
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTEXT-SCALING VERSUS TASK-SCALING IN IN-
CONTEXT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers exhibit In-Context Learning (ICL), a phenomenon in which these
models solve new tasks by using examples in the prompt without additional train-
ing. In our work, we analyze two key components of ICL: (1) context-scaling,
where model performance improves as the number of in-context examples in-
creases and (2) task-scaling, where model performance improves as the number
of pre-training tasks increases. While transformers are capable of both context-
scaling and task-scaling, we empirically show that standard Multi-Layer Percep-
trons (MLPs) with vectorized input are only capable of task-scaling. To under-
stand how transformers are capable of context-scaling, we first propose a signifi-
cantly simplified transformer that performs ICL comparably to the original GPT-2
model in statistical learning tasks (e.g., linear regression, teacher-student settings).
By analyzing a single layer of our proposed model, we identify classes of feature
maps that enable context scaling. Theoretically, these feature maps can implement
the Hilbert estimate, a model that is provably consistent for context-scaling. We
then show that using the output of the Hilbert estimate along with vectorized input
empirically enables both context-scaling and task-scaling with MLPs. Overall, our
findings provide insights into the fundamental mechanisms of how transformers
are able to learn in context.

1 INTRODUCTION

Pre-trained large language models exhibit In-Context Learning (ICL) capabilities, allowing them
to adapt to new tasks based exclusively on input context without updating the underlying model
parameters (Brown et al., 2020).

Input (Prompt) Output Task
(1, 2, 3), (4, 5, 9), (10,−9, 1), (5, 6, ?) 11 In each triplet (a, b, c): c = a+ b

(4, 3, 1), (9, 0, 9), (10, 8, 2), (17, 17, ?) 0 In each triplet (a, b, c): c = a− b

(1, 2, 5), (2, 3, 8), (3, 4, 11), (5, 6, ?) 17 In each triplet (a, b, c): c = a+ 2b

(2, 1, 7), (3, 4, 18), (5, 2, 16), (4, 3, ?) 17 In each triplet (a, b, c): c = 2a+ 3b

As an example of ICL, suppose we prompt a language model using a sequence of N triples of
numbers in which each of the first N − 1 triples follows a given pattern and the goal is to fill in
the missing number in triple N . In the table above, we give an example where N = 4. A model is
capable of filling in the missing entry by using the in-context examples present in the prompt without
seeing these specific examples in the training data. What makes in-context learning possible?

As a step toward answering this question, recent research analyzed a family of ICL problems where,
for example, the task data was generated using linear regression, student-teacher neural networks,
and decision trees (see Garg et al., 2022; Akyürek et al., 2022; Bai et al., 2023; Ahn et al., 2023;
Zhang et al., 2024a; Raventós et al., 2023; Wu et al., 2024, for an non-exhaustive list of examples).
In these problems, a transformer was first pre-trained on T tasks where the data in each task was
generated from a given family of functions. For example, each task may involve predicting the last
element in a tuple as a linear combination of the other elements, as was shown in the table above.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The pre-trained transformer was then tested on N samples from a new task that is drawn from the
same family but was not seen during pretraining. Such a setup allows for understanding the effect
of various factors including neural network architecture, the number of pre-training tasks T , and
context length N on ICL.

Thus far, the ability of models to learn in context has been broadly defined as their ability to general-
ize to unseen tasks based on context examples without updating the model parameters. We observe
that there are two settings for studying generalization in ICL. The first, which we call context-
scaling, refers to the ability of the model to improve as the context length N increases while the
number of pre-training tasks T is fixed. The second, task-scaling refers to the ability of a model to
improve as T increases while N is fixed.

104 106

Pre-training tasks (log scale)

0.25

0.50

0.75

1.00

T
es

t
M

S
E

10 in-context exmaples

10 20 30 40

In-context examples

0.0

0.5

1.0

1.5

100K pre-training tasks

10 20 30 40

In-context examples

0.2

0.4

0.6

1M pre-training tasks
MLP GPT-2 Ridge Regression

(A) Task-scaling (B) Context-scaling

Figure 1: Task-scaling and context-scaling of GPT-2 architecture transformers versus MLPs for
ICL with linear regression tasks. (A) Task-scaling abilities of these models with 10 in-context
examples. (B) Context-scaling abilities of these models with 105 (left) and 106 (right) pre-training
tasks. Experimental details are provided in Appendix A.

It is a priori unclear whether a model capable of context-scaling is also capable of task-scaling and
vice-versa. For example, as we show in Figure 1A, both transformers and standard Multi-Layer
Perceptrons (MLPs) are capable of task-scaling on ICL of linear regression tasks. In contrast, only
transformers benefit from an increasing number of context examples as shown in Figure 1B.

What mechanism enables transformers, but not MLPs, to context-scale?

To identify such a mechanism, we begin by constructing a bare-bones transformer with all key,
query, and value weight matrices fixed to be the identity matrix. We refer to our simplified model
as Simplified GPT (SGPT). Despite its simplicity, we find that SGPT is competitive with GPT-
2 architecture transformers (Radford et al., 2019) for a variety of ICL problems including linear
regression, student-teacher networks, decision trees, and sparse linear regression (Garg et al., 2022).

Upon further analyzing a one-layer version of SGPT, we find that SGPT applies a feature map to
data that enables context-scaling. To illustrate how such a feature map can be effective for context-
scaling, consider the following input data for ICL:

A =

[
x1 x2 · · · xN−1 xN
y1 y2 · · · yN−1 0

]⊤
∈ RN×(d+1) ; (1)

where xi ∈ Rd and our goal is to predict yN . We show that SGPT first applies a feature map
ψ : RN×(d+1) → RN×(d+1) toA and then trains an MLP on the last row of ψ(A), denoted ψ(A)N,:.

By varying ψ, we show that the scalar ψ(A)N,d+1 itself is an effective estimate for yN . For ex-
ample, when ψ(A) = (AA⊤)A, ψ(A)N,d+1 can implement one-step GD with a scalar stepsize for
linear regression (using context examples (xi, yi)N−1

i=1) (Von Oswald et al., 2023). When the feature
follows an isotropic Gaussian distribution, this estimator is consistent (as both the numbers of pre-
training tasks and context examples grow) and nearly matches the optimally tuned ridge regression
(Mahankali et al., 2024; Wu et al., 2024). More generally, we show that ψ(A)N,d+1 can implement
the Hilbert estimate (Devroye et al., 1998), which provides a statistically consistent estimate for
general families of tasks beyond linear regression as the context length N approaches infinity. As
such, our results provably establish that a one-layer transformer is capable of context-scaling for any
family of tasks.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Further, we show that these features can enhance the capabilities of MLPs for context-scaling. In
particular, by concatenating features from ψ(A)N,: with the vectorized input, Av ∈ RN(d+1), we
enable task-scaling and context-scaling simultaneously in MLPs, which previously could only task-
scale when trained on Av .

We summarize our findings as follows:

• We show that a simplified transformer, SGPT, with all key, query, and value weight matrices
fixed to the identity matrix, is competitive with GPT-2 on a range of ICL tasks.

• We analyze a one-layer version of SGPT, demonstrating that this model is capable of
context-scaling solely through the use of a feature map applied to input data.

• We theoretically show that this feature map can be modified to perform kernel smoothing
to impute the missing element in each task using the other in-context examples. Upon
selecting the Hilbert estimate as the choice of smoother (Devroye et al., 1998), this im-
puted element becomes a statistically optimal (consistent) estimate as the context length
approaches infinity.

• We show that by providing MLPs with a concatenation of features from our proposed fea-
ture map and the vectorized input for each task, the model can simultaneously achieve both
context-scaling and task-scaling.

Overall, we identify key mechanisms that transformers can use to provably generalize to new, unseen
tasks given a large context.

2 PRIOR WORK

ICL in controlled settings. The work by Garg et al. (2022) initiated the study of ICL in statistical
learning tasks, such as linear regression, decision tree learning, and teacher-student neural network
learning. They showed that transformers such as GPT-2 (Radford et al., 2019), when pre-trained
with a huge number of independent tasks (around 3.2 × 107 independent tasks, each presented
once), can exhibit a strong ICL ability, in the sense that during inference time, the performance of
pre-trained transformers matches the Bayes optimal or the best-known algorithms for these tasks.
These results were later extended to other settings (see Akyürek et al., 2022; Raventós et al., 2023;
Bai et al., 2023; Li et al., 2023; Tong & Pehlevan, 2024, for examples). In particular, Raventós
et al. (2023) empirically showed transformers can achieve nearly Bayes optimal ICL even when pre-
trained with multiple passes over a much smaller number of independent tasks, and Bai et al. (2023)
showed by construction that transformers can select optimal algorithms in context if the task prior
is a mixture of distributions. These works together suggest that transformers can achieve both task-
scaling and context-scaling for ICL. On the other hand, Tong & Pehlevan (2024) empirically showed
that pretrained MLPs can achieve ICL when the context length is fixed and is the same during pre-
training and inference. However, it was unclear whether MLPs can achieve context-scaling, and
our work empirically gives a negative answer. Motivated by this, we study the mechanism inside
transformers that enable both task and context scaling.

Linear attention and one-step gradient descent. The theory of ICL is best understood in linear
regression with a fixed context length (therefore only concerning the task-scaling). Specifically,
Von Oswald et al. (2023) showed by construction that single linear attention can implement one-step
gradient descent (GD) in context. Ahn et al. (2023); Zhang et al. (2024a); Mahankali et al. (2024);
Zhang et al. (2024b) proved that optimally pre-trained single linear attention is equivalent to a one-
step GD. Wu et al. (2024) proved that one-step GD nearly matches the Bayes optimal algorithm
for inference and can be pre-trained efficiently with finite independent tasks. Later works such as
Cheng et al. (2024) connected nonlinear attention to functional one-step GD in feature space. These
works together have substantially furthered our understanding of single linear attention for ICL of
linear regression with a fixed context length. However, these results assume (or are only sharp the
context length is fixed, and in particular, they fail to explain the observed context-scaling ability of
pre-trained transformers.

Softmax attention and kernel smoothers. The connection between softmax attention and kernel
smoothers was first pointed out by Tsai et al. (2019). Specifically, by setting the query and key

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

matrices to be the same, an attention component can be viewed as a kernel-smoother (that uses
a learnable semi-positive definite kernel). Empirical evidence suggests that using shared a matrix
for query and key matrices does not significantly impact the performance of transformers (Tsai
et al., 2019; Yu et al., 2024). Later, theoretical works Chen et al. (2024); Collins et al. (2024)
utilized this connection to study the ICL of softmax attention in both linear (Chen et al., 2024) and
nonlinear regression tasks (Collins et al., 2024). In these settings, softmax attention achieves ICL by
implementing a kernel smoother with an optimal bandwidth parameter (achieved by training query
and key matrices). Compared with these works, we demonstrate that transformers can achieve ICL
using an attention component that does not contain trainable parameters (that is, setting query, key,
and value matrices to identity matrices). Our results suggest that the transformer architecture is
capable of performing ICL without needing to explicitly learn any hyperparameters in the attention
head. We explain this by connecting to a hyper-parameter-free yet statistically consistent kernel
smoother given by the Hilbert estimate (Devroye et al., 1998).

Approximation ability of transformers. The transformer is known to be a versatile architecture
that can implement efficient algorithms (by forwarding passing an input prompt) in many scenarios
(see Akyürek et al., 2022; Bai et al., 2023; Guo et al., 2023; Lin et al., 2023; Gatmiry et al., 2024,
for a non-exhaustive list of examples). These constructive results, while explaining ICL from an
approximation theory perspective, heavily exploit the trainability of query, key, and value weight
matrices. In this work, we show that transformers are competitive with GPT-2 architecture trans-
formers for ICL even when all of their query, key, and value weight matrices are fixed to be the
identity matrix. Our results suggest the prior constructive results may not fully explain the ICL
ability of transformers.

3 PRELIMINARIES

In this section, we outline the problem setup, training details, architectural details, and mathematical
preliminaries for our work.

Problem formulation. For all ICL tasks studied in our work, we consider T pre-training tasks,
each with input data of the form:

At =

[
xt1 xt2 · · · xtN
yt1 yt2 · · · ytN

]⊤
∈ R(N)×(d+1), (2)

where t = 1, . . . , T indexes the tasks, N denotes the maximum context length, and d denotes the
input data dimension. We define the loss function L(θ) as:

L(θ;A1, . . . , AT) :=
1

T

T∑
t=1

[
1

N

N∑
i=1

(Mθ(A
i
t)− yti+1)

2

]
,

where

Ai
t =

[
xt1 xt2 · · · xti xti+1

yt1 yt2 · · · yti 0

]⊤
∈ R(i+1)×(d+1),

and Mθ(·) denotes the model with trainable parameters θ. The tasks At are uniformly sampled from
the family of tasks F (e.g., linear regression with a Gaussian prior), representing the distribution of
tasks relevant to the in-context learning problem.

Attention. Given three matrices A1, A2, A3 ∈ RN×m, attention layers implement functions g :
RN×m × RN×m × RN×m → RN×m defined as follows,

g(A1, A2, A3) := ϕ

(
1√
m
A1A

⊤
2

)
A3; (3)

where ϕ : RN×N → RN×N is a generic function that could be a row-wise softmax function
(Vaswani et al., 2017), an entry-wise activation function such as ReLU, or just an identify map.
For self-attention layers, we are typically given one input matrix A ∈ RN×m and three weight ma-
trices WQ,WK ,WV ∈ Rm×m. In this case, the matrices A1, A2, A3 are computed respectively as
AWQ, AWK , and AWV .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Kernel function. Kernel functions are positive-semidefinite functions that map pairs of inputs to
real values (Schölkopf et al., 2002). Formally, given x, y ∈ Rd, a kernel K : Rd × Rd → R is a
function of the form K(x, y) = ⟨ψ(x), ψ(y)⟩H, where ψ : Rd → H is referred to as a feature map
from Rd to a Hilbert space H. For matrix inputs A ∈ Rm×d and B ∈ Rn×d, we let K(A,B) ∈
Rm×n such that K(A,B)ij = K(Ai, Bj) where Ai and Bj denote the i-th and j-th rows of A and
B respectively.

Kernel smoother. Given a kernelK : Rd×Rd → R and a set of points (xi, yi)
n
i=1 where xi ∈ Rd

and yi ∈ R, the kernel smoother estimate at point x is a function of the form

f̂K,n(x) :=

∑n
i=1K(x,xi)yi∑n
i=1K(x,xi)

. (4)

We will reference kernel smoothers in Section 5.

Hilbert estimate. The Hilbert estimate is a kernel smoother using the kernel

H(x, x′) :=
1

∥x− x′∥d2
, (5)

where ∥·∥2 denotes the ℓ2-norm in Rd. The key property of the Hilbert estimate that we use is that
it is a consistent (asymptotically optimal) estimate. In particular, at almost all x, as the number of
samples n goes to infinity, f̂H,n → f∗ in probability where f∗(x) = E[y|X = x] denotes the Bayes
optimal predictor (Devroye et al., 1998).

4 SIMPLFIED TRANSFORMER MODEL PERFORMS IN CONTEXT LEARNING

In this section, we introduce our simplified transformer model, SGPT, and demonstrate that it is
competitive with GPT-2-type architectures on various ICL tasks. To construct SGPT, we fix all key,
query, and value weights to be the identity matrix in the GPT-2 architecture. Consequently, the
attention mechanism (defined in equation 3) reduces to the function:

g(H) := ϕ(HH⊤)H ∈ RN×(d+1). (6)

We define ϕ to be a function that performs row-wise ℓ1 normalization on its argument. To further
simplify our model, we remove the final linear layer of each MLP block (i.e., our MLP blocks have
one linear layer), along with batch normalization and the skip connection after the MLP layer. These
details are further outlined in Appendix A.

We consider the following ICL tasks from prior work: (1) linear regression with a single noise level
(Akyürek et al., 2022), (2) linear regression with multiple noise levels used in (Bai et al., 2023), (3)
sparse linear functions used in (Garg et al., 2022), (4) two-layer ReLU neural networks (Garg et al.,
2022), and (5) decision trees (Garg et al., 2022). Below, we explain the problem setup and state our
results for each of these five synthetic tasks.

Linear regression with fixed noise. The problem setting is as follows:

x ∈ Rd ∼ N (0, Id), y = β⊤x+ ϵ with β ∼ N
(
0,
Id
d

)
, ϵ ∼ N (0, σ2).

In this setting, prior work by Bai et al. (2023), showed that on all context lengths, GPT-2 architecture
transformers can perform comparably to task-specific, optimally-tuned ridge regression. In Figure
2, we provide evidence that SGPT matches the performance of these GPT-2 models.

Linear regression with multi noise level. The problem setting is as follows:

x ∈ Rd ∼ N (0, Id), yi = β⊤xi + ϵ

with β ∼ N
(
0,
Id
d

)
and ϵ ∼

{N (0, σ2
1), with probability 1

2

N (0, σ2
2), with probability 1

2

.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

10 20 30 40

In-context examples

0.6

0.8

1.0

T
es

t
M

S
E

2M pre-training tasks

GPT-2

SGPT

Ridge regression

100 101 102

Regularizer parameters

0.60

0.62

0.64

0.66

0.68

0.70
20 in-context examples

GPT-2

Simplified GPT-2

Ridge regression

Figure 2: Linear regression with a single noise level. Left panel. Performance across varying
context lengths (context-scaling). Right panel. Effect of regularization on performance for a fixed
number of in-context examples. Experimental details are given in Appendix A.

0 10 20 30 40

In-context examples

0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
M

S
E

2M pre-training tasks (σ = 0.1)

GPT-2

SGPT

Ridge regression

0 10 20 30 40

In-context examples

0.4

0.6

0.8

1.0

1.2

2M pre-training tasks (σ = 0.5)

GPT-2

SGPT

Ridge regression

0.04 0.06 0.08 0.10 0.12

Regularizer parameters

0.5

0.6

0.7

R
eg
u
la
ri
ze
r
p
a
ra
m
et
er
s

30 in-context examples

grid search on ridges

GPT-2

SGPT

Ridge regression

Figure 3: Linear regression with multiple noise levels. Left and middle panels: Performance
across varying context lengths (context-scaling). Right panel: Effect of regularization on perfor-
mance for a fixed number of in-context examples. Experimental details are given in Appendix A.

In this setting, prior work by Bai et al. (2023) demonstrated that GPT-2 architecture transformers
can achieve performance comparable to that of task-specific, optimally tuned ridge regression across
all context lengths and for both noise levels. They refer to the model’s ability to adapt to the noise
level as algorithm selection. In Figure 3, We demonstrate that SGPT performs comparably to GPT-2
architecture transformers in this setting, exhibiting similar algorithm selection capabilities.

Two-layer ReLU Neural Networks. Following the work of Garg et al. (2022), we consider the
following nonlinear problem setting where data for each task are generated using two-layer neural
networks. In particular, data are generated according to

x ∈ Rd ∼ N (0, Id), y =

r∑
j=1

αjϕ(w
⊤
j x);

where αj , wj are randomly initialized parameters of a fixed two-layer neural network, ϕ denotes
the element-wise ReLU activation function, and r = 100, d = 20 (as selected in prior work).
Garg et al. (2022) demonstrated that GPT-2 architecture transformers can match the performance
of student networks (i.e., networks of the same architecture initialized differently and trained using
Adam optimizer Kingma (2014)). In Figure 4(B), we show that SGPT can match the performance
of GPT-2 architecture transformers on this task.

Decision Tree. Following the work of Garg et al. (2022), we consider a nonlinear problem setting
where data for each task are generated using depth-four trees. For a task corresponding to a tree f ,
we have:

x ∼ N (0, Id), y = f(x), (7)

Previously, Garg et al. (2022) demonstrated that GPT-2 architecture transformers can perform in-
context learning on this family of non-linear functions, outperforming XGBoost as a baseline. In

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4(A), we show that SGPT is also capable of in-context learning (ICL) in this setting, perform-
ing comparably to GPT-2 architecture and similarly outperforming XGBoost. We trained XGBoost
models using the same hyperparameters as in (Garg et al., 2022).

Sparse linear functions. Following the work by Garg et al. (2022), we consider the class sparse
linear regression problems. In this setting, data are generated according to

x ∈ Rd ∼ N (0, Id), y = β⊤x, (8)

where β ∼ N (0, Id) and we zero out all but s coordinates of β uniformly at random for each task.
As in prior work, we select d = 20, s = 3. In Figure 4C , we demonstrate that SGPT is capable
of ICL for this class of functions, performing comparably to GPT-2 architecture transformers and
closely to the Lasso estimator (Tibshirani, 1996), while significantly outperforming the ordinary
least square (OLS) baseline.

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

T
es

t
M

S
E

Decision tree
GPT-2

SGPT

XGboost

20 40 60 80 100

0.2

0.3

0.4

0.5

0.6

2-layer NN
GPT-2

SGPT

2-layer NN, SGD

0 10 20 30 40

0.0

0.2

0.4

0.6

0.8

1.0

Sparse linear regression

GPT-2

SGPT

Lasso

Least square

(A) (B) (C)

In-context examples

Figure 4: Nonlinear ICL tasks. Context-scaling capability of SGPT versus GPT-2 architecture
transformers when trained on 2 million pre-training tasks. In all cases, the errors are normalized so
that the trivial zero predictor achieves an error of 1.* Experimental details are given in Appendix A.

5 KERNEL SMOOTHING CAN ACHIEVE CONTEXT-SCALING

We begin this section by demonstrating that even one layer of SGPT is capable of context scaling.
In particular, in Figure 5, we train a one-layer model on five different context lengths and test on
the same lengths for the tasks considered in the previous section. In all four problem settings, it is
evident that using more context improves performance. Below, we analyze this simplified one layer
model in order to pinpoint how it is capable of context scaling.

10 20 30 40 50

0.3

0.4

0.5

T
es

t
M

S
E

Linear regression

10 20 30 40 50

0.7

0.8

0.9
2-layer NN

10 20 30 40 50

0.95

0.90

0.85

Decision tree

10 20 30 40 50
0.2

0.3

0.4

0.5

Sparse linear
SGPT(1-layer)

In-context examples

Figure 5: Context-scaling with one-layer SGPT. Experimental details are provided in Appendix A.

In particular, the model we analyze is identical to one layer of SGPT up to the omission of re-
maining skip connections (for more details, see Appendix A). The model implements a function
f : RN×(d+1) → R and takes the form below:

f(A) :=
[
σ
(
ψ (A)W (1)

)
W (2)

]
N

= σ
(
ψ (A)N,:W

(1)
)
W (2); (9)

*For decision trees, we found that GPT-2 performs poorly when using the input structure of concatenating
x and y. Therefore, we used the pre-trained model fromGarg et al. (2022)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

where ψ : RN×(d+1) → RN×(d+1) is a feature map (generalizing the attention function defined
in equation 6), A ∈ R(N)×(d+1) denotes the input data, and k denotes the embedding dimension
with W (1) ∈ Rd+1×k,W (2) ∈ Rk×1.

5.1 FEATURE MAP THAT ENABLES CONTEXT-SCALING

10 20 30 40

0.3

0.4

0.5

0.6

0.7

T
es

t
M

S
E

Linear Regression

ψH(·)N,N

ψH(·)N,:

ψL(·)N,N

ψL(·)N,:

10 20 30 40 50 60 70 80

In-context examples

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
M

S
E

2-layer NN

Figure 6: Comparison between using a row
of features given by ψK(·)N,: and using
the scaler given by ψK(·)N,d+1 for K ∈
{L,H}. Here, the feature maps ψL, ψH are
defined in equation 10 and equation 5 respec-
tively.

The key aspect distinguishing the model in equa-
tion 9 from a standard MLP operating on vectorized
inputs A ∈ RN(d+1) is the feature map ψ. As such,
we analyze how the feature map ψ transforms an in-
put

A =

[
x1 x2 · · · xN−1 xN
y1 y2 · · · yN−1 0

]⊤
∈ RN×(d+1).

First, we note that upon varying the function ψ, the
bottom-right element of ψ(A), denoted ψ(A)N,d+1,
is capable of implementing several well-known es-
timators, which we describe below. To ease nota-
tion, we let X := [x1, x2, · · · , xN]⊤ ∈ RN×d and
y := [y1, · · · , yN]⊤. Detailed derivations of the ex-
plicit forms for ψ(A)N,d+1 below are presented in
Appendix B.

(1) 1-step GD estimate. Let ψL(A) := (AA⊤)A.
Then,

ψL(A)N,d+1 = x⊤NX⊤y. (10)
Thus, ψL computes the estimate arising from a lin-
ear predictor trained for one step of gradient descent
on the data (X,y). This estimate has been pre-
viously considered as a mechanism through which
transformers performed ICL, but there have been
no theoretical guarantees for this approach for gen-
eral ICL tasks beyond linear regression (Von Oswald
et al., 2023; Ahn et al., 2023; Zhang et al., 2024a;
Mahankali et al., 2024; Zhang et al., 2024b).

(2) Kernel smoother. Given a kernel K, let ψK(A) = K̂(X,X)A, where

K̂(X,X)i,j =

{
K(xi,xj)∑
j ̸=i K(xi,xj)

if i ̸= j

0 if i = j
.

In this case, ψK(A)N,: has the following form

ψK(A)N,: =

[∑N−1
i=1 K(xN , xi)x

⊤
i∑N−1

i=1 K(xN , xi)︸ ︷︷ ︸
smoothed d-dimensional features

,

∑N−1
i=1 K(xN , xi)yi∑N−1
i=1 K(xN , xi)

]
︸ ︷︷ ︸

smoothed estimate

∈ Rd+1 (11)

and the last element ψK(A)N,d+1 is the kernel smoother estimate,

ψK(A)N,d+1 =

∑N−1
i=1 K(xN , xi)yi∑N−1
i=1 K(xN , xi)

. (12)

Below, we provide key examples of kernel smoothers that can be implemented by equation 12 upon
changing the kernel K.

(1) When K is the exponential kernel, i.e., K(z, z′) = e−z⊤z , then ψK implements softmax atten-
tion, and ψK(A)N,d+1 is the kernel smoother corresponding to the exponential kernel.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

103 104 105 106

0.4

0.6

0.8

1.0

T
es

t
M

S
E

10 in-context examples

103 104 105 106

0.2

0.4

0.6

0.8

1.0

40 in-context examples

10 20 30 40

0.2

0.4

0.6

0.8

1.0
1M pre-training tasks

10 20 30 40

0.2

0.4

0.6

0.8

Task : Linear regression5M pre-training tasks

ψL(·)N,:

ψH(·)N,:

Vectorized

ψL(·)N,: + Vectorized

ψH(·)N,: + Vectorized

Ridge regression

ψL(·)N,:

ψH(·)N,:

Vectorized

ψL(·)N,: + Vectorized

ψH(·)N,: + Vectorized

Ridge regression

103 104 105 106

Pre-training tasks (log scale)

0.5

0.6

0.7

0.8

T
es

t
M

S
E

103 104 105 106

Pre-training tasks (log scale)

0.3

0.4

0.5

0.6

0.7

20 40 60 80

In-context examples

0.4

0.6

0.8

20 40 60 80

In-context examples

0.2

0.4

0.6

0.8

Task : 2-layer NN

ψL(·)N,:

ψH(·)N,:

Vectorized

ψL(·)N,: + Vectorized

ψH(·)N,: + Vectorized

ψL(·)N,:

ψH(·)N,:

Vectorized

ψL(·)N,: + Vectorized

ψH(·)N,: + Vectorized

(A) Task-scaling (B) Context-scaling

Figure 7: Comparison of MLPs trained using (1) vectorized inputs; (2) features from ψK for K ∈
L,H defined in equation 10 and equation 5; (3) both features from ψK and vectorized inputs. We
compare performance across two ICL tasks: linear regression and two-layer teacher-student neural
networks. (A) Task-scaling ability of MLPs using different inputs. (B) Context-scaling ability of
MLPs using different inputs. MLPs trained on both vectorized inputs and features from ψK are able
to simultaneously context-scale and task-scale. Experimental details are provided in Appendix A.

(2) When using the kernel H defined in equation 5, then, ψH(A)N,d+1 implements the Hilbert
estimate, which is consistent as the number of in-context examples goes to infinity (Devroye et al.,
1998).

In our experiments in Figure 5, we trained an MLP on features computed using ψK(A)N,:. Yet,
the results above suggest that the scalar ψK(A)N,d+1 alone should be sufficient for context scaling.
Indeed, in the case of the Hilbert estimate, this entry alone provides a consistent estimate as the
context length goes to infinity. To this end, in Figure 6, we compare the performance of two MLPs
when the number of tasks is fixed and the context length increases. The first MLP is trained using
ψK(A)N,: ∈ Rd+1, and the second is trained on only ψK(A)N,d+1. The results in this figure confirm
that using ψK(A)N,d+1 is as good as using ψK(A)N,: for context-scaling.

5.2 TRAINING MLPS THAT SIMULTANEOUSLY CONTEXT-SCALE AND TASK-SCALE

As the Hilbert estimate provides a consistent estimate, our results above show that transformers
provably generalize to unseen tasks, when the context length approaches infinity. Nevertheless,
the issue with using the Hilbert estimate alone is that the Hilbert estimate is only computed using
examples provided in a context. As such, it cannot task-scale unlike MLPs trained on vectorized
inputs. We now show that training MLPs on vectorized inputs concatenated with features estimated
using ψK(A) result in MLPs that can both context-scale and task-scale.

Namely, we revisit the experiment presented in Figure 1 and extend our analysis by training MLPs
on three distinct input configurations: (1) vectorized input data; (2) features from ψK(A)N,:; and
(3) the concatenation of vectorized input data and features from ψK(A)N,:. In our experiments, we
consider the feature maps ψL and ψH discussed in the previous section. The results of training these
MLPs is presented in Figure 7 and we summarize the results below.

1. MLPs with vectorized input data: Figure 7A demonstrates that these MLPs exhibit task-
scaling. Yet, Figure 7B reveals that these MLPs fail to context-scale and performance can
even deteriorate with increased context length.

2. MLPs with features from ψK(·)N,:: Figure 7A illustrates that these MLPs do not task-
scale, as performance does not improve with an increasing number of tasks. This behavior
matches intuition as the Hilbert smoother and 1-step gradient descent features are task-
specific and do not leverage inter-task relationships. Yet, Figure 7B shows that these MLPs
successfully context-scale, which happens provably for the particular case of ψH .

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

3. MLPs with both vectorized inputs and features from ψK(·)N,:: Figure 7A demonstrates
that these MLPs are capable of task-scaling, consistent with the performance of MLPs on
vectorized data alone. Moreover, in Figure 7B, we now observe that these MLPs are now
capable of context-scaling, consistent with the performance of MLPs using the features
from ψK(·)N,: alone.

These results underscore the importance of the feature map ψK for context-scaling and highlight
the effectiveness of using both vectorized inputs and features from ψK in improving the ability of
models to learn in-context.

6 CONCLUSION AND LIMITATIONS

Summary. In this work, we observed that transformers, unlike MLPs, are able to simultaneously
context-scale (improve performance as the context length increases) and task-scale (improve perfor-
mance as the number of pre-training tasks increases). To better understand this property of trans-
formers, we first identified a simplified transformer (SGPT) that could solve ICL tasks competitively
with GPT-2 architecture transformers despite having no trainable key, query, and value weights in at-
tention layers. By studying a one-layer version of SGPT, we identified that the attention operator of
SGPT applied a feature map, ψ, on input data that enabled context-scaling. In particular, we showed
that this feature map could implement kernel smoothers such as the Hilbert estimate, which is a
statistically consistent estimator as the context length goes to infinity. As such, our work provably
demonstrates that transformers can context-scale, generalizing to new, unseen tasks when provided
a large context. We demonstrated the effectiveness of the feature map, ψ, for context-scaling by
showing that MLPs trained on both features from ψ and vectorized inputs could simultaneously
context-scale and task-scale.

Future work and limitations. While we have provably established that one-layer transformers
can context-scale, we empirically observe that one-layer transformers are not as sample-efficient as
deep transformers for both context-scaling and task-scaling. Thus, an important future direction is
understanding how depth improves the sample complexity of transformers in both context-scaling
and task-scaling settings. Exploring this aspect remains a promising avenue for future research and
could provide a comprehensive understanding of ICL, and more broadly, a better understanding of
how transformers are able to generalize to new tasks when provided large contexts.

Reproducibility Statement. The codebase is included as supplementary material, and we will
release the GitHub repository upon acceptance.

REFERENCES

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2022.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Siyu Chen, Sheen Heejune, Wang Tianhao, and Yang Zhuoran. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality. In The Thirty
Seventh Annual Conference on Learning Theory, pp. 4573–4573. PMLR, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. In Forty-first International Conference on Machine Learn-
ing, 2024.

Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai. In-context
learning with transformers: Softmax attention adapts to function lipschitzness. arXiv preprint
arXiv:2402.11639, 2024.

Luc Devroye, Laszlo Györfi, and Adam Krzyżak. The hilbert kernel regression estimate. Journal of
Multivariate Analysis, 65(2):209–227, 1998.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Khashayar Gatmiry, Nikunj Saunshi, Sashank J. Reddi, Stefanie Jegelka, and Sanjiv Kumar. Can
looped transformers learn to implement multi-step gradient descent for in-context learning? In
Forty-first International Conference on Machine Learning, 2024.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. In The Twelfth International Conference on Learning Representations, 2023.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. In The Twelfth International Conference on Learning
Representations, 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is provably
the optimal in-context learner with one layer of linear self-attention. In The Twelfth International
Conference on Learning Representations, 2024.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners, 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and
the emergence of non-bayesian in-context learning for regression. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, pp. 14228–14246, 2023.

Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

William L Tong and Cengiz Pehlevan. Mlps learn in-context. arXiv preprint arXiv:2405.15618,
2024.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada, Louis-Philippe Morency, and Ruslan
Salakhutdinov. Transformer dissection: An unified understanding for transformer’s attention via
the lens of kernel. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4344–4353, 2019.

11

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, and et al. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv,
abs/1910.03771, 2020.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In The
Twelfth International Conference on Learning Representations, 2024.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong, Benjamin Ha-
effele, and Yi Ma. White-box transformers via sparse rate reduction. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
Journal of Machine Learning Research, 25(49):1–55, 2024a.

Ruiqi Zhang, Jingfeng Wu, and Peter L. Bartlett. In-context learning of a linear transformer block:
Benefits of the mlp component and one-step gd initialization. In Advances in Neural Information
Processing Systems, 2024b.

A EXPERIMENTS DETAILS

We provide all experimental details below.

Problem formulation. For all ICL tasks studied in our work, we consider T pretraining tasks,
each with input data of the form:

Xt =

[
xt1 xt2 · · · xtN
yt1 yt2 · · · ytN

]⊤
∈ R(N)×(d+1)

where t ∈ 1, . . . , T indexes the tasks, N denotes the maximum context length, and d denotes the
input data dimension. We define the loss function L(θ) as:

L(θ;X1, . . . , XT) :=
1

T

T∑
t=1

[
1

N

N∑
i=1

(Mθ(X
i
t)− yti+1)

2

]
where:

Xi
t =

[
xt1 xt2 · · · xti xti+1

yt1 yt2 · · · yti 0

]⊤
∈ R(i+1)×(d+1)

M denotes the model with trainable parameters θ.

Vectorized input. By vectorizing input, we mean flattening the input into a vector. After vector-
ization, Xi

t defined above becomes,

Xi
t =

[
xt1

⊤
xt2

⊤ · · · xti
⊤

xti+1
⊤

yt1 yt2 · · · yti 0
]⊤

∈ R(i+1)(d+1).

GPT-2. We used the GPT-2 implementation from prior work (Garg et al., 2022; Bai et al., 2023),
which is based on the Hugging Face implementation (Wolf et al., 2020). Following the approach in
these prior works, we modified the embedding layer with a learnable linear layer that maps from the
ambient dimension to an embedding dimension.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

SGPT. To construct SGPT, we make the following modifications to the GPT-2 architecture: (1)
we fix all key, query, value weights to the identity; (2) we eliminate all batch-normalization layers;
and (3) we remove the second linear layer from each MLP. Following prior work (Garg et al., 2022;
Bai et al., 2023), we modified the embedding layer with a linear layer that maps from the ambient
dimension to an embedding dimension. In SGPT, this linear layer is not trainable and serves as a
fixed random map. We outline the architecture below.

LetA ∈ RN×(d+1) be the input of the model. We initialize a random matrixW0 ∈ R(d+1)×k, where
k is the embedding dimension. Defining the input of the i-th layer as H(i), we have H(0) := AW0,

H(i) = σ
((
g(H(i−1))W

(i)
proj +H(i−1)

)
W

(i)
MLP

)
+ g(H(i−1))W

(i)
proj +H(i−1) (13)

where:

• σ is the activation function, chosen to be GeLU,
• g is as defined in Equation 6, ϕ is row wise l1 normalziation.

• W (i)
proj ∈ Rk×k is the projection matrix,

• W (i)
MLP ∈ Rk×k is the MLP weight matrix for the i-th layer.

The last layer of the network is a linear layer with weights WO ∈ Rk×1.

MLP architectures. In all experiments, we use a standard 2-layer ReLU MLP with a width of
1024 units. Given an input vector x ∈ Rdin , the MLP implements a function f of the form

f(x) := σ(xW0)W1 (14)

where W0 ∈ Rdin×1024, W1 ∈ R1024×1, and σ is the ReLU activation function.

Zero-padding input for MLP. In all experiments, we always trained a single MLP for all context
lengths by zero-padding to the largest context length. For example, if the input data is in Rd and the
largest context length is Nmax, then the input dimension of the MLP is dNmax.

Expeirmental details for Figure 1. In this experiment, we trained an 8-layer GPT-2 model with
8 attention heads and a width of 256. The MLP configuration is the same as that in equation 14. We
trained and tested the models on the same set of context lengths: 5, 10, 20, 30, and 40.

Experimental details for Section 4. We trained both standard GPT-2 architecture transformers
and our proposed SGPT with the following configurations:

• Widths: {256, 512, 1024},
• Number of layers: {2, 4, 6, 8},
• Number of attention heads for GPT-2: {2, 4, 8}.

The best performance was achieved with an 8-layer model with a width of 256. For the original
GPT-2, the optimal configuration used 8 attention heads.

We outline per-task observations and configurations below:

1. Linear regression with single noise level: Following the prior work Garg et al. (2022),
the input dimension is d = 20 and noise level is σ = 0.5. We trained on context lengths
from 10 to 40 with a step size of 5.

2. Linear regression with two noise levels: Following the prior work of Garg et al. (2022),
the input dimension is d = 20 and noise levels are σ1 = 0.1, σ2 = 0.5. We trained on
context lengths from 1 to 40 with a step size of 1.

3. Decision tree: Following the prior work of Garg et al. (2022), the input dimension is
d = 20 with a tree depth of 4. We note that with the input structure equation 2, GPT-2
performs poorly, so in our figure we used the pretrained model from Garg et al. (2022).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

4. Two-layer ReLU Neural Networks. As mentioned before, we chose the width of this
family of neural networks to be r = 100 and the input dimension to be d = 20. We trained
on context lengths from 1 to 100 with a step size of 10. We observed that unlike our model,
GPT-2 does not generalize well for context lengths that it has not been trained on.

5. Sparse Linear Regression As mentioned previously, the ambient dimension of the input is
d = 20, consistent with prior work(Garg et al., 2022), and the effective dimension is s = 3.
We used scikit-learn Pedregosa et al. (2011) for the Lasso and Ordinary least sauare
performances.

Experimental details for Figure 5. In all tasks, we used input dimension d = 8 following the
setting in Tong & Pehlevan (2024). We trained and tested both models on context lengths of 10, 20,
30, 40, and 50.

Experimental details for Figure 6. We train an MLP (equation 14) on features extracted using
ψK(·)N,: and linear regression on the scalar ψK(·)N,d+1.

Experimental details for Figure 7:

• Linear regression: We used the same settings as used for the model in equation 3 with
d = 8 and σ = 0.22. We trained and tested models on the context lengths 5, 10, 20, 30,
and 40.

• 2-layer NN task: We used the same settings as used for the model in 4 with d = 8, r = 100.
Trained and tested models on the context lengths 10, 20, 30, 40, 50, 60, 70, and 80.

Hardware. We used machines equipped with NVIDIA A100 and A40 GPUs, featuring V-RAM
capacities of 40GB. These machines also included 8 cores of Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz with up to 150 GB of RAM. For all our experiments, we never used more than one GPU,
and no model was trained for more than two days.

B FEATURE MAP DERIVATION

Let A =

x⊤1 y1
x⊤2 y2
...

...
x⊤N−1 yN−1

x⊤N 0

 ∈ RN×(d+1).

1-step of GD. In this case, we have

ψL(A) = (AA⊤)A

=

x⊤1 y1
x⊤2 y2
...

...
x⊤N−1 yN−1

x⊤N 0

[
x1 x2 · · · xN−1 xN
y1 y2 · · · yN−1 0

]
A

=

x⊤1 x1 + y1y1 · · · x⊤1 xN−1 + y1yN−1 x⊤1 xN
x⊤2 x1 + y2y1 · · · x⊤2 xN−1 + y2yN−1 x⊤2 xN

... · · ·
...

...
x⊤N−1x1 + yN−1y1 · · · x⊤N−1xN−1 + yN−1yN−1 x⊤N−1xN

x⊤Nx1 · · · x⊤NxN x⊤NxN

x1 y1
x2 y2
...

...
xN−1 yN−1

xN 0

 .

Thus, ψL(A)N,d+1 = x⊤NX⊤y, where X :=

x
⊤
1
...
x⊤N

 ∈ RN×(d+1) and y :=

 y1...
yN

. This value is

equivalent to the prediction given by using one-step of gradient descent to solve linear regression.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Kernel smoothers. In this case, we have

ψK(A) = K̂(X,X)A

=

0 K(x1,x2)∑N

i=1 i̸=1 K(x1,xi)
· · · K(x1,xN)∑N

i=1 i ̸=1 K(x1,xi)

K(x2,x1)∑N
i=1 i ̸=2 K(x2,xi)

0 · · · K(x2,xN)∑N
i=1 i ̸=2 K(x2,xi)

...
...

...
...

K(xN ,x1)∑N
i=1 i ̸=N K(xN ,xi)

K(xN ,x2)∑N
i=1 i ̸=N K(xN ,xi)

· · · 0

x1 y1
x2 y2
...

...
xN−1 yN−1

xN 0

 .

Now last row of the ψK(A) is given by

ψK(A)N,: =
[∑N−1

i=1 K(XN ,xi)xi∑N−1
i=1 K(XN ,xi)

∑N−1
i=1 K(XN ,xi)yi∑N−1
i=1 K(XN ,xi)

]
∈ Rd+1.

Thus, ψK(A)N,d+1 is equvialent to the prediction for xN given by using a kernel smoother with
kernel K.

15

	Introduction
	Prior work
	Preliminaries
	Simplfied transformer model performs in context learning
	Kernel smoothing can achieve context-scaling
	Feature map that enables context-scaling
	Training MLPs that simultaneously context-scale and task-scale

	conclusion and limitations
	Experiments details
	Feature map derivation

