
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

YOLO-RD: INTRODUCING RELEVANT AND COMPACT
EXPLICIT KNOWLEDGE TO YOLO BY RETRIEVER-
DICTIONARY

Anonymous authors
Paper under double-blind review

ABSTRACT

Identifying and localizing objects within images is a fundamental challenge, and
numerous efforts have been made to enhance model accuracy by experimenting
with diverse architectures and refining training strategies. Nevertheless, a preva-
lent limitation in existing models is overemphasizing the current input while ignor-
ing the information from the entire dataset. We introduce an innovative Retriever-
Dictionary (RD) module to address this issue. This architecture enables YOLO-
based models to efficiently retrieve features from a Dictionary that contains the
insight of the dataset, which is built by the knowledge from Visual Models (VM),
Large Language Models (LLM), or Visual Language Models (VLM). The flexible
RD enables the model to incorporate such explicit knowledge that enhances the
ability to benefit multiple tasks, specifically, segmentation, detection, and clas-
sification, from pixel to image level. The experiments show that using the RD
significantly improves model performance, achieving more than a 3% increase
in mean Average Precision for object detection with less than a 1% increase in
model parameters. Beyond 1-stage object detection models, the RD module im-
proves the effectiveness of 2-stage models and DETR-based architectures, such as
Faster R-CNN and Deformable DETR.

1 INTRODUCTION

In the field of computer vision, object detection models play a pivotal role, these models are de-
signed to precisely locate objects within images. They are used in applications such as medical
image analysis and autonomous driving. Additionally, they can also be used as backbone models
for downstream tasks like multi-object tracking (Zhang et al., 2022; Cao et al., 2023; Aharon et al.,
2022), and crowd counting (Zhang et al., 2016; Song et al., 2021). As the basis for these extended
tasks, object detection models must combine high accuracy with low latency to allow downstream
tasks to stand on the shoulders of giants.

Among object detection models, the YOLO (Redmon et al., 2016), FasterRCNN (Ren et al., 2015),
and DETR (Carion et al., 2020) are notably prevalent. The YOLO series primarily utilizes Con-
volutional Neural Networks (CNN) (LeCun et al., 1998), providing a balance between inference
speed and accuracy. From YOLOv1 through YOLOv10 (Redmon et al., 2016; Redmon & Farhadi,
2017; 2018; Bochkovskiy et al., 2020; Jocher, 2020; Li et al., 2022; Wang et al., 2023a; Jocher
et al., 2023; Wang et al., 2024b;a), there has been a consistent focus on refining the architecture
and training methods to reduce the model’s parameters while enhancing accuracy. Beyond the main
YOLO series, variants such as YOLOR (Wang et al., 2023b) incorporate implicit knowledge and
other techniques to further boost model performance.

As shown in Figure 1, while both CNNs and Transformers (Vaswani et al., 2017) concentrate on the
input image, CNNs are restricted to local input data, and Transformers, despite considering interac-
tions among various inputs, are still confined to the given inputs or other model branches. However,
the above-mentioned models often overlook a crucial aspect of explicit knowledge—the comprehen-
sive dataset information. On the other hand, some contrastive methods, e.g. SimCLR (Chen et al.,
2020), DINO (Caron et al., 2021) have demonstrated that cross-referencing data is beneficial.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: A comparison between traditional models and our proposed Retriever Dictionary module.
On the left, CNN-based models focus on local regions (blue box), while Transformer-based models
tend to utilize the entire image (red box). However, both methods fail to leverage the information
from the entire dataset, as illustrated in the bottom-right corner. Our module enhances the model’s
resource utilization by incorporating knowledge from other parts of the dataset.

Moreover, in the realm of natural language processing, some models incorporate the Retrieval Aug-
mented Generation (RAG) architecture (Lewis et al., 2020), which stores knowledge in a pre-built
database and retrieves this information during inference to pass to the generator for encoding. This
allows the model to access external information from a large, pre-established dataset. This approach
significantly enhances the capabilities of large language models, although it typically requires sub-
stantial computational resources. However, applying this technique to object detection or other
computer vision tasks still faces significant challenges, particularly in preparing and retrieving ex-
ternal data. Object detection models must carefully balance accuracy, model parameters, and latency
when handling external information.

To address these challenges, we introduce a compact external module composed of a Retriever and
a Dictionary, designed to enhance dataset utilization in computer vision models during training.
This module effectively filters out irrelevant information and amplifies crucial data. The Retriever
aggregates region features to generate a query, while the Dictionary, containing comprehensive
dataset information, enables the query to select relevant atoms. Notably, this pre-built Dictionary
extends beyond the YOLO backbone, incorporating data encoders like VLMs or LLMs, which bring
extensive training data and knowledge for more precise and comprehensive information.

This module allows models to reinforce data during the forward process, benefiting not only region-
level tasks like object detection but also pixel-level tasks like segmentation and whole-image tasks
like classification. Furthermore, our module can be extended to various model architectures, such
as the FPN network in Faster RCNN and the backbone-encoder regions in Detection Transform-
ers, providing higher-quality information during downsampling, ultimately leading to much better
performance.

In this paper, we make several key contributions:

• We introduce a Retriever-Dictionary module that enables efficient utilization of external
information without the need for an external loss function, while still maintaining the
Dictionary’s properties and allowing updates to its parameters.

• We demonstrate that incorporating external knowledge from models such as VLMs and
LLMs can significantly enhance model performance.

• We further show that integrating external information not only improves YOLO’s object
detection performance but can also extend to other mainstream vision tasks and architec-
tures.

These improvements substantially enhance the capabilities of object detection models and demon-
strate that our module exhibits All-to-All properties, allowing it to utilize external knowledge to
improve performance across multiple tasks and model architectures with minimal additional param-
eters.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Real-time object detection. Real-time object detection is a foundational problem in computer vi-
sion, with a focus on achieving low latency and high accuracy. Traditional approaches have primarily
focused on CNN architectures, with seminal works such as the OverFeat (Sermanet et al., 2014) and
Faster R-CNN(Girshick, 2015; Ren et al., 2015). Since the introduction of Vision Transformers
(ViT) (Dosovitskiy et al., 2021), there have been notable follow-up works, including DETR (Carion
et al., 2020) and RT-DETR (Zhao et al., 2023). However, the CNN-based YOLO series models
hold a crucial position in the field of real-time detection due to their ease of training from scratch,
lightweight design, and ability to perform high-speed inference.

Each version of the YOLO model introduces different architectures and training strategies. For
example, YOLOv7 (Wang et al., 2023a) employs ELAN and trainable bag-of-freebies techniques to
enhance performance, while YOLOv9 (Wang et al., 2024b) incorporates Generalized Efficient Layer
Aggregation Networks (G-ELAN) and Programmable Gradient Information for improved efficiency
and learning capability. YOLOv10 (Wang et al., 2024a) further introduces the compact inverted
block to optimize model size and computation. On the theoretical front, works like YOLOR (Wang
et al., 2023b) leverage the shared characteristics across multiple computer vision tasks, allowing
the model to learn implicit knowledge and relax the prediction head, thus generalizing the YOLO
architecture to various tasks. Despite these architectural and strategic differences, all YOLO models
share a conceptual framework comprising three core modules: a Backbone for downsampling, a
Neck (e.g. FPN) for feature fusion, and a Detection Head for final prediction. In this paper, we also
utilize the Backbone as an image encoder.

Dictionary learning. Dictionary learning is a fundamental technique in signal processing and
machine learning, aimed at learning a set of basis functions (or atoms) that can efficiently represent
signals. This technique has been extensively explored in the context of sparse coding, where signals
are approximated as sparse linear combinations of dictionary atoms. Additionally, it was discovered
that natural images can be effectively represented using sparse coding models (Olshausen & Field,
1997), laying the foundation for further development of dictionary learning algorithms.

Several algorithms have been proposed to optimize dictionaries and sparse coefficients. Among
these, K-SVD (Aharon et al., 2006) has become a standard due to its effectiveness in applications
such as image denoising, compression, and inpainting. With the rise of CNNs, dictionary learning
has also seen new developments, such as designing convolutional blocks and defining loss func-
tions to achieve dictionary learning objectives (Garcia-Cardona & Wohlberg, 2018; Zheng et al.,
2021). Additionally, dictionary learning has been applied to tasks like content-based image retrieval
(CBIR), as seen in works like Şaban Öztürk (2021); Tarawneh et al. (2019). In this paper, we focus
on dictionary learning rather than sparse dictionary learning and emphasize dictionaries that can
robustly represent information and retain critical, relevant signals.

Retrieval-augmented generation (RAG) Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020) is a technique that first appeared in large language models. It primarily involves three steps:
Indexing, where the database is split into chunks, encoded into vectors, and stored in a vector
database; Retrieval, which retrieves relevant information based on similarity to the input; and Gen-
eration, where both the original input and the retrieved information are fed into the model for further
processing. This approach enables LLM to handle unseen information and has been successfully
applied in T5 (Raffel et al., 2020), or certain versions of ChatGPT(Achiam et al., 2023).

Due to the time-consuming nature of the retrieval process, and the real-time requirements of most
computer vision tasks, RAG has seen limited application in vision-based models. Recently, some
work has been done to mitigate the bottleneck in Wu & Xie (2024); Kim et al. (2024); Liu et al.
(2023). For example, RALF (Kim et al., 2024) leverages LLM to embed a huge vocabulary set and
find similar meaning words to refine features; REACT (Liu et al., 2023) utilizes the World Wide Web
as the information source to extend model knowledge. However, they still require an undetachable
huge dataset or Language model which leads to extremely high training and inference loading. In
this work, we provide the vision-based model with not only a light-weight database but also refinable
features.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Dictionary is initialized by encoding the dataset using an image encoder, from which N
embeddings are selected as Dictionary atoms. During training, for each input feature Xw,h, the
Retriever core—comprising the Coefficient Generator (G) and the Global Information Exchanger
(E)—generates coefficients for each atom α in the Dictionary D. Then, the normalized coefficients
are used as weights for each Dictionary atom. Finally, by concatenating the residual of Xw,h, the
output Yw,h is obtained.

3 METHOD

In this work, we introduced the Retriever-Dictionary module, as shown in Figure 2, which enables
computer vision models to utilize comprehensive dataset knowledge with minimal extra parameters
quickly. This plug-in stores encoded information from various models, enhancing the model’s ability
to identify which features of the input data should be emphasized or diminished, thereby improving
overall performance. The RD-module is composed of two main components: the Retriever and
the Dictionary. The Dictionary consists of N elements, each represented as Rf vectors, known as
atoms α. The Retriever generates the coefficient of α for each pixel according to the input. The
Dictionary can be generated using the YOLO backbone or initialized with diverse models like the
visual language model CLIP (Radford et al., 2021) and large language models such as GPT (Radford
et al., 2018). This approach allows the model to align visual and linguistic representations, leading
to a more balanced and valuable distribution of atoms. Furthermore, the incorporation of linguistic
knowledge helps the module retain crucial information. The main goal is to adjust the distribution
of the Dictionary and allow the Retriever core to find the best Atoms’ weight for each input pixel.

3.1 MODULE STRUCTURE

The Retriever core aims to efficiently generate the coefficients of each α in the Dictionary. In-
spired by depthwise convolution Chollet (2017), we separate the Retriever into two components:
the Coefficient Generator G and the Global Information Exchanger E. The Coefficient Generator,
denoted as G : Rf×W×H → RN×W×H , computes coarse coefficients based on the input feature
map X ∈ Rf×W×H , where f is the input feature dimension and W , H represent the width and
height of the feature map, respectively. The coarse coefficients are calculated as follows:

Y = G(X) = WG ·Xw,h, (1)

where WG ∈ RN×f is the projection matrix of G, and Xw,h ∈ Rf is the feature vector at spatial
location (w, h).

The Global Information Exchanger, denoted as E : RN×W×H → RN×W×H , refines and exchanges
information across neighboring pixels, and is defined as:

E(Y) = WE(i) ∗ Y (i), (2)

where WE ∈ RN×1×k×k is the depthwise convolution filter with kernel size k × k, and i ∈ [0, N)
indexes the channels of Y . The term Y (i) ∈ RW×H refers to the spatial feature map of the i-th
channel.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The combined operation of G and E generates the final coefficients vector c for each pixel:

c = E(G(Xw,h)). (3)

This separation of tasks minimizes direct computation of the coefficient vectors c at each pixel
location, significantly reducing the parameter count while maintaining high performance (see Ex-
periments 4.3 and Appendix A.8 for further discussion).

To prevent the coefficient vectors c from simply replicating the input features, which would make
the Dictionary become an identity matrix, we normalize each c. We apply a normalization process
equivalent to Positional Normalization (PONO) (Li et al., 2019), which is defined as:

PONO(X) =
X − µc√
σc + ϵ

· γ + β, (4)

where the mean µc and variance σc are calculated as:

µc =
1

N

N∑
n=1

Xn, σc =
1

N

N∑
n=1

(Xn − µc)
2,

with Xn representing the n-th feature at a fixed spatial location, and γ, β are learned parameters.
Although PONO was initially designed to preserve structural information in generative networks,
here it ensures that the feature vectors c are properly scaled and centered, preventing the Dictionary
from collapsing into an identity matrix.

The normalized coefficients c′ are then used to select atoms from the Dictionary, either enhancing or
diminishing specific features. This selection is a weighted summation of the atoms and integration
with the input residuals to produce the final output. To preserve the dictionary’s learning dynamics,
each atom is normalized to unit length during training. The resulting formula is as follows:

Yh,w = λ ·Xh,w + (1− λ) ·
N∑
i=1

c′i,h,w · αi, (5)

where |αi| = 1 for all αi ∈ D, and λ is the residual weight. As can be seen in Equation 5, the
weighted summation of Dictionary atoms is mathematically equivalent to a convolutional layer with
a kernel size of 1, stride of 1, and no bias term. To ensure that the sum of each atom’s components
equals 1, as required in dictionary learning, we employ weight normalization (Salimans & Kingma,
2016). This eliminates the need for an external objective function to enforce this condition. Weight
normalization is defined as:

WN(D) =

{
α

|α|
| ∀α ∈ D

}
. (6)

Finally, we combine the Retriever core (G and E), the Dictionary, and the residual connection to
express the entire Retriever Dictionary process RD : Rf×W×H → Rf×W×H as:

Z = RD(X) = λ ·X + (1− λ) · PN(E(G(X))) ∗WN(D), (7)

where ∗WN(D) denotes the convolution operation using the weight-normalized Dictionary atoms
set WN(D) as filters.

3.2 Dictionary INITIALIZATION

By pre-initializing the Dictionary, we embed knowledge into the module atoms of the Dictionary.
More precisely, we use the selected encoder to map the entire dataset into a high-dimensional
space, by incorporating insights from various modality models, as illustrated in Figure 3. This
high-dimensional space shares the same dimension as the original YOLO backbone middle layer.
Obviously, this will have a huge number of vectors and present multiple groups in high-dimensional
space, we employ k-means (Macqueen, 1967) to leave representative vectors, which ultimately serve
as Dictionary atoms. Through these operations, we can map the dataset pairs into a high-dimensional
space in a short time (this operation is equivalent to using the model to traverse the entire dataset
at the speed of inference), and find vectors that can represent most of the dataset. For features that
are not in the Dictionary, we can use the feature through the residual mechanism in the module, and
utilize the Retriever Dictionary to bring closer atoms of the same category to the outlier feature.
Next, we discuss using different modality models as encoders for encoding knowledge:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Dataset distribution (b) Init with YOLO (c) Init with GPT (d) Init with CLIP

Figure 3: Illustrates the distribution of the dataset in the model’s middle layer, where the blue
square represents the current input feature. In traditional models, only the input feature is used,
neglecting the rich information available in the dataset. In contrast, with our Retriever-Dictionary
model, additional data information is retrieved from the dataset. The dictionary can be initialized
from different models: vision models, language models, or vision-language models. The latter
provides a more comprehensive and integrated representation of the dataset.

Vision model. In the YOLO architecture, the backbone layer is designed to transform the origi-
nal image into high-dimensional embeddings, providing the FPN with enriched regional informa-
tion, which makes the backbone an ideal image encoder. Therefore, we use the modern pre-trained
YOLOv9 (Wang et al., 2024b) as the vision model encoder. This model is leveraged to traverse the
entire training set, converting all the dataset’s data into feature-dimensional distributions.

Vision language model. As a visual language model, CLIP possesses a strong understanding of
input image features and can map these features into a semantically related space for compari-
son. Therefore, we utilize CLIP for visual language initialization. However, according to Dense-
CLIP (Rao et al., 2022), although CLIP’s output embeddings are global representations of the image,
the output of CLIP’s ViT blocks retains information about corresponding regions. CLIP primarily
uses the first patches as embeddings, leaving out local information from the other patches. As a
result, we leverage all the output patches from CLIP’s image encoder to embed the dataset more
comprehensively.

Large language model. For initialization from an LLM, since language models cannot directly
convert images into feature embeddings and image captions typically describe the entire image rather
than specific regions, we use class names from MSCOCO (Lin et al., 2014) and ImageNet-21k (Rid-
nik et al., 2021), along with image captions from MSCOCO, as prompts for GPT (Radford et al.,
2018). However, because some feature dimensions deviate significantly from the unit interval, we
apply standard normalization to scale each dimension, aiming to stabilize the training process while
preserving the relative positioning of the vectors.

3.3 Dictionary COMPRESSION

The objective of designing Retriever Dictionary (RD) is to retain the most critical information from
the dataset. However, even after training, the number of atoms in the Dictionary may exceed the
required amount, with some atoms being infrequently used or irrelevant to the specific dataset do-
main. Drawing inspiration from knowledge distillation and the Teacher-Student model (Hinton
et al., 2015), we condense the original Dictionary D into a smaller and more efficient version, de-
noted as d. To align the output features of d with those of D, we employ contrastive learning (Chen
et al., 2020) to provide the d soft labels instead of the traditional cross-entropy loss. In this process,
the model backbone and RD are frozen, while the optimization is focused on the smaller Retriever
Dictionary module d. The objective function is defined as:

Li,w,h = − log
exp(sim(zrd

i,w,h, z
RD
i,w,h)/τ)∑B

j=1

∑W,H
w′,h′ exp(sim(zrd

i,w,h, z
RD
j,w′,h′)/τ)

, (8)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparing the performance and the improvements across different modalities of RD-
module and structures on the COCO 2017 validation set.

BackBone Initializer Params Latency f mAPval
.5:.95 (%) mAPval

.5 (%)

YOLOv7 Origin 37.2M 3.59 - 50.04 68.65
YOLOv9 Origin 25.3M 4.00 - 52.64 69.56
Faster-RCNN Origin 43.1M 41.00 - 38.40 59.00
Deformable DETR Origin 40.1M 41.10 - 43.80 62.60

YOLOv7 VM 37.4M 3.70 R512 51.37 (↑ 2.66%) 69.42 (↑ 1.13%)
YOLOv9 VM 25.5M 4.16 R512 53.41 (↑ 1.46%) 70.57 (↑ 1.46%)
Faster-RCNN VM 44.1M 41.00 R512 40.50 (↑ 5.47%) 60.30 (↑ 2.20%)
Deformable DETR VM 41.2M 41.10 R512 44.10 (↑ 0.68%) 63.30 (↑ 1.12%)

YOLOv7 VLM 37.4M 3.70 R512 51.75 (↑ 3.42%) 70.12 (↑ 2.15%)
YOLOv9 VLM 25.5M 4.16 R512 53.36 (↑ 1.37%) 70.55 (↑ 1.43%)
Faster-RCNN VLM 44.1M 41.02 R512 40.50 (↑ 5.47%) 60.40 (↑ 2.37%)
Deformable DETR VLM 41.2M 41.28 R512 44.40 (↑ 1.37%) 63.30 (↑ 1.12%)

YOLOv7 LLM 38.2M 3.79 R1024 51.36 (↑ 2.64%) 69.40 (↑ 1.17%)
YOLOv9 LLM 25.8M 4.20 R1024 53.28 (↑ 1.22%) 70.48 (↑ 1.33%)
Faster-RCNN LLM 44.6M 41.03 R1024 40.70 (↑ 5.99%) 60.80 (↑ 3.05%)
Deformable DETR LLM 41.7M 41.35 R1024 44.16 (↑ 0.91%) 63.10 (↑ 1.12%)

where zrd
i,w,h ∈ Rf represents the i-th batch output feature of d at position (w, h), B is the batch

size, τ is the temperature parameter, and sim(·, ·) denotes the cosine similarity between two vectors.

This distillation process ensures that, within the specific domain, the atoms in d can effectively ap-
proximate various potential linear combinations found in the original Dictionary D. By selectively
removing atoms from RD that are not pertinent to the dataset domain, we achieve a significant re-
duction in atom count—by at least 50%. This reduction not only increases the model’s efficiency
but also maintains the performance and expressiveness within the targeted domain.

4 EXPERIMENT

4.1 SETUPS

Experimental setup. We primarily validated the method on the Microsoft COCO dataset (Lin
et al., 2014), training on the COCO 2017 train set and evaluating on the COCO 2017 validation
set. For Object Detection and Segmentation, we respectively used mAP and mAP@.5 as evaluation
metrics, testing on YOLOv7, YOLOv9, Faster RCNN, and Deformable DETR. For the Classifica-
tion task, we used the CIFAR-100 dataset with the YOLOv9-classify model, using top-1 and top-5
accuracy as metrics.

Implementation details. All experiments were conducted using 8 Nvidia V100 GPUs. In the
main series of experiments, we trained a modified YOLOv7 model, which included the addition of
a Retriever-Dictionary Module, for 300 epochs in 2 days. The YOLOv9-based model was trained
for 5 days with 500 epochs. We also trained a modified Faster RCNN, based on the mm-detection
framework, for 120 epochs over 3 days. For Deformable DETR, we trained for approximately 120
epochs over 7 days. The classification task on CIFAR-100 (Krizhevsky et al., 2009) took 2 hours on
a single Nvidia 4090 GPU for 100 epochs.

4.2 COMPARISION WITH RD

Apply to state-of-the-art detectors. As demonstrated in Table 1, we evaluate the proposed mod-
ule mainly on YOLOv7 and also integrate it with both fundamental and SOTA real-time object
detection models. The Dictionary is initialized separately by three distinct models: Vision Model

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(VM) with the YOLOv7 backbone, Vision-Language Model (VLM) employing CLIP, and Large
Language Model (LLM) based on GPTv2. Among these, CLIP provides the most significant im-
provement, likely due to its well-balanced performance across both the vision and language domains.

The RD module consistently yields notable improvements. In YOLOv7 and YOLOv9, the intro-
duction of the module increases the parameter count by less than 1%, yet results in substantial
performance gains across key metrics. The improvement is comparable to the performance boost
achieved by moving to the next model size (e.g., YOLOv7-x, YOLOv9-e), which typically requires a
100% increase in parameters. For more traditional architectures, we incorporate the RD module into
Faster R-CNN with a ResNet-50 backbone He et al. (2016). Despite a modest 2% increase in param-
eters, the model outperforms Faster R-CNN with a ResNet-101 backbone. Furthermore, we extend
the module to a transformer-based architecture, specifically Deformable DETR Zhu et al. (2020)
with a ResNet-50 backbone. Similar to the previous results, the RD module yields improvements
equivalent to upgrading to the ResNet-101 backbone.

These experiments conclusively demonstrate that leveraging dataset information and incorporating
knowledge from VM, VLM, and LLM significantly enhances the performance of a wide range of
base models, while requiring only minimal additional parameters.

Apply to other tasks. The Retriever Dictionary (RD) module enhances pixel-level features, and
its potential benefits extend beyond detection tasks to include other vision tasks, such as segmenta-
tion and classification. To validate this, we conducted segmentation experiments on the MSCOCO
dataset and classification experiments on the CIFAR-100 dataset, demonstrating the effectiveness of
the RD module across both pixel-level and image-level tasks. Table 2 compares the original YOLO
multi-task structure with the one incorporating our proposed module. The results clearly show that
the Retriever Dictionary module upgrades performance across classification, detection, and segmen-
tation tasks, demonstrating its effectiveness in enhancing overall multi-tasking performance.

Table 2: Comparing RD at different tasks.

Task Metrics(%) w/o RD w/ RD Improve

Classification Top-1 74.86 75.70 ↑ 1.12%
Top-5 93.72 94.28 ↑ 0.60%

Detection mAPBox 50.04 51.75 ↑ 3.42%
mAPBox

.5 68.65 69.51 ↑ 2.15%

Segmentation mAPSeg 40.53 41.56 ↑ 2.54%
mAPSeg

.5 64.00 64.64 ↑ 1.00%

Table 3: Comparing with different
knowledge-based methods.

Method mAP mAP.5 +Params

baseline 52.64 69.56 -
KD 52.52 69.14 57.3M
YOLO-World 51.00 67.70 66.1M
RALF 51.40 68.07 37.8M
RD (ours) 53.36 70.55 0.2M

Comparison of knowledge integration methods for YOLO. Table 3 compares RD with various
methods for integrating external knowledge into YOLO. Specifically, knowledge distillation (Hinton
et al., 2015) uses YOLOv9-e as the teacher model and YOLOv9-c as the student model, denoted as
KD. Another approach, YOLO-World (Cheng et al., 2024), incorporates visual-language concepts
from CLIP into YOLO to enhance its understanding of both domains. Additionally, RALF (Kim
et al., 2024) utilizes CLIP’s text encoder to create a vocabulary set as a database in a RAG-based
method. The ”+Params” column represents the additional parameters introduced by the knowledge
provider or supervisor model compared to the baseline. Overall, RD not only offers the lightest
solution, with only 0.2M additional parameters but also delivers the best performance, making it a
highly efficient and effective approach.

4.3 ABLATION STUDIES

Fuse coefficient generator and global information exchanger. In Section 3.1, we discussed
splitting the Retriever core into pointwise convolution G and depthwise convolution E can sig-
nificantly reduce the number of parameters. Without a split Retriever core, the 1-stage coefficient
generates the process as follows:

R′(X) = Fuse (E,G)(X) = Xw,h ∗W eq (9)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Analysis of fuse Retriever core.

Retriever Weight size Params. mAP

Fuse(E,G)(X) Rf×N×k×k 41.9M 50.95%
E(G(X)) Rf×N ,RN×k×k 4.3M 50.64%

Table 5: Performance comparison of different models on the COCO 2017 validation set.

BackBone Initializer algorithm Params Atoms Feature mAPval
.5 mAPval

.5:.95

YOLOv7 Random - 37.4M 512 R512 50.02% 69.06%
YOLOv7 YOLOv7 - 37.4M 512 R512 51.34% 69.37%
YOLOv7 CLIP - 37.4M 512 R512 51.75% 70.12%
YOLOv7 GPT - 38.2M 512 R1024 51.33% 69.40%

YOLOv7 YOLOv7 k-means 37.4M 512 R512 51.34% 69.37%
YOLOv7 YOLOv7 VAE 37.4M 512 R512 51.19% 69.25%

YOLOv7 CLIP k-means 37.4M 512 R512 51.75% 70.12%
YOLOv7 CLIP Convex Hull 37.8M 1024 R512 49.58% 68.92%

YOLOv7 GPT Normalize 38.2M 512 R1024 51.33% 69.40%
YOLOv7 GPT Tanh 38.2M 512 R1024 51.27% 69.35%

YOLOv7 CLIP - 37.4M 512 R512 51.75% 70.12%
YOLOv7 GPT - 38.2M 512 R1024 51.33% 69.40%
YOLOv7 Mix {LLM, VLM} 37.4M 512 R512 51.37% 69.49%

where W eq ∈ Rk×k×f×n is the convolution matrix, R′ : Rf×W×H → RN×W×H is the 1-stage
generate process. This operation will require an extra of Nfk2 − (fN + Nk2) parameters. And
the computational complexity is of O(WHNfk2), compared to G and E, whose complexity is of
O
(
WH(fN +Nk2)

)
, R′ requires a huge amount of operations and parameters, but only receives

slightly better performance, as demonstrated in Table 4.

Different Dictionary construction strategies. Table 5 presents an ablation study on more differ-
ent strategies for constructing the Dictionary. For VM, a VAE (Kingma & Welling, 2014) is used
to capture the dataset’s general distribution and build the Dictionary. In VLM, we leverage whole
CLIP (Radford et al., 2021)’s image encoder for global embeddings, as outlined in Section 3.2.

Additionally, we explore using a convex hull of the dataset’s feature distribution to address outliers,
though this limits the RD-module’s ability to represent common features. For LLM, normaliza-
tion techniques like tanh and standard normalization are applied to manage outliers. While tanh
compresses large feature distances, standard normalization is more effective in handling outliers.

Finally, we combine feature distributions from LLM and VLM to create a blended representation.
Despite yielding positive results, these methods fail to produce a uniform distribution and underper-
form compared to the strategy described in the methodology.

4.4 VISUALIZATION

In this section, we employ visualization to demonstrate the impact of the RD-module on object
detection models and to visualize the Retriever’s selection of atoms from the Dictionary.

Visualization of Dictionary atom coefficients. To gain a deeper understanding of the behavior of
the Retriever and Dictionary core, we visualized the atom coefficients and their distribution during
the forward pass. In Figure 4b, the X-axis represents the correlation with the current input and each
α, while the Y-axis displays the corresponding coefficient for each atom. The surrounding points
retrieved from the dataset, relevant to the current input, are marked as × on the plot.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Input Image (b) Large image in the middle

(c) Positive 1 (d) Positive 2

(e) Negative 1 (f) Negative 2

Figure 4: Visualization of Dictionary Atom Coefficients

(a) Model’s input image (b) The output of backbone (c) The output of RD module

Figure 5: Visualization of w/o RD module

Using the bounding box area in Figure 4a as the input, we generate a correlation-coefficient map. As
depicted in Figure 4b, most high-correlation and high-coefficient pairs (Figures 4c,4d) correspond
to traffic signs, while the low-correlation and low-coefficient pairs (Figures 4e,4f) do not. This
visualization demonstrates that the Retriever Dictionary effectively selects the relevant atoms to
enhance input features while attenuating non-relevant atoms, thereby reinforcing the input’s key
characteristics.

Visualizing model backbone output with and without Dictionary. Using the same traffic signals
as the model input (Figure 5a), we visualize the feature map generated by the origin backbone
network (Figure 5b) and the backbone output including the RD-module (Figure 5c). In Figure 5c,
the Traffic Sign pattern is distinctly retained, and background information is preserved. In contrast,
Figure 5b retains only parts of the railings and the input photo padding block. This comparison
demonstrates that the RD-module helps the model retain important information while eliminating
unimportant details.

5 CONCLUSION

The Retriever Dictionary module offers a lightweight and efficient approach to incorporating dataset
knowledge into YOLO through various modality models. By leveraging pre-stored explicit knowl-
edge within the Dictionary, the Retriever effectively retrieves relevant information while the Dictio-
nary learning mechanism enables fine-tuning of the atoms. This module demonstrates its versatility,
providing improvements not only in YOLO-based tasks but also across a range of foundational
object detection models and broader computer vision tasks. We believe that this work lays the foun-
dation for further exploration of real-time computer vision models that integrate explicit or external
knowledge sources.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing over-
complete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54,
2006.

Netzer Aharon, Eyal Gazit, and Itzik Bibi. Bot-sort: Robust associations multi-pedestrian tracking.
arXiv preprint arXiv:2206.14651, 2022.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Jinkun Cao, Jiangmiao Pang, Xinshuo Weng, Rawal Khirodkar, and Kris Kitani. Observation-
centric sort: Rethinking sort for robust multi-object tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the International Conference on Computer Vision (ICCV), 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning
(ICML). PMLR, 2020.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

François Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations (ICLR), 2021.

Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge, 2010.

Cristina Garcia-Cardona and Brendt Wohlberg. Convolutional dictionary learning: A comparative
review and new algorithms. arXiv preprint arXiv:1709.02893, 2018.

Ross Girshick. Fast r-cnn. In Proceedings of the International Conference on Computer Vision
(ICCV), 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Glenn Jocher. ultralytics/yolov5: v2.0, 2020.

Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics YOLO, 2023. URL https://github.
com/ultralytics/ultralytics.

11

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jooyeon Kim, Eulrang Cho, Sehyung Kim, and Hyunwoo J Kim. Retrieval-augmented open-
vocabulary object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024.

Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In International Confer-
ence on Learning Representations (ICLR), 2014.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for advanced
research). URL http://www.cs.toronto.edu/kriz/cifar.html, 2009. URL http://www.cs.
toronto.edu/˜kriz/cifar.html.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86, 1998.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceedings of the
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Boyi Li, Felix Wu, Kilian Q Weinberger, and Serge Belongie. Positional normalization. In Proceed-
ings of the Conference on Neural Information Processing Systems (NeurIPS), 2019.

Cheng Li, Qiaofeng Ye, Tongda Zhang, and Kai Chen. Yolov6: A single-stage object detection
framework for industrial applications. arXiv preprint arXiv:2209.02976, 2022.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Proceedings of
the European Conference on Computer Vision (ECCV). Springer, 2014.

Haotian Liu, Kilho Son, Jianwei Yang, Ce Liu, Jianfeng Gao, Yong Jae Lee, and Chunyuan Li.
Learning customized visual models with retrieval-augmented knowledge. 2023.

J Macqueen. Some methods for classification and analysis of multivariate observations. In Pro-
ceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability/University of
California Press, 1967.

Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
employed by v1? Vision Research, 37, 1997.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. In OpenAI, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Interna-
tional Conference on Machine Learning (ICML). PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 2020.

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou,
and Jiwen Lu. Denseclip: Language-guided dense prediction with context-aware prompting. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2022.

Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

12

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), NIPS’15, Cambridge, MA, USA, 2015. MIT Press.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining
for the masses. In Proceedings of the Conference on Neural Information Processing Systems
(NeurIPS), 2021. URL https://github.com/Alibaba-MIIL/ImageNet21K.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks, 2016.

Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, and Yann LeCun. Over-
feat: Integrated recognition, localization and detection using convolutional networks. In Interna-
tional Conference on Learning Representations (ICLR), 2014.

Qingyu Song, Changan Wang, Zhengkai Jiang, Yabiao Wang, Ying Tai, Chengjie Wang, Jilin Li,
Feiyue Huang, and Yang Wu. Rethinking counting and localization in crowds: A purely point-
based framework. In Proceedings of the International Conference on Computer Vision (ICCV),
2021.

Ahmad S. Tarawneh, Ahmad B. Hassanat, Ceyhun Celik, Dmitry Chetverikov, M. Sohel Rahman,
and Chaman Verma. Deep face image retrieval: a comparative study with dictionary learning. In
2019 10th International Conference on Information and Communication Systems (ICICS), 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proceedings of the Confer-
ence on Neural Information Processing Systems (NeurIPS), 2017.

Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding. Yolov10:
Real-time end-to-end object detection. arXiv preprint arXiv:2405.14458, 2024a.

Chien-Yao Wang, Hong-Yuan Mark Liao, Yueh-Hua Wu, Ping-Yang Chen, Jun-Wei Hsieh, and I-
Hau Yeh. Cspnet: A new backbone that can enhance learning capability of cnn. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRw),
2020.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Yolov7: Trainable bag-of-
freebies sets new state-of-the-art for real-time object detectors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2023a.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. You only learn one representation: Unified
network for multiple tasks. Journal of Information Science and Engineering, 2023b.

Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. YOLOv9: Learning what you want to
learn using programmable gradient information. In Proceedings of the European Conference on
Computer Vision (ECCV), 2024b.

Penghao Wu and Saining Xie. V*: Guided visual search as a core mechanism in multimodal llms. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2024.

Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Ping Luo, and Zehuan Yuan. Bytetrack: Multi-
object tracking by associating every detection box. In Proceedings of the European Conference
on Computer Vision (ECCV), 2022.

Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao, and Yi Ma. Single-image crowd counting
via multi-column convolutional neural network. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei, Guanzhong Wang, Qingqing Dang, Yi Liu, and
Jie Chen. Detrs beat yolos on real-time object detection, 2023.

13

https://github.com/Alibaba-MIIL/ImageNet21K

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Hongyi Zheng, Hongwei Yong, and Lei Zhang. Deep convolutional dictionary learning for image
denoising. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2021.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: De-
formable transformers for end-to-end object detection. In International Conference on Learning
Representations (ICLR), 2020.

Şaban Öztürk. Convolutional neural network based dictionary learning to create hash
codes for content-based image retrieval. Procedia Computer Science, 183, 2021. ISSN
1877-0509. URL https://www.sciencedirect.com/science/article/pii/
S1877050921005822. Proceedings of the 10th International Conference of Information and
Communication Technology.

14

https://www.sciencedirect.com/science/article/pii/S1877050921005822
https://www.sciencedirect.com/science/article/pii/S1877050921005822

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 REPRODUCIBILITY AND TRAINING SETUP

In Table 5, we observed that some of the mAP values for the original YOLOv7 and YOLOv9 models
differ from those reported in the original papers. As noted in the corresponding GitHub issue, this
discrepancy may be attributed to differences in the number of GPUs used, as well as the reduced
effectiveness of batch normalization when training with smaller batch sizes. To ensure a more con-
sistent and fair comparison, we followed the official code instructions and re-trained the models on
our hardware setup, using the same batch sizes and number of GPUs specified in the original papers.
Despite adhering to the official training guidelines, our re-run results for YOLOv7 and YOLOv9
produced slightly lower mAP values than those reported in the original papers. Nevertheless, our
implementation of the Retriever Dictionary (RD) method is still higher than those reported in the
original papers, demonstrating the effectiveness of our approach.

For the Deformable DETR and Faster R-CNN models, we used the MMDetection training code. In
this case, our results were consistent with the values reported in the original papers, likely due to the
fact that MMDetection provides a standardized training batch configuration, minimizing the impact
of hardware differences on model performance.

A.2 ARCHITECTURES OF THE MODEL WITH Retriever Dictionary

Figure 6: YOLOv7 with RD Figure 7: YOLOv9 with RD

Figure 8: Faster-RCNN with RD Figure 9: Deformable DETR with RD

A.3 ADDITIONAL EXPERIMENT RESULTS

Detailed mAP Results for All Experiments. Table 6 provides the detailed mAP values for each
experiment discussed in the experiment section. It includes metrics such as AP, AP.5, AP.75, APS,
small object; APM, middle object; and APL, large object.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Comprehensive mAP Metrics Across Experiments

BackBone Initializer Params AP AP.5 AP.75 APS APM APL

YOLOv7 VM 37.4M 51.34 69.37 56.42 35.86 56.10 66.78
YOLOv7 VLM 37.4M 51.75 70.12 56.70 36.00 57.12 66.32
YOLOv7 LLM 38.2M 51.33 69.40 56.40 34.72 56.70 67.13
YOLOv7 VAE 37.4M 51.34 69.37 56.42 35.86 56.10 66.78
YOLOv7 Convex 37.4M 49.58 68.92 55.60 34.72 55.14 66.02
YOLOv7 Tanh 37.4M 51.27 69.35 56.28 35.51 56.34 66.09
YOLOv7 Mix 37.4M 51.37 69.49 56.26 35.17 56.43 66.94

YOLOv9 VM 25.8M 53.41 70.57 58.40 36.29 58.93 69.94
YOLOv9 VLM 25.8M 53.36 70.55 57.98 36.39 59.04 69.95
YOLOv9 LLM 25.8M 53.28 70.48 57.81 35.91 58.80 69.55

Faster-RCNN VM 44.1M 40.50 60.30 44.20 24.90 43.20 51.80
Faster-RCNN VLM 44.1M 40.50 60.40 44.40 25.10 43.30 52.50
Faster-RCNN LLM 44.6M 40.70 60.80 44.70 25.60 43.70 52.60

Deformable DETR VM 41.2M 44.10 63.00 48.20 26.30 47.00 59.00
Deformable DETR VLM 41.2M 44.40 63.30 48.30 26.50 47.90 58.70
Deformable DETR LLM 41.7M 44.20 63.10 47.80 26.20 47.60 58.70

YOLOv7 baseline 37.2M 50.04 68.95 55.10 34.20 55.70 66.20
YOLOv7-x baseline 71.3M 51.29 70.27 56.78 35.84 56.63 67.59

101 102

Epoch (Log Scale)

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

mAP0.5

RD Model
Origin Model

101 102

Epoch (Log Scale)

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

mAP

RD Model
Origin Model

Figure 10: Learning curve of Model vs RD-Model, the model with RD coverage speed is faster.

Comparison of Frozen vs. Fully Trained Dictionary Strategies. Table 7 compares two training
strategies: one where only the model B and Retriever are trained while the Dictionary remains
frozen, and another where the model, Retriever, and Dictionary are all fully trained. In the table,
✓ indicates that the corresponding component is trainable. Table 7a shows results using pre-trained
weights, with row 3 displaying the fine-tuning of the original model. Table 7b reports results from
training the model from scratch. The full training strategy slightly outperforms the frozen Dictionary
method in both scenarios, with both approaches surpassing the performance of the original model.
These findings highlight that fine-tuning the Dictionary more effectively helps the model’s output
distribution.

Table 7: Comparison of Model Performance with and without Freezing D during Training.

(a) Fine-tune with pre-trained weight.

B R D AP.5:.95 AP.5

✓ ✓ ✓ 52.73 69.61
✓ ✓ 52.64 69.57
✓ - - 51.66 68.12

(b) Training from scratch.

B R D AP.5:.95 AP.5

✓ ✓ ✓ 51.72 70.12
✓ ✓ 51.35 69.52

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Performance Improvements in Classification with RD Module. Table 8 demonstrates the per-
formance improvement of the Retriever Dictionary (RD) module in the classification task. In the
YOLO classification task, YOLOv8 employs CSPNet (Wang et al., 2020) as the backbone, while
YOLOv9 uses GELAN as the backbone. We tested both backbones with our RD module, and the
results show that the RD module provides performance improvements in both structures.

Convergence Speed Comparison: Original Model vs. Model with RD. Figure 10 illustrates the
convergence speed of the original model (in green) compared to the model with the RD module (in
blue). For easier observation, we applied a logarithmic scale to the epoch axis (x-axis). The model
with the RD module demonstrates significantly faster learning within the first 0-50 epochs, indicat-
ing that the integration of external explicit knowledge accelerates the learning process. Finally, the
RD model maintains superior performance through the full training duration of 500 epochs.

Table 8: More classification task.

RD Model Epoch Top-1 Top-5

ELAN 100 71.85 92.93
✓ ELAN 100 74.18 93.14

GELAN 100 74.86 93.72
✓ GELAN 100 75.70 94.28

Table 9: Transfer learning on small dataet.

RD Pretrained Epoch mAP(%) mAP.5(%)

✓ 10 88.48 65.87
✓ ✓ 10 91.54 (↑ 3.46%) 74.63 (↑ 13.30%)

✓ 100 92.28 76.79
✓ ✓ 100 92.93 (↑ 0.70%) 78.02 (↑ 1.60%)

100 84.44 65.49
✓ 100 85.15 (↑ 0.84%) 66.33 (↑ 1.28%)

A.4 TRANSFER LEARNING WITH Retriever Dictionary ON VOC DATASET

In Table 9, we demonstrate the effectiveness of the Retriever Dictionary (RD) on a transfer learning
task. Using pre-trained weights from the MSCOCO dataset, we trained the model on the VOC (Ev-
eringham et al., 2010) dataset with three learning rate schedules: 10-epoch fast training, 100-epoch
full-tuning, and training from scratch. In the fast training scenario, the model with the RD mod-
ule showed significantly faster convergence compared to the model without the module. In the
full-tuning scenario, the RD-enhanced model achieved higher performance. Lastly, in the training
from scratch scenario, our RD module provided the model with better information, yielding superior
results even on a smaller dataset.

A.5 FURTHER VISUALIZATIONS: ORIGINAL VS. RD-MODULE MODELS

We present additional examples in Figures 11 and 12, illustrating input images, the outputs from the
original model, and the outputs from the model with the RD module. The results demonstrate that
the RD-Model outputs are noticeably clearer. For example, in Figure 11 (ID 1 and 2), the edges of
objects are significantly sharpened. Similarly, in Figures 11 and 12 (ID 3, 4, 5, and 6), our model
exhibits higher accuracy and fewer false positives in the object’s bounding boxes, as indicated by
the red arrows.

A.6 PSEUDO CODE OF FULL TRAINING PROCESS OF Retriever-Dictionary MODEL

The complete training process, from initialization to final model, follows the pseudo-code pro-
vided in Algorithm 1. This process includes Dictionary initialization, regular model training, and
Dictionary compression. The overall training time is approximately equivalent to the original train-
ing epochs, with an additional 2 epochs allocated for setup and compression.

A.7 VISUALIZATION OF INITIAL DISTRIBUTIONS ACROSS DIFFERENT MODALITY MODELS

Figure 13 and 14 visualizes the t-SNE distributions of VM, VLM, and LLM dictionaries. Vision
and Language dictionaries occupy distinct regions, while Vision-Language overlaps with Vision.
Notably, the Vision-Language dictionary is more uniformly distributed, showcasing its ability to
provide richer information.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ID Ground Truth without RD with RD

1

2

3

Figure 11: More visualization of RD

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

ID Ground Truth without RD with RD

4

5

6

Figure 12: More visualization of RD

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1: Train a model with Retriever Dictionary

Data: Dataset with images and bounding boxes
Result: Trained model with Retriever Dictionary
// Initialization of the Dictionary

1 foreach (img , box) ∈ Dataset do
2 features ← encoder(img)
3 RD← new Retriever-Dictionary(kmeans(features))
4

// Standard Training Method
5 backbone, head← new Model()
6 for epoch e = 1 to num epochs do
7 foreach (img , box) ∈ Dataset do
8 output ← head(RD(backbone(img)))
9 loss ← loss function(output , box)

10 update(loss , (backbone, RD, head))

11

// Dictionary Compression
12 rd← new Retriever-Dictionary(choice from(D))
13 foreach (img , box) ∈ Dataset do
14 freeze(backbone)
15 teacher feature ← RD(backbone(img)))
16 student feature ← rd(backbone(img)))
17 loss ← cosine similarity(teacher feature, student feature)
18 update(loss , rd)
19

// Final Model:
20 FullModel← merge(backbone, rd, head)

100 75 50 25 0 25 50 75 100
t-SNE Dimension 1

100

75

50

25

0

25

50

75

100

t-S
NE

 D
im

en
sio

n
2

t-SNE Visualization of VLM, VM, and LLM

VLM
VM
LLM

(a) 2D distributions.

30
20
10
0
10
20
30

t-S
NE

 D
im

en
sio

n
1

403020100102030
t-SNE Dimension 2

30

20

10

0

10

20

30

40

t-SNE Dim
ension 3

3D t-SNE Visualization of VLM, VM, and LLM
VLM
VM
LLM

(b) 3D distributions.

Figure 13: The initial distributions of dictionaries derived from different modality models.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) x-axis

30 20 10 0 10 20 30
t-SNE Dimension 1

403020100102030

t-S
NE D

im
en

sio
n 2
30

20

10

0

10

20

30

t-SNE Dim
ension 3

3D t-SNE Visualization of VLM, VM, and LLM
VLM
VM
LLM

(b) y-axis

30 20 10 0 10 20 30
t-SNE Dimension 1

40

30

20

10

0

10

20

30

t-S
NE

 D
im

en
sio

n
2

3020100102030

t-S
NE D

im
en

sio
n 3

3D t-SNE Visualization of VLM, VM, and LLM
VLM
VM
LLM

(c) z-axis

Figure 14: Orthographic projections of the initial distributions using 3D t-SNE. Each subfigure
represents a different axis projection to better illustrate the structure of the distributions.

A.8 DEEPER DISCUSSION OF THE Retriever CORE

Two Convolutions Without Activation Functions. Consider two consecutive 1×1 convolutional
layers without activation functions. The first layer has weights W 1 ∈ RM×N , and the second has
weights W 2 ∈ RN×M , with an input X ∈ RN×H×W .

For the first convolutional layer, the output at a spatial location (h,w) is defined as:

Z1
m,h,w =

N∑
n=1

W 1
m,n ·Xn,h,w,

where W 1 is the weight of the first convolution, n ∈ [0, N) is the channels, and the second convo-
lution’s output is as follows:

Z2
n,h,w =

M∑
m=1

W 2
n,m · Z1

m,h,w

=

M∑
m=1

W 2
n,m ·

(
N∑

n=1

W 1
m,n ·Xn,h,w

)

=

N∑
n=1

(
M∑

m=1

W 2
n,m ·W 1

m,n

)
·Xn,h,w.

Thus, the equivalent weight matrix is given by:

W eq
n,n′ =

M∑
m=1

W 2
n,m ·W 1

m,n′ , ∀n, n′ ∈ N.

The original two-layer architecture has 2NM parameters. The equivalent layer has N2 parameters.
Without an activation function, the number of parameters in the combined layer is wasted by 2NM−
N2. Even if M < N

2 , the rank of W 1W 2 will be limited by min(M,N), leading to a significant drop
in abilities of the network. Therefore, activation functions are essential in most cases to maintain the
representational capacity of the sequential convolutional layers.

Forward Pass with the Retriever Core. We now extend this discussion to our Retriever core,
consisting of two convolutional layers: a pointwise (1× 1) convolution for channel projection and a
depthwise convolution, with the number of groups equal to the number of channels. And there is no
activation function between layers.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

For the pointwise convolution (first layer), we compute:

Yc,h,w =

f∑
i=1

WG
c,i ·Xi,h,w, (10)

where the WG
c,i is the pointwise convolution weight, as well as the Coefficient Generator weight. For

the depthwise convolution (second layer), the operation is given by:

Zc,h,w =

k∑
m=−k

k∑
n=−k

WE
c,m,n ·Yc,h+m,w+n, (11)

where the WE
c,m,n is the depthwise convolution weight, as well as Global Information Exchanger, c

is the channel dimension. Since no non-linear operation is applied between these two layers, we can
combine them into a single equivalent convolution. Substituting the output of the first layer into the
second, we get:

Zc,h,w =

k∑
m=−k

k∑
n=−k

WE
c,m,n ·

(
f∑

i=1

WG
c,i ·Xi,h+m,w+n

)
(12)

=

f∑
i=1

WG
c,i,0,0 ·

(
k∑

m=−k

k∑
n=−k

WE
c,m,n ·Xi,h+m,w+n

)
(13)

=

f∑
i=1

k∑
m=−k

k∑
n=−k

WG
c,i,0,0 ·WE

c,m,n ·Xi,h+m,w+n. (14)

This results in a combined convolution operation:

W eq
c,i,m,n = WG

c,i,0,0 ·WE
c,i,m,n,

where c, i, m, and n represent the input channels, output channels, and two spatial dimensions
of the kernels, respectively. WG

c,i,0,0 denotes the pointwise convolution (with both spatial indices
set to 0). The resulting equivalent kernel has a size of k × k, with equivalent weights W eq ∈
RN×f×k×k, where f is the input feature dimension and N is the number of output channels. While
this equivalent convolution maintains the functionality of the original two layers, the combined
weights are computationally heavier due to the different dimensions involved (channel dimension
and kernel size). Nevertheless, even without an activation function, the model behaves as a normal
convolution operation.

Gradient Descent and Weight Update. Following the forward pass, the weight update rules for
the pointwise and depthwise convolutional layers can be expressed as:

WG′
= WG − η

∂L

∂WG
, WE ′

= WE − η
∂L

∂WE
,

where eta represents the learning rate, and WG′ and WG′ denote the updated weights for the point-
wise and depthwise convolutions, respectively. Retriever core update is then given by:

WG′ ·WE ′
=

(
WG − η

∂L

∂WG

)
·
(
WE − η

∂L

∂WE

)
= WG ·WE − η

(
WG · ∂L

∂WE
+

∂L

∂WG
·WE

)
+ η2

∂L

∂WG
· ∂L

∂WE
.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Since η (the learning rate) is generally small during training, especially when using FP16 preci-
sion, the second-order term can be ignored. The simplified weight update for the equivalent kernel
becomes:

WG′ ·WE ′ ≈WG ·WE−η
(
WG · ∂L

∂WE
+

∂L

∂WG
·WE

)
= Weq−ηWG · ∂L

∂WE
+

∂L

∂WG
·ηWE .

This follows the structure of the Taylor expansion:

f(x+ δx, y + δy) ≈ f(x, y) +
∂f

∂x
δx+

∂f

∂y
δy, (15)

this gives the updated equivalent weight, which closely approximates the equivalent convolution:

W ′
eq = Weq − η

∂L

∂Weq
≈WG′

WE ′
.

A.9 NOTATIONS

Table 10: Notation Reference Table for Symbols Used in the Paper

Notation Default Value Description
D - The Dictionary, composed of learned atoms
N 512 Number of atoms α in the Dictionary D
α - Each individual element (atom) in the Dictionary D
αi - The i-th atom in the Dictionary D
W 80 The width dimension of the input to the RD module
H 80 The height dimension of the input to the RD module
X - Input feature map to the RD module
Xh,w - The pixel value at position (h,w) of the input X
f 512 Dimensionality of each atom in the Dictionary
k 5 Global Information Exchanger kernel size
c - Coefficient matrix before normalized used to weight atoms in the RD module
ci,h,w - Coefficient value before normalized for the i-th atom in the Dictionary D, at pixel (h,w)
c′i,h,w - Normalized coefficient value for the i-th atom in the Dictionary D, at pixel (h,w)
zϕi,h,w - The feature of generate by backbone and module ϕ for the i-th mini batch, at pixel (h,w)
λ 0.8 Residual weight in the forward pass of the RD module
G(·) - Coefficient Generator function in the RD module
WG - Convolutional matrix used in the Coefficient Generator G(·)
E(·) - Global Information Exchanger function in the RD module
WE - Convolutional matrix used in the Global Information Exchanger E(·)

23

	Introduction
	Related work
	Method
	Module structure
	Dictionary initialization
	Dictionary compression

	Experiment
	Setups
	Comparision with RD
	Ablation studies
	Visualization

	Conclusion
	Appendix
	Reproducibility and Training Setup
	architectures of the model with Retriever Dictionary
	Additional Experiment Results
	Transfer Learning with Retriever Dictionary on VOC Dataset
	Further Visualizations: Original vs. RD-Module Models
	Pseudo code of full training process of Retriever-Dictionary Model
	Visualization of Initial Distributions Across Different Modality Models
	Deeper Discussion of the Retriever Core
	Notations

