiveness, training in chal-
lenging environments and evaluating on AppWorld, AIME 2024, and AIME 2025. In addition to
strong benchmark performance, REPO-trained models yield final policies that have retained their
entropy, which we demonstrate enables sequential learning of trained checkpoints in new environ-
ments. Overall, we highlight the importance of entropy—and the corresponding online exploration
capabilities—for effective policy optimization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This paper investigates the properties of policy gradient algorithms for language model reasoning,
specifically focusing on the tendency for entropy collapse during training. Our research is primarily
theoretical and analytical, involving mathematical analysis and algorithm development. Our work
aims to improve entropy during reinforcement learning, which can lead to better exploration and
wider diversity in generated outputs. We acknowledge the potential for misuse of advanced lan-
guage models, including the generation of biased, harmful, or misleading content. We believe that
responsible research practices, including transparency in model limitations and potential societal
impacts, are crucial for mitigating these risks, and we hope that our research contributes to the
development of more robust, creative, and beneficial language models.

REPRODUCIBILITY STATEMENT

Complete proofs for all theoretical claims, along with experimental details and hyperparameters, are
included in the appendix. All data points presented in this work are the result of multiple repetitions
of each experiment using independent random seeds.

USE OF LARGE LANGUAGE MODELS FOR WRITING

We acknowledge the use of large language models to assist with typographical corrections, phrasing,
and self-review aimed at improving the clarity and structure of this manuscript.

REFERENCES

Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
generated mistakes. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=3zKtaqxLhW. (Cited on p. 9)

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting REINFORCE-style optimization for
learning from human feedback in LLMs. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 12248–12267, 2024.
URL https://aclanthology.org/2024.acl-long.662. (Cited on p. 3)

Kevin Chen, Marco Cusumano-Towner, Brody Huval, Aleksei Petrenko, Jackson Hamburger,
Vladlen Koltun, and Philipp Krähenbühl. Reinforcement learning for long-horizon interactive
LLM agents. arXiv preprint arXiv:2502.01600, 2025a. URL https://arxiv.org/abs/
2502.01600. (Cited on p. 3, 9, 18, 25, 30)

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@k training for adaptively balancing exploration and exploitation of large reasoning models.
arXiv preprint arXiv:2508.10751, 2025b. URL https://arxiv.org/pdf/2508.10751.
(Cited on p. 1, 9)

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025. URL https://arxiv.org/abs/2507.
06261. (Cited on p. 1, 9)

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025. URL https://arxiv.
org/abs/2505.22617. (Cited on p. 4, 9)

Xingyu Dang, Christina Baek, J Zico Kolter, and Aditi Raghunathan. Assessing diversity collapse
in reasoning. In Scaling Self-Improving Foundation Models without Human Supervision, 2025.
URL https://openreview.net/forum?id=AMiKsHLjQh. (Cited on p. 1, 9)

10

https://openreview.net/forum?id=3zKtaqxLhW
https://aclanthology.org/2024.acl-long.662
https://arxiv.org/abs/2502.01600
https://arxiv.org/abs/2502.01600
https://arxiv.org/pdf/2508.10751
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2507.06261
https://arxiv.org/abs/2505.22617
https://arxiv.org/abs/2505.22617
https://openreview.net/forum?id=AMiKsHLjQh

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust
RL problems. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=PtSAD3caaA2. (Cited on p. 1)

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cogni-
tive behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025. URL https://arxiv.org/abs/2503.01307. (Cited
on p. 9)

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model
evaluation harness, 07 2024. URL https://zenodo.org/records/12608602. (Cited
on p. 25)

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025. URL https://
arxiv.org/abs/2501.12948. (Cited on p. 1, 9)

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017. URL https://proceedings.mlr.press/v70/haarnoja17a.html.
(Cited on p. 1)

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018. URL https://proceedings.
mlr.press/v80/haarnoja18b. (Cited on p. 1)

Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting GRPO beyond distribu-
tion sharpening. arXiv preprint arXiv:2506.02355, 2025. URL https://arxiv.org/abs/
2506.02355. (Cited on p. 9)

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. LoRA: Low-rank adaptation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYf9. (Cited on p. 25)

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. OpenAI o1 system card. arXiv
preprint arXiv:2412.16720, 2024. URL https://arxiv.org/abs/2412.16720. (Cited
on p. 1, 9)

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
els (mostly) know what they know. arXiv preprint arXiv:2207.05221, 2022. URL https:
//arxiv.org/abs/2207.05221. (Cited on p. 9)

Amirhossein Kazemnejad, Milad Aghajohari, Eva Portelance, Alessandro Sordoni, Siva Reddy,
Aaron Courville, and Nicolas Le Roux. VinePPO: Unlocking RL potential for LLM reason-
ing through refined credit assignment. In International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=5mJrGtXVwz. (Cited on p. 3)

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline
for free! Deep RL Meets Structured Prediction Workshop at ICLR, 2019. URL https:
//openreview.net/forum?id=r1lgTGL5DE. (Cited on p. 3)

Tomasz Korbak, Ethan Perez, and Christopher Buckley. RL with KL penalties is better viewed as
Bayesian inference. In Findings of the Association for Computational Linguistics: EMNLP 2022,
pp. 1083–1091, 2022. URL https://aclanthology.org/2022.findings-emnlp.
77. (Cited on p. 9)

11

https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2
https://arxiv.org/abs/2503.01307
https://zenodo.org/records/12608602
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://proceedings.mlr.press/v70/haarnoja17a.html
https://proceedings.mlr.press/v80/haarnoja18b
https://proceedings.mlr.press/v80/haarnoja18b
https://arxiv.org/abs/2506.02355
https://arxiv.org/abs/2506.02355
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2207.05221
https://arxiv.org/abs/2207.05221
https://openreview.net/forum?id=5mJrGtXVwz
https://openreview.net/forum?id=r1lgTGL5DE
https://openreview.net/forum?id=r1lgTGL5DE
https://aclanthology.org/2022.findings-emnlp.77
https://aclanthology.org/2022.findings-emnlp.77

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with PagedAttention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611–626, 2023. URL https://dl.acm.org/doi/abs/10.1145/3600006.
3613165. (Cited on p. 25)

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing
frontiers in open language model post-training. arXiv preprint arXiv:2411.15124, 2024. URL
https://arxiv.org/abs/2411.15124. (Cited on p. 9)

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. NuminaMath-1.5, 2024. URL https:
//huggingface.co/datasets/AI-MO/NuminaMath-1.5. (Cited on p. 6)

Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
ProRL: Prolonged reinforcement learning expands reasoning boundaries in large language mod-
els. arXiv preprint arXiv:2505.24864, 2025a. URL https://arxiv.org/abs/2505.
24864. (Cited on p. 9)

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding R1-Zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025b. URL https://arxiv.org/abs/2503.20783. (Cited on p.
3, 9)

Sami Marreed, Alon Oved, Avi Yaeli, Segev Shlomov, Ido Levy, Aviad Sela, Asaf Adi, and Nir
Mashkif. Towards enterprise-ready computer using generalist agent. CoRR, 2025. (Cited on p.
18)

Aaron Meurer, Christopher P Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K Moore, Sartaj Singh, et al. SymPy: symbolic
computing in Python. PeerJ Computer Science, 3:e103, 2017. URL https://peerj.com/
articles/cs-103/. (Cited on p. 25)

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016. URL
https://proceedings.mlr.press/v48/mniha16.html. (Cited on p. 7)

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with human feedback. Ad-
vances in neural information processing systems, 35:27730–27744, 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html. (Cited on
p. 9)

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang, Jing Xu, Maryam Fazel-Zarandi, Mo-
hit Bansal, Sainbayar Sukhbaatar, Jason E Weston, and Jane Yu. Self-consistency preference
optimization. In Forty-second International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=94G4eL3RWi. (Cited on p. 9)

Penghui Qi, Zichen Liu, Xiangxin Zhou, Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin. De-
feating the training-inference mismatch via fp16. arXiv preprint arXiv:2510.26788, 2025. (Cited
on p. 15)

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015. URL https://proceedings.mlr.press/v37/schulman15.html. (Cited on
p. 3)

12

https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://dl.acm.org/doi/abs/10.1145/3600006.3613165
https://arxiv.org/abs/2411.15124
https://huggingface.co/datasets/AI-MO/NuminaMath-1.5
https://huggingface.co/datasets/AI-MO/NuminaMath-1.5
https://arxiv.org/abs/2505.24864
https://arxiv.org/abs/2505.24864
https://arxiv.org/abs/2503.20783
https://peerj.com/articles/cs-103/
https://peerj.com/articles/cs-103/
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=94G4eL3RWi
https://proceedings.mlr.press/v37/schulman15.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017. URL https://arxiv.
org/abs/1707.06347. (Cited on p. 3, 5)

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in RLVR. arXiv preprint arXiv:2506.10947, 2025. URL https://arxiv.org/abs/
2506.10947. (Cited on p. 9)

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. DeepSeekMath: Pushing the limits of mathe-
matical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024. URL
https://arxiv.org/abs/2402.03300. (Cited on p. 1, 3, 9)

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss,
Alec Radford, Dario Amodei, and Paul F Christiano. Learning to summarize
with human feedback. Advances in neural information processing systems, 33:3008–
3021, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1f89885d556929e98d3ef9b86448f951-Abstract.html. (Cited on p. 9)

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998. (Cited on p. 1)

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
LLMs. arXiv preprint arXiv:2501.12599, 2025. URL https://arxiv.org/abs/2501.
12599. (Cited on p. 9)

Sebastian B Thrun. Efficient exploration in reinforcement learning. Carnegie Mellon University,
1992. (Cited on p. 1)

Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li, Shashank
Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. AppWorld: A controllable world of
apps and people for benchmarking interactive coding agents. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 16022–
16076, 2024. URL https://aclanthology.org/2024.acl-long.850/. (Cited on
p. 5)

Jean Vassoyan, Nathanaël Beau, and Roman Plaud. Ignore the KL penalty! boosting exploration
on critical tokens to enhance RL fine-tuning. In Findings of the Association for Computational
Linguistics: NAACL 2025, pp. 6108–6118, 2025. URL https://aclanthology.org/
2025.findings-naacl.340. (Cited on p. 9)

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Liyuan Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, et al. Reinforcement learning for reasoning in large language
models with one training example. arXiv preprint arXiv:2504.20571, 2025. URL https://
arxiv.org/abs/2504.20571. (Cited on p. 9)

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. DD-PPO: Learning near-perfect pointgoal navigators from 2.5 billion frames. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=H1gX8C4YPr. (Cited on p. 25)

Erik Wijmans, Brody Huval, Alexander Hertzberg, Vladlen Koltun, and Philipp Kraehenbuehl.
Cut your losses in large-vocabulary language models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
E4Fk3YuG56. (Cited on p. 7, 25)

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992. URL https://link.springer.com/
article/10.1007/bf00992696. (Cited on p. 3, 7, 20)

13

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2506.10947
https://arxiv.org/abs/2402.03300
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1f89885d556929e98d3ef9b86448f951-Abstract.html
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2501.12599
https://aclanthology.org/2024.acl-long.850/
https://aclanthology.org/2025.findings-naacl.340
https://aclanthology.org/2025.findings-naacl.340
https://arxiv.org/abs/2504.20571
https://arxiv.org/abs/2504.20571
https://openreview.net/forum?id=H1gX8C4YPr
https://openreview.net/forum?id=H1gX8C4YPr
https://openreview.net/forum?id=E4Fk3YuG56
https://openreview.net/forum?id=E4Fk3YuG56
https://link.springer.com/article/10.1007/bf00992696
https://link.springer.com/article/10.1007/bf00992696

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Fang Wu and Yejin Choi. On the limits of RLVR: Support, entropy, and the illusion of reasoning. In
2nd AI for Math Workshop@ ICML 2025, 2025. URL https://openreview.net/forum?
id=KXtLWJAzgh. (Cited on p. 9)

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025. URL https://arxiv.org/abs/2505.09388. (Cited on p.
5)

Joy Qiping Yang, Salman Salamatian, Ziteng Sun, Ananda Theertha Suresh, and Ahmad Beirami.
Asymptotics of language model alignment. In 2024 IEEE International Symposium on Informa-
tion Theory (ISIT), pp. 2027–2032. IEEE, 2024. URL https://ieeexplore.ieee.org/
abstract/document/10619456. (Cited on p. 9)

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. DAPO: An open-source LLM reinforcement learning
system at scale. arXiv preprint arXiv:2503.14476, 2025. URL https://arxiv.org/abs/
2503.14476. (Cited on p. 1, 4, 9)

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in LLMs beyond the base model?
arXiv preprint arXiv:2504.13837, 2025. URL https://arxiv.org/abs/2504.13837.
(Cited on p. 1, 9)

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised LLM reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025. URL https://arxiv.org/abs/2504.05812. (Cited on p. 9)

Ruisi Zhang, Tianyu Liu, Will Feng, Andrew Gu, Sanket Purandare, Wanchao Liang, and Francisco
Massa. SimpleFSDP: Simpler fully sharded data parallel with torch. compile. arXiv preprint
arXiv:2411.00284, 2024. URL https://arxiv.org/abs/2411.00284. (Cited on p. 15,
25)

Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
Echo chamber: RL post-training amplifies behaviors learned in pretraining. arXiv preprint
arXiv:2504.07912, 2025. URL https://arxiv.org/abs/2504.07912. (Cited on p.
9)

Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. arXiv preprint
arXiv:2507.18071, 2025. URL https://arxiv.org/pdf/2507.18071. (Cited on p. 1,
3, 5, 9)

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In AAAI, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008. URL
https://dl.acm.org/doi/10.5555/1620270.1620297. (Cited on p. 1)

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019. URL https://arxiv.org/abs/1909.08593. (Cited
on p. 9)

Yuxin Zuo, Kaiyan Zhang, Li Sheng, Shang Qu, Ganqu Cui, Xuekai Zhu, Haozhan Li, Yuchen
Zhang, Xinwei Long, Ermo Hua, et al. TTRL: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025. URL https://arxiv.org/abs/2504.16084. (Cited on p. 9)

14

https://openreview.net/forum?id=KXtLWJAzgh
https://openreview.net/forum?id=KXtLWJAzgh
https://arxiv.org/abs/2505.09388
https://ieeexplore.ieee.org/abstract/document/10619456
https://ieeexplore.ieee.org/abstract/document/10619456
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2504.13837
https://arxiv.org/abs/2504.05812
https://arxiv.org/abs/2411.00284
https://arxiv.org/abs/2504.07912
https://arxiv.org/pdf/2507.18071
https://dl.acm.org/doi/10.5555/1620270.1620297
https://arxiv.org/abs/1909.08593
https://arxiv.org/abs/2504.16084

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A NUMERICAL CONSIDERATIONS

After our initial round of experiments §5, we identified implementation details and numerical effects
that substantially influence the experimental results and the entropy dynamics of RL algorithms. We
believe similar numerical peculiarities can affect many practitioners and thus the overall story would
be incomplete without discussing them.

A.1 LOSS OF MODEL OUTPUT PRECISION FROM FSDP2 OUTPUT CASTING

As described in App. D.2, we use the FSDP2 framework for distributed training on multiple
GPUs (Zhang et al., 2024). In the HuggingFace Accelerate library, FSDP2 is configured to cast
all module outputs to the chosen floating-point type (e.g., BF16), including the final model out-
puts, even when the computations involving logits (such as softmax) are performed in full 32-bit
precision.

This is the default behavior of the library, and there is no single configuration parame-
ter to switch it off. To preserve full-precision log probabilities, the user must explic-
itly override the output dtype of the MixedPrecisionPolicy (MPP) object (see
fsdp/ fully shard/ fsdp api.py for details).

Naively, this cast should not affect the RL gradients, as the backward pass of such a casting opera-
tion is the identity function. Indeed, there appears to be no measurable difference for fully on-policy
algorithms like RLOO. The half-precision downcast, however, does measurably impact the numer-
ical stability of the importance weight and thus can affect off-policy algorithms that use clipping,
such as LOOP, GRPO, and DAPO.

Fig. 5 empirically demonstrates the clipping bias introduced by the 16-bit rounding when training
with DAPO. We observe that when the rounding is present (before the MixedPrecisionPolicy
fix), more tokens get clipped due to exceeding the higher end of the range ϵhigh preventing probability
increase for low probability tokens and thus reducing overall entropy. At the same time, fewer
tokens are clipped due to ϵlow. The overall effect is the tightening of the clipping on the higher end
of the range while relaxing it on the lower end, resulting in the reduced effectiveness of entropy
preservation from the asymmetric clipping. It can be further noted that the 16-bit rounding changes
the clipping outcome only for a tiny fraction of tokens, fewer than 0.1% of the total number of output
tokens. This suggests that a very small number of pivotal tokens play an essential role in learning
and warrants further study of this effect.

App. A.3 empirically confirms the significant impact of half-precision rounding on the overall per-
formance and entropy dynamics (see Fig. 7).

A.2 FLOAT16 TRAINING

In our original experiments, the models were trained exclusively in bfloat16 (BF16), which has
become common practice in LLM training because of its higher dynamic range. Recent publica-
tions (Qi et al., 2025) reported improved training with float16 (FP16) floating-point format as its
additional 3 mantissa bits enable more accurate gradient representation.

In addition, the choice of floating-point format affects the discrepancy between inference (vLLM)
and training policies. These discrepancies are inherent to RL systems with a separate inference
server and arise from small differences in model-layer implementations as well as from the lack of
batch-size invariance in GPU kernels. In our experiments, we find that FP16 training significantly
reduces the inference-training discrepancy (see Fig. 6).

A.3 ABLATION STUDY

Fig. 7 summarizes the ablation study of the numerical tweaks described in Apps. A.1 and A.2 per-
formed for DAPO training on Qwen3 8B. We observe that when the MPP fix and FP16 training
are used together, the entropy dynamics of DAPO change completely, from collapse and sub-par
exploration to a rapid increase in entropy over the course of training. More generally, we observed
improved training across models and algorithm variants when both of the above changes were ap-
plied (Tabs. 4 and 5).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Num. training steps

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

Ra
tio

 o
f c

lip
pe

d
to

ke
ns

Lower-clip ratio
Upper-clip ratio

Figure 5: Ratio of clipped tokens before and after the MixedPrecisionPolicy fix. 16-bit
rounding introduces a subtle bias that causes more tokens to be clipped on the upper end and fewer
tokens to be clipped on the lower end of the clipping range [ϵlow, ϵhigh]. If not addressed, this asym-
metrical bias promotes entropy collapse in algorithms with asymmetric clipping like DAPO. Here
the measurements are shown for Qwen3 8B trained with DAPO on AppWorld.

0 80 160 240

0.0015

0.0030

0.0045

0.0060

Av
g.

 p
ro

ba
bi

lit
y

di
ffe

re
nc

e

0 80 160 240
Iterations

0.25

0.50

0.75

M
in

 p
ro

ba
bi

lit
y

ra
tio

0 80 160 240

2.5

5.0

7.5

10.0

M
ax

 p
ro

ba
bi

lit
y

ra
tio

DAPO BF16 DAPO FP16

Figure 6: Differences between inference (vLLM) and training policies under BF16 and FP16 train-
ing. Additional mantissa bits in the FP16 setup enable much smaller deviations from the behavior
policy. Shown from left to right: average differences between token probabilities (lower is better),
minimal probability ratio between vLLM and training policies across the experience batch (closer
to 1.0 is better), and max. probability ratio (closer to 1.0 is better).

B BIDIRECTIONAL ENTROPY CONTROL

Results in App. A.3 show that entropy dynamics can vary significantly in response to relatively minor
modifications, and suggest that bidirectional entropy control, rather than simply collapse prevention,
is a better framing. We propose two algorithm variants designed to control entropy in both directions
in response to the observed behavior.

Bidirectional REPO-R. The first is the bidirectional variant of REPO-R. It is identical to the
REPO-R described in §3, except that the sign of the adaptive coefficient ζ flips when the entropy
exceeds the target value (e.g., the initial entropy), and the adaptive control is then applied in the
range [−ζmax,−ζmin] instead.

Note that REPO-R is base method agnostic and can be used even with a fully on-policy method like
RLOO.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

0 80 160 240

0.15

0.30

0.45

0.60
Te

st
 N

or
m

al
 T

GC

0 80 160 240
Iterations

0.1

0.2

0.3

Te
st

 C
ha

lle
ng

e
TG

C

0 80 160 240

0.1

0.2

0.3

En
tro

py

Before MPP fix, BF16 After MPP fix, BF16 Before MPP fix, FP16 After MPP fix, FP16

Figure 7: Cumulative effect of the MixedPrecisionPolicy (MPP) fix and FP16 training when applied
to DAPO algorithm with Qwen3 8B. Each curve represents the mean of three independent runs
(seeds).

0 80 160 240

0.15

0.30

0.45

0.60

Te
st

 N
or

m
al

 T
GC

0 80 160 240
Iterations

0.1

0.2

0.3

Te
st

 C
ha

lle
ng

e
TG

C

0 80 160 240

0.10

0.15

0.20

En
tro

py

RLOO LOOP DAPO ADAPO REPO-R

Figure 8: AppWorld test scores and token-level entropy for Qwen3 8B after numerical fixes.
ADAPO and REPO-R are used for bidirectional entropy control. GRPO performed very similarly
to LOOP and omitted for clarity. Curves show mean values across three seeds.

ADAPO. The second proposed algorithm for bidirectional entropy control is called ADAPO
(“Adaptive DAPO”). It utilizes the built-in ability of DAPO’s asymmetric clipping to affect en-
tropy and adds an adaptive controller similar to REPO-R. To stabilize entropy with ADAPO we set
ϵlow = 0.2 and allow ϵhigh to vary in [0.2, 0.3] range in response to the observed entropy. Specifically:

1. Estimate Hinit
πθ

, the policy entropy over the experience collected in this first iteration (same
as REPO-R).

2. Initialize ϵhigh = 0.28 (initial value used by DAPO).

3. On each iteration, estimate Hπθ
, the current policy entropy, and compare it to Hinit

πθ
. If

Hπθ
< Hinit

πθ
, update ϵhigh ← ϵhigh × 1.01. IfHπθ

> Hinit
πθ

, update ϵhigh ← ϵhigh ÷ 1.01.

4. Clip ϵhigh to the window [0.2, 0.3].

Note that this idea can be applied to any algorithm with asymmetric clipping (e.g. GSPO) therefore
an alternative disambiguation is “ADAptive Asymmetric Clipping Policy Optimization”

B.1 BIDIRECTIONAL ENTROPY CONTROL: EXPERIMENTS

We rerun a select subset of experiments with Qwen3 8B and 32B incorporating changes from App. A
and bidirectional entropy control mechanisms (see Figs. 8 and 9).

Key observations:

• Both the bidirectional version of REPO-R and ADAPO succeed at keeping entropy close
to Hinit

πθ
. This suggests that the adaptive nature of both methods is more important than the

specific entropy control lever.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 50 100 150
0.0

0.2

0.4

0.6

0.8

Te
st

 N
or

m
al

 T
GC

0 50 100 150
Iterations

0.0

0.2

0.4

0.6

Te
st

 C
ha

lle
ng

e
TG

C

0 50 100 150
0.0

0.8

1.6

2.4

En
tro

py

RLOO LOOP DAPO ADAPO REPO-R

Figure 9: AppWorld test scores and token-level entropy for Qwen3 32B after numerical fixes.
ADAPO and REPO-R are used for bidirectional entropy control. GRPO performed very similarly to
LOOP and omitted for clarity. DAPO’s entropy explodes, leading to instability. Curves show mean
values across three seeds.

Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.59 ± 0.05 0.64 0.35 ± 0.06 0.41
LOOP 0.40 ± 0.02 0.42 0.19 ± 0.02 0.22
GSPO 0.56 ± 0.04 0.60 0.32 ± 0.03 0.36
DAPO 0.57 ± 0.03 0.62 0.33 ± 0.03 0.37

ADAPO 0.59 ± 0.01 0.60 0.34 ± 0.03 0.36
REPO-R 0.58 ± 0.07 0.67 0.32 ± 0.03 0.37

Table 4: Task goal completion scores for AppWorld Qwen3 8B by training algorithm after numerical
fixes. REPO-R is the bidirectional version. Test Normal and Test Challenge columns show mean and
standard deviation across three independent runs. Best TN/TC columns report the highest evaluation
score of any checkpoint across three runs.

• REPO-R and ADAPO are the best-performing off-policy methods in this domain.
• Entropy values oscillate for REPO-R suggesting it could benefit from further improvement

of the adaptive heuristic for precise control (e.g. exponential coefficient smaller than 2).
• For non-adaptive DAPO, the entropy explodes in the 32B setup which leads to early dete-

rioration of performance, highlighting the importance of bidirectional control.
• LOOP underperforms despite showing entropy dynamics similar to RLOO. LOOP uses

restrictive [0.9,1.1] clipping range for stability which may hinder promotion of high advan-
tage low probability tokens, slowing down learning.

• Remarkably, a fully on-policy method RLOO is firmly among the best methods after the
numerical fixes, albeit showing slower initial training in the 32B setup. The entropy dynam-
ics for RLOO changes even between two models in the same model family, highlighting
the complexity of exploration behavior.

We recorded the highest score among all our experiments using a simple on-policy algorithm
RLOO (Tab. 5) after introducing numerical tweaks described in App. A. We reach 78% success rate
on Test Normal and 71% on Test Challenge, significantly exceeding the highest previously reported
scores (https://appworld.dev/leaderboard) achieved with an agentic GPT-4.1-based
system (Marreed et al., 2025). We improve by 7% for TN and 26% for TC compared to previous RL
SOTA based on an open-weight model (Chen et al., 2025a).

18

https://appworld.dev/leaderboard

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.78 ± 0.00 0.79 0.62 ± 0.07 0.71
LOOP 0.66 ± 0.02 0.68 0.45 ± 0.03 0.47
GSPO 0.69 ± 0.01 0.70 0.50 ± 0.01 0.51
DAPO 0.73 ± 0.04 0.77 0.52 ± 0.02 0.55

ADAPO 0.77 ± 0.01 0.78 0.59 ± 0.04 0.65
REPO-R 0.75 ± 0.02 0.78 0.56 ± 0.06 0.63

Table 5: Task goal completion scores for AppWorld Qwen3 32B by training algorithm after numer-
ical fixes. REPO-R is the bidirectional version.

C PROOFS & DERIVATIONS

C.1 BROADLY USED LEMMAS

Lemma 1. The expected score function of policy πθ at some state s is:

Ea∼πθ(·|s) [∇θ log πθ(a | s)] = 0

Proof.

Ea∼πθ(·|s) [∇θ log πθ(a | s)] =
∑
a

πθ(a | s) · ∇θ log πθ(a | s)

=
∑
a

∇θπθ(a | s)

= ∇θ

∑
a

πθ(a | s)

= ∇θ(1)

= 0

■

Lemma 2. The gradient of a sample estimate Ex∼Pθ
[fθ(x)] of function fθ over distribution Pθ is:

∇θEx∼Pθ
[fθ(x)] = Ex∼Pθ

[∇θfθ(x) + fθ(x) · ∇θ logPθ(x)]

Proof.

∇θEx∼Pθ
[fθ(x)] =

∑
x

∇θ (Pθ(x) · fθ(x))

=
∑
x

Pθ(x) · ∇θfθ(x) + fθ(x) · ∇θPθ(x)︸ ︷︷ ︸
Pθ(x)∇θ logPθ(x)


=

∑
x

Pθ(x) (∇θfθ(x) + fθ(x) · ∇θ logPθ(x))

= Ex∼Pθ
[∇θfθ(x) + fθ(x) · ∇θ logPθ(x)]

■

Lemma 3. The gradient of a sample estimate Ex∼Pθ
[fθ(x)] of function fθ over distribution Pθ can

be baselined for any arbitrary arbitrary b independent of x:

∇θEx∼Pθ
[fθ(x)− b] = ∇θEx∼Pθ

[fθ(x)]

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof.

∇θEx∼Pθ
[fθ(x)− b] = Ex∼Pθ

[(fθ(x)− b) · ∇θ logPθ(x)]

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]− Ex∼Pθ

[b · ∇θ logPθ(x)]

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]− b · Ex∼Pθ

[∇θ logPθ(x)]︸ ︷︷ ︸
0

= Ex∼Pθ
[fθ(x) · ∇θ logPθ(x)]

= ∇θEx∼Pθ
[fθ(x)]

■

Lemma 4. The gradient of MDP objective JMDP at some state s is:

∇θJMDP(s) = Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)]

for any arbitrary baseline b independent of a.

Proof. Largely following (Williams, 1992), Lemma 2, and Lemma 3

∇θJMDP(s) = ∇θEa∼πθ(·|s) [R(s, a)]

= ∇θEa∼πθ(·|s) [(R(s, a)− b)]

= Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)] + Ea∼πθ(·|s) [∇θ (R(s, a)− b)]︸ ︷︷ ︸
0

= Ea∼πθ(·|s) [(R(s, a)− b) · ∇θ log πθ(a | s)]

■

Lemma 5. The gradient of the policy entropy at some state s is:

∇θHπθ
(· | s) = −Ea∼πθ(·|s) [(log πθ(a | s)− b) · ∇θ log πθ(a | s)]

for any arbitrary baseline b independent of a.

Proof. Follows directly from Lemma 4 with R(s, a) = − log πθ(a | s).

∇θHπθ
(· | s) = −∇θEa∼πθ(·|s) [log πθ(a | s)]

= −Ea∼πθ(·|s) [(log πθ(a | s)− b) · ∇θ log πθ(a | s)]

■

Lemma 6. The expected advantage function A(s, a) def= R(s, a) − b, with baseline V (s) def=
Ea∼πθ(·|s)[R(s, a)], at some state s is:

Ea∼πθ(·|s)[A(s, a)] = 0

Proof.

Ea∼πθ(·|s)[A(s, a)] = Ea∼πθ(·|s)[R(s, a)− V (s)]

= Ea∼πθ(·|s)[R(s, a)]− V (s)

= V (s)− V (s)

= 0

■

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C.2 ENTROPY DYNAMICS UNDER POLICY GRADIENT

Theorem 1. Given a policy gradient update θ̂ := θ + α · ∇θJMDP(s), the expected change in
entropy is approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s),a′∼πθ(·|s)

[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
,

where L(s, a) def= log πθ(a | s)− Ea∼πθ(·|s)[log πθ(a | s)] denotes mean-centered log-probabilities
and u(s, a) def= ∇θ log πθ(a | s) denotes the score function for some policy πθ evaluated at state s
and action a.

Proof. Let L(s, a) def= log πθ(a | s) − Ea∼πθ(·|s)[log πθ(a | s)] denote mean-centered log-
probabilities and let u(s, a) def= ∇θ log πθ(a | s) denote the score function of policy πθ evaluated at
action a and state s. Let g(s) and h(s) denote the respective mean-baselined policy gradient and
entropy gradient evaluated on-policy in some state s:

g(s) = ∇θJMDP(s) = Ea∼πθ(·|s) [A(s, a) · u(s, a)]
h(s) = ∇θHπθ

(· | s) = −Ea∼πθ(·|s) [L(s, a) · u(s, a)]

Here, each estimator allows for an arbitrary baseline that cancels through the parameter gradient
∇θ. While the baseline does not influence the exact mathematical construction, it does influence
approximations to the change in entropy. Here we chose mean baselines to center the policy, mini-
mize variance in each gradient estimator, and to agree with a tabular softmax approximation of the
change in entropy (see Corollary 2).

Using the first-order Taylor approximation: Hπθ
(· | s ; θ + α · g) ≈ Hπθ

(· | s ; θ) + α · g⊤h, for
small learning rate α, the expected change in entropy from a policy gradient update in state s is:

∆Hπθ
(· | s) ≈ α · g(s)⊤h(s)

= −α ·
(
Ea∼πθ(·|s) [A(s, a) · u(s, a)]

)⊤ (
Ea′∼πθ(·|s) [L(s, a

′) · u(s, a′)]
)

= −α · Ea∼πθ(·|s),a′∼πθ(·|s)
[
A(s, a) · L(s, a′) · u(s, a)⊤u(s, a′)

]
■

C.3 APPROXIMATE ENTROPY DYNAMICS UNDER POLICY GRADIENT

Corollary 1. Assuming u(s, a)⊤u(s, a′) = 0 for all a ̸= a′, the change in entropy is approximately:

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s) [A(s, a) · L(s, a) · πθ(a | s)]

Proof. Assuming the score vectors satisfy orthogonality of the off-diagonal terms such that
u(s, a)⊤u(s, a′) = 0 for a ̸= a′, the double expectation can be collapsed, yielding:

∆Hπθ
(· | s) ≈ −α · Ea∼πθ(·|s)

[
πθ(a | s) ·A(s, a) · L(s, a) · ∥u(s, a)∥2

]
Assuming independence of the squared gradient norm magnitude, such that it can be treated as a
constant with respect to the expectation,

∆Hπθ
(· | s) ∝ −Ea∼πθ(·|s)[A(s, a) · L(s, a) · πθ(a | s)]

■

C.4 ENTROPY DYNAMICS UNDER POLICY GRADIENT FOR TABULAR SOFTMAX POLICIES

Proposition 1. For two functions f(x) and g(x) over samples x ∼ πS of a softmax distribution
πS(x) = exp(Sx)/

∑
k exp(Sk), the dot product of expected gradients is:〈

Ex∼πS
[f(x)·∇S log πS(x)] , Ey∼πS

[g(y)·∇S log πS(y)]
〉
= Ex∼πS

[πS(x)·(f(x)−f̄)·(g(x)−ḡ)],

where f̄ = Ex∼πS
[f(x)] and ḡ = Ex∼πS

[g(x)].

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. First, let’s compute∇S log πS(x) for the softmax distribution:

log πS(x) = log
exp(Sx)∑
k exp(Sk)

= Sx − log
∑
k

exp(Sk)

∇Sz log πS(x) = 1x=z −
exp(Sz)∑
k exp(Sk)

= 1x=z − πS(z)

where 1x=y is the indicator function (1 if x = y, 0 otherwise).

Now let’s compute the dot product∇S log πS(x)
⊤∇S log πS(y):

∇S log πS(x)
⊤∇S log πS(y) =

∑
j

(1x=j − πS(j))(1y=j − πS(j))

=
∑
j

(1x=j · 1y=j − 1x=jπS(j)− πS(j) · 1y=j + πS(j)
2)

= 1x=y − πS(x)− πS(y) + Ez∼πS
[πS(z)]

Now we can compute the dot product of expected gradients:〈
Ex∼πS

[f(x) · ∇S log πS(x)],Ey∼πS
[g(y) · ∇S log πS(y)]

〉
= Ex∼πS ,y∼πS

[f(x) · g(y) · ∇S log πS(x)
⊤∇S log πS(y)]

= Ex∼πS ,y∼πS
[f(x) · g(y) · (1x=y − πS(x)− πS(y) + Ez∼πS

[πS(z)])]

Let’s compute each term separately:

Ex∼πS ,y∼πS
[f(x) · g(y) · 1x=y] = Ex∼πS

[πS(x) · f(x) · g(x)]
Ex∼πS ,y∼πS

[f(x) · g(y) · πS(x)] = Ex∼πS
[f(x) · πS(x)] · Ey∼πS

[g(y)] = Ex∼πS
[πS(x) · f(x)] · ḡ

Ex∼πS ,y∼πS
[f(x) · g(y) · πS(y)] = Ex∼πS

[f(x)] · Ey∼πS
[g(y) · πS(y)] = f̄Ey∼πS

[πS(y) · g(y)]
Ex∼πS ,y∼πS

[f(x) · g(y) · Ez∼πS
[πS(z)]] = Ez∼πS

[πS(z)] · Ex∼πS
[f(x)] · Ey∼πS

[g(y)] = Ex∼πS
[πS(x)] · f̄ · ḡ

Therefore:〈
Ex∼πS

[f(x) · ∇S log πS(x)],Ey∼πS
[g(y) · ∇S log πS(y)]

〉
= Ex∼πS

[πS(x) · f(x) · g(x)]− Ex∼πS
[πS(x) · f(x)] · ḡ − f̄ · Ex∼πS

[πS(x) · g(x)] + Ex∼πS
[πS(x)] · f̄ · ḡ

= Ex∼πS
[πS(x) · (f(x) · g(x)− f(x) · ḡ − f̄ · g(x) + f̄ · ḡ)]

= Ex∼πS
[πS(x) · (f(x)− f̄) · (g(x)− ḡ)]

where f̄ = Ex∼πS
[f(x)] and ḡ = Ex∼πS

[g(x)]. ■

The above proposition holds for simple softmax policies, but involves a much more complex gradient
term and inner product for generic transformer-based policies.

Corollary 2. Under a tabular softmax policy, a policy gradient update θ̂ := θ + α · ∇θJMDP

changes the entropy approximately:

∆Hπθ
(· | s) ≈ −α · Ea∼πS(·|s)

[
πS(a | s) ·

(
log πS(a | s)− log πS(· | s)

)
·
(
R(s, a)−R(s)

)]
where log πS(· | s) = Ea∼πθ(·|s) [log πS(a | s)] and R(s) = Ea∼πθ(·|s) [R(s, a)].

Proof. Let g(s) and h(s) denote the respective policy gradient and entropy gradient evaluated on-
policy in some state s:

g(s) = ∇θJMDP(s) = Ea∼πθ(·|s) [R(s, a) · ∇θ log πθ(a | s)]
h(s) = ∇θHπθ

(· | s) = −Ea∼πθ(·|s) [log πθ(a | s) · ∇θ log πθ(a | s)]

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Using the first-order Taylor approximation: Hπθ
(· | s ; θ + α · g) ≈ Hπθ

(· | s ; θ) + α · g⊤h, for
small learning rate α, the expected change in entropy from a policy gradient update in state s is:

∆Hπθ
(· | s) ≈ α · g(s)⊤h(s)

= −α · Ea∼πS(·|s)

[
πS(a | s) ·

(
log πS(a | s)− log πS(· | s)

)
·
(
R(s, a)−R(s)

)]

The second line follows Prop. 1. Note that gradient interactions through the softmax automatically
center the reward function, i.e., A(s, a) = R(s, a)− V s = R(s, a)− R(s). The log-probabilities,
too, are centered as here they reflect R(s, a) = − log πS(a | s). This yields a form equivalent to
Corollary 1. ■

C.5 ENTROPY DYNAMICS UNDER CLIPPED PPO

Proposition 2. Given two distributions π(x) and ϕ(x) with constraint π(x)
ϕ(x) ≤ 1 + ϵ for all x, their

relative entropy is bound by
H(π) ≤ (1 + ϵ) · H(ϕ)

Proof. Let’s parametrize π(x) = βxϕ(x) with βx ≥ 0 and compute its probability

H(π) = −Ex∼π [log π(a)]

= −Ex∼π [log ϕ(a)]− Ex∼π [log βx]

= −Ex∼π [log ϕ(a)]− Ex∼π

[
log

π(x)

ϕ(x)

]
︸ ︷︷ ︸

DKL(π∥ϕ)≥0

≤ −Ex∼π [log ϕ(a)]

= −Ex∼ϕ

[
π(a)

ϕ(a)
log ϕ(a)

]
= Ex∼ϕ [βx · − log ϕ(a)]

≤ Ex∼ϕ [(1 + ϵ) · − log ϕ(a)]

= (1 + ϵ) · H(ϕ)

The second-last line uses − log ϕ(a) ≥ 0 and βx ≤ (1 + ϵ) by definition, hence βx · − log ϕ(a) ≤
(1 + ϵ) · − log ϕ(a). ■

Theorem 2. Proximal Policy Optimization (PPO) bounds the entropy Hπθ
new(· | s) of the updated

policy by the original policy entropyHπθ
old(· | s) such that:

(1− ϵlow) · Hπθ
old(· | s) ≤ Hπθ

new(· | s) ≤ (1 + ϵhigh) · Hπθ
old(· | s)

Proof. Applying Prop. 2 to πθ
new

πθ
old ≤ 1 + ϵhigh yields the upper bound

Hπθ
new(· | s) ≤ (1 + ϵhigh) · Hπθ

old(· | s).

Applying Prop. 2 to 1− ϵlow ≤ πθ
new

πθ
old (eqivalently πθ

old

πθ
new ≤ 1

1−ϵlow
yields the lower bound

Hπθ
old(· | s) ≤ 1

1− ϵlow
· Hπθ

new(· | s)

or equivalently
(1− ϵlow) · Hπθ

old(· | s) ≤ Hπθ
new(· | s).

■

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C.6 ENTROPY CHANGE UNDER AREPO ADVANTAGE FUNCTION

Proposition 3. For advantage AREPO(s, a)
def= A(s, a) − βs · L(s, a), the first–order change in

entropy induced by a policy–gradient step is:

∆HREPO
πθ

(· | s) ≈ ∆Hπθ
(· | s) + βs · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2 .

Proof. Let g(s) = Ea∼πθ(·|s) [A(s, a) · u(s, a)] and h(s) = −Ea∼πθ(·|s) [L(s, a) · u(s, a)] denote
the respective policy gradient and entropy gradient evaluated on-policy in some state s.

Using AREPO, the policy gradient becomes:

gREPO(s) = Ea∼πθ(·|s) [(A(s, a)− βsL(s, a)) · u(s, a)]

The first–order entropy change is:

∆HREPO
πθ

(· | s) ≈ α · gREPO(s)
⊤h(s)

= α ·
(
Ea∼πθ(·|s) [(A(s, a)− βsL(s, a)) · u(s, a)]

)⊤
h(s)

= α ·
(
Ea∼πθ(·|s) [A(s, a) · u(s, a)]

)⊤
h(s)− βs · α ·

(
Ea∼πθ(·|s) [L(s, a)) · u(s, a)]

)⊤
h(s)

= α · g(s)⊤h(s) + βs · α · h(s)⊤h(s)

= ∆Hπθ
(· | s) + βs · α ·

∥∥Ea∼πθ(·|s) [L(s, a) · u(s, a)]
∥∥2 .

■

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D ADDITIONAL EXPERIMENT DETAILS

D.1 ENVIRONMENTS

Interactive tool-use agent. For the AppWorld benchmark, rollouts proceed in turns (up to 30 turns
during training and 50 during evaluation), in a manner akin to an interactive notebook.

During each turn, the model generations are parsed to extract any Python code blocks, potentially
containing calls to AppWorld API. These are executed to retrieve information or alter the environ-
ment state. The outputs of successful API calls or the error trace of incorrect calls appear in the
agent’s context after each turn. Once done, the agent may mark a task as completed at which point
it is assessed whether the task state was updated successfully. Failure to mark the task as complete
within the turn or context limit (32K) results in a failure. Sparse outcome-based rewards in [0, 1]
are assigned during training as the fraction of passing unit-tests. Binary rewards in {0, 1} are used
during evaluation requiring complete correctness.

Mathematical reasoning. For the AIME benchmarks, model responses are processed and scored
using the Eleuther AI lm-eval-harness Minerva math parsing utilities (Gao et al., 2024). The final
unnormalized answer is first identified and parsed, then the answer is normalized to remove units,
formatting, etc., and finally equivalence between the model answer and reference answer is deter-
mined using Sympy (Meurer et al., 2017).

D.2 TRAINING

Experiments are executed on 3 NVIDIA H100 8-GPU nodes. One node is used for rollout generation
one for learning, and one for evaluation. Rollouts are generated using two instances of vLLM (Kwon
et al., 2023) servers using 4 GPUs each with tensor parallelism. Custom RL implementation based
on FSDP2 (Zhang et al., 2024) is used for training. To account for any discrepancies between
sampling and training subsystems, the log-probabilities of rollout tokens are recalculated on the
training node to ensure accurate importance weights for backpropagation. Cut-Cross-Entropy (CCE)
is used to reduce the memory footprint during training by preventing the materialization of all logits
except the target (Wijmans et al., 2025). Models are fine-tuned with LoRA (rank = 16, α = 32)
on the self-attention (key, value, query, output) and MLP modules (Hu et al., 2022). We use an
AdamW optimizer with a constant learning rate of 5× 10−5, weight-decay = 0.01, and gradient
clipping with max-norm = 0.1. To speed up rollout collection, we introduce an early stopping
criteria. Once at least 4/6 rollouts per task and 90% of total rollouts are collected, we immediately
proceed to training to prevent bottlenecks caused by very few extra long generations (Wijmans et al.,
2020; Chen et al., 2025a).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

E.1 GEOMETRIC INTERPRETATION OF REPO

15.0 12.5 10.0 7.5 5.0 2.5 0.0
Token log (a s)

1.0

0.5

0.0

0.5

1.0

Ad
va

nt
ag

e
A R

EP
O(

s,
a)

REPO-D, = 5

15.0 12.5 10.0 7.5 5.0 2.5 0.0
Token log (a s)

REPO-R, = 0.025

Figure 10: The REPO transformation rotates (A, log π) pairs, promoting low probability actions.
Original unmodified advantages shown in blue, advantages AREPO are shown in green for REPO-D
and in red for REPO-R.

The transformation induced by each REPO algorithm can be viewed in Fig. 10. REPO-D reflects
a consistent rotation across the space, boosting the advantages of actions proportional to their sur-
prisals (− log πθ). REPO-R instead rotates only positive advantage actions, and does so propor-
tionally, not only to the surprisal, but to the magnitude of the advantage. This strongly reinforces
low-probability correct actions, especially when they yield outcomes significantly better than aver-
age for a given batch of experience.

Fig. 10 uses data from the Qwen-3-8B AIME experiment. The parameters of the algorithm are
revealed in the structure of the data: there are 5 distinct positive and negative advantage values,
corresponding to 5 unique outcomes of group-based advantage estimation (1 success / 5 failures, 2
successes / 4 failures, etc.). Groups with zero advantages are filtered out.

With the appropriate value of ζ, REPO-D transformation counteracts the covariance-like term in
∆H approximation, therefore REPO-D is short for REPO-Decorrelate. REPO-R is a shorthand for
REPO-Rescale, as it rescales the advantages by 1− ζ · L(s, a).

E.2 DYNAMICS OF ENTROPY AND TEST-ACCURACY DURING TRAINING

We computed the average per-token entropy at each iteration of training for all of our training runs
(averaging over all tokens generated during a rollout, and averaging over all rollouts at a given
iteration). We studied how this quantity evolved over the course of training for several baseline
algorithms (RLOO, GRPO, LOOP, GSPO) and several variants of our REPO algorithm (REPO-
R, REPO-D, GSPO-REPO-R, and GSPO-REPO-D). Figure 11 shows how the per-token entropy
co-evolves with the test accuracy over the course of training for each algorithm. We first observe
that the REPO algorithms typically preserve much higher entropy than baselines. For challenging
model-task pairs where baselines reduce policy entropy prior to achieving high test accuracy (e.g.
Qwen-3-8B on all tasks, and Qwen-3-32B on AppWorld Test-Normal), REPO algorithms pre-
serve entropy for longer and achieve higher peak test accuracy. For model-task pairs where the
baselines reduce entropy late in training, after test accuracy is largely saturated, REPO achieves
comparable peak test accuracy to baselines.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E.3 DEPENDENCE OF TEST ACCURACY ON CUMULATIVE ENTROPY DURING TRAINING

We hypothesized that the test accuracy at a given checkpoint is highly dependent on the cumulative
entropy (intuitively, the time integral of the average per-token entropy) experienced over the course
of previous training iterations. Figure 12 plots the test accuracy and cumulative entropy for each
checkpoint of each training run of each learning algorithm studied. We observe test accuracy on a
more difficult learning task (AppWorld Test-Normal) show sustained increases in test accuracy with
additional cumulative entropy even late into training, whereas AIME24 and AIME25 require less
cumulative entropy to achieve peak test accuracy. We quantified the dependence of test accuracy
on cumulative entropy via mutual information (Table 6). We estimated (i) the mutual information
between the test accuracy and the cumulative entropy and (ii) the mutual information between the
test accuracy and the iteration using histograms. We found that cumulative entropy is more predic-
tive than the iteration number. We also confirm the relatively stronger dependence of test accuracy
on cumulative entropy in AppWorld Test-Normal (MI=0.858 for Qwen-3-8B and MI=0.612 for
Qwen-3-32B) compared to the AIME24 and AIME25 environments (MI ≈ 0.2 for both models).

MI (Iteration) MI (Cumulative Entropy)
Qwen3 8B - AIME25 0.182 0.205
Qwen3 32B - AIME25 0.183 0.191
Qwen3 8B - AIME24 0.131 0.170
Qwen3 32B - AIME24 0.146 0.133
Qwen3 8B - AppWorld Test-Normal 0.566 0.858
Qwen3 32B - AppWorld Test-Normal 0.507 0.612

Table 6: Quantifying the dependence of test accuracy on cumulative entropy during training.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0.0 0.3Per-token entropy
0.0

0.6

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AppWorld Test-Normal)

0.0 0.3Per-token entropy
0.0

0.3

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AppWorld Test-Challenge)

0.0 0.3Per-token entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AppWorld Dev)

0.0 0.8Per-token entropy
0.0

0.8

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AppWorld Test-Normal)

0.0 0.8Per-token entropy
0.0

0.6

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AppWorld Test-Challenge)

0.0 0.8Per-token entropy
0.0

0.9

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AppWorld Dev)

RLOO GRPO LOOP DAPO GSPO REPO-R REPO-D GSPO-REPO-R GSPO-REPO-D

0.0 0.4Per-token entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AIME24)

0.0 0.4Per-token entropy
0.0

0.5

Te
st

 a
cc

ur
ac

y

Qwen3 8B (AIME25)

0.0 0.6Per-token entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AIME24)

0.0 0.6Per-token entropy
0.0

0.6

Te
st

 a
cc

ur
ac

y

Qwen3 32B (AIME25)

RLOO GRPO LOOP DAPO GSPO REPO-R REPO-D GSPO-REPO-R GSPO-REPO-D

Figure 11: Trajectory of per-token entropy and test accuracy during training for several baseline
algorithms several REPO algorithms in the AppWorld environment (top grid) and AIME (bottom
grid). Each curve shows the average trajectory over multiple training runs with different seeds.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 50Cumulative entropy
0.0

0.7

Te
st

 a
cc

ur
ac

y

Qwen 8B (AppWorld)

0 80Cumulative entropy
0.0

0.8

Te
st

 a
cc

ur
ac

y

Qwen 8B (AIME24)

0 80Cumulative entropy
0.0

0.6

Te
st

 a
cc

ur
ac

y

Qwen 8B (AIME25)

0 70Cumulative entropy
0.0

0.9

Te
st

 a
cc

ur
ac

y

Qwen 32B (AppWorld)

0 100Cumulative entropy
0.0

0.8

Te
st

 a
cc

ur
ac

y

Qwen 32B (AIME24)

0 100Cumulative entropy
0.0

0.6
Te

st
 a

cc
ur

ac
y

Qwen 32B (AIME25)

RLOO GRPO LOOP DAPO GSPO REPO-R REPO-D GSPO-REPO-R GSPO-REPO-D

Figure 12: Accuracy on test set versus cumulative per-token entropy (sum of average per-token
entropies during the training run up to that point) for all training checkpoints. Dark points show
checkpoints with peak test accuracy. AppWorld test accuracy is measured on the Test-Normal set.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

F QWEN 2.5 EXPERIMENTS

In previous publications, methods like LOOP performed well with “non-thinking” models such as
Qwen 2.5 32B (Chen et al., 2025a). In our Qwen3 experiments however, LOOP (and very similarly,
GRPO) experienced early entropy collapse and underperformed compared to other RL methods.

We conducted additional experiments (see Fig. 13 and Tab. 7) to determine whether this discrepancy
arises from differences in model behavior or from implementation details. Key observations:

• Qwen 2.5 32B exhibits a significantly higher initial success rate (before the first training
iteration) compared to Qwen 3 models. For example, on Test Normal the initial success
rate is close to 40% versus under 10% for Qwen 3.

• The best results on the hardest test split (Test Challenge) are substantially lower for Qwen
2.5 compared to Qwen 3, most likely reflecting the limitations of the respective base mod-
els.

• We were able to replicate and exceed results reported in previous work for Qwen 2.5 32B:
the success rate of our best-performing LOOP checkpoints surpasses those in Chen et al.
(2025a) by approximately 7% on Test Normal and 9% on Test Challenge. This improve-
ment is most likely attributable to the numerical changes described in App. A, as our setup
and hyperparameters for Qwen 2.5 closely match those in Chen et al. (2025a) in all other
respects.

• Unlike in our Qwen 3 experiments, LOOP/GRPO do not experience rapid entropy col-
lapse, whereas RLOO does, suggesting that base-model characteristics play a major role in
entropy dynamics during training irrespective of the RL algorithm.

0 50 100 150
0.30

0.45

0.60

0.75

Te
st

 N
or

m
al

 T
GC

RLOO
LOOP
DAPO
ADAPO

0 50 100 150
Iterations

0.30

0.45

0.60

Te
st

 C
ha

lle
ng

e
TG

C

0 50 100 150
0.00

0.25

0.50

0.75

1.00
En

tro
py

Figure 13: Qwen 2.5 32B test performance and token entropy on AppWorld vs. training iterations.
Curves show mean across three independent seeds for each algorithm.

Algorithm Test Normal Best TN Test Challenge Best TC

RLOO 0.72 0.78 0.47 0.50
LOOP 0.75 0.78 0.50 0.54
DAPO 0.74 0.77 0.50 0.56
ADAPO 0.73 0.78 0.51 0.59

Table 7: Task-goal completion scores for AppWorld Qwen-2.5-32B by training algorithm. For
each test split, we report the best average score across three seeds and the highest score among all
seeds and training iterations.

30

	Introduction
	Preliminaries
	The entropy dynamics of policy gradient
	Experiments
	Results and discussion
	Distinct algorithms show variable entropy dynamics
	Entropy preservation and downstream performance
	Entropy preservation assists sequential training

	Related work
	Conclusion
	Numerical Considerations
	Loss of Model Output Precision from FSDP2 Output Casting
	Float16 Training
	Ablation Study

	Bidirectional Entropy Control
	Bidirectional Entropy Control: Experiments

	Proofs & Derivations
	Broadly used Lemmas
	Entropy dynamics under policy gradient
	Approximate entropy dynamics under policy gradient
	Entropy dynamics under policy gradient for tabular softmax policies
	Entropy dynamics under clipped PPO
	Entropy change under blue!50!blackAREPO advantage function

	Additional experiment details
	Environments
	Training

	Additional results
	Geometric interpretation of REPO
	Dynamics of entropy and test-accuracy during training
	Dependence of test accuracy on cumulative entropy during training

	Qwen 2.5 Experiments

