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ABSTRACT

Identifying and localizing objects within images is a fundamental challenge, and
numerous efforts have been made to enhance model accuracy by experimenting
with diverse architectures and refining training strategies. Nevertheless, a preva-
lent limitation in existing models is overemphasizing the current input while ignor-
ing the information from the entire dataset. We introduce an innovative Retriever-
Dictionary (RD) module to address this issue. This architecture enables YOLO-
based models to efficiently retrieve features from a Dictionary that contains the
insight of the dataset, which is built by the knowledge from Visual Models (VM),
Large Language Models (LLM), or Visual Language Models (VLM). The flexible
RD enables the model to incorporate such explicit knowledge that enhances the
ability to benefit multiple tasks, specifically, segmentation, detection, and clas-
sification, from pixel to image level. The experiments show that using the RD
significantly improves model performance, achieving more than a 3% increase
in mean Average Precision for object detection with less than a 1% increase in
model parameters. Beyond 1-stage object detection models, the RD module im-
proves the effectiveness of 2-stage models and DETR-based architectures, such as
Faster R-CNN and Deformable DETR.

1 INTRODUCTION

In the field of computer vision, object detection models play a pivotal role, these models are de-
signed to precisely locate objects within images. They are used in applications such as medical
image analysis and autonomous driving. Additionally, they can also be used as backbone models
for downstream tasks like multi-object tracking (Zhang et al., 2022; Cao et al., 2023; Aharon et al.,
2022), and crowd counting (Zhang et al., 2016; Song et al., 2021). As the basis for these extended
tasks, object detection models must combine high accuracy with low latency to allow downstream
tasks to stand on the shoulders of giants.

Among object detection models, the YOLO (Redmon et al., 2016), FasterRCNN (Ren et al., 2015),
and DETR (Carion et al., 2020) are notably prevalent. The YOLO series primarily utilizes Con-
volutional Neural Networks (CNN) (LeCun et al., 1998), providing a balance between inference
speed and accuracy. From YOLOv1 through YOLOv10 (Redmon et al., 2016; Redmon & Farhadi,
2017; 2018; Bochkovskiy et al., 2020; Jocher, 2020; Li et al., 2022; Wang et al., 2023a; Jocher
et al., 2023; Wang et al., 2024b;a), there has been a consistent focus on refining the architecture
and training methods to reduce the model’s parameters while enhancing accuracy. Beyond the main
YOLO series, variants such as YOLOR (Wang et al., 2023b) incorporate implicit knowledge and
other techniques to further boost model performance.

As shown in Figure 1, while both CNNs and Transformers (Vaswani et al., 2017) concentrate on the
input image, CNNs are restricted to local input data, and Transformers, despite considering interac-
tions among various inputs, are still confined to the given inputs or other model branches. However,
the above-mentioned models often overlook a crucial aspect of explicit knowledge—the comprehen-
sive dataset information. On the other hand, some contrastive methods, e.g. SimCLR (Chen et al.,
2020), DINO (Caron et al., 2021) have demonstrated that cross-referencing data is beneficial.
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Figure 1: A comparison between traditional models and our proposed Retriever Dictionary module.
On the left, CNN-based models focus on local regions (blue box), while Transformer-based models
tend to utilize the entire image (red box). However, both methods fail to leverage the information
from the entire dataset, as illustrated in the bottom-right corner. Our module enhances the model’s
resource utilization by incorporating knowledge from other parts of the dataset.

Moreover, in the realm of natural language processing, some models incorporate the Retrieval Aug-
mented Generation (RAG) architecture (Lewis et al., 2020), which stores knowledge in a pre-built
database and retrieves this information during inference to pass to the generator for encoding. This
allows the model to access external information from a large, pre-established dataset. This approach
significantly enhances the capabilities of large language models, although it typically requires sub-
stantial computational resources. However, applying this technique to object detection or other
computer vision tasks still faces significant challenges, particularly in preparing and retrieving ex-
ternal data. Object detection models must carefully balance accuracy, model parameters, and latency
when handling external information.

To address these challenges, we introduce a compact external module composed of a Retriever and
a Dictionary, designed to enhance dataset utilization in computer vision models during training.
This module effectively filters out irrelevant information and amplifies crucial data. The Retriever
aggregates region features to generate a query, while the Dictionary, containing comprehensive
dataset information, enables the query to select relevant atoms. Notably, this pre-built Dictionary
extends beyond the YOLO backbone, incorporating data encoders like VLMs or LLMs, which bring
extensive training data and knowledge for more precise and comprehensive information.

This module allows models to reinforce data during the forward process, benefiting not only region-
level tasks like object detection but also pixel-level tasks like segmentation and whole-image tasks
like classification. Furthermore, our module can be extended to various model architectures, such
as the FPN network in Faster RCNN and the backbone-encoder regions in Detection Transform-
ers, providing higher-quality information during downsampling, ultimately leading to much better
performance.

In this paper, we make several key contributions:

• We introduce a Retriever-Dictionary module that enables efficient utilization of external
information without the need for an external loss function, while still maintaining the
Dictionary’s properties and allowing updates to its parameters.

• We demonstrate that incorporating external knowledge from models such as VLMs and
LLMs can significantly enhance model performance.

• We further show that integrating external information not only improves YOLO’s object
detection performance but can also extend to other mainstream vision tasks and architec-
tures.

These improvements substantially enhance the capabilities of object detection models and demon-
strate that our module exhibits All-to-All properties, allowing it to utilize external knowledge to
improve performance across multiple tasks and model architectures with minimal additional param-
eters.
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2 RELATED WORK

Real-time object detection. Real-time object detection is a foundational problem in computer vi-
sion, with a focus on achieving low latency and high accuracy. Traditional approaches have primarily
focused on CNN architectures, with seminal works such as the OverFeat (Sermanet et al., 2014) and
Faster R-CNN(Girshick, 2015; Ren et al., 2015). Since the introduction of Vision Transformers
(ViT) (Dosovitskiy et al., 2021), there have been notable follow-up works, including DETR (Carion
et al., 2020) and RT-DETR (Zhao et al., 2023). However, the CNN-based YOLO series models
hold a crucial position in the field of real-time detection due to their ease of training from scratch,
lightweight design, and ability to perform high-speed inference.

Each version of the YOLO model introduces different architectures and training strategies. For
example, YOLOv7 (Wang et al., 2023a) employs ELAN and trainable bag-of-freebies techniques to
enhance performance, while YOLOv9 (Wang et al., 2024b) incorporates Generalized Efficient Layer
Aggregation Networks (G-ELAN) and Programmable Gradient Information for improved efficiency
and learning capability. YOLOv10 (Wang et al., 2024a) further introduces the compact inverted
block to optimize model size and computation. On the theoretical front, works like YOLOR (Wang
et al., 2023b) leverage the shared characteristics across multiple computer vision tasks, allowing
the model to learn implicit knowledge and relax the prediction head, thus generalizing the YOLO
architecture to various tasks. Despite these architectural and strategic differences, all YOLO models
share a conceptual framework comprising three core modules: a Backbone for downsampling, a
Neck (e.g. FPN) for feature fusion, and a Detection Head for final prediction. In this paper, we also
utilize the Backbone as an image encoder.

Dictionary learning. Dictionary learning is a fundamental technique in signal processing and
machine learning, aimed at learning a set of basis functions (or atoms) that can efficiently represent
signals. This technique has been extensively explored in the context of sparse coding, where signals
are approximated as sparse linear combinations of dictionary atoms. Additionally, it was discovered
that natural images can be effectively represented using sparse coding models (Olshausen & Field,
1997), laying the foundation for further development of dictionary learning algorithms.

Several algorithms have been proposed to optimize dictionaries and sparse coefficients. Among
these, K-SVD (Aharon et al., 2006) has become a standard due to its effectiveness in applications
such as image denoising, compression, and inpainting. With the rise of CNNs, dictionary learning
has also seen new developments, such as designing convolutional blocks and defining loss func-
tions to achieve dictionary learning objectives (Garcia-Cardona & Wohlberg, 2018; Zheng et al.,
2021). Additionally, dictionary learning has been applied to tasks like content-based image retrieval
(CBIR), as seen in works like Şaban Öztürk (2021); Tarawneh et al. (2019). In this paper, we focus
on dictionary learning rather than sparse dictionary learning and emphasize dictionaries that can
robustly represent information and retain critical, relevant signals.

Retrieval-augmented generation (RAG) Retrieval-Augmented Generation (RAG) (Lewis et al.,
2020) is a technique that first appeared in large language models. It primarily involves three steps:
Indexing, where the database is split into chunks, encoded into vectors, and stored in a vector
database; Retrieval, which retrieves relevant information based on similarity to the input; and Gen-
eration, where both the original input and the retrieved information are fed into the model for further
processing. This approach enables LLM to handle unseen information and has been successfully
applied in T5 (Raffel et al., 2020), or certain versions of ChatGPT(Achiam et al., 2023).

Due to the time-consuming nature of the retrieval process, and the real-time requirements of most
computer vision tasks, RAG has seen limited application in vision-based models. Recently, some
work has been done to mitigate the bottleneck in Wu & Xie (2024); Kim et al. (2024); Liu et al.
(2023). For example, RALF (Kim et al., 2024) leverages LLM to embed a huge vocabulary set and
find similar meaning words to refine features; REACT (Liu et al., 2023) utilizes the World Wide Web
as the information source to extend model knowledge. However, they still require an undetachable
huge dataset or Language model which leads to extremely high training and inference loading. In
this work, we provide the vision-based model with not only a light-weight database but also refinable
features.
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Figure 2: Dictionary is initialized by encoding the dataset using an image encoder, from which N
embeddings are selected as Dictionary atoms. During training, for each input feature Xw,h, the
Retriever core—comprising the Coefficient Generator (G) and the Global Information Exchanger
(E)—generates coefficients for each atom α in the Dictionary D. Then, the normalized coefficients
are used as weights for each Dictionary atom. Finally, by concatenating the residual of Xw,h, the
output Yw,h is obtained.

3 METHOD

In this work, we introduced the Retriever-Dictionary module, as shown in Figure 2, which enables
computer vision models to utilize comprehensive dataset knowledge with minimal extra parameters
quickly. This plug-in stores encoded information from various models, enhancing the model’s ability
to identify which features of the input data should be emphasized or diminished, thereby improving
overall performance. The RD-module is composed of two main components: the Retriever and
the Dictionary. The Dictionary consists of N elements, each represented as Rf vectors, known as
atoms α. The Retriever generates the coefficient of α for each pixel according to the input. The
Dictionary can be generated using the YOLO backbone or initialized with diverse models like the
visual language model CLIP (Radford et al., 2021) and large language models such as GPT (Radford
et al., 2018). This approach allows the model to align visual and linguistic representations, leading
to a more balanced and valuable distribution of atoms. Furthermore, the incorporation of linguistic
knowledge helps the module retain crucial information. The main goal is to adjust the distribution
of the Dictionary and allow the Retriever core to find the best Atoms’ weight for each input pixel.

3.1 MODULE STRUCTURE

The Retriever core aims to efficiently generate the coefficients of each α in the Dictionary. In-
spired by depthwise convolution Chollet (2017), we separate the Retriever into two components:
the Coefficient Generator G and the Global Information Exchanger E. The Coefficient Generator,
denoted as G : Rf×W×H → RN×W×H , computes coarse coefficients based on the input feature
map X ∈ Rf×W×H , where f is the input feature dimension and W , H represent the width and
height of the feature map, respectively. The coarse coefficients are calculated as follows:

Y = G(X) = WG ·Xw,h, (1)

where WG ∈ RN×f is the projection matrix of G, and Xw,h ∈ Rf is the feature vector at spatial
location (w, h).

The Global Information Exchanger, denoted as E : RN×W×H → RN×W×H , refines and exchanges
information across neighboring pixels, and is defined as:

E(Y ) = WE(i) ∗ Y (i), (2)

where WE ∈ RN×1×k×k is the depthwise convolution filter with kernel size k × k, and i ∈ [0, N)
indexes the channels of Y . The term Y (i) ∈ RW×H refers to the spatial feature map of the i-th
channel.
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The combined operation of G and E generates the final coefficients vector c for each pixel:

c = E(G(Xw,h)). (3)

This separation of tasks minimizes direct computation of the coefficient vectors c at each pixel
location, significantly reducing the parameter count while maintaining high performance (see Ex-
periments 4.3 and Appendix A.8 for further discussion).

To prevent the coefficient vectors c from simply replicating the input features, which would make
the Dictionary become an identity matrix, we normalize each c. We apply a normalization process
equivalent to Positional Normalization (PONO) (Li et al., 2019), which is defined as:

PONO(X) =
X − µc√
σc + ϵ

· γ + β, (4)

where the mean µc and variance σc are calculated as:

µc =
1

N

N∑
n=1

Xn, σc =
1

N

N∑
n=1

(Xn − µc)
2,

with Xn representing the n-th feature at a fixed spatial location, and γ, β are learned parameters.
Although PONO was initially designed to preserve structural information in generative networks,
here it ensures that the feature vectors c are properly scaled and centered, preventing the Dictionary
from collapsing into an identity matrix.

The normalized coefficients c′ are then used to select atoms from the Dictionary, either enhancing or
diminishing specific features. This selection is a weighted summation of the atoms and integration
with the input residuals to produce the final output. To preserve the dictionary’s learning dynamics,
each atom is normalized to unit length during training. The resulting formula is as follows:

Yh,w = λ ·Xh,w + (1− λ) ·
N∑
i=1

c′i,h,w · αi, (5)

where |αi| = 1 for all αi ∈ D, and λ is the residual weight. As can be seen in Equation 5, the
weighted summation of Dictionary atoms is mathematically equivalent to a convolutional layer with
a kernel size of 1, stride of 1, and no bias term. To ensure that the sum of each atom’s components
equals 1, as required in dictionary learning, we employ weight normalization (Salimans & Kingma,
2016). This eliminates the need for an external objective function to enforce this condition. Weight
normalization is defined as:

WN(D) =

{
α

|α|
| ∀α ∈ D

}
. (6)

Finally, we combine the Retriever core (G and E), the Dictionary, and the residual connection to
express the entire Retriever Dictionary process RD : Rf×W×H → Rf×W×H as:

Z = RD(X) = λ ·X + (1− λ) · PN(E(G(X))) ∗WN(D), (7)

where ∗WN(D) denotes the convolution operation using the weight-normalized Dictionary atoms
set WN(D) as filters.

3.2 Dictionary INITIALIZATION

By pre-initializing the Dictionary, we embed knowledge into the module atoms of the Dictionary.
More precisely, we use the selected encoder to map the entire dataset into a high-dimensional
space, by incorporating insights from various modality models, as illustrated in Figure 3. This
high-dimensional space shares the same dimension as the original YOLO backbone middle layer.
Obviously, this will have a huge number of vectors and present multiple groups in high-dimensional
space, we employ k-means (Macqueen, 1967) to leave representative vectors, which ultimately serve
as Dictionary atoms. Through these operations, we can map the dataset pairs into a high-dimensional
space in a short time (this operation is equivalent to using the model to traverse the entire dataset
at the speed of inference), and find vectors that can represent most of the dataset. For features that
are not in the Dictionary, we can use the feature through the residual mechanism in the module, and
utilize the Retriever Dictionary to bring closer atoms of the same category to the outlier feature.
Next, we discuss using different modality models as encoders for encoding knowledge:
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(a) Dataset distribution (b) Init with YOLO (c) Init with GPT (d) Init with CLIP

Figure 3: Illustrates the distribution of the dataset in the model’s middle layer, where the blue
square represents the current input feature. In traditional models, only the input feature is used,
neglecting the rich information available in the dataset. In contrast, with our Retriever-Dictionary
model, additional data information is retrieved from the dataset. The dictionary can be initialized
from different models: vision models, language models, or vision-language models. The latter
provides a more comprehensive and integrated representation of the dataset.

Vision model. In the YOLO architecture, the backbone layer is designed to transform the origi-
nal image into high-dimensional embeddings, providing the FPN with enriched regional informa-
tion, which makes the backbone an ideal image encoder. Therefore, we use the modern pre-trained
YOLOv9 (Wang et al., 2024b) as the vision model encoder. This model is leveraged to traverse the
entire training set, converting all the dataset’s data into feature-dimensional distributions.

Vision language model. As a visual language model, CLIP possesses a strong understanding of
input image features and can map these features into a semantically related space for compari-
son. Therefore, we utilize CLIP for visual language initialization. However, according to Dense-
CLIP (Rao et al., 2022), although CLIP’s output embeddings are global representations of the image,
the output of CLIP’s ViT blocks retains information about corresponding regions. CLIP primarily
uses the first patches as embeddings, leaving out local information from the other patches. As a
result, we leverage all the output patches from CLIP’s image encoder to embed the dataset more
comprehensively.

Large language model. For initialization from an LLM, since language models cannot directly
convert images into feature embeddings and image captions typically describe the entire image rather
than specific regions, we use class names from MSCOCO (Lin et al., 2014) and ImageNet-21k (Rid-
nik et al., 2021), along with image captions from MSCOCO, as prompts for GPT (Radford et al.,
2018). However, because some feature dimensions deviate significantly from the unit interval, we
apply standard normalization to scale each dimension, aiming to stabilize the training process while
preserving the relative positioning of the vectors.

3.3 Dictionary COMPRESSION

The objective of designing Retriever Dictionary (RD) is to retain the most critical information from
the dataset. However, even after training, the number of atoms in the Dictionary may exceed the
required amount, with some atoms being infrequently used or irrelevant to the specific dataset do-
main. Drawing inspiration from knowledge distillation and the Teacher-Student model (Hinton
et al., 2015), we condense the original Dictionary D into a smaller and more efficient version, de-
noted as d. To align the output features of d with those of D, we employ contrastive learning (Chen
et al., 2020) to provide the d soft labels instead of the traditional cross-entropy loss. In this process,
the model backbone and RD are frozen, while the optimization is focused on the smaller Retriever
Dictionary module d. The objective function is defined as:

Li,w,h = − log
exp(sim(zrd

i,w,h, z
RD
i,w,h)/τ)∑B

j=1

∑W,H
w′,h′ exp(sim(zrd

i,w,h, z
RD
j,w′,h′)/τ)

, (8)
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Table 1: Comparing the performance and the improvements across different modalities of RD-
module and structures on the COCO 2017 validation set.

BackBone Initializer Params Latency f mAPval
.5:.95 (%) mAPval

.5 (%)

YOLOv7 Origin 37.2M 3.59 - 50.04 68.65
YOLOv9 Origin 25.3M 4.00 - 52.64 69.56
Faster-RCNN Origin 43.1M 41.00 - 38.40 59.00
Deformable DETR Origin 40.1M 41.10 - 43.80 62.60

YOLOv7 VM 37.4M 3.70 R512 51.37 (↑ 2.66%) 69.42 (↑ 1.13%)
YOLOv9 VM 25.5M 4.16 R512 53.41 (↑ 1.46%) 70.57 (↑ 1.46%)
Faster-RCNN VM 44.1M 41.00 R512 40.50 (↑ 5.47%) 60.30 (↑ 2.20%)
Deformable DETR VM 41.2M 41.10 R512 44.10 (↑ 0.68%) 63.30 (↑ 1.12%)

YOLOv7 VLM 37.4M 3.70 R512 51.75 (↑ 3.42%) 70.12 (↑ 2.15%)
YOLOv9 VLM 25.5M 4.16 R512 53.36 (↑ 1.37%) 70.55 (↑ 1.43%)
Faster-RCNN VLM 44.1M 41.02 R512 40.50 (↑ 5.47%) 60.40 (↑ 2.37%)
Deformable DETR VLM 41.2M 41.28 R512 44.40 (↑ 1.37%) 63.30 (↑ 1.12%)

YOLOv7 LLM 38.2M 3.79 R1024 51.36 (↑ 2.64%) 69.40 (↑ 1.17%)
YOLOv9 LLM 25.8M 4.20 R1024 53.28 (↑ 1.22%) 70.48 (↑ 1.33%)
Faster-RCNN LLM 44.6M 41.03 R1024 40.70 (↑ 5.99%) 60.80 (↑ 3.05%)
Deformable DETR LLM 41.7M 41.35 R1024 44.16 (↑ 0.91%) 63.10 (↑ 1.12%)

where zrd
i,w,h ∈ Rf represents the i-th batch output feature of d at position (w, h), B is the batch

size, τ is the temperature parameter, and sim(·, ·) denotes the cosine similarity between two vectors.

This distillation process ensures that, within the specific domain, the atoms in d can effectively ap-
proximate various potential linear combinations found in the original Dictionary D. By selectively
removing atoms from RD that are not pertinent to the dataset domain, we achieve a significant re-
duction in atom count—by at least 50%. This reduction not only increases the model’s efficiency
but also maintains the performance and expressiveness within the targeted domain.

4 EXPERIMENT

4.1 SETUPS

Experimental setup. We primarily validated the method on the Microsoft COCO dataset (Lin
et al., 2014), training on the COCO 2017 train set and evaluating on the COCO 2017 validation
set. For Object Detection and Segmentation, we respectively used mAP and mAP@.5 as evaluation
metrics, testing on YOLOv7, YOLOv9, Faster RCNN, and Deformable DETR. For the Classifica-
tion task, we used the CIFAR-100 dataset with the YOLOv9-classify model, using top-1 and top-5
accuracy as metrics.

Implementation details. All experiments were conducted using 8 Nvidia V100 GPUs. In the
main series of experiments, we trained a modified YOLOv7 model, which included the addition of
a Retriever-Dictionary Module, for 300 epochs in 2 days. The YOLOv9-based model was trained
for 5 days with 500 epochs. We also trained a modified Faster RCNN, based on the mm-detection
framework, for 120 epochs over 3 days. For Deformable DETR, we trained for approximately 120
epochs over 7 days. The classification task on CIFAR-100 (Krizhevsky et al., 2009) took 2 hours on
a single Nvidia 4090 GPU for 100 epochs.

4.2 COMPARISION WITH RD

Apply to state-of-the-art detectors. As demonstrated in Table 1, we evaluate the proposed mod-
ule mainly on YOLOv7 and also integrate it with both fundamental and SOTA real-time object
detection models. The Dictionary is initialized separately by three distinct models: Vision Model

7
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(VM) with the YOLOv7 backbone, Vision-Language Model (VLM) employing CLIP, and Large
Language Model (LLM) based on GPTv2. Among these, CLIP provides the most significant im-
provement, likely due to its well-balanced performance across both the vision and language domains.

The RD module consistently yields notable improvements. In YOLOv7 and YOLOv9, the intro-
duction of the module increases the parameter count by less than 1%, yet results in substantial
performance gains across key metrics. The improvement is comparable to the performance boost
achieved by moving to the next model size (e.g., YOLOv7-x, YOLOv9-e), which typically requires a
100% increase in parameters. For more traditional architectures, we incorporate the RD module into
Faster R-CNN with a ResNet-50 backbone He et al. (2016). Despite a modest 2% increase in param-
eters, the model outperforms Faster R-CNN with a ResNet-101 backbone. Furthermore, we extend
the module to a transformer-based architecture, specifically Deformable DETR Zhu et al. (2020)
with a ResNet-50 backbone. Similar to the previous results, the RD module yields improvements
equivalent to upgrading to the ResNet-101 backbone.

These experiments conclusively demonstrate that leveraging dataset information and incorporating
knowledge from VM, VLM, and LLM significantly enhances the performance of a wide range of
base models, while requiring only minimal additional parameters.

Apply to other tasks. The Retriever Dictionary (RD) module enhances pixel-level features, and
its potential benefits extend beyond detection tasks to include other vision tasks, such as segmenta-
tion and classification. To validate this, we conducted segmentation experiments on the MSCOCO
dataset and classification experiments on the CIFAR-100 dataset, demonstrating the effectiveness of
the RD module across both pixel-level and image-level tasks. Table 2 compares the original YOLO
multi-task structure with the one incorporating our proposed module. The results clearly show that
the Retriever Dictionary module upgrades performance across classification, detection, and segmen-
tation tasks, demonstrating its effectiveness in enhancing overall multi-tasking performance.

Table 2: Comparing RD at different tasks.

Task Metrics(%) w/o RD w/ RD Improve

Classification Top-1 74.86 75.70 ↑ 1.12%
Top-5 93.72 94.28 ↑ 0.60%

Detection mAPBox 50.04 51.75 ↑ 3.42%
mAPBox

.5 68.65 69.51 ↑ 2.15%

Segmentation mAPSeg 40.53 41.56 ↑ 2.54%
mAPSeg

.5 64.00 64.64 ↑ 1.00%

Table 3: Comparing with different
knowledge-based methods.

Method mAP mAP.5 +Params

baseline 52.64 69.56 -
KD 52.52 69.14 57.3M
YOLO-World 51.00 67.70 66.1M
RALF 51.40 68.07 37.8M
RD (ours) 53.36 70.55 0.2M

Comparison of knowledge integration methods for YOLO. Table 3 compares RD with various
methods for integrating external knowledge into YOLO. Specifically, knowledge distillation (Hinton
et al., 2015) uses YOLOv9-e as the teacher model and YOLOv9-c as the student model, denoted as
KD. Another approach, YOLO-World (Cheng et al., 2024), incorporates visual-language concepts
from CLIP into YOLO to enhance its understanding of both domains. Additionally, RALF (Kim
et al., 2024) utilizes CLIP’s text encoder to create a vocabulary set as a database in a RAG-based
method. The ”+Params” column represents the additional parameters introduced by the knowledge
provider or supervisor model compared to the baseline. Overall, RD not only offers the lightest
solution, with only 0.2M additional parameters but also delivers the best performance, making it a
highly efficient and effective approach.

4.3 ABLATION STUDIES

Fuse coefficient generator and global information exchanger. In Section 3.1, we discussed
splitting the Retriever core into pointwise convolution G and depthwise convolution E can sig-
nificantly reduce the number of parameters. Without a split Retriever core, the 1-stage coefficient
generates the process as follows:

R′(X) = Fuse (E,G)(X) = Xw,h ∗W eq (9)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Analysis of fuse Retriever core.

Retriever Weight size Params. mAP

Fuse(E,G)(X) Rf×N×k×k 41.9M 50.95%
E(G(X)) Rf×N ,RN×k×k 4.3M 50.64%

Table 5: Performance comparison of different models on the COCO 2017 validation set.

BackBone Initializer algorithm Params Atoms Feature mAPval
.5 mAPval

.5:.95

YOLOv7 Random - 37.4M 512 R512 50.02% 69.06%
YOLOv7 YOLOv7 - 37.4M 512 R512 51.34% 69.37%
YOLOv7 CLIP - 37.4M 512 R512 51.75% 70.12%
YOLOv7 GPT - 38.2M 512 R1024 51.33% 69.40%

YOLOv7 YOLOv7 k-means 37.4M 512 R512 51.34% 69.37%
YOLOv7 YOLOv7 VAE 37.4M 512 R512 51.19% 69.25%

YOLOv7 CLIP k-means 37.4M 512 R512 51.75% 70.12%
YOLOv7 CLIP Convex Hull 37.8M 1024 R512 49.58% 68.92%

YOLOv7 GPT Normalize 38.2M 512 R1024 51.33% 69.40%
YOLOv7 GPT Tanh 38.2M 512 R1024 51.27% 69.35%

YOLOv7 CLIP - 37.4M 512 R512 51.75% 70.12%
YOLOv7 GPT - 38.2M 512 R1024 51.33% 69.40%
YOLOv7 Mix {LLM, VLM} 37.4M 512 R512 51.37% 69.49%

where W eq ∈ Rk×k×f×n is the convolution matrix, R′ : Rf×W×H → RN×W×H is the 1-stage
generate process. This operation will require an extra of Nfk2 − (fN + Nk2) parameters. And
the computational complexity is of O(WHNfk2), compared to G and E, whose complexity is of
O
(
WH(fN +Nk2)

)
, R′ requires a huge amount of operations and parameters, but only receives

slightly better performance, as demonstrated in Table 4.

Different Dictionary construction strategies. Table 5 presents an ablation study on more differ-
ent strategies for constructing the Dictionary. For VM, a VAE (Kingma & Welling, 2014) is used
to capture the dataset’s general distribution and build the Dictionary. In VLM, we leverage whole
CLIP (Radford et al., 2021)’s image encoder for global embeddings, as outlined in Section 3.2.

Additionally, we explore using a convex hull of the dataset’s feature distribution to address outliers,
though this limits the RD-module’s ability to represent common features. For LLM, normaliza-
tion techniques like tanh and standard normalization are applied to manage outliers. While tanh
compresses large feature distances, standard normalization is more effective in handling outliers.

Finally, we combine feature distributions from LLM and VLM to create a blended representation.
Despite yielding positive results, these methods fail to produce a uniform distribution and underper-
form compared to the strategy described in the methodology.

4.4 VISUALIZATION

In this section, we employ visualization to demonstrate the impact of the RD-module on object
detection models and to visualize the Retriever’s selection of atoms from the Dictionary.

Visualization of Dictionary atom coefficients. To gain a deeper understanding of the behavior of
the Retriever and Dictionary core, we visualized the atom coefficients and their distribution during
the forward pass. In Figure 4b, the X-axis represents the correlation with the current input and each
α, while the Y-axis displays the corresponding coefficient for each atom. The surrounding points
retrieved from the dataset, relevant to the current input, are marked as × on the plot.

9
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(a) Input Image (b) Large image in the middle

(c) Positive 1 (d) Positive 2

(e) Negative 1 (f) Negative 2

Figure 4: Visualization of Dictionary Atom Coefficients

(a) Model’s input image (b) The output of backbone (c) The output of RD module

Figure 5: Visualization of w/o RD module

Using the bounding box area in Figure 4a as the input, we generate a correlation-coefficient map. As
depicted in Figure 4b, most high-correlation and high-coefficient pairs (Figures 4c,4d) correspond
to traffic signs, while the low-correlation and low-coefficient pairs (Figures 4e,4f) do not. This
visualization demonstrates that the Retriever Dictionary effectively selects the relevant atoms to
enhance input features while attenuating non-relevant atoms, thereby reinforcing the input’s key
characteristics.

Visualizing model backbone output with and without Dictionary. Using the same traffic signals
as the model input (Figure 5a), we visualize the feature map generated by the origin backbone
network (Figure 5b) and the backbone output including the RD-module (Figure 5c). In Figure 5c,
the Traffic Sign pattern is distinctly retained, and background information is preserved. In contrast,
Figure 5b retains only parts of the railings and the input photo padding block. This comparison
demonstrates that the RD-module helps the model retain important information while eliminating
unimportant details.

5 CONCLUSION

The Retriever Dictionary module offers a lightweight and efficient approach to incorporating dataset
knowledge into YOLO through various modality models. By leveraging pre-stored explicit knowl-
edge within the Dictionary, the Retriever effectively retrieves relevant information while the Dictio-
nary learning mechanism enables fine-tuning of the atoms. This module demonstrates its versatility,
providing improvements not only in YOLO-based tasks but also across a range of foundational
object detection models and broader computer vision tasks. We believe that this work lays the foun-
dation for further exploration of real-time computer vision models that integrate explicit or external
knowledge sources.
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A APPENDIX

A.1 REPRODUCIBILITY AND TRAINING SETUP

In Table 5, we observed that some of the mAP values for the original YOLOv7 and YOLOv9 models
differ from those reported in the original papers. As noted in the corresponding GitHub issue, this
discrepancy may be attributed to differences in the number of GPUs used, as well as the reduced
effectiveness of batch normalization when training with smaller batch sizes. To ensure a more con-
sistent and fair comparison, we followed the official code instructions and re-trained the models on
our hardware setup, using the same batch sizes and number of GPUs specified in the original papers.
Despite adhering to the official training guidelines, our re-run results for YOLOv7 and YOLOv9
produced slightly lower mAP values than those reported in the original papers. Nevertheless, our
implementation of the Retriever Dictionary (RD) method is still higher than those reported in the
original papers, demonstrating the effectiveness of our approach.

For the Deformable DETR and Faster R-CNN models, we used the MMDetection training code. In
this case, our results were consistent with the values reported in the original papers, likely due to the
fact that MMDetection provides a standardized training batch configuration, minimizing the impact
of hardware differences on model performance.

A.2 ARCHITECTURES OF THE MODEL WITH Retriever Dictionary

Figure 6: YOLOv7 with RD Figure 7: YOLOv9 with RD

Figure 8: Faster-RCNN with RD Figure 9: Deformable DETR with RD

A.3 ADDITIONAL EXPERIMENT RESULTS

Detailed mAP Results for All Experiments. Table 6 provides the detailed mAP values for each
experiment discussed in the experiment section. It includes metrics such as AP, AP.5, AP.75, APS,
small object; APM, middle object; and APL, large object.
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Table 6: Comprehensive mAP Metrics Across Experiments

BackBone Initializer Params AP AP.5 AP.75 APS APM APL

YOLOv7 VM 37.4M 51.34 69.37 56.42 35.86 56.10 66.78
YOLOv7 VLM 37.4M 51.75 70.12 56.70 36.00 57.12 66.32
YOLOv7 LLM 38.2M 51.33 69.40 56.40 34.72 56.70 67.13
YOLOv7 VAE 37.4M 51.34 69.37 56.42 35.86 56.10 66.78
YOLOv7 Convex 37.4M 49.58 68.92 55.60 34.72 55.14 66.02
YOLOv7 Tanh 37.4M 51.27 69.35 56.28 35.51 56.34 66.09
YOLOv7 Mix 37.4M 51.37 69.49 56.26 35.17 56.43 66.94

YOLOv9 VM 25.8M 53.41 70.57 58.40 36.29 58.93 69.94
YOLOv9 VLM 25.8M 53.36 70.55 57.98 36.39 59.04 69.95
YOLOv9 LLM 25.8M 53.28 70.48 57.81 35.91 58.80 69.55

Faster-RCNN VM 44.1M 40.50 60.30 44.20 24.90 43.20 51.80
Faster-RCNN VLM 44.1M 40.50 60.40 44.40 25.10 43.30 52.50
Faster-RCNN LLM 44.6M 40.70 60.80 44.70 25.60 43.70 52.60

Deformable DETR VM 41.2M 44.10 63.00 48.20 26.30 47.00 59.00
Deformable DETR VLM 41.2M 44.40 63.30 48.30 26.50 47.90 58.70
Deformable DETR LLM 41.7M 44.20 63.10 47.80 26.20 47.60 58.70

YOLOv7 baseline 37.2M 50.04 68.95 55.10 34.20 55.70 66.20
YOLOv7-x baseline 71.3M 51.29 70.27 56.78 35.84 56.63 67.59
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Figure 10: Learning curve of Model vs RD-Model, the model with RD coverage speed is faster.

Comparison of Frozen vs. Fully Trained Dictionary Strategies. Table 7 compares two training
strategies: one where only the model B and Retriever are trained while the Dictionary remains
frozen, and another where the model, Retriever, and Dictionary are all fully trained. In the table,
✓ indicates that the corresponding component is trainable. Table 7a shows results using pre-trained
weights, with row 3 displaying the fine-tuning of the original model. Table 7b reports results from
training the model from scratch. The full training strategy slightly outperforms the frozen Dictionary
method in both scenarios, with both approaches surpassing the performance of the original model.
These findings highlight that fine-tuning the Dictionary more effectively helps the model’s output
distribution.

Table 7: Comparison of Model Performance with and without Freezing D during Training.

(a) Fine-tune with pre-trained weight.

B R D AP.5:.95 AP.5

✓ ✓ ✓ 52.73 69.61
✓ ✓ 52.64 69.57
✓ - - 51.66 68.12

(b) Training from scratch.

B R D AP.5:.95 AP.5

✓ ✓ ✓ 51.72 70.12
✓ ✓ 51.35 69.52
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Performance Improvements in Classification with RD Module. Table 8 demonstrates the per-
formance improvement of the Retriever Dictionary (RD) module in the classification task. In the
YOLO classification task, YOLOv8 employs CSPNet (Wang et al., 2020) as the backbone, while
YOLOv9 uses GELAN as the backbone. We tested both backbones with our RD module, and the
results show that the RD module provides performance improvements in both structures.

Convergence Speed Comparison: Original Model vs. Model with RD. Figure 10 illustrates the
convergence speed of the original model (in green) compared to the model with the RD module (in
blue). For easier observation, we applied a logarithmic scale to the epoch axis (x-axis). The model
with the RD module demonstrates significantly faster learning within the first 0-50 epochs, indicat-
ing that the integration of external explicit knowledge accelerates the learning process. Finally, the
RD model maintains superior performance through the full training duration of 500 epochs.

Table 8: More classification task.

RD Model Epoch Top-1 Top-5

ELAN 100 71.85 92.93
✓ ELAN 100 74.18 93.14

GELAN 100 74.86 93.72
✓ GELAN 100 75.70 94.28

Table 9: Transfer learning on small dataet.

RD Pretrained Epoch mAP(%) mAP.5(%)

✓ 10 88.48 65.87
✓ ✓ 10 91.54 (↑ 3.46%) 74.63 (↑ 13.30%)

✓ 100 92.28 76.79
✓ ✓ 100 92.93 (↑ 0.70%) 78.02 (↑ 1.60%)

100 84.44 65.49
✓ 100 85.15 (↑ 0.84%) 66.33 (↑ 1.28%)

A.4 TRANSFER LEARNING WITH Retriever Dictionary ON VOC DATASET

In Table 9, we demonstrate the effectiveness of the Retriever Dictionary (RD) on a transfer learning
task. Using pre-trained weights from the MSCOCO dataset, we trained the model on the VOC (Ev-
eringham et al., 2010) dataset with three learning rate schedules: 10-epoch fast training, 100-epoch
full-tuning, and training from scratch. In the fast training scenario, the model with the RD mod-
ule showed significantly faster convergence compared to the model without the module. In the
full-tuning scenario, the RD-enhanced model achieved higher performance. Lastly, in the training
from scratch scenario, our RD module provided the model with better information, yielding superior
results even on a smaller dataset.

A.5 FURTHER VISUALIZATIONS: ORIGINAL VS. RD-MODULE MODELS

We present additional examples in Figures 11 and 12, illustrating input images, the outputs from the
original model, and the outputs from the model with the RD module. The results demonstrate that
the RD-Model outputs are noticeably clearer. For example, in Figure 11 (ID 1 and 2), the edges of
objects are significantly sharpened. Similarly, in Figures 11 and 12 (ID 3, 4, 5, and 6), our model
exhibits higher accuracy and fewer false positives in the object’s bounding boxes, as indicated by
the red arrows.

A.6 PSEUDO CODE OF FULL TRAINING PROCESS OF Retriever-Dictionary MODEL

The complete training process, from initialization to final model, follows the pseudo-code pro-
vided in Algorithm 1. This process includes Dictionary initialization, regular model training, and
Dictionary compression. The overall training time is approximately equivalent to the original train-
ing epochs, with an additional 2 epochs allocated for setup and compression.

A.7 VISUALIZATION OF INITIAL DISTRIBUTIONS ACROSS DIFFERENT MODALITY MODELS

Figure 13 and 14 visualizes the t-SNE distributions of VM, VLM, and LLM dictionaries. Vision
and Language dictionaries occupy distinct regions, while Vision-Language overlaps with Vision.
Notably, the Vision-Language dictionary is more uniformly distributed, showcasing its ability to
provide richer information.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

ID Ground Truth without RD with RD

1

2

3

Figure 11: More visualization of RD
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ID Ground Truth without RD with RD

4

5

6

Figure 12: More visualization of RD
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Algorithm 1: Train a model with Retriever Dictionary

Data: Dataset with images and bounding boxes
Result: Trained model with Retriever Dictionary
// Initialization of the Dictionary

1 foreach (img , box ) ∈ Dataset do
2 features ← encoder(img)
3 RD← new Retriever-Dictionary(kmeans(features))
4

// Standard Training Method
5 backbone, head← new Model()
6 for epoch e = 1 to num epochs do
7 foreach (img , box ) ∈ Dataset do
8 output ← head(RD(backbone(img)))
9 loss ← loss function(output , box )

10 update(loss , (backbone, RD, head))

11

// Dictionary Compression
12 rd← new Retriever-Dictionary(choice from(D))
13 foreach (img , box ) ∈ Dataset do
14 freeze(backbone)
15 teacher feature ← RD(backbone(img)))
16 student feature ← rd(backbone(img)))
17 loss ← cosine similarity(teacher feature, student feature)
18 update(loss , rd)
19

// Final Model:
20 FullModel← merge(backbone, rd, head)
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Figure 13: The initial distributions of dictionaries derived from different modality models.
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Figure 14: Orthographic projections of the initial distributions using 3D t-SNE. Each subfigure
represents a different axis projection to better illustrate the structure of the distributions.

A.8 DEEPER DISCUSSION OF THE Retriever CORE

Two Convolutions Without Activation Functions. Consider two consecutive 1×1 convolutional
layers without activation functions. The first layer has weights W 1 ∈ RM×N , and the second has
weights W 2 ∈ RN×M , with an input X ∈ RN×H×W .

For the first convolutional layer, the output at a spatial location (h,w) is defined as:

Z1
m,h,w =

N∑
n=1

W 1
m,n ·Xn,h,w,

where W 1 is the weight of the first convolution, n ∈ [0, N) is the channels, and the second convo-
lution’s output is as follows:

Z2
n,h,w =

M∑
m=1

W 2
n,m · Z1

m,h,w

=

M∑
m=1

W 2
n,m ·

(
N∑

n=1

W 1
m,n ·Xn,h,w

)

=

N∑
n=1

(
M∑

m=1

W 2
n,m ·W 1

m,n

)
·Xn,h,w.

Thus, the equivalent weight matrix is given by:

W eq
n,n′ =

M∑
m=1

W 2
n,m ·W 1

m,n′ , ∀n, n′ ∈ N.

The original two-layer architecture has 2NM parameters. The equivalent layer has N2 parameters.
Without an activation function, the number of parameters in the combined layer is wasted by 2NM−
N2. Even if M < N

2 , the rank of W 1W 2 will be limited by min(M,N), leading to a significant drop
in abilities of the network. Therefore, activation functions are essential in most cases to maintain the
representational capacity of the sequential convolutional layers.

Forward Pass with the Retriever Core. We now extend this discussion to our Retriever core,
consisting of two convolutional layers: a pointwise (1× 1) convolution for channel projection and a
depthwise convolution, with the number of groups equal to the number of channels. And there is no
activation function between layers.
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For the pointwise convolution (first layer), we compute:

Yc,h,w =

f∑
i=1

WG
c,i ·Xi,h,w, (10)

where the WG
c,i is the pointwise convolution weight, as well as the Coefficient Generator weight. For

the depthwise convolution (second layer), the operation is given by:

Zc,h,w =

k∑
m=−k

k∑
n=−k

WE
c,m,n ·Yc,h+m,w+n, (11)

where the WE
c,m,n is the depthwise convolution weight, as well as Global Information Exchanger, c

is the channel dimension. Since no non-linear operation is applied between these two layers, we can
combine them into a single equivalent convolution. Substituting the output of the first layer into the
second, we get:

Zc,h,w =

k∑
m=−k

k∑
n=−k

WE
c,m,n ·

(
f∑

i=1

WG
c,i ·Xi,h+m,w+n

)
(12)

=

f∑
i=1

WG
c,i,0,0 ·

(
k∑

m=−k

k∑
n=−k

WE
c,m,n ·Xi,h+m,w+n

)
(13)

=

f∑
i=1

k∑
m=−k

k∑
n=−k

WG
c,i,0,0 ·WE

c,m,n ·Xi,h+m,w+n. (14)

This results in a combined convolution operation:

W eq
c,i,m,n = WG

c,i,0,0 ·WE
c,i,m,n,

where c, i, m, and n represent the input channels, output channels, and two spatial dimensions
of the kernels, respectively. WG

c,i,0,0 denotes the pointwise convolution (with both spatial indices
set to 0). The resulting equivalent kernel has a size of k × k, with equivalent weights W eq ∈
RN×f×k×k, where f is the input feature dimension and N is the number of output channels. While
this equivalent convolution maintains the functionality of the original two layers, the combined
weights are computationally heavier due to the different dimensions involved (channel dimension
and kernel size). Nevertheless, even without an activation function, the model behaves as a normal
convolution operation.

Gradient Descent and Weight Update. Following the forward pass, the weight update rules for
the pointwise and depthwise convolutional layers can be expressed as:

WG′
= WG − η

∂L

∂WG
, WE ′

= WE − η
∂L

∂WE
,

where eta represents the learning rate, and WG′ and WG′ denote the updated weights for the point-
wise and depthwise convolutions, respectively. Retriever core update is then given by:

WG′ ·WE ′
=

(
WG − η

∂L

∂WG

)
·
(
WE − η

∂L

∂WE

)
= WG ·WE − η

(
WG · ∂L

∂WE
+

∂L

∂WG
·WE

)
+ η2

∂L

∂WG
· ∂L

∂WE
.
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Since η (the learning rate) is generally small during training, especially when using FP16 preci-
sion, the second-order term can be ignored. The simplified weight update for the equivalent kernel
becomes:

WG′ ·WE ′ ≈WG ·WE−η
(
WG · ∂L

∂WE
+

∂L

∂WG
·WE

)
= Weq−ηWG · ∂L

∂WE
+

∂L

∂WG
·ηWE .

This follows the structure of the Taylor expansion:

f(x+ δx, y + δy) ≈ f(x, y) +
∂f

∂x
δx+

∂f

∂y
δy, (15)

this gives the updated equivalent weight, which closely approximates the equivalent convolution:

W ′
eq = Weq − η

∂L

∂Weq
≈WG′

WE ′
.

A.9 NOTATIONS

Table 10: Notation Reference Table for Symbols Used in the Paper

Notation Default Value Description
D - The Dictionary, composed of learned atoms
N 512 Number of atoms α in the Dictionary D
α - Each individual element (atom) in the Dictionary D
αi - The i-th atom in the Dictionary D
W 80 The width dimension of the input to the RD module
H 80 The height dimension of the input to the RD module
X - Input feature map to the RD module
Xh,w - The pixel value at position (h,w) of the input X
f 512 Dimensionality of each atom in the Dictionary
k 5 Global Information Exchanger kernel size
c - Coefficient matrix before normalized used to weight atoms in the RD module
ci,h,w - Coefficient value before normalized for the i-th atom in the Dictionary D, at pixel (h,w)
c′i,h,w - Normalized coefficient value for the i-th atom in the Dictionary D, at pixel (h,w)
zϕi,h,w - The feature of generate by backbone and module ϕ for the i-th mini batch, at pixel (h,w)
λ 0.8 Residual weight in the forward pass of the RD module
G(·) - Coefficient Generator function in the RD module
WG - Convolutional matrix used in the Coefficient Generator G(·)
E(·) - Global Information Exchanger function in the RD module
WE - Convolutional matrix used in the Global Information Exchanger E(·)
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