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ABSTRACT

Transformers exhibit In-Context Learning (ICL), a phenomenon in which these
models solve new tasks by using examples in the prompt without additional train-
ing. In our work, we analyze two key components of ICL: (1) context-scaling,
where model performance improves as the number of in-context examples in-
creases and (2) task-scaling, where model performance improves as the number
of pre-training tasks increases. While transformers are capable of both context-
scaling and task-scaling, we empirically show that standard Multi-Layer Percep-
trons (MLPs) with vectorized input are only capable of task-scaling. To under-
stand how transformers are capable of context-scaling, we first propose a signifi-
cantly simplified transformer that performs ICL comparably to the original GPT-2
model in statistical learning tasks (e.g., linear regression, teacher-student settings).
By analyzing a single layer of our proposed model, we identify classes of feature
maps that enable context scaling. Theoretically, these feature maps can implement
the Hilbert estimate, a model that is provably consistent for context-scaling. We
then show that using the output of the Hilbert estimate along with vectorized input
empirically enables both context-scaling and task-scaling with MLPs. Overall, our
findings provide insights into the fundamental mechanisms of how transformers
are able to learn in context.

1 INTRODUCTION

Pre-trained large language models exhibit In-Context Learning (ICL) capabilities, allowing them
to adapt to new tasks based exclusively on input context without updating the underlying model
parameters (Brown et al., [2020).

Input (Prompt) Output Task
(1,2,3),(4,5,9),(10,-9,1),(5,6,7) 11 In each triplet (a,b,c): c=a+b
(4,3,1),(9,0,9),(10,8,2), (17,17, 7) 0 In each triplet (a,b,c): c=a —b
(1,2,5),(2,3,8),(3,4,11), (5,6,7) 17 In each triplet (a, b, ¢): ¢ = a + 2b
(2,1,7),(3,4,18),(5,2,16), (4,3,7) 17 In each triplet (a, b, ¢): ¢ = 2a + 3b

As an example of ICL, suppose we prompt a language model using a sequence of N triples of
numbers in which each of the first N — 1 triples follows a given pattern and the goal is to fill in
the missing number in triple /V. In the table above, we give an example where N = 4. A model is
capable of filling in the missing entry by using the in-context examples present in the prompt without
seeing these specific examples in the training data. What makes in-context learning possible?

As a step toward answering this question, recent research analyzed a family of ICL problems where,
for example, the task data was generated using linear regression, student-teacher neural networks,
and decision trees (see |Garg et al.| [2022; |Akytirek et al., [2022; |Bai et al., 2023 |Ahn et al.l 2023}
Zhang et al.| 2024a; Raventos et al., 2023; [Wu et al.| 2024, for an non-exhaustive list of examples).
In these problems, a transformer was first pre-trained on 7" tasks where the data in each task was
generated from a given family of functions. For example, each task may involve predicting the last
element in a tuple as a linear combination of the other elements, as was shown in the table above.
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The pre-trained transformer was then tested on N samples from a new task that is drawn from the
same family but was not seen during pretraining. Such a setup allows for understanding the effect
of various factors including neural network architecture, the number of pre-training tasks 7', and
context length N on ICL.

Thus far, the ability of models to learn in context has been broadly defined as their ability to general-
ize to unseen tasks based on context examples without updating the model parameters. We observe
that there are two settings for studying generalization in ICL. The first, which we call context-
scaling, refers to the ability of the model to improve as the context length N increases while the
number of pre-training tasks 7’ is fixed. The second, task-scaling refers to the ability of a model to
improve as 7' increases while [V is fixed.

(A) Task-scaling (B) Context-scaling

10 in-context exmaples 100K pre-training tasks 1M pre-training tasks
== MLP =gy GPT2 ==

Ridge Regression

Test MSE

0.50 0.51 A\ 0.2
0.25 . - 0.0
104 106 10 20 30 40 10 20 30 40
# Pre-training tasks (log scale) # In-context examples # In-context examples

Figure 1: Task-scaling and context-scaling of GPT-2 architecture transformers versus MLPs for
ICL with linear regression tasks. (A) Task-scaling abilities of these models with 10 in-context
examples. (B) Context-scaling abilities of these models with 10° (left) and 10° (right) pre-training
tasks. Experimental details are provided in Appendix [A]

It is a priori unclear whether a model capable of context-scaling is also capable of task-scaling and
vice-versa. For example, as we show in Figure , both transformers and standard Multi-Layer
Perceptrons (MLPs) are capable of task-scaling on ICL of linear regression tasks. In contrast, only
transformers benefit from an increasing number of context examples as shown in Figure [IB.

What mechanism enables transformers, but not MLPs, to context-scale?

To identify such a mechanism, we begin by constructing a bare-bones transformer with all key,
query, and value weight matrices fixed to be the identity matrix. We refer to our simplified model
as Simplified GPT (SGPT). Despite its simplicity, we find that SGPT is competitive with GPT-
2 architecture transformers (Radford et al. 2019) for a variety of ICL problems including linear
regression, student-teacher networks, decision trees, and sparse linear regression (Garg et al., 2022).

Upon further analyzing a one-layer version of SGPT, we find that SGPT applies a feature map to
data that enables context-scaling. To illustrate how such a feature map can be effective for context-
scaling, consider the following input data for ICL:
T
_ X1 X2 o IN-1 TN c RNX(d+1) : (1)
v oy2 o yn—1 O

where z; € R? and our goal is to predict yn. We show that SGPT first applies a feature map
s RVX(d+1)  RNX(d+1) 9 A and then trains an MLP on the last row of 1( A), denoted 1/(A) v ..

By varying 1, we show that the scalar 1)(A)y 441 itself is an effective estimate for yy. For ex-
ample, when ¥(A) = (AAT)A, ¥ (A)N,4+1 can implement one-step GD with a scalar stepsize for
linear regression (using context examples (z;, yi)f\!ll) (Von Oswald et al.| [2023). When the feature
follows an isotropic Gaussian distribution, this estimator is consistent (as both the numbers of pre-
training tasks and context examples grow) and nearly matches the optimally tuned ridge regression
(Mahankali et al., 2024; [Wu et al.,2024). More generally, we show that ¢)(A) N,d+1 can implement
the Hilbert estimate (Devroye et al., [1998), which provides a statistically consistent estimate for
general families of tasks beyond linear regression as the context length NV approaches infinity. As
such, our results provably establish that a one-layer transformer is capable of context-scaling for any
family of tasks.
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Further, we show that these features can enhance the capabilities of MLPs for context-scaling. In
particular, by concatenating features from v(A)y . with the vectorized input, 4, € RN(@+1  we
enable task-scaling and context-scaling simultaneously in MLPs, which previously could only task-
scale when trained on A,.

We summarize our findings as follows:

* We show that a simplified transformer, SGPT, with all key, query, and value weight matrices
fixed to the identity matrix, is competitive with GPT-2 on a range of ICL tasks.

* We analyze a one-layer version of SGPT, demonstrating that this model is capable of
context-scaling solely through the use of a feature map applied to input data.

* We theoretically show that this feature map can be modified to perform kernel smoothing
to impute the missing element in each task using the other in-context examples. Upon
selecting the Hilbert estimate as the choice of smoother (Devroye et al.l [1998), this im-
puted element becomes a statistically optimal (consistent) estimate as the context length
approaches infinity.

* We show that by providing MLPs with a concatenation of features from our proposed fea-
ture map and the vectorized input for each task, the model can simultaneously achieve both
context-scaling and task-scaling.

Overall, we identify key mechanisms that transformers can use to provably generalize to new, unseen
tasks given a large context.

2 PRIOR WORK

ICL in controlled settings. The work by|Garg et al.[(2022)) initiated the study of ICL in statistical
learning tasks, such as linear regression, decision tree learning, and teacher-student neural network
learning. They showed that transformers such as GPT-2 (Radford et al., [2019), when pre-trained
with a huge number of independent tasks (around 3.2 x 107 independent tasks, each presented
once), can exhibit a strong ICL ability, in the sense that during inference time, the performance of
pre-trained transformers matches the Bayes optimal or the best-known algorithms for these tasks.
These results were later extended to other settings (see |Akyiirek et al., [2022; Raventds et al.| 2023
Bai et al., 2023; L1 et al., 2023} [Tong & Pehlevan, 2024, for examples). In particular, [Raventos
et al. (2023) empirically showed transformers can achieve nearly Bayes optimal ICL even when pre-
trained with multiple passes over a much smaller number of independent tasks, and Bai et al.|(2023)
showed by construction that transformers can select optimal algorithms in context if the task prior
is a mixture of distributions. These works together suggest that transformers can achieve both task-
scaling and context-scaling for ICL. On the other hand, Tong & Pehlevan|(2024) empirically showed
that pretrained MLPs can achieve ICL when the context length is fixed and is the same during pre-
training and inference. However, it was unclear whether MLPs can achieve context-scaling, and
our work empirically gives a negative answer. Motivated by this, we study the mechanism inside
transformers that enable both task and context scaling.

Linear attention and one-step gradient descent. The theory of ICL is best understood in linear
regression with a fixed context length (therefore only concerning the task-scaling). Specifically,
Von Oswald et al.|(2023)) showed by construction that single linear attention can implement one-step
gradient descent (GD) in context. |Ahn et al.| (2023)); Zhang et al.|(2024a); Mahankali et al.| (2024);
Zhang et al.| (2024b)) proved that optimally pre-trained single linear attention is equivalent to a one-
step GD. [Wu et al.| (2024) proved that one-step GD nearly matches the Bayes optimal algorithm
for inference and can be pre-trained efficiently with finite independent tasks. Later works such as
Cheng et al.|(2024)) connected nonlinear attention to functional one-step GD in feature space. These
works together have substantially furthered our understanding of single linear attention for ICL of
linear regression with a fixed context length. However, these results assume (or are only sharp the
context length is fixed, and in particular, they fail to explain the observed context-scaling ability of
pre-trained transformers.

Softmax attention and kernel smoothers. The connection between softmax attention and kernel
smoothers was first pointed out by [I'sai et al. (2019). Specifically, by setting the query and key
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matrices to be the same, an attention component can be viewed as a kernel-smoother (that uses
a learnable semi-positive definite kernel). Empirical evidence suggests that using shared a matrix
for query and key matrices does not significantly impact the performance of transformers (Tsai
et al.l 2019; [Yu et al., [2024). Later, theoretical works [Chen et al.| (2024); [Collins et al.| (2024)
utilized this connection to study the ICL of softmax attention in both linear (Chen et al.,|2024)) and
nonlinear regression tasks (Collins et al.,[2024). In these settings, softmax attention achieves ICL by
implementing a kernel smoother with an optimal bandwidth parameter (achieved by training query
and key matrices). Compared with these works, we demonstrate that transformers can achieve ICL
using an attention component that does not contain trainable parameters (that is, setting query, key,
and value matrices to identity matrices). Our results suggest that the transformer architecture is
capable of performing ICL without needing to explicitly learn any hyperparameters in the attention
head. We explain this by connecting to a hyper-parameter-free yet statistically consistent kernel
smoother given by the Hilbert estimate (Devroye et al., |{1998).

Approximation ability of transformers. The transformer is known to be a versatile architecture
that can implement efficient algorithms (by forwarding passing an input prompt) in many scenarios
(see |Akyiirek et al., {2022} Bai et al., [2023} |Guo et al., 2023} [Lin et al., 2023} |Gatmiry et al., 2024,
for a non-exhaustive list of examples). These constructive results, while explaining ICL from an
approximation theory perspective, heavily exploit the trainability of query, key, and value weight
matrices. In this work, we show that transformers are competitive with GPT-2 architecture trans-
formers for ICL even when all of their query, key, and value weight matrices are fixed to be the
identity matrix. Our results suggest the prior constructive results may not fully explain the ICL
ability of transformers.

3 PRELIMINARIES

In this section, we outline the problem setup, training details, architectural details, and mathematical
preliminaries for our work.

Problem formulation. For all ICL tasks studied in our work, we consider T pre-training tasks,
each with input data of the form:

T i (N)x (d+1)

Ay = eR 2
! L/i ys o yﬁv} ’ @
where t = 1,...,7 indexes the tasks, N denotes the maximum context length, and d denotes the

input data dimension. We define the loss function L(0) as:

T

1
L(0; Ay, ..., Ap) := TZ
t=1

1 .
© D (Mo(4}) - ygﬂ ,

where

it
Yi Y2 Yy

and Mpy(-) denotes the model with trainable parameters 6. The tasks A, are uniformly sampled from

the family of tasks F (e.g., linear regression with a Gaussian prior), representing the distribution of

tasks relevant to the in-context learning problem.

. xt xt e l't xt T .
Al = { 1 T2 ; larl:| c R(Hrl)x(dﬂ)7
i

Attention. Given three matrices A, A5, A3 € RV*™_ attention layers implement functions ¢ :
RNXm o RNXm 5 RNXm _y RNX™ defined as follows,
1

g(A1, Az, Az) == ¢ (\/mz‘hAQT) As; 3)
where ¢ : RV*N — RNXN i5 a generic function that could be a row-wise softmax function
(Vaswani et al., [2017), an entry-wise activation function such as ReLU, or just an identify map.
For self-attention layers, we are typically given one input matrix A € R¥*™ and three weight ma-
trices Wg, Wi, Wy € R™*™_ In this case, the matrices Ay, A2, A3 are computed respectively as
AWQ, AWK, and AWV.
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Kernel function. Kernel functions are positive-semidefinite functions that map pairs of inputs to
real values (Scholkopf et al.l 2002). Formally, given =,y € R? akemnel K : R x R — Risa
function of the form K (z,y) = (1(x),1(y))2, where 1 : R — H is referred to as a feature map
from R? to a Hilbert space . For matrix inputs A € R™*?% and B € R"*%, we let K(A, B) €
R™>™ such that K (A, B);; = K(A;, B;) where A; and B; denote the i-th and j-th rows of A and
B respectively.

Kernel smoother. Given a kernel K : R x R — R and a set of points (x;,y;)"_, where x; € R?
and y; € R, the kernel smoother estimate at point x is a function of the form

o Z?:l K(Xa Xz)yz

Frn(x) = 5 @)
Zi:1 K(x,%;)
We will reference kernel smoothers in Section
Hilbert estimate. The Hilbert estimate is a kernel smoother using the kernel
, 1
H(z,2') := — ()
[l — ']l

where |-, denotes the £5-norm in RY. The key property of the Hilbert estimate that we use is that
it is a consistent (asymptotically optimal) estimate. In particular, at almost all =, as the number of
samples n goes to infinity, an — f* in probability where f*(z) = E[y|X = z] denotes the Bayes
optimal predictor (Devroye et al., [1998)).

4  SIMPLFIED TRANSFORMER MODEL PERFORMS IN CONTEXT LEARNING

In this section, we introduce our simplified transformer model, SGPT, and demonstrate that it is
competitive with GPT-2-type architectures on various ICL tasks. To construct SGPT, we fix all key,
query, and value weights to be the identity matrix in the GPT-2 architecture. Consequently, the
attention mechanism (defined in equation [3)) reduces to the function:

g(H) := ¢(HH")H € RV*(d+1), (6)

We define ¢ to be a function that performs row-wise #; normalization on its argument. To further
simplify our model, we remove the final linear layer of each MLP block (i.e., our MLP blocks have
one linear layer), along with batch normalization and the skip connection after the MLP layer. These
details are further outlined in Appendix

We consider the following ICL tasks from prior work: (1) linear regression with a single noise level
(Akyiirek et al.}|2022), (2) linear regression with multiple noise levels used in (Bai et al., [2023)), (3)
sparse linear functions used in (Garg et al.| [2022), (4) two-layer ReLU neural networks (Garg et al.,
2022), and (5) decision trees (Garg et al.,[2022)). Below, we explain the problem setup and state our
results for each of these five synthetic tasks.

Linear regression with fixed noise. The problem setting is as follows:

14

zeRY~ N(0, 1), y:ﬁTw+ewith6~N<0,d>, e~ N(0,0?).

In this setting, prior work by Bai et al.|(2023)), showed that on all context lengths, GPT-2 architecture
transformers can perform comparably to task-specific, optimally-tuned ridge regression. In Figure
we provide evidence that SGPT matches the performance of these GPT-2 models.

Linear regression with multi noise level. The problem setting is as follows:
xERdNN(OaId)7 yizﬁT%“"f

. Iy N(0,0?), with probability 1
th ~ ¢ d ~ ) I 2 .
with § ~ N (0’ d) ance {N(o,o—%), with probability 1



Under review as a conference paper at ICLR 2025

2M pre-training tasks 20 in-context examples
0.70 x
1
104 —— GPT-2 \ I
o —— SGPT 0.68 1 ' /
N —-= Ridge regression 0.66 1 \_\ _‘/,
= 081 ' Y
+ A -
% o6 0.64 -—- GPT-2
&= o 0.62 4 —— Simplified GPT-2
%  Ridge regression
: : : —  0.60 : : :
10 20 30 40 100 10! 102
# In-context examples Regularizer parameters

Figure 2: Linear regression with a single noise level. Left panel. Performance across varying
context lengths (context-scaling). Right panel. Effect of regularization on performance for a fixed
number of in-context examples. Experimental details are given in Appendix [A]

2M pre-training tasks (o = 0.1) 2M pre-training tasks (o = 0.5) 30 in-context examples
1.0 4 :
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Figure 3: Linear regression with multiple noise levels. Left and middle panels: Performance
across varying context lengths (context-scaling). Right panel: Effect of regularization on perfor-
mance for a fixed number of in-context examples. Experimental details are given in Appendix [A]

In this setting, prior work by |Bai et al.| (2023)) demonstrated that GPT-2 architecture transformers
can achieve performance comparable to that of task-specific, optimally tuned ridge regression across
all context lengths and for both noise levels. They refer to the model’s ability to adapt to the noise
level as algorithm selection. In Figure[3] We demonstrate that SGPT performs comparably to GPT-2
architecture transformers in this setting, exhibiting similar algorithm selection capabilities.

Two-layer ReLLU Neural Networks. Following the work of |Garg et al.| (2022), we consider the
following nonlinear problem setting where data for each task are generated using two-layer neural
networks. In particular, data are generated according to

TR~ NO.L), y= asé(w] z);
j=1

where o, w; are randomly initialized parameters of a fixed two-layer neural network, ¢ denotes
the element-wise ReLLU activation function, and r = 100,d = 20 (as selected in prior work).
Garg et al.|(2022) demonstrated that GPT-2 architecture transformers can match the performance
of student networks (i.e., networks of the same architecture initialized differently and trained using
Adam optimizer [Kingma| (2014)). In Figure @B), we show that SGPT can match the performance
of GPT-2 architecture transformers on this task.

Decision Tree. Following the work of |Garg et al.[(2022), we consider a nonlinear problem setting
where data for each task are generated using depth-four trees. For a task corresponding to a tree f,
we have:

x~N(0,1a), y=f(z), %)

Previously, |Garg et al. (2022) demonstrated that GPT-2 architecture transformers can perform in-
context learning on this family of non-linear functions, outperforming XGBoost as a baseline. In
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Figure[d(A), we show that SGPT is also capable of in-context learning (ICL) in this setting, perform-
ing comparably to GPT-2 architecture and similarly outperforming XGBoost. We trained XGBoost
models using the same hyperparameters as in (Garg et al., 2022).

Sparse linear functions. Following the work by |Garg et al.| (2022), we consider the class sparse
linear regression problems. In this setting, data are generated according to

reRY~N(0,1), y=p8"x, (8)

where 8 ~ N (0, I;) and we zero out all but s coordinates of 3 uniformly at random for each task.
As in prior work, we select d = 20, s = 3. In Figure dC , we demonstrate that SGPT is capable
of ICL for this class of functions, performing comparably to GPT-2 architecture transformers and
closely to the Lasso estimator (Tibshirani, [1996)), while significantly outperforming the ordinary
least square (OLS) baseline.

(A) Decision tree (B) 2-layer NN (C) Sparse linear regression
1 " — GPI2 10 —— GPT-2
—— SGPT .
081 051 —— 2-layer NN, SGD 084 SGPT
. '\ —— Lasso
061 0.4 4 0.6 4 \\ === Least square

0.4 4 0.44

Test MSE

0.24

It
o

0.0
T T T T T T T T T T T T T T
20 40 60 80 100 20 40 60 80 100 0 10 20 30 40

# In-context examples

=3
=3

Figure 4: Nonlinear ICL tasks. Context-scaling capability of SGPT versus GPT-2 architecture
transformers when trained on 2 million pre-training tasks. In all cases, the errors are normalized so
that the trivial zero predictor achieves an error of 1.* Experimental details are given in Appendix [A]

5 KERNEL SMOOTHING CAN ACHIEVE CONTEXT-SCALING

We begin this section by demonstrating that even one layer of SGPT is capable of context scaling.
In particular, in Figure[5] we train a one-layer model on five different context lengths and test on
the same lengths for the tasks considered in the previous section. In all four problem settings, it is
evident that using more context improves performance. Below, we analyze this simplified one layer
model in order to pinpoint how it is capable of context scaling.

Linear regression 0.9 2-layer NN Decision tree Sparse linear
05 ’ 0.95 0.5 —m— SCPT(L-layer)
< 0.4
= 0.8
-
= 04 0.90
Z 0.3
Eos 0.7
- = 085 - 0.2 !
10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50

# In-context examples
Figure 5: Context-scaling with one-layer SGPT. Experimental details are provided in Appendix [A]

In particular, the model we analyze is identical to one layer of SGPT up to the omission of re-
maining skip connections (for more details, see Appendix [A). The model implements a function
f: RN*(d+1) _ R and takes the form below:

)= [o (v (WD) W] =0 (v (4), WD) W ©)

“For decision trees, we found that GPT-2 performs poorly when using the input structure of concatenating
z and y. Therefore, we used the pre-trained model fromGarg et al.|(2022)
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where ¢ : RV*(d+1) _, RNx(d+1) jg 3 feature map (generalizing the attention function defined
in equation E]), A € RW)x(@+1) denotes the input data, and k denotes the embedding dimension
with W) ¢ Ré+1xk 117(2) ¢ RFXT,

5.1 FEATURE MAP THAT ENABLES CONTEXT-SCALING

The key aspect distinguishing the model in equa-
tion 0 from a standard MLP operating on vectorized
inputs A € RN(@+1) is the feature map 1). As such,
we analyze how the feature map 1) transforms an in- 071
put

Linear Regression

Test MSE

-
_ T T2 o IN-1 IN| O pNX(dHD)
i Y2 - yn—1 O

First, we note that upon varying the function 1, the i i . :
bottom-right element of ¢)(A), denoted ¥ (A) N d+1. 10 » 0 .
is capable of implementing several well-known es- 2-layer NN

timators, which we describe below. To ease nota-
tion, we let X := [x1, 22, -+ ,2n] € RV*? and
vy :=[y1, - ,yn]| . Detailed derivations of the ex-
plicit forms for ¢)(A)n 441 below are presented in
Appendix

(1) 1-step GD estimate. Let ¢ (A) := (AAT)A.
Then, 10 2 30 10 50 60 70 50
Yr(A)N,d+1 = aj;XTy. (10) # In-context examples

Thus, 11, computes the estimate arising from a lin-

ear predictor trained for one step of gradient descent Figure 6: Comparison between using a row
on the data (X,y). This estimate has been pre- of features given by x(-)n,. and using
viously considered as a mechanism through which the scaler given by ¥ (-)n a1 for K €
transformers performed ICL, but there have been {L,H}. Here, the feature maps ¢, ¢ are
no theoretical guarantees for this approach for gen- defined in equation[I0]and equation[3|respec-
eral ICL tasks beyond linear regression (Von Oswald| tively.

et al., 2023} |Ahn et al.| 2023 [Zhang et al., 2024a;

Mahankali et al., [2024} [Zhang et al., [2024b).

Test MSE

=
1

(2) Kernel smoother. Given a kernel K, let i (A) = K (X, X)A, where

K(zi,z;) o .

KX, X); = 4 S Kaway H1FT
)y 3 )iyg s

0 ifi=74

In this case, ¥k (A)n,. has the following form

i Ky, e)al S5 K,z | pan
1pf((‘4)]\772 = N—1 9 N—1 GR (11)
Yo K, ;) dim1 K, ;)
smoothed d-dimensional features smoothed estimate
and the last element 15 (A) v g+1 is the kernel smoother estimate,

N—-1
. K(xn,z)ys

Vi (A)N,a41 = 2o Kl ) L (12)

SN K (en )

Below, we provide key examples of kernel smoothers that can be implemented by equation [I2]upon
changing the kernel K.

(1) When K is the exponential kernel, i.e., K(z,2') = e~*' %, then 1k implements softmax atten-
tion, and 1k (A) N,4+1 is the kernel smoother corresponding to the exponential kernel.
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(A) Task-scaling (B) Context-scaling
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Figure 7: Comparison of MLPs trained using (1) vectorized inputs; (2) features from ¢ x for K €
L, H defined in equation [T0] and equation [3} (3) both features from v xc and vectorized inputs. We
compare performance across two ICL tasks: linear regression and two-layer teacher-student neural
networks. (A) Task-scaling ability of MLPs using different inputs. (B) Context-scaling ability of
MLPs using different inputs. MLPs trained on both vectorized inputs and features from i are able
to simultaneously context-scale and task-scale. Experimental details are provided in Appendix [A]

(2) When using the kernel H defined in equation |5 then, ¥y (A)nN ¢+1 implements the Hilbert
estimate, which is consistent as the number of in-context examples goes to infinity (Devroye et al.,
1998).

In our experiments in Figure [5| we trained an MLP on features computed using 5 (A)n,.. Yet,
the results above suggest that the scalar ¢k (A) y.q+1 alone should be sufficient for context scaling.
Indeed, in the case of the Hilbert estimate, this entry alone provides a consistent estimate as the
context length goes to infinity. To this end, in Figure[6] we compare the performance of two MLPs
when the number of tasks is fixed and the context length increases. The first MLP is trained using
Y (A)n. € R and the second is trained on only 9 (A) x4+ 1. The results in this figure confirm
that using ¥k (A) N ,q+1 is as good as using ¢ (A) . for context-scaling.

5.2 TRAINING MLPS THAT SIMULTANEOUSLY CONTEXT-SCALE AND TASK-SCALE

As the Hilbert estimate provides a consistent estimate, our results above show that transformers
provably generalize to unseen tasks, when the context length approaches infinity. Nevertheless,
the issue with using the Hilbert estimate alone is that the Hilbert estimate is only computed using
examples provided in a context. As such, it cannot task-scale unlike MLPs trained on vectorized
inputs. We now show that training MLPs on vectorized inputs concatenated with features estimated
using ¥k (A) result in MLPs that can both context-scale and task-scale.

Namely, we revisit the experiment presented in Figure [T]and extend our analysis by training MLPs
on three distinct input configurations: (1) vectorized input data; (2) features from i (A)n,.; and
(3) the concatenation of vectorized input data and features from ¢k (A) .. In our experiments, we
consider the feature maps v, and ¥z discussed in the previous section. The results of training these
MLPs is presented in Figure[7]and we summarize the results below.

1. MLPs with vectorized input data: Figure[7A demonstrates that these MLPs exhibit task-
scaling. Yet, Figure[/B reveals that these MLPs fail to context-scale and performance can
even deteriorate with increased context length.

2. MLPs with features from ¢ (-)n .: Figure illustrates that these MLPs do not task-
scale, as performance does not improve with an increasing number of tasks. This behavior
matches intuition as the Hilbert smoother and 1-step gradient descent features are task-
specific and do not leverage inter-task relationships. Yet, Figure[7B shows that these MLPs
successfully context-scale, which happens provably for the particular case of 1.
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3. MLPs with both vectorized inputs and features from ¢ (-) v .: Figure demonstrates
that these MLPs are capable of task-scaling, consistent with the performance of MLPs on
vectorized data alone. Moreover, in Figure , we now observe that these MLPs are now
capable of context-scaling, consistent with the performance of MLPs using the features
from 9k () . alone.

These results underscore the importance of the feature map i for context-scaling and highlight
the effectiveness of using both vectorized inputs and features from ¥k in improving the ability of
models to learn in-context.

6 CONCLUSION AND LIMITATIONS

Summary. In this work, we observed that transformers, unlike MLPs, are able to simultaneously
context-scale (improve performance as the context length increases) and task-scale (improve perfor-
mance as the number of pre-training tasks increases). To better understand this property of trans-
formers, we first identified a simplified transformer (SGPT) that could solve ICL tasks competitively
with GPT-2 architecture transformers despite having no trainable key, query, and value weights in at-
tention layers. By studying a one-layer version of SGPT, we identified that the attention operator of
SGPT applied a feature map, v, on input data that enabled context-scaling. In particular, we showed
that this feature map could implement kernel smoothers such as the Hilbert estimate, which is a
statistically consistent estimator as the context length goes to infinity. As such, our work provably
demonstrates that transformers can context-scale, generalizing to new, unseen tasks when provided
a large context. We demonstrated the effectiveness of the feature map, v, for context-scaling by
showing that MLPs trained on both features from ¢/ and vectorized inputs could simultaneously
context-scale and task-scale.

Future work and limitations. While we have provably established that one-layer transformers
can context-scale, we empirically observe that one-layer transformers are not as sample-efficient as
deep transformers for both context-scaling and task-scaling. Thus, an important future direction is
understanding how depth improves the sample complexity of transformers in both context-scaling
and task-scaling settings. Exploring this aspect remains a promising avenue for future research and
could provide a comprehensive understanding of ICL, and more broadly, a better understanding of
how transformers are able to generalize to new tasks when provided large contexts.

Reproducibility Statement. The codebase is included as supplementary material, and we will
release the GitHub repository upon acceptance.
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A EXPERIMENTS DETAILS
We provide all experimental details below.

Problem formulation. For all ICL tasks studied in our work, we consider T pretraining tasks,
each with input data of the form:

oot o gt
Xt _ % % iN e R(N)X(d-i—l)
Yyr Y2 - Yy
where ¢t € 1,...,T indexes the tasks, NV denotes the maximum context length, and d denotes the

input data dimension. We define the loss function L(0) as:

1 [1 E
L(0; X, Xp) o= NZ(MQ(XZ) - yf+1)2]
t=1 =1
where:
X,-_ x’i :Cé J,‘Z; I§+1 TGR(iJ’-l)X(d-‘rl)
N 7 7 SR 7 A |

M denotes the model with trainable parameters 6.

Vectorized input. By vectorizing input, we mean flattening the input into a vector. After vector-
ization, X defined above becomes,

-
i T T T T i

X = [‘Tﬁ ay o2t oxt oyl Yoyl 0] € ROEFD(E+D),
GPT-2. We used the GPT-2 implementation from prior work (Garg et al., 2022} [Bai et al., [2023)),
which is based on the Hugging Face implementation (Wolf et al., [2020). Following the approach in
these prior works, we modified the embedding layer with a learnable linear layer that maps from the
ambient dimension to an embedding dimension.
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SGPT. To construct SGPT, we make the following modifications to the GPT-2 architecture: (1)
we fix all key, query, value weights to the identity; (2) we eliminate all batch-normalization layers;
and (3) we remove the second linear layer from each MLP. Following prior work (Garg et al.| |2022;
Bai et al.|, 2023)), we modified the embedding layer with a linear layer that maps from the ambient
dimension to an embedding dimension. In SGPT, this linear layer is not trainable and serves as a
fixed random map. We outline the architecture below.

Let A € RV*(d+1) pe the input of the model. We initialize a random matrix Wy € RUE+HDXE \where
k is the embedding dimension. Defining the input of the i-th layer as H*), we have H(®) := AW,

HO = o (g WD, + HENYWD, L) + g(HE W, + HOD (13)
where:

¢ ¢ is the activation function, chosen to be GeLLU,

* g is as defined in Equation[6] ¢ is row wise [1 normalziation.

W[E:")OJ € R¥** is the projection matrix,

« WY, , € RF* is the MLP weight matrix for the i-th layer.
The last layer of the network is a linear layer with weights Wy € RF*1,

MLP architectures. In all experiments, we use a standard 2-layer ReLU MLP with a width of
1024 units. Given an input vector € R%= the MLP implements a function f of the form

f(x) :=o(aWy)W; (14)

where W, € R4inx1024 117, ¢ R1024x1 and & is the ReLU activation function.

Zero-padding input for MLP. In all experiments, we always trained a single MLP for all context
lengths by zero-padding to the largest context length. For example, if the input data is in R% and the
largest context length is N4, then the input dimension of the MLP is dN,,4;-

Expeirmental details for Figure[I[} In this experiment, we trained an 8-layer GPT-2 model with
8 attention heads and a width of 256. The MLP configuration is the same as that in equation[I4] We
trained and tested the models on the same set of context lengths: 5, 10, 20, 30, and 40.

Experimental details for Section[d] We trained both standard GPT-2 architecture transformers
and our proposed SGPT with the following configurations:

« Widths: {256, 512, 1024},
* Number of layers: {2, 4, 6, 8},
* Number of attention heads for GPT-2: {2, 4, 8}.

The best performance was achieved with an 8-layer model with a width of 256. For the original
GPT-2, the optimal configuration used 8 attention heads.

We outline per-task observations and configurations below:

1. Linear regression with single noise level: Following the prior work |Garg et al.| (2022),
the input dimension is d = 20 and noise level is ¢ = 0.5. We trained on context lengths
from 10 to 40 with a step size of 5.

2. Linear regression with two noise levels: Following the prior work of |Garg et al.| (2022),
the input dimension is d = 20 and noise levels are 07 = 0.1,02 = 0.5. We trained on
context lengths from 1 to 40 with a step size of 1.

3. Decision tree: Following the prior work of |(Garg et al.| (2022), the input dimension is
d = 20 with a tree depth of 4. We note that with the input structure equation [2) GPT-2
performs poorly, so in our figure we used the pretrained model from |Garg et al.[(2022).
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4. Two-layer ReLU Neural Networks. As mentioned before, we chose the width of this
family of neural networks to be = 100 and the input dimension to be d = 20. We trained
on context lengths from 1 to 100 with a step size of 10. We observed that unlike our model,
GPT-2 does not generalize well for context lengths that it has not been trained on.

5. Sparse Linear Regression As mentioned previously, the ambient dimension of the input is
d = 20, consistent with prior work(Garg et al., 2022)), and the effective dimension is s = 3.
We used scikit-1learn Pedregosa et al. (2011) for the Lasso and Ordinary least sauare
performances.

Experimental details for Figure [5| In all tasks, we used input dimension d = 8 following the
setting in|{Tong & Pehlevan|(2024)). We trained and tested both models on context lengths of 10, 20,
30, 40, and 50.

Experimental details for Figure [§f, We train an MLP (equation on features extracted using
¥ (-)n,: and linear regression on the scalar ¥ g (-) N d+1-

Experimental details for Figure

» Linear regression: We used the same settings as used for the model in equation [3| with
d = 8 and o = 0.22. We trained and tested models on the context lengths 5, 10, 20, 30,
and 40.

* 2-layer NN task: We used the same settings as used for the model ind]with d = 8, = 100.
Trained and tested models on the context lengths 10, 20, 30, 40, 50, 60, 70, and 80.

Hardware. We used machines equipped with NVIDIA A100 and A40 GPUs, featuring V-RAM
capacities of 40GB. These machines also included 8 cores of Intel(R) Xeon(R) Gold 6248 CPU @
2.50GHz with up to 150 GB of RAM. For all our experiments, we never used more than one GPU,
and no model was trained for more than two days.

B FEATURE MAP DERIVATION

JU1T Y1
552T Y2
Let A = : : c RNx(d+1)
93%—1 YN-1
Ty 0

1-step of GD. In this case, we have
Y (A) = (AAT)A

T
Ty Y1
L
L) Y2
_ . . ry T2 -+ IN-1 <IN A
y1 Y2 - yn-1 O
=
-TN_F1 YN-1
| Ty 0
T T T
T T1+ N e T{TN-1+ Y1YN-1 T TN 1 Y1
T T T
Tg X1+ Y21 e Ty TN—1 T Y2YN—-1 Ty TN X2 Y2
T T T
Tn_11+YN-1Y1 - Tny_1TN-1 T YN-1YN—-1 ZTn_1ZN| [TN-1 YN-1
TN TNTN TNTN TN 0
T
Ty n
Thus, Y1, (A)N.ar1 = Xy, where X := NS RN*(d+1) apd y = : |. This value is
m;\r, YN

equivalent to the prediction given by using one-step of gradient descent to solve linear regression.
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Kernel smoothers. In this case, we have

¥ (A) = K(X, X)A

0 K(z1,22) . K(z1,zN)
Y1 izl K@re) izt i1 K@)
K(z2,21) 0 . K(z2,zN)

s i K(w2.m) Yis i K(w2m)

K(ox ) Kana) 0
Zy:l i£N K(ZL’N,I.L) Ziv:l i£N K(:L’N,I1)

Now last row of the ¢ (A) is given by

_ =N KX mi)ws ZfV:EIK(XNm)yi} d+1
vk (AN, = [ ST K(vr) SN KOve) | C R

T 1
€2 Y2

IN-1 YN-1
TN 0

Thus, ¢¥x (A) N,d+1 1s equvialent to the prediction for x given by using a kernel smoother with

kernel K.
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