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ABSTRACT

Despite the success of very deep convolutional neural networks, they currently op-
erate at very low resolutions relative to modern cameras. Visual attention mech-
anisms address this by allowing models to access higher resolutions only when
necessary. However, in certain cases, this higher resolution isn’t available. We
show that autoresolution networks, which learn correspondences between low-
resolution and high-resolution images, learn representations that improve low-
resolution classification - without needing labeled high-resolution images.

1 INTRODUCTION

Despite the success of very deep convolutional neural networks in machine vision (Simonyan &
Zisserman (2014); Szegedy et al. (2014); He et al. (2015)), the resolution at which they operate
is still less than 1% that of an iPhone camera 1. Applying vanilla convolutional neural networks
directly to high-resolution images is currently computationally infeasible but can be addressed using
visual attention models (Ranzato (2014)). However, these models currently require access to high-
resolution images to ”zoom” into.

To address the case when access to labeled high-resolution images is limited, we propose autores-
olution networks. Similar to Doersch et al. (2015), we define an unsupervised context prediction
task - predict whether a high-resolution patch belongs to a low-resolution image or where the high-
resolution patch corresponds to the low-resolution image. This formulation allows us to make hun-
dreds of predictions per image, resulting in the ability to train very deep unsupervised convolutional
neural networks. We show that we can train a model with more than forty convolutional layers and
that the representations learned improve an already strong low-resolution classification (Krizhevsky
(2009)) baseline.

2 MODEL

Our architecture is motivated by the success of the inception architecture (Szegedy et al. (2014))
and siamese networks (Chopra et al. (2005)). Our model consists of two convolutional towers,
a patch embedding tower which consists of 17 convolutional layers and a low-resolution image
embedding tower which consists of 40 convolutional layers, that are fed a high-resolution patch
and a low-resolution image. We concatenate the outputs of both convolutional towers, and feed
this to a classifier or regressor, that consists of 5 convolutional layers. The convolutional tower
that processes images uses primarily inception layers while the convolutional tower that processes
patches uses primarily convolutional layers. All layers use rectified linear activations, except for the
final convolutional layer, which has a softmax activation in the case of classification or no activation
in the case of regression. To our knowledge, this is the deepest unsupervised model trained to date.

For the patch classification objective, the model must predict whether the high-resolution patch
belongs to the low-resolution image. In our experiments, for every batch, our model predicted a
positive example, where the high-resolution patch was sampled from the image, and a negative
example, where the high-resolution patch was sampled from another image. To create the negative
example, we incremented the patch’s index within the batch by one so that they were no longer
aligned with the image they were sampled from. For the patch regression objective, The model must

1Assuming commonly used 256x256 input and iPhone 6’s 8-megapixel camera.
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Figure 1: Starting from a high-resolution image (far left), our model creates a low-resolution version
through average pooling and a high-resolution patch by taking a random crop of the original image.
Each of these two new images is embedding by a series of convolutions and the embeddings are con-
catenated and fed to a patch classifier. The classifier must predict whether the patch belongs to the
image (negatives are created by sampling patches from other images in the batch). We also trained
a regression variant which must instead predict the coordinates of where the patch was cropped (not
shown).

predict the coordinates of where the high-resolution image was cropped from the low-resolution
image. In our experiments, we used the center coordinates of a patch normalized to ±1. For both
objectives we didn’t find our model relied on trivial solutions or chromatic aberrations (Doersch
et al. (2015)).

3 EXPERIMENTS

To evaluate our model, we first optimized both unsupervised objectives using an internal Google
dataset consisting of 100M images similar to ImageNet. Then, we used the convolutional tower that
processes the low-resolution images to initialize a classifier on the Cifar10 dataset.

3.1 HYPERPARAMETERS

All models were implemented in TensorFlow (Abadi et al.) and trained using NVidia Kepler GPUs.
For optimization, we used RMSprop (Tieleman & Hinton (2012)) with decay of 0.9, ε = 1.0, and a
batch size of 32. All learning rates were decayed by 0.94 every 2 epochs and gradients were clipped
(Pascanu et al. (2012)) to 10 based on their global norm. All models were evaluated using a running
average of their parameters.

For the patch classification objective, our model used a learning rate of 0.003. For the patch regres-
sion objective, our model used a learning rate of 0.01. For Cifar10, we trained a baseline using a
learning rate of 0.01. We fine-tuned models initialized with the weights of converged patch classi-
fication and regression models using learning rates [0.01, 0.003, 0.001, 0.0003], and found 0.003 to
work best for the patch classification model and 0.001 for the patch regression model.

Figure 2: Given a low-resolution image (far-left) and a high-resolution ”super” patch from another
image (right), our model produces a binary heat map (middle). The green and red boxes show which
part of the high-resolution patch correspond to a binary value in the heat map. The right and far-right
image show what the receptive field of the patch embedding sees when it makes a correct (green)
and incorrect (red) classification.
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Table 1: Cifar10 error for a randomly initialized model, and models initialized with the converged
weights of the image tower trained to optimize the patch classification and regression objective.

Models Error

No Fine-Tuning 9.09%
Fine-Tuned (Regression) 6.94%
Fine-Tuned (Classification) 6.60%

3.2 TILED PREDICTIONS

For our unsupervised experiments, we found that making multiple predictions per image substan-
tially improved the convergence of our models. Concretely, we crop a 127× 127× 3 ”super patch”
randomly from a 256× 256× 3 image. By unrolling the patch convolutional tower over the ”super”
patch we can make hundreds of predictions per image over a grid of overlapping, adjacent patches,
instead of a single prediction. The receptive field of the convolutional tower that processed the
patches meant that for every image, we made 47× 47 binary predictions for the patch classification
objective or 47× 47× 2 real valued predictions for the patch regression objective.

3.3 CIFAR10

Using the low-resolution embedding tower, which consisted of 40 convolutional layers, we add a
softmax layer with 50% dropout to create a classifier. To obtain a baseline, we trained this model
with random initializations. Then, we initialized the same model using the weights of converged
patch classification and patch regression models. We found this form of pre-training (Bengio et al.
(2007)) improved an already strong Cifar10 (Krizhevsky (2009)) baseline. For all models, we trained
on 45K training images, continuously validated on the remaining 5K images in the training set, and
evaluated the best model only once on the test set. For the fine-tuned models, we performed 10K
steps of gradient descent with the initializations fixed, to update only the softmax layer, to prevent
its random initialization from destroying the learned initialization.

Figure 3: Cifar10 validation error of randomly initialized and models pre-trained with autoresolution
networks.
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