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ABSTRACT

The construction of vectorized high-definition map typically requires capturing
both category and geometry information of map elements. Current state-of-the-
art methods often adopt solely either point-level or instance-level representation,
overlooking the strong intrinsic relationship between points and instances. In this
work, we propose a simple yet efficient framework named MGMapNet (multi-
granularity map network) to model map elements with multi-granularity repre-
sentation, integrating both coarse-grained instance-level and fine-grained point-
level queries. Specifically, these two granularities of queries are generated from
the multi-scale bird’s eye view features using a proposed multi-granularity ag-
gregator. In this module, instance-level query aggregates features over the entire
scope covered by an instance, and the point-level query aggregates features local-
ly. Furthermore, a point-instance interaction module is designed to encourage in-
formation exchange between instance-level and point-level queries. Experimental
results demonstrate that the proposed MGMapNet achieves state-of-the-art perfor-
mances, surpassing MapTRv2 by 5.3 mAP on the nuScenes dataset and 4.4 mAP
on the Argoverse2 dataset, respectively.

1 INTRODUCTION

It is crucial to perceive and understand road map elements for ensuring the safety in autonomous
driving applications (Xiao et al., 2020; Xu et al., 2023; Prakash et al., 2021). High-definition (HD)
maps provide category and geometry information about road elements, enabling autonomous vehi-
cles to maintain lane position, anticipate intersections, and plan optimal routes to mitigate potential
risks. However, constructing HD maps requires significant human effort for annotating and updat-
ing, which limits scalability over large areas. Recent researches, such as (Li et al., 2022a; Liao et al.,
2022; 2023; Ding et al., 2023; Yuan et al., 2024; Hu et al., 2021), focus on learning-based methods
as alternatives to construct HD maps from onboard sensors. These methods can be mainly divided
into two categories based on the representation in use: rasterized map-based representation (Li et al.,
2022a;b; Liu et al., 2023b; Xiong et al., 2023) and vectorized map-based representation (Ding et al.,
2023; Li et al., 2023; Liao et al., 2023).

Rasterized map-based methods often require complex post-processing to meet the need of down-
stream modules, such as planning, and suboptimal results are usually obtained which are not en-
tirely end-to-end optimized. Therefore, there has been increasing attention paid to end-to-end map
construction methods (Shin et al., 2023; Qiao et al., 2023b; Zhang et al., 2024) using vectorized
representations, which commonly employ bird’s eye view (BEV) (Fadadu et al., 2022; Chen et al.,
2017; Liang et al., 2019; You et al., 2019; Liang et al., 2018) space for end-to-end perception, effec-
tively integrating various sensor information such as surround-view cameras and Lidar.

The state-of-the-art methods typically adopt DETR-like architectures (Carion et al., 2020), com-
prising encoder and decoder components. The encoder extracts multi-sensor information into BEV
∗Equal Contribution.
†Corresponding author (H. Wang, E-mail: hanliwang@tongji.edu.cn).
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Figure 1: Comparison of visualization results. Visual comparison among StreamMapNet, MapTRv2, and
MGMapNet, with vehicle-centric views featuring red boundaries, orange dividers, and blue pedestrian cross-
ings. The green boxes denote the phenomenon of inaccurate point coordinates in instance-level queries, while
the purple ellipses indicate the phenomenon of missing instances in point-level queries. StreamMapNet em-
ploys MPA for single-frame results. Best viewd in color.

representation, while the decoder decodes the category and geometry information of each road el-
ement through queries, and thus an end-to-end vectorized representation of output map elements is
achieved, eliminating the need for the complex post-processing steps involved in rasterized map rep-
resentation. These methods use either point-level queries or instance-level queries to generate map
elements. Point-level queries are good at describing the geometric position of road elements. For
instance, in MapTR (Liao et al., 2022) and MapTRv2 (Liao et al., 2023), a permutation-equivalent
point expression accurately represents the location of map elements, ensuring stable training pro-
cesses. However, these methods may lack an overall description of map elements, leading to defi-
ciencies in representing lane relationships. For example, MapTRv2 may miss lane lines in distant
and merging scenarios, as the region illustrated in the purple ellipses of Fig. 1.

While instance-level queries excel at capturing the overall category information of road elements,
they may struggle to accurately represent geometric details, especially for irregular or elongated map
elements. For example, in StreamMapNet (Yuan et al., 2024), multi-point attention (MPA) is pro-
posed to capture the overall information of road elements, allowing for longer attention ranges while
maintaining computational efficiency. However, this method may encounter difficulties in perceiv-
ing the geometry of irregular or elongated elements, leading to local disturbances. The green boxes
in Fig. 1 highlight the issue of inaccurate point coordinates obtained from instance-level queries:
although map elements are successfully detected, their positional accuracy is compromised.

The primary challenge lies in balancing detailed and comprehensive representations, which cur-
rent researches and methods fail to adequately address. To integrate both fine-grained local po-
sitions and coarse-grained global classification information, we propose a multi-granularity map
network (MGMapNet) to represent map elements using multi-granularity queries. Within each de-
coder layer, point-level queries and instance-level queries are simultaneously computed by querying
multi-scale BEV features using multi-granularity aggregator. Subsequently, point-instance interac-
tion, including point-to-point attention and point-to-instance attention, is designed to enhance in-
trinsic relationships. Ultimately, point-granularity queries are utilized to localize point coordinates,
while instance-granularity queries are employed to determine the categories of map elements.

The main contributions of this work are summarized as follows. First, we propose a robust multi-
granularity representation, enabling the end-to-end construction of vectorized HD maps by employ-
ing coarse-grained instance-level and fine-grained point-level queries in one framework. Second,
the multi-granularity aggregator, combined with point-instance interaction, facilitates an efficien-
t interaction between point-level and instance-level queries, effectively exchanging category and
geometry information. Third, we incorporate several strategy optimizations into model training, en-
abling our proposed MGMapNet to achieve state-of-the-art single-frame performances on both the
nuScenes (Caesar et al., 2020) and Argoverse2 (Wilson et al., 2023) datasets.

2 RELATED WORK

Online HD Map Construction. In recent years, researchers have utilized onboard sensors in au-
tonomous driving to construct HD maps. The previous works (Huang et al., 2023; Chen et al., 2022)
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focus on projecting and lifting map elements detected on the perspective view plane into 3D space
for map reconstruction. With the aim of integrating multiple sensors such as panoramic cameras
and LiDAR, construction methods for online HD map are gradually transitioning to BEV represen-
tation. The HD map construction methods can be broadly categorized into two types: rasterized
map-based and vectorized map-based. The rasterized map-based methods, such as HDMapNet (Li
et al., 2022a), utilize BEV features for semantic segmentation, followed by a post-processing step to
obtain vectorized map instances. Similarly, BEV-LaneDet (Wang et al., 2023) introduces an efficient
key-point representation for 3D lanes, generating confidence scores, y-axis offsets, and heights for
each BEV grid cell. While rasterized maps can provide detailed road information, the requirement
of post-processing limits their applications. With the emergence of vectorized DETR-like (Carion
et al., 2020) end-to-end methods, the need for post-processing is eliminated. VectorMapNet (Liu
et al., 2023a) is the first end-to-end map reconstruction model that utilizes transformers. MapTR
and MapTRv2 (Liao et al., 2022; 2023) introduce novel and unified modeling methods for map el-
ements, addressing ambiguity and ensuring stable learning processes. PivotNet (Ding et al., 2023)
leverages pivot-based representations for map elements, organizing element point sets into pivotal
and collinear point sequences to achieve more precise map element learning.

However, these methods often exclusively use either point-level queries or instance-level queries,
missing out on the mutual advantages of both granularities. To address this limitation, we introduce
a multi-granularity mechanism to represent map elements, which adaptively derives features at both
fine-grained point granularity and coarse-grained instance granularity, thus preserving local details
as well as global map information.

Lane Detection. Lane detection can be regarded as a subtask of HD map construction, focusing
on the detection of lane elements within road scenes. Current methods (Li et al., 2019; Zheng et al.,
2022; Tabelini et al., 2021b) predominantly engage in lane detection from a single perspective view
image, and the majority of lane detection datasets provide annotations only from a single perspective.
LaneATT (Tabelini et al., 2021a) proposes an anchor-based attention mechanism to aggregate global
information. Unlike lane detection, vectorized HD map construction involves more complex map
elements within the vehicle’s perception range, including lane markings, curbs, and sidewalks.

3 METHOD

3.1 OVERALL ARCHITECTURE

The overall architecture of MGMapNet is depicted in Fig. 2 (a). Similar to other DETR-like end-to-
end HD map construction models, MGMapNet comprises a BEV feature encoder which is respon-
sible to extract multi-scale BEV features from perspective view images, and a Transformer Decoder
which stacks multiple layers of multi-granularity attention (MGA) to generate predictions for map
elements. The prediction from each layer encapsulates both category and geometry information
within the perception range.

BEV Feature Encoder. The proposed MGMapNet takes surrounding-view RGB images as in-
puts, expressing them as unified perceptual BEV feature representation for subsequent Transformer
decoder. The unified BEV feature is denoted as Fbev ∈ RC×H×W , where C,H,W represent the
number of feature channels, height, and width of the BEV feature, respectively. Given the diverse
lengths of map elements, relying solely on a single-scale BEV feature fails to meet the requirements
for detecting all elements with different lengths. Therefore, we employ downsample modules to
reduce the spatial resolution of BEV features Fbev by half, generating F

′

bev ∈ RC×H
2 ×

W
2 . More

scales might be benificial, but it is observed that two scales are already good enough. As a result,
Fms bev ∈ RC×(H

2 ×
W
2 +H×W ) represents multi-scale BEV features, which are obtained by concate-

nating the flattened tensors of Fbev and F
′

bev .

Decoder. Figure 2 (b) illustrates the l-th MGA decoder layer, which is composed of self atten-
tion, MGA, and feed-forward network. The MGA consists of two components: multi-granularity
aggregator and point-instance interaction. The instance-level query is initialized using learnable pa-
rameters and updated through interaction with BEV features, while the point query is dynamically
generated by aggregating BEV features. Subsequently, the point-instance interaction facilitates the
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Figure 2: Overview of MGMapNet. (a) MGMapNet takes multi-view images as inputs, processes them
through an encoder-decoder framework, and generates vectorized map representations. (b) The schematic
diagram of the l-th multi-granularity attention (MGA) decoder layer. (c) Implementation details of point-
instance interaction, comprising point-to-point attention and point-to-instance attention.

mutual interaction among local geometric information, global category information, and the point
queries from the (l − 1)-th layer.

3.2 MULTI-GRANULARITY ATTENTION

Instance-level queries effectively capture the overall categorical information of road elements but
may struggle to represent geometric details, particularly for irregularly shaped or elongated map
features. Conversely, point-level queries provide detailed information, however, they only represent
instances by aggregating multiple queries, resulting in a lack of comprehensive descriptions of map
elements. To simultaneously capture both detailed and comprehensive instance features, the multi-
granularity attention (MGA) mechanism is designed to effectively maintain and update queries at
various granularities. As illustrated in Fig. 2, MGA comprises two primary components: multi-
granularity aggregator and point-instance interaction.

3.2.1 MULTI-GRANULARITY AGGREGATOR

In multi-granularity aggregator, instance-level queries interact with the multi-scale BEV features,
and point-level queries are generated. Specifically, we improve the multi-head deformable atten-
tion (Zhu et al., 2020) with multiple reference points for each query to aggregate long-range fea-
tures from multi-scale BEV features. To improve readability, we omit the subscript m for the index
of multiple heads M in the operator. More specifically, the multi-granularity aggregator takes as
input the instance-level queries Qins ∈ RNq×C in the first layer, along with the point-level queries
Qpts ∈ RNq×Np×C and the reference points RF ∈ RNq×Np×2 in the subsequent layers. Nq is the
total number of instance-level queries, andNp is the total number of points belonging to an instance.
Noted that the reference points in the first layer are predicted by Qins, and the reference points in
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subsequent layers are updated by reference points from the previous layer as{
RFl = MLP(Ql

ins), l = 0,

RFl = sigmoid(sigmoid−1(RFl−1) + MLP(Ql
pts)), l >= 1,

(1)

where l represents the layer index, sigmoid(·) and sigmoid−1(·) refer to the sigmoid and inverse
sigmoid activation functions, and MLP(·) stands for multi-layer perceptron.

Since an instance is represented as a point sequence, position encoding is added to the instance-level
query. Given the location of reference point RF, we employ RF to generate positional encoding
PEref as

PEl−1
ref = MLPl−1

ref (RFl−1), (2)

where MLPl−1
ref is a projection layer used to generate the positional embedding from reference

points. We allocate Nrep sampling points to each reference point, aggregating features from these
points to enhance the representation of the reference point. The location offset ∆S of sampling
points w.r.t the reference point and the associated weights W are computed by combining the
instance-level queries Qins and PEref as

∆Sl = Sampling Offset(Ql−1
ins + PEl−1

ref ) ∈ RNq×Np×Nrep×2,

Wl = Weight Embed(Ql−1
ins + PEl−1

ref ) ∈ RNq×Np×Nrep ,

Sl = (RFl−1 + ∆Sl) ∈ RNq×Np×Nrep×2,

(3)

where Sampling Offset(·) and Weight Embed(·) are MLP layers designed to generate the location
offset ∆S and the attention weight W, respectively; RFl−1 is expanded appropriately to match
the dimension of ∆Sl. By leveraging the sampling offset and the reference point, the sampling
location Sl is updated by adding RFl−1 and ∆Sl. Subsequently, Qins and Qpts are generated by
the weighted sum of sampled features as

Wl
ins = softmax

(j,k)∈(Np,Nrep)

(
Wl

j,k

)
∈ RNq×(Np×Nrep),

Wl
pts = softmax

k∈Nrep

(
Wl

j,k

)
∈ RNq×Np×Nrep ,

Ql
ins =

Np∑
j=1

Nrep∑
k=1

[
Wl

ins sampling(Fms bev,S
l
j,k)
]
∈ RNq×C ,

Ql
pts =

Nrep∑
k=1

[
Wl

pts sampling(Fms bev,S
l
j,k)
]
∈ RNq×Np×C ,

(4)

where j is the index of the Np points on an instance, k is the index among the Nrep sampling points
assigned to the reference point, Wl

ins and Wl
pts denote the softmax-normalized weights acrossNp×

Nrep and Nrep dimensions of Wl
j,k, while sampling(·) represents the bilinear sampling operator.

Through the multi-granularity aggregator, Qins and Qpts are generated from multi-scale BEV fea-
tures, capturing both global and local information for each map element. Compared with the multi-
point attention in StreamMapNet (Yuan et al., 2024), our method incorporates point-level queries
directly from multi-scale BEV features by sampling points and enhances the accuracy of predicted
geometry points. In addition, compared with point-level representations such as MapTR (Liao et al.,
2022) and MapTRv2 (Liao et al., 2023), our method updates instance-level queries with sampled
point features and captures the overall category as well as shape information of road elements.

3.2.2 POINT-INSTANCE INTERACTION

The point-instance interaction is designed with the intention of enhancing positional and categori-
cal information interaction between these two granularities of queries. As illustrated in Fig. 2(c),
point-instance interaction comprises two attention operators: point-to-point (P2P) attention and
point-to-instance (P2I) attention. Concurrently, the sampling locations Sl and the attention weights
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Wl
ins,W

l
pts obtained from the multi-granularity aggregator in the l-th layer are flattened and con-

catenated to encode positional information in P2P attention and P2I attention as

PEl
ins = MLPl

ins(S
l,Wl

ins),

PEl
pts = MLPl

pts(S
l,Wl

pts),
(5)

where MLPl
ins(·) and MLPl

pts(·) are MLP layers for instance-level queries and point-level queries
respectively, PEins and PEpts stand for the corresponding generated position embedding.

P2P Attention. As the coordinates of map elements are refined based on the point-level queries
in previous MGA layer, these point-level queries play a pivotal role in predicting coordinates in the
current layer. Hence, the P2P attention module is devised to include point-level queries from both
the current l-th layer and previous (l − 1)-th layer as inputs of the attention layer as{

Ql′

pts = SA(Ql
pts + PEl

pts), l = 0,

Ql′

pts = CA(Ql
pts + PEl

pts,Q
l−1
pts + PEl−1

pts ), l >= 1.
(6)

Regarding the first MGA layer, since there is not previous decoder layer before it, the self attention
operation SA(·) only conducts with the current point-level queries. For subsequent MGA layers,
P2P attention is implemented through the cross attention operation CA(·) by combining the point-
level queries Ql−1

pts of the previous layer with the point-level queries Ql
pts of the current layer.

P2I Attention. After P2P attention, P2I attention updates the point-level queries through cross-
attention to capture instance-level geometric information, while leveraging position embeddings
PEins and PEpts to focus on the spatial distribution of polylines as

Ql′′

pts = CA(Ql′

pts + PEl
pts,Q

l
ins + PEl

ins). (7)

The Np point-level queries belonging to the same instance-level query are aggregated through the
aggregation layer MLPagg , producing instance-level queries as

Ql′

ins = MLPagg(

Np∑
j=1

Ql
′′

pts,j). (8)

Output. Ultimately, point-level queries are utilized to predict point location using a regression
head, while instance-level queries are employed to predict the categories of map elements using
a classification head. In summary, multi-granularity aggregator and point-instance interaction are
applied to generate and update multi-granularity queries, enabling perception of both the geometry
and category of each map element.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

nuScenes Dataset. nuScenes (Caesar et al., 2020) is a widely recognized dataset in the field of
autonomous driving research, providing 1,000 scenes, each captured over a continuous 20-second
interval. Each dataset sample incorporates data from six synchronized RGB cameras and includes
detailed pose information. The perception ranges from -15.0m to 15.0m along the X-axis and from
-30.0m to 30.0m along the Y-axis. For experimental purposes, the dataset is partitioned into 700
scenes comprising 28,130 samples for training, and 150 scenes containing 6,019 samples for vali-
dation.

Argoverse2 Dataset. The Argoverse2 dataset (Wilson et al., 2023) contains multimodal data from
1,000 sequences, including high-resolution images from seven ring cameras and two stereo cameras,
as well as LiDAR point clouds and map-aligned 6-DoF pose data. All annotations are densely
sampled to facilitate the training and evaluation of 3D perception models. Results are reported on
the validation set, with a focus on the same three map categories as identified in the nuScenes dataset.
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Evaluation Metric. In alignment with MapTR (Liao et al., 2022), we adopt the widely-accepted
metric of mean Average Precision (mAP) based on the Chamfer distance. The evaluation thresholds
are set at 0.5m, 1.0m, and 1.5m. We also utilize the IoU-based metric mAP raster as employed in
MapVR (Zhang et al., 2024). Specifically, APped, APdiv , and APbou refer to the average preci-
sion for pedestrians, dividers, and boundaries, respectively. Furthermore, real-time performance is
measured in terms of frames per second (FPS), and the model’s complexity is evaluated through the
number of parameters (Params).

Training Loss. Our framework builds on MapTRv2 (Liao et al., 2023), which serves as the prima-
ry baseline. Therefore, we align our training loss with MapTRv2, including the point loss Lpts, the
classification loss Lcls, the edge direction loss Ldir, and the dense prediction loss Ldense. To fur-
ther stabilize training and improve perception, an auxiliary Loss Laux is designed, which includes
instance segmentation loss Lins seg and reference point loss Lref . The instance segmentation loss
Lins seg is defined as a combination of cross-entropy loss and dice loss between the predicted in-
stance segmentation map and the ground-truth instance mask, where the instance segmentation map
is generated through the dot product of instance-level queries and BEV features. Regarding the
reference point loss Lref is concerned, it accelerates convergence and stabilizes training by super-
vising reference points of each decoder layer with vectorized map instances. Specifically, Hungarian
matching is first performed, followed by the calculation of the L1 distance between each points pair,
consistent with Lpts. The final loss L is defined as the weighted sum of the above losses as

L = β1Lpts + β2Lcls + β3Ldir + β4Ldense + β5Laux, (9)

where βi represents the weight coefficient of the corresponding loss.

Implementation Details. Our model is trained on 8 A100 GPUs with the batchsize of 2, utilizing
the AdamW optimizer (Loshchilov et al., 2017) with the learning rate of 4 × 10−4. We adopt the
ResNet50 (He et al., 2016) as the backbone and employ the LSS transformation (Philion & Fidler,
2020) with a single encoder layer for feature extraction. The one-to-many training strategy (Liao
et al., 2023) is used, and the model is trained for 24 epochs on the nuScenes dataset and 6 epochs
on the Argoverse2 dataset. The hyperparameters are configured as Nq = 100, Nrep = 8, Np = 20,
β1 = 5, β2 = 2, β3 = 0.005, β4 = 3, and β5 = 3.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Results on nuScenes. Table 1 presents the results on the nuScenes validation dataset, utilizing
multi-view RGB images as input. In comparison to MapTRv2 (Liao et al., 2023), the proposed
MGMapNet has reached an mAP of 66.8, exceeding it by 5.3 with a training duration of 24 epochs.
After a prolonged training period of 110 epochs, the mAP obtained by MGMapNet is 73.6, which is
still significantly higher than 68.7 of MapTRv2 and 72.6 of MapQR (Liu et al., 2024b).

Table 1: Comparison to the state-of-the-art methods on nuScenes val set.
Method Epoch APped APdiv APbou mAP FPS Params (MB)

HDMapNet (Li et al., 2022a) 30 14.4 21.7 33.0 23.0 - -
BeMapNet (Qiao et al., 2023a) 30 62.3 57.7 59.4 59.8 4.3 -
PivotNet (Ding et al., 2023) 24 56.5 56.2 60.1 57.6 9.2 -
MapTRv2 (Liao et al., 2023) 24 59.8 62.4 62.4 61.5 14.1 40.3
MGMap (Liu et al., 2024a) 24 61.8 65.0 67.5 64.8 12 55.9
MapQR (Liu et al., 2024b) 24 68.0 63.4 67.7 66.4 11.9 125.3
MGMapNet (Ours) 24 64.7 66.1 69.4 66.8 11.7 70.1

VectorMapNet (Liu et al., 2023a) 110 42.5 51.4 44.1 46.0 - -
MapTRv2 (Liao et al., 2023) 110 68.1 68.3 69.7 68.7 14.1 40.3
MGMap (Liu et al., 2024a) 110 64.4 67.6 67.7 66.5 12 55.9
MapQR (Liu et al., 2024b) 110 74.4 70.1 73.2 72.6 11.9 125.3
MGMapNet (Ours) 110 74.3 71.8 74.8 73.6 11.7 70.1

Moreover, the comparison between the proposed MGMapNet and two latest models in terms of
IoU-based metrics is performed, with the results shown in Table 2. It is observed that the proposed
MGMapNet generally achieves the best IoU-based performances than MapVR and MGMap.
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Table 2: Performance comparison on nuScenes val set in terms of IoU-based AP.
Method AP raster

ped AP raster
div AP raster

bou mAP raster

MapVR (Zhang et al., 2024) [NeurIPS2023] 46.0 39.7 29.9 38.5
MGMap (Liu et al., 2024a) [CVPR2024] 54.5 42.1 37.4 44.7
MGMapNet (Ours) 54.0 42.7 44.1 46.9

Moreover, the qualitative results are depicted in Fig. 3, where there are three complex scenarios: day-
time vehicles with occlusion, nighttime low-light conditions, and low-light situations with occlusion.
In the first case, MGMapNet exhibits more precise coordinate prediction compared to StreamMap-
Net (Yuan et al., 2024) and preserves all road elements compared to MapTRv2. In the second case
of nighttime low-light conditions, MapTRv2 struggles to predict the divider on the right side of the
vehicle due to its lack of instance-level perception. While StreamMapNet utilizes instance-level
queries and identifies the divider, its overall instance positioning accuracy remains inadequate. In
contrast, MGMapNet accurately and completely detects the boundary in these challenging scenar-
ios. In the third case involving nighttime conditions with occlusion, the results of StreamMapNet are
nearly unusable; MapTRv2 incorrectly identifies the rear divider as a boundary, revealing its limi-
tation in instance-level perception; by contrast, MGMapNet demonstrates remarkable robustness on
accurately identifying the elements.

Figure 3: Qualitative visualization on nuScenes val set.

Results on Argoverse2. Table 3 presents the results on the Argoverse2 validation dataset for 6 e-
pochs. The Argoverse2 dataset provides two configurations for the representation of points: 2D and
3D point coordinates. We conduct experiments on both configurations, and the proposed MGMap-
Net outperforms the competing methods.

Efficiency Comparison. We conduct a comprehensive efficiency analysis of the proposed
MGMapNet and several open-source models. As demonstrated in the last two columns of Ta-
ble 1, MGMapNet achieves the FPS of 11.7, which is comparable to the latest methods of MapQR
and MGMap. The number of model parameters of MGMapNet is 70.1 MB, which is lower than
MapQR’s 125.3 MB but slightly higher than MGMap’s 55.9 MB.
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Table 3: Comparison to the state-of-the-art methods on Argoverse2 val set.
Method Map dim. APped APdiv APbou mAP

HDMapNet (Li et al., 2022a)

2

13.1 5.7 37.6 18.8
VectorMapNet (Liu et al., 2023a) 38.3 36.1 39.2 37.9
MapTRv2 (Liao et al., 2023) 62.9 72.1 67.1 67.4
MapQR (Liu et al., 2024b) 64.3 72.3 68.1 68.2
HIMap (Zhou et al., 2024) 69.0 69.5 70.3 69.6
MGMapNet (Ours) 67.1 74.6 71.7 71.2
VectorMapNet (Liu et al., 2023a)

3

36.5 35.0 36.2 35.8
MapTRv2 (Liao et al., 2023) 60.7 68.9 64.5 64.7
MapQR (Liu et al., 2024b) 60.1 71.2 66.2 65.9
HIMap (Zhou et al., 2024) 66.7 68.3 70.3 68.4
MGMapNet (Ours) 64.7 72.1 70.4 69.1

4.3 ABLATION STUDY

The proposed MGA consists of multi-granularity aggregator and point-instance interaction. In order
to reveal the contributions of different modules in the proposed model, ablation study is conducted
on the nuScenes dataset with the results shown in Table 4, where the multi-point attention (MPA)
from StreamMapNet (Yuan et al., 2024) serves as the baseline. The multi-granularity aggregator
is employed as a comparative alternative in the decoder layer, leveraging multi-granularity queries
for prediction. We further validate the effectiveness of point-instance interaction by incrementally
adding its components. There are several observations from the results. First, replacing MPA with
the proposed multi-granularity aggregator improves mAP from 59.6 to 62.7, showing the effective-
ness of multi-granularity representations. Second, with multi-granularity aggregator, the separate
inclusion of P2P attention and P2I attention increases mAP from 62.7 to 64.8 and 65.0, respective-
ly. This reveals that it is helpful to employ both geometric and category details to enhance queries.
Third, by utilizing the complete point-instance interaction module, the model achieves the best mAP
of 66.8, highlighting the importance of multi-granularity query interaction in boosting perception.

Table 4: Ablation study of the proposed modules.

Method Point-instance Interaction mAPP2P Attention P2I Attention

Multi-point Attention (Yuan et al., 2024) × × 59.6

Multi-granularity Aggregator

× × 62.7
X × 64.8
× X 65.0
X X 66.8

Table 5: Ablation study on the generality of the proposed modules transferred into MapTRv2.

Experiment Method mAP

Multi-point Attention 55.9

(a) Multi-granularity Attention 63.6 (+7.7)
(b) + Auxiliary Loss 64.4 (+0.8)
(c) + Multi-scale BEV Feature 65.0 (+0.6)
(d) + Position Embeddings 66.2 (+1.2)
(e) + Increase Query Number 66.8 (+0.6)

To verify the generality of the proposed modules, we transfer them into the MapTRv2 (Liao et al.,
2023) framework, with the ablation results shown in Table 5. The decoder with the multi-point
attention is used as the baseline, and we design the following experiments: (a) replace multi-point
attention with MGA; (b) add the auxiliary loss; (c) utilize multi-scale BEV features; (d) incorporate
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position embeddings into the multi-granularity aggregator; and (e) increase the number of queries.
The experimental results demonstrate the effectiveness of these designed techniques.

5 CONCLUSION AND DISCUSSION

In this work, we propose a multi-granularity map network for end-to-end vectorized HD map con-
struction. Specifically, the proposed multi-granularity attention leverages coarse-grained instance
queries to represent fine-grained point queries. Point-instance interaction further captures category
and geometric information by facilitating interaction between features of different granularities. The
proposed method enhances map construction performance by employing multi-granularity queries
to perceive map instance categories and polyline distributions. Extensive experiments are conducted
on two benchmark datasets to verify the superiority of the proposed method compared with other
state-of-the-art approaches. In the future, it is desired to extend the current work by considering the
following two aspects: (1) exploring temporal methods to incorporate additional prior information,
and (2) investigating more efficient representation mechanisms to enhance model efficiency.
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