
Anchored Diffusion Language Model

Litu Rout Constantine Caramanis Sanjay Shakkottai
The University of Texas at Austin

{litu.rout, constantine, sanjay.shakkottai}@utexas.edu

Abstract
Diffusion Language Models (DLMs) promise parallel generation and bidirectional
context, yet they underperform autoregressive (AR) models in both likelihood
modeling and generated text quality. We identify that this performance gap arises
when important tokens (e.g., key words or low-frequency words that anchor a
sentence) are masked early in the forward process, limiting contextual information
for accurate reconstruction. To address this, we introduce the Anchored Diffusion
Language Model (ADLM), a novel two-stage framework that first predicts distribu-
tions over important tokens via an anchor network, and then predicts the likelihoods
of missing tokens conditioned on the anchored predictions. ADLM significantly
improves test perplexity on LM1B and OpenWebText, achieving up to 25.4% gains
over prior DLMs, and narrows the gap with strong AR baselines. It also achieves
state-of-the-art performance in zero-shot generalization across seven benchmarks
and surpasses AR models in MAUVE score, which marks the first time a DLM
generates better human-like text than an AR model. Theoretically, we derive an
Anchored Negative Evidence Lower Bound (ANELBO) objective and show that
anchoring improves sample complexity and likelihood modeling. Beyond diffusion,
anchoring boosts performance in AR models and enhances reasoning in math and
logic tasks, outperforming existing chain-of-thought approaches. Please see our
project page: https://anchored-diffusion-llm.github.io/ for code and demo.

1 Introduction
Large autoregressive language models (LLMs) have achieved remarkable success in next-token
prediction, powering high quality text generation and emergent reasoning capabilities in AI systems.
By generating tokens sequentially, autoregressive (AR) models like GPT (Brown et al., 2020),
Gemini (Team-Gemini et al., 2023), LLaMA (Touvron et al., 2023), and Claude (Anthropic, 2024)
condition on a growing prefix and excel at fitting the distribution of the next token. However, their
sequential generation process makes it challenging to solve complex reasoning tasks, since the model
does not see the entire sequence all at once.

An alternative paradigm has recently emerged in the form of Diffusion Language Models (DLMs),
which perform masked-token prediction via iterative refinement. Inspired by diffusion models for
continuous data (Sohl-Dickstein et al., 2015), these approaches corrupt text (e.g., by masking (Lou
et al., 2024; Shi et al., 2024; Sahoo et al., 2024; Ou et al., 2025) or random flipping (Austin et al.,
2021; Lou et al., 2024; Liu et al., 2025)) and train a model to denoise or reconstruct the original
sequence over multiple steps (Austin et al., 2021; Li et al., 2022a; Lou et al., 2024; Sahoo et al.,
2024; Shi et al., 2024; Ou et al., 2025). DLMs generate the entire sequence in parallel, allowing
bidirectional attention for better context and potential gains in controllable generation, complex
reasoning, and fast sampling. Despite their promise, masked diffusion models still lag behind AR
models in modeling the likelihood of missing tokens and generated text quality. Even with modern
training improvements, DLMs often achieve worse (higher) perplexity than AR transformers on
standard benchmarks (Lou et al., 2024; Sahoo et al., 2024; Shi et al., 2024; Arriola et al., 2025).

We identify a key limitation in existing DLMs: when important tokens (e.g., low-frequency or
semantically important words) are masked early in the forward process, the model lacks sufficient
context to accurately reconstruct the original sequence. To address this, we propose the Anchored
Diffusion Language Model (ADLM)(§3), which modifies the noising process such that important

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://anchored-diffusion-llm.github.io/

Figure 1: Anchored Diffusion Language Model
(ADLM). During inference, ADLM unmasks over
two stages. (1) The Anchor Transformer outputs a
sequence of anchor predictions; for any masked
token, the corresponding anchor prediction is a distri-
bution with support skewed towards over important
tokens. (2) The Denoising Transformer conditions
on these anchor predictions to unmask the remaining
tokens. Anchor predictions help unmask important
tokens early by reducing anchor-conditional entropy-
guiding toward more accurate denoising.

Anchor Transformer (with bidirectional attention)

Denoising Transformer (with bidirectional attention)

64 50257 318 50257 326 50257 50257Z!		

a mask is mask with mask mask

64 349 318 1760 326 50257 329

Z!"#		 a cat is playing with mask dog

a

mask mask mask
is

with

cat
dog

mask mask

tokens remain unmasked longer in the forward process—equivalently, they are revealed earlier in the
reverse process. We theoretically show that ADLM reveals important tokens early during unmasking
and improves sample complexity within directed graphical models (§4).

As illustrated in Figure 1, ADLM introduces a two-level anchored denoising process. A key idea is
that of anchors – tokens whose inclusion as conditioning variables yields a substantial reduction in
the conditional entropy of the remaining tokens (e.g., knowing ‘cat’ and ‘dog’ reduces the entropy at
position 4 and 6). In the first stage, an Anchor Transformer outputs a sequence of anchor predictions,
where each anchor prediction for masked tokens is a mixture distribution that is skewed toward anchor
tokens. In the second stage, a Denoising Transformer conditions on these soft anchor predictions to
unmask the next set of tokens. We derive an Anchored Negative Evidence Lower Bound (ANELBO)
objective to jointly train both networks within a single end-to-end differentiable framework. For
anchoring, the loss is imposed only on the important (aka anchor) tokens. As a result, three things
occur during inference (see Figure 1): (1) anchored predictions for already unmasked tokens peak
around their true values (e.g., ‘a’ in position 1, ‘is’ in position 3 and ‘with’ in position 5); (2) anchor
predictions corresponding to important tokens have a skewed distribution focusing on important
words (e.g., ‘cat’ and ‘dog’ in positions 2 and 7); (3) anchor predictions for all other tokens yield fairly
flat, high entropy distributions. The denoiser’s bidirectional attention across all anchor predictions
ensures that these predictions influence the denoising of all unmasked tokens.

Notably, the denoiser’s prediction for ‘playing’ now benefits from anchors like ‘cat’ and ‘dog’
(masked tokens in input Zt but whose likelihoods are high in the anchor prediction sequence); this is
unlike standard masked DLMs (Sahoo et al., 2024; Shi et al., 2024) where ‘playing’ relies only on
already unmasked tokens (‘a’, ‘is’, ‘with’). At the output, positions corresponding to anchor tokens
have higher likelihood for anchor words, increasing their chance of being decoded earlier. Thus,
during inference, the sequence of anchor predictions creates a latent reasoning space consisting
of a sparse collection of anchors through which ADLM infers the full sequence more coherently
and efficiently. Interestingly, these ideas extend to AR models where we demonstrate that anchoring
enables a “look-ahead” planning behavior, which is in contrast to the commonly observed left-to-right
decoding bias of standard chain-of-thought (CoT) reasoning (see Appendix C.2.5 for details).

Anchoring significantly improves both in-distribution and out-of-distribution (OOD) performance
in generative modeling (§5.1), and also enhances the reasoning capabilities of AR models (§5.2).
On the LM1B (Chelba et al., 2013) benchmark, ADLM achieves a test perplexity improvement of
9.54% over MDLM (Sahoo et al., 2024) and 25.4% over SEDD (Lou et al., 2024). On OpenWebText
(OWT) (Gokaslan & Cohen, 2019), ADLM reaches a perplexity of 20.14 with 524B tokens, outper-
forming MDLM by 12.3%, matching the hybrid (AR+Diffusion) baseline BD3LM (L′ = 4) (Arriola
et al., 2025), which achieves 20.73. In terms of generation quality, ADLM achieves a GPT-2 Large
perplexity of 26.8—surpassing MDLM by 39% and SEDD by 48%—and is thus the first diffusion
language model to exceed AR in MAUVE score (measures human-like text quality) (Pillutla et al.,
2021) using the remasking sampler. Furthermore, ADLM achieves state-of-the-art zero-shot perplexi-
ties on 6 out of 7 language modeling benchmarks and outperforms AR baselines on long-context and
domain-specific datasets such as Lambada, PubMed, and ArXiv, demonstrating its strong language
understanding and generalization capabilities. We also show that when anchoring is integrated into
an AR model, it shows stronger logical consistency and planning capabilities in text generation and
complex reasoning at GPT-2 scale.

Contributions. This paper makes the following contributions:

• We propose ADLM, a novel two-stage diffusion language model that improves the prediction of
masked tokens through anchor-guided denoising (§3). We derive an anchored evidence lower

2

bound to train ADLM in an end-to-end fashion, proving improved sample complexity and better
likelihood modeling in a DAG model (§4).

• ADLM achieves lower test perplexities than prior DLMs on LM1B and OWT, narrowing the gap
with AR models (§5). Anchoring generalizes better in zero-shot evaluation, improving perplexity
on OOD tasks such as PubMed and ArXiv, outperforming both MDLM and AR baselines (§5.1).

• We demonstrate the benefits of anchoring using two different samplers: (a) locked-in (Sahoo
et al., 2024) and (b) remasking (Wang et al., 2025a) samplers. With remasking sampler, ADLM
outperforms AR models in human-like text generation measured by MAUVE score (§5.1).

• Beyond diffusion, we integrate our anchoring mechanism into AR models, which leads to a novel
reasoner that supplements conventional chain-of-thought. Our results show improvements in next-
token prediction and supervised fine-tuning on Math (GSM8K (Cobbe et al., 2021)) and logical
reasoning (ProntoQA (Saparov & He, 2023) and ProsQA (Hao et al., 2024) (§5.2)) tasks.

2 Background
Consider a discrete state space S = VL, where V = {1, · · · ,K − 1,K} denotes the set of discrete
alphabets or tokens augmented with an extra (K)-th letter representing a dummy token called ‘mask’.
Further, L is the dimension of each sequence x = (x1, x2, · · · , xL) ∈ S for xl ∈ V, l ∈ [L]. We
represent each sequence as a collection of one-hot encodings as: x = (x1,x2, · · · ,xL), where∑K
j=1 x

l(j) = 1, xl[j] ≥ 0 and xl[xl] = 1. In case of a mask, we denote the corresponding one-hot
encoded vector as m = (0, 0, · · · , 0, 1)T . Let X denote a random variable taking values in S . Given
a finite set of samples from an unknown data distribution q(·) supported on S, the objective in
generative modeling is to generate new samples from this distribution.

2.1 Auto-Regressive Models
Autoregressive models encompass widely used approaches in discrete generative modeling. These
methods typically train a neural network to approximate the distribution of the next token conditioned
on all previous tokens. This corresponds to the causal factorization of the joint data distribution q(·)
by modeling the causal relationships inX ∼ q as follows (Jelinek, 1980; Bengio et al., 2003): q(x) =
q(x1)

∏L
l=2 q(x

l|x1:l−1), where x1:l−1 := x1,x2, · · · ,xl−1. A neural network parameterized by pθ
is trained to approximate these factors. The training objective for the neural network is designed
to maximize the likelihood of a given finite set of sequences, which is equivalent to minimizing
the negative log-likelihood: LAR(θ) = −EX∼q [log pθ(X)] = −EX∼q

[∑L
l=2 log pθ(X

l|X1:l−1)
]
.

This objective encourages the model to learn the conditional distributions, enabling autoregressive
sampling from the learned distribution pθ(·).
2.2 Diffusion Language Models
Let T represent the finite number of time steps used in a diffusion model. We denote by t(i) = i

T and
s(i) = i−1

T , where i ∈ {1, 2, · · · , T}. For brevity, we drop the index i from t and s. In D3PM (Austin
et al., 2021), the conditional of the forward process at time t is given by

q(zt|x) =
L∏
l=1

q(zlt|x), q(zlt|x) = Cat
(
zlt;αtx

l + (1− αt)m
)
, l ∈ {1, 2, · · · , L}, (1)

which has a transition probability q(zlt|zls) = Cat(zlt;
αt

αs
zls + (1 − αt

αs
)m) (see Appendix A.2 for

details). The masking schedule αt ∈ [0, 1] is predefined as a monotonically decreasing function of t
with α0 = 1 and α1 = 0. The corresponding reverse posterior becomes:

q(zls|zlt,xl) =

{
Cat(zls; z

l
t), zlt ̸= m

Cat
(
zls;

αs−αt

1−αt
xl + 1−αs

1−αt
m
)
, zlt = m.

(2)

This reverse posterior is useful because as we see in (3), it helps parameterize the generative model to
have a similar form. The reverse process of D3PM (Austin et al., 2021) defines a θ−parameterized
joint distribution over sequences given by pθ(x, z0:1). It follows a Markovian structure with transition
probability pθ(zs|zt) =

∏L
l=1 pθ(z

l
s|zt). Intuitively, given a noisy latent zt, the model predicts a

clean token and then re-noises it forward according to the forward dynamics defined in (1).

Recall that x denotes a sequence of K-dimensional one-hot encoded tokens, i.e., x = (xl)Ll=1. We
slightly overload notation and use xθ = (xlθ)

L
l=1 to represent a sequence of θ-parameterized vectors

3

on the K-simplex. Each xlθ defines a distribution over the vocabulary, where one-hot vectors xl

correspond to a token and lie at the corners of the simplex. Thus, we can interpret xθ as a mixture
distribution over tokens, henceforth referred to as the predicted mixture token. With this notation, the
probability of generating xl given zt can be compactly expressed as pθ(xl|zt) = ⟨xlθ(zt),xl⟩.
The (general) discrete-diffusion setting in D3PM (Austin et al., 2021) has subsequently been special-
ized to masking-based diffusion in MDLM (Sahoo et al., 2024) and MD4 (Shi et al., 2024). Their
specialization has two properties: (i) zero-masking, where the predicted mixture has no support on the
‘mask’ letter, i.e., ⟨xθ(zt)l,m⟩ = 0, and (ii) carry-over unmasking, where for an already unmasked
token (i.e., zlt ̸= m), it continues to remain the same, meaning ⟨xlθ(zt), zlt⟩ = 1. Thus, for each token
l ∈ [L], this parameterization of the learned transition kernel leads to the following representation:

pθ(z
l
s|zt) = q(zls|zlt,xlθ(zt)) =

{
Cat(zls; z

l
t), zlt ̸= m

Cat
(
zls;

αs−αt

1−αt
xlθ(zt) +

1−αs

1−αt
m
)
, zlt = m.

(3)

The denoising network is trained using Negative ELBO (NELBO) (Sohl-Dickstein et al., 2015; Austin
et al., 2021) LNELBO(x; θ) :=

EZ0∼q(·|x)

[
− log pθ(x|Z0)

]
+

T∑
i=1

EZt(i)∼q(·|x)

[
αt(i) − αs(i)
1− αt(i)

L∑
l=1

log⟨xlθ(Zt(i)),xl⟩

]
. (4)

3 Anchored Diffusion Language Models
Our key idea is to anchor the denoising process using important tokens we call the anchor tokens (or
[ANT] in short). These are tokens that, if revealed, make it much easier to generate the remaining
tokens. As an example, if the underlying data distribution could be represented as a 2-depth tree (with
each node on the tree being a token), knowledge of the value of the root node (anchor token) would
lead to easier decoding of the leaves. As another example, in a sentence, knowledge of the verb or
noun (anchor token) is likely more useful than the articles (e.g., ‘a’, ‘an’, ‘the’) or conjunction words.

Anchoring addresses the critical challenge posed by random masking in DLMs (Austin et al., 2021;
Sahoo et al., 2024; Lou et al., 2024; Shi et al., 2024; Wang et al., 2025a), where important tokens in a
sequence x may be masked in zt, making it difficult to estimate the missing likelihoods. To overcome
this challenge, we split the denoising process into two steps. First, we use an anchor network to
predict the probability mixture over important tokens for each position l ∈ [L]. Next, we employ a
denoising network to aggregate these anchor predictions and compute likelihoods for the masked
tokens. We call this approach Anchored Diffusion Language Model (ADLM).

ADLM Parameterization. The forward process in ADLM follows the standard absorbing discrete
diffusion formulation (1), with the inference posterior given in (2). To improve denoising, we
introduce a new anchored parameterization of the reverse process. We propose to break the one-
step denoising process, widely used in practice (Austin et al., 2021; Sahoo et al., 2024; Shi et al.,
2024; Wang et al., 2025a; Ou et al., 2025; Nie et al., 2025a,b), into a two-stage anchored denoising
framework. This allows latent reasoning over important tokens during pretraining.

Since the reverse process is Markovian, the joint probability distribution factorizes as: pθ(x, z0:1) =
pθ(z1)pθ(x|z0)

∏T
i=1 pθ(zs(i)|zt(i)). We represent each learned transition pθ(zs(i)|zt(i)) by the com-

posite of two functions, and this learned function (that maps (zs(i), zt(i))→ [0, 1]) is reparameterized
through the pair (ψ,φ) as: pθ(zs(i)|zt(i)) := q(zs(i)|zt(i),xψ(yφ(zt(i)))). Here, yφ denotes the
anchor network, which predicts a mixture distribution over important tokens from the masked input
zt, and xψ(yφ(zt)) denotes the anchor-guided denoising network, which predicts likelihoods of
missing tokens conditioned on the important token mixture. We analyze the benefits in §4 theoreti-
cally, showing that anchoring reduces the training difficulty in DLMs by focusing optimization on
important tokens. There are two key components in ADLM:

(1) Anchor Transition. Let A(·) be an operator that takes a sequence x = (xl)Ll=1 as input and
outputs an important token mixture y = (yl)Ll=1 = A(x). We define the anchor transition as:

r(yls|zlt,yφ(zt)) =

{
Cat(yls; (1− σt)zlt + σtm), zlt ̸= m,

Cat(yls;
αs−(1−σt)αt

1−αt
ylφ(zt) +

1−αs−αtσt

1−αt
m), zlt = m,

(5)

where yl = A(xl = zlt). In other words, when a token zt is already unmasked, the model preserves
it as an important anchor token ([ANT]) with probability (1 − σt), but can also re-mask it with

4

probability σt (typically small). Conversely, when zt is masked, the anchoring network yφ(·) predicts
an important token mixture with probability αs−(1−σt)αt

1−αt
, and keeps it masked with probability

1−αs−αtσt

1−αt
. This aims to reconstruct the important tokens earlier during sampling.

(2) Inference Posterior. Anchoring introduces an implicit reasoning mechanism into DLM pre-
training. Once the model is trained, we modify the standard inference posterior to incorporate
anchor-guided denoising. Since ADLM is trained to reason through anchor tokens internally, we do
not explicitly decode the anchor tokens during inference. Thus, our inference posterior is given by:

q(zls|zlt,xlψ(yφ(zt))) =

{
Cat(zls; (1− σt)xl + σtm), zlt ̸= m,

Cat(zls;
αs−(1−σt)αt

1−αt
xlψ(yφ(zt)) +

1−αs−αtσt

1−αt
m), zlt = m,

(6)

where σt controls the remasking probability at each timestep (Wang et al., 2025a). If a token zlt
is already unmasked, the denoiser network xψ(yφ(zt)) carries it over to the next time step with
probability (1− σt), while still allowing a small probability σt of masking for correction. When zlt
is masked, the inference posterior interpolates between predicting the missing token via the anchored
logits and remasking it, with weights determined by σt and the forward process parameters (αt, αs).

Important tokens, once masked, lead to information loss that affects reconstruction by standard
denoising network. By predicting these important tokens early via the anchor network, ADLM: (1)
introduces intermediate latent reasoning, (2) maintains stronger context throughout the denoising
trajectory, and (3) enables high quality sequence generation. In practice, even a lightweight denoising
network (e.g., using half the number of layers compared to the anchor network) significantly improves
overall likelihood modeling when guided by anchored predictions.

Training Objective. Given a sequence x and important token mixture y, we optimize the parameters
(ψ and φ) of ADLM using Anchored Negative Evidence Lower Bound (ANELBO) (see Theorem 4.1):

LANELBO(x,y;φ,ψ) = EZ0∼q(·|x) [− log pψ(x|yφ(Z0))] + (7)
T∑
i=1

EZt(i)∼q(·|x)

[
(1− σt(i))αt(i) − αs(i)

1− αt(i)

L∑
l=1

log⟨xlψ(yφ(Zt(i))),xl⟩+ γ log⟨ylφ(Zt(i)),yl⟩

]
,

where γ controls anchor strength. For σt(i) = 0 = γ, we recover the standard MDLM (4).

Anchor Token Selection. We study three different anchor token selection mechanisms: (i) Relative
frequency for LM1B and OWT in generative modeling tasks using DLMs (§5.1), where we identify
important tokens using a frequency-based criterion inspired by TF-IDF. For each token xl in a
sequence x, we compute its relative frequency as µ(xl) = 1

L

∑L
j=1 1{xj=xl}. Tokens with µ(xl) ≤ τ

are considered important and contribute to the anchoring loss. (ii) Digit extraction for GSM8K in
math reasoning tasks using AR models, where we use the numerical digits as the anchors, and this
enables out-of-order reasoning; and (iii) Extraction of verbs and nouns (excluding articles such
as ‘a’, ‘an’, ‘the’) for logical reasoning tasks in AR models with symbolic reasoning traces from
ProntoQA and ProsQA. We defer further details on anchored AR models to §5.2.

4 Theoretical Results
4.1 Anchored Negative Evidence Lower Bound
Recall that each latent variable Zt is a corrupted version of the original sequence x, and y = A(x) is
a mixture of important tokens. We define the anchored transition function as:

r(yls|zlt,yl) :=

{
Cat(yls; (1− σt)yl + σtm), zlt ̸= m,

Cat(yls;
αs−(1−σt)αt

1−αt
yl + 1−αs−αtσt

1−αt
m), zlt = m,

(8)

where zl1 = yl1 = m and αt, σt are time-dependent coefficients derived from the corruption schedule.
This motivates our choice of anchored transition (5) in ADLM parameterization (§3). To align the
model’s anchored predictions with this target transition, we define the anchor loss:

LAnchor(x;φ) := Eq(Z0:1|x)

[T∑
i=0

DKL(r(Ys(i)|Zt(i),y) ∥ rφ(Ys(i)|Zt(i))),
]
, y = A(x), (9)

where rφ is a learned parametric anchor transition function. We now derive the ANELBO objective,
which integrates the anchor network within a denoising model xψ(yφ(·)). The resulting bound
regularizes the denoising process using structured guidance from the anchor predictions.

5

Theorem 4.1 (Anchored Negative Evidence Lower Bound). Suppose the inference posterior is
parameterized as in (6). Denote by θ the collection of parameters of the anchor and denoiser
networks, i.e., θ = [ψ,φ]. Given a sequence x = (xl)Ll=1, let the important token mixture
y = (yl)Ll=1 = A(x) be obtained through the operator A(·). Then, the anchored negative log-
likelihood is bounded by: − log pθ(x) + γLAnchor(x;φ) ≤ LANELBO(x;ψ,φ), where

LANELBO(x;ψ,φ) := EZ0∼q(·|x) [− log pψ(x|yφ(Z0))]

+

T∑
i=1

EZt(i)∼q(·|x)

[
λt(i)

L∑
l=1

(
log⟨xlψ(yφ(Zt(i))),xl⟩+ γ log⟨ylφ(Zt(i)),yl⟩

)]
,

with weight λt(i) =
(1−σt(i))αt(i)−αs(i)

1−αt(i)
and γ > 0.

Remark 4.2. We choose a constant γ to simplify the notation. Our derivation also applies to a time
dependent γt. This only changes the contribution of the anchor loss in LANELBO(x;ψ,φ).

Implications. The ANELBO objective highlights two important aspects induced by anchoring:

• The first term log⟨xlψ(yφ(Zt(i))),xl⟩ encourages the denoising network to model the likelihoods
of missing tokens, conditioned on the output of the anchor network.

• The second term log⟨ylφ(Zt(i)),yl⟩ directly supervises the anchor network, encouraging it to
predict important tokens early during sampling.

To summarize, anchoring improves likelihood because the denoiser does not waste capacity modeling
high-entropy distributions over missing key words, having already resolved them via anchors.

4.2 Anchored Graphical Model Analysis
The core training objective in both AR and DLMs is maximum likelihood estimation (MLE). MLE
has a rich foundation in graphical models (Koller & Friedman, 2009), providing a principled way to
understand expressiveness, tractability, and sample complexity. We reinterpret AR and DLM training
as learning in directed graphical models (DAGs) and formally analyze our anchoring mechanism.
While rooted in classical theory, we demonstrate that anchoring yields practical benefits in both
large-scale pretraining (§5.1) and supervised fine-tuning (§5.2) tasks.
Assumption 4.3. Suppose the following properties hold: (i) Each conditional distribution p(xl|·) is
modeled as a categorical distribution. (ii) The model is parameterized by Conditional Probability
Tables (CPTs); that is, a distinct parameter is assigned to each configuration of the conditioning set.
(iii) Anchor sets πl ⊂ {1, . . . , L} \ {l} are fixed and of bounded size |πl| ≤ d, with d≪ L.
Proposition 4.4 (Reduced Sample Complexity via Anchoring). Suppose Assumption 4.3 holds.
The sample complexity of MLE is given as follows: (i) Standard AR: Each token xl is conditioned
on all previous tokens x1:l−1. The total number of parameters is O(KL), resulting in a sample
complexity of O(KL). (ii) Standard DLM: Each masked token xl is predicted conditioning on all
other tokens x \ xl. The per-token parameter count is O(KL), leading to a total sample complexity
of O(LKL). (iii) Anchored AR: Each token xl is conditioned only on a fixed-size anchor set xπl .
The number of parameters per conditional isO(Kd+1), giving a total sample complexityO(LKd+1).
(iv) Anchored DLM: Each masked token xl is predicted using only anchor tokens xπl \ {xl}. The
per-token parameter count becomes O(Kd+1), resulting in a total sample complexity of O(LKd+1).
Implications. Assuming the existence of important tokens (anchors) in a sequence, anchoring
achieves exponential reductions in sample complexity: O(KL) toO(LKd+1). We provide additional
theoretical results and discussion in §A. We defer discussion on sample complexity to §A.3.1 and
§A.3.2. We discuss an expectation-maximization (EM) (Dempster et al., 1977) interpretation of
our anchored training procedure in §A.3.3. Finally, we provide an example in §A.3.4 that shows
improved likelihood of unmasking anchor tokens early in the denoising process.

5 Experiments
Our experiments are designed to evaluate two main aspects of language modeling: (1) likelihood
modeling and (2) generated text quality. Prior work has shown that improved perplexity during
pretraining often correlates with better downstream performance (Austin et al., 2021; Lou et al., 2024;
Shi et al., 2024; Sahoo et al., 2024; Wang et al., 2025a; Arriola et al., 2025). Since our focus is on
pretraining, we primarily evaluate models in terms of their test/validation perplexities, as well as

6

Table 1: Test perplexities (PPL↓) on LM1B and OWT. †Reported in (Sahoo et al., 2024). Bold: Best
diffusion method. We retrain AR and MDLM to match performance reported in original papers. Our
method outperforms previous diffusion language models using the same number of training tokens.

(a) LM1B
Model PPL (↓) Tokens

Autoregressive
Transformer-X Base (Dai et al., 2019) 23.5 -
OmniNetT (Tay et al., 2021) 21.5 -
Transformer† (Sahoo et al., 2024) 22.32 33B
Transformer (retrained) 21.55 65B

Diffusion
BERT-Mouth (Wang & Cho, 2019) 142.89 -
D3PM (absorb)† (Austin et al., 2021) 76.90 -
Diffusion-LM (Li et al., 2022b) 118.62 -
DiffusionBert† (He et al., 2023) 63.78 -
SEDD (Lou et al., 2024) 32.79 33B
MDLM (Sahoo et al., 2024) 27.04 33B
MDLM (retrained) 27.07 33B
UDLM (uniform) (Schiff et al., 2025) 31.30 33B
DUO (uniform) (Sahoo et al., 2025) 29.90 33B
ADLM (ours) 26.40 33B

MDLM (retrained) 25.49 65B
ADLM (ours) 24.46 65B

(b) OWT
Model PPL (↓) Tokens

Autoregressive
AR (retrained) 17.94 110B
AR† (Sahoo et al., 2024) 17.54 262B
AR (retrained) 17.26 524B

Diffusion
MDLM (retrained) 24.04 110B
ADLM (ours) 21.66 110B

SEDD† (Lou et al., 2024) 24.10 262B
MDLM† (Sahoo et al., 2024) 23.21 262B
MDLM (retrained) 23.17 262B
GIDD (von Rütte et al., 2025) 22.29 262B
UDLM (uniform) (Schiff et al., 2025) 27.40 262B
DUO (uniform) (Sahoo et al., 2025) 25.20 262B
ADLM∗(ours) 21.79 262B
ADLM (ours) 20.62 262B

MDLM (Sahoo et al., 2024) 22.98 524B
MD4 (Shi et al., 2024) 22.13 524B
GenMD4 (Shi et al., 2024) 21.80 524B
BD3LM (L′ = 4) (Arriola et al., 2025) 20.73 524B
ADLM (ours) 20.14 524B

zero-shot generalization. Additionally, we measure generation quality using GPT-2 Large perplexity,
entropy, and MAUVE (Pillutla et al., 2021) scores. While perplexity (PPL) captures the likelihood,
MAUVE score measures divergence between neural text and human text.

5.1 Diffusion Language Models

Setup. We evaluate ADLM on two benchmarks: One Billion Words (LM1B) (Chelba et al., 2013)
and OpenWebText (OWT) (Gokaslan & Cohen, 2019). For LM1B, we use a context length of 128
with the BERT-base-uncased tokenizer and evaluate on the standard test split. For OWT, we use the
GPT-2 tokenizer (Radford et al., 2019). Our anchor network adopts the transformer architecture from
SEDD (Lou et al., 2024), based on the Diffusion Transformer (DiT) (Peebles & Xie, 2023) with
rotary positional embeddings (Su et al., 2024). The denoiser network uses the same base architecture
but with half the number of transformer layers.

We experiment with two diffusion samplers: (a) the locked-in sampler from MDLM (Sahoo et al.,
2024), which fixes previously unmasked tokens by setting σt = 0, and (b) the remasking sampler from
ReMDM (Wang et al., 2025a), which allows re-masking with a small σt ̸= 0. For fair comparison,
we adopt the exact sampler configurations used in the respective baseline implementations.

Baselines. We compare against the following baselines: (1) the Autoregressive (AR) architecture from
(Sahoo et al., 2024) trained with next-token prediction; (2) SEDD (Lou et al., 2024): A score entropy
discrete DLM; (3) MDLM (Sahoo et al., 2024): A masked diffusion language model; (4) MD4 (Shi
et al., 2024): A masked diffusion model for discrete data; (5) BD3LM (Arriola et al., 2025): A hybrid
approach combining AR and diffusion components; (6) ReMDM (Wang et al., 2025a): MDLM
with re-masking sampler; (7) GIDD (von Rütte et al., 2025): A DLM that interpolates between
masking and uniform noising; and flow matching methods, such as (8) DFM (Gat et al., 2024) and
(9) Forward-Backward (FB) (Campbell et al., 2022) samplers. We follow the implementation of
these baselines from MDLM (Sahoo et al., 2024) and ReMDM (Wang et al., 2025a) repository. We
describe each baseline and provide links to the source code in §C.

5.1.1 Improved Likelihood Modeling and Generated Text Quality
We first evaluate ADLM on likelihood modeling and generated text quality using the locked-in
sampler from MDLM (Sahoo et al., 2024). Based on our ablation study (deferred to §C), we adopt
γ = 3e-3 and τ = 5 as our default configuration for anchoring (§3).

Results on LM1B. Table 1 (a) shows that ADLM outperforms previous diffusion models such as
SEDD, MDLM, and DiffusionBERT. At 33B tokens, ADLM achieves a test PPL of 26.40, improving
over MDLM (27.04). Scaling to 65B tokens further reduces PPL to 24.46, approaching AR models
like our retrained Transformer (21.55).

7

Results on OWT. Table 1 (b) presents the test PPL of our proposed method, ADLM, across three
training regimes: 110B, 262B, and 524B tokens. At each scale, ADLM consistently outperforms
diffusion-based baselines such as MDLM and GIDD, as well as the hybrid (AR+Diffusion) BD3LM.
Notably, at 262B tokens, ADLM achieves a PPL of 20.62, narrowing the gap with the AR models,
which reach a PPL of 17.54. ADLM∗ uses our multi-stage design (anchor and denoiser with γ = 0)
to train MDLM that improves its PPL from 23.17 to 21.79. It demonstrates that anchoring is not just
adding extra capacity, but truly guiding efficient learning. At 524B tokens, ADLM further improves
to 20.14, approaching the AR performance (17.26). These results verify the effectiveness of ADLM
in bridging the gap between DLMs and AR approaches, without relying on AR components.

Table 2: GPT2-Large perplexities (PPL;
↓) on OWT (524B tokens). ADLM uses
the remasking sampler with 1000 steps.

PPL (↓)

AR (Sahoo et al., 2024) 14.10

BD3LM (Arriola et al., 2025)
L′ = 16 33.4
L′ = 8 30.4
L′ = 4 25.7

SEDD (Lou et al., 2024) 52.0
MDLM (Sahoo et al., 2024) 44.2
ADLM (ours) 26.8

Generated Text Quality: While test PPL evaluates the abil-
ity to predict missing tokens, it does not necessarily reflect
the quality of generated text. Following common practice,
we assess generated text quality using GPT-2 Large. Table 2
shows GPT-2 Large PPL scores on OWT for models trained
on 524B tokens. Our method, ADLM, achieves the lowest
PPL among DLMs, outperforming prior approaches such as
MDLM and SEDD. ADLM surpasses the hybrid BD3LM
at both L′ = 8 and L′ = 16 block lengths. Since smaller
block lengths make BD3LM behave more like an AR model
(L′ = 1 is equivalent to pure AR), larger block lengths rep-
resent the diffusion regime more accurately. Thus, higher
L′ provides a fair evaluation against other DLMs. We refer
to Table 7 in Appendix C.1.3 for a more extensive study.

Zero-shot Perplexity Evaluation. We train ADLM on OWT and evaluate its zero-shot general-
ization across seven diverse benchmarks using validation perplexity. As shown in Table 4, ADLM
consistently outperforms prior diffusion-based models such as SEDD and MDLM on 6 of 7 tasks, and
matches performance on the remaining WikiText benchmark. It also surpasses the hybrid BD3LM
(with block length L′ = 4) on five benchmarks. These results suggest that ADLM learns robust
representations because the notion of importance captured by the anchor network generalizes even
when the distribution shifts.

Notably, ADLM outperforms the AR baseline on three challenging datasets: (1) Lambada, which
tests long-range contextual understanding, and (2) PubMed and (3) ArXiv, which evaluate scientific
language modeling. These results indicate that ADLM not only narrows the performance gap with
AR models but can exceed them on tasks requiring long-context reasoning and specialized knowledge.
Importantly, ADLM achieves these gains with the same number of neural function evaluations (NFEs)
as AR models, demonstrating both efficiency and strong out-of-distribution generalization.

Remasking Sampler. Now, we evaluate ADLM using the remasking sampler (Wang et al., 2025a),
with results shown in Table 3. This flexibility enables more expressive and diverse sampling. Our
pre-training method, ADLM, when combined with remasking sampler, achieves state-of-the-art
performance across multiple metrics. Importantly, it becomes the first DLM to outperform the AR
model in MAUVE score, particularly at T = 2048 and T = 4096. Anchoring provides up to 4x
improvement in inference speed compared to ReMDM as evident from Table 3 (highlighted in green).

In addition to MAUVE, we report GPT-2 Large perplexity and entropy to assess generation quality
and diversity with increasing number of sampling steps. While test PPL can be artificially lowered
by repeating high-likelihood phrases, such models typically exhibit low entropy and fail to capture
the richness of natural language. Our method maintains high entropy—closely matching the data
distribution—while achieving low PPL and high MAUVE scores. This balance indicates that ADLM
not only generates high quality human-like text but also preserves the diversity.

5.2 Auto-Regressive Models

We observe that the benefits of anchoring extend beyond the diffusion setting. Specifically, anchoring
can be incorporated into auto-regressive generative models as discussed in Appendix C.2, as well as
for supervised finetuning (SFT) of pretrained auto-regressive models as discussed in Appendix C.2.5.

Below, we discuss the second setting of supervised finetuning of pretrained auto-regressive models.
Our key observation is that inserting [ANT] after questions and before the start of (reason, answer)
tokens enhances reasoning capabilities of AR models (see also Appendix C.2.5).

8

Table 3: Evaluation of sample quality using the ADLM with remasking sampler (Wang et al., 2025a)
on OWT. ADLM† outperforms state-of-the-art masked diffusion and flow-matching methods. For
T = 2048 and T = 4096, ADLM surpasses AR in MAUVE score (measures human-like text).

Method MAUVE (↑) Gen PPL. (↓) Entropy (↑)
Data 1.00 14.8 5.44

AR (T=1024)† 0.760 12.1 5.22

T=1024 T=2048 T=4096 T=1024 T=2048 T=4096 T=1024 T=2048 T=4096

SEDD (absorb) 0.008 0.008 0.009 104.7 103.2 102.5 5.62 5.61 5.61
MDLM 0.042 0.037 0.035 51.3 51.3 50.9 5.46 5.46 5.45
MDLM+FB 0.133 0.197 0.243 33.8 28.6 22.8 5.35 5.28 5.18
MDLM+DFM 0.254 0.294 0.269 21.7 21.0 20.7 5.20 5.19 5.17
ReMDM 0.403 0.610 0.656 28.6 22.8 17.6 5.38 5.30 5.20
ADLM (ours) 0.699 0.788 0.791 25.4 20.3 15.9 5.35 5.28 5.19

T=128 T=256 T=512 T=128 T=256 T=512 T=128 T=256 T=512

SEDD (absorb) 0.007 0.007 0.008 119.2 110.1 107.2 5.65 5.63 5.62
MDLM 0.015 0.023 0.031 61.5 55.8 53.0 5.52 5.49 5.48
MDLM+FB 0.064 0.084 0.100 42.8 39.6 37.1 5.44 5.41 5.38
MDLM+DFM 0.041 0.144 0.211 37.9 26.5 23.3 5.31 5.26 5.23
ReMDM 0.057 0.216 0.350 42.5 30.5 21.1 5.43 5.34 5.21
ADLM (ours) 0.140 0.349 0.573 52.5 39.85 31.6 5.52 5.46 5.40

Table 4: Zero-shot validation perplexities (↓) of models trained on 524B tokens from OWT. ADLM
achieves a new state-of-the-art among diffusion language models and outperforms autoregressive
(AR) models on three benchmarks: Lambada, PubMed, and ArXiv. All models use 1024 NFEs.

Lambada PTB Wikitext LM1B AG News PubMed ArXiv

AR 51.28 82.05 25.75 51.25 52.09 49.01 41.73

BD3-LM (L′ = 4) 50.03 96.81 31.31 60.88 61.67 42.52 39.20

SEDD 49.86 100.09 34.28 68.20 62.09 44.53 38.38
MD4 48.43 98.16 32.42 - - - -
MDLM 47.52 95.26 32.83 67.01 61.15 41.89 37.37
UDLM (uniform) 53.57 112.82 39.42 77.59 80.96 50.98 44.08
DUO (uniform) 49.78 89.35 33.57 73.86 67.81 44.48 40.39
ADLM (ours) (262B) 44.93 98.16 32.45 65.59 57.10 38.29 35.08
ADLM (ours) (524B) 44.32 95.37 31.94 64.43 55.72 37.56 33.69

Setup. We use a pretrained GPT-2 (Radford et al., 2019) model as the base architecture. We
finetune the base model on math and logical reasoning tasks using standard SFT on reasoning traces
and answers. We evaluate on three benchmarks: (1) GSM8K (Cobbe et al., 2021)–grade-school
math problems with arithmetic reasoning, (2) ProntoQA (Saparov & He, 2023)–rule-based logical
reasoning, and (3) ProsQA (Hao et al., 2024)– planning with structured reasoning over graph-based
inference traces. Our experimental setup follows the fine-tuning protocols outlined in prior work (Hao
et al., 2024), enabling direct comparison with established baselines.

Baselines. We compare against a range of latent reasoning and chain-of-thought (CoT) methods.
These include standard CoT finetuning (Wei et al., 2022), improved variants such as iCoT (Deng et al.,
2024), and multi-stage fine-tuning approaches like COCONUT (Hao et al., 2024). We compared with
two additional baselines: No-CoT, which trains models directly on question-answer pairs without
intermediate reasoning traces, and Pause Token (Goyal et al., 2024), which inserts special pause
tokens between the question and answer to encourage thinking. These methods are finetuned using
the same base model: GPT-2 (openai-community/gpt2) with identical parameter count. We also
include a recent work BoLT (Ruan et al., 2025) that reasons to learn from latent thoughts.

5.2.1 Improved Reasoning using Anchored Chain-of-Thought
Inspired by recent work on chain-of-thought prompting (Wei et al., 2022; Hao et al., 2024; Goyal
et al., 2024), we investigate whether anchoring improves the reasoning ability of AR models in
both math and logic domains. To operationalize our anchoring mechanism in AR models, we insert
[ANT] after question and before (reason, answer) tokens, and then use standard SFT with important
tokens from reasoning traces as lables for these [ANT] tokens. We defer implementation details to
Appendix C. We refer to this variant as Anchored Chain-of-Thought (ACoT), illustrated in Figure 2.
Here, [BoA]/[EoA] denote the beginning and end of anchors, while [BoR]/[EoR] mark the start and
end of reasoning tokens. Quantitative results are presented in Table 5.

9

Figure 2: Anchored Chain-
of-Thought (ACoT). During
training, anchor embeddings
are passed through the lan-
guage model head to com-
pute cross-entropy loss on an-
chor tokens. At inference, the
model reasons directly in the
latent anchor space without
decoding these embeddings,
enabling future-aware, out-of-
order reasoning since anchors
need not correspond to imme-
diate next tokens. Example
trace from GSM8K dataset.

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends everyday with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers’ market?

Anchor Transformer (with causal attention)

[BoA] [EoA] <3+4=7> <16-7=9> <9*2=18>[BoR] [EoR]

…

18[BoA] [EoA] <3+4=7> <16-7=9> <9*2=18>[BoR] [EoR]

Language Model Head

Tokens

Embeddings

Embeddings

Tokens

Results on Math. On GSM8K, ACoT achieves an accuracy of 45.2%, outperforming compared
baselines, including standard CoT (42.9%) and multi-stage finetuning approaches like COCONUT
(34.1%). Anchoring improves decoding by treating an ordered subset of reasoning trace tokens, after
filtering out punctuation and arithmetic operators (+,−,×,÷), as anchoring tokens. This guides the
ACoT model through important tokens before generating reasoning traces and the final answer.

Table 5: Accuracy (%) on Math and Logical
Reasoning. ACoT improves the performance of
prior (continuous) latent reasoning methods de-
spite using the same multi-stage training setup as
COCONUT. † reported in COCONUT.

Method GSM8K ProntoQA ProsQA

No-CoT† 16.5 93.8 76.7
Pause Token† 16.4 77.7 75.9
CoT† 42.9 98.8 77.5
iCoT 30.0 99.8 98.2
COCONUT† 34.1 99.8 97.0

- Pause† 24.1 100 96.6
BoLT 33.6 – –

ACoT (ours) 45.2 100 97.3

Results on Logic. We anchor using valid nodes
from the reasoning traces after pruning conjunc-
tions, articles or adjectives, such as ‘every’, is’,
and ‘a’. As recommended in COCONUT, we pro-
gressively increase the number of [ANT] tokens.
For ProsQA, we gradually remove the reasoning
steps while inserting [ANT] tokens, which helps
enhance logical reasoning (Hao et al., 2024). On
a relatively easier benchmark ProntoQA, ACoT
achieves 100% accuracy, matching or exceed-
ing prior approaches. On the more challenging
ProsQA benchmark, ACoT reaches 97.3%, im-
proving over COCONUT (97.0%) and surpassing
CoT variants except iCoT.

While standard multi-stage training such as
in COCONUT leads to an improvement from
98.8% (CoT) to 99.8%, our anchoring mechanism further enhances performance. By incorporating
explicit supervision through [ANT], ACoT achieves a perfect accuracy of 100% on this relatively
easier benchmark, demonstrating the effectiveness of anchoring in logical reasoning. This study
also opens up other intriguing questions and potential directions. Words corresponding to verbs and
nouns relate to the concepts of terminals and syntactic categories in the Chomsky Hierarchy (formal
language theory). We defer additional results and discussion to Appendix C.

6 Conclusion
We introduce Anchored Diffusion Language Model (ADLM), a two-stage generative framework that
improves diffusion language modeling by leveraging anchor tokens (e.g., low-frequency or important
key words). We provide theoretical justification along with strong empirical evidence supporting our
results. Our method bridges the gap between diffusion and AR models in likelihood modeling and
generated text quality. ADLM significantly reduces test PPL on LM1B and OWT, outperforming
previous DLMs in 6 out of 7 zero-shot benchmarks, and, for the first time, enables a diffusion
model to outperform AR models in MAUVE score that measures human-like text generation quality.
Beyond diffusion, we demonstrate that anchoring is broadly applicable and improves reasoning in AR
models. Our Anchored Chain-of-Thought (ACoT) method improves performance on math and logic
benchmarks, outperforming existing approaches. These results highlight the impact of anchoring as a
general-purpose framework for language modeling and complex reasoning.
Limitation. While anchoring yields consistent gain, the definition of token importance is task-specific.
We use low frequency tokens or key words as proxies for importance, which may not generalize.
Future work may explore adaptive or LLM-guided anchoring for efficient planning and reasoning.

10

Acknowledgments

This research has been supported by NSF Grants 2019844 and 2112471, the UT Austin Machine
Learning Lab, and computing support on the Vista GPU Cluster through the Center for Generative AI
(CGAI) and the Texas Advanced Computing Center (TACC) at UT Austin.

References
AI Anthropic. The claude 3 model family: Opus, sonnet, haiku. Claude-3 Model Card, 1:1, 2024. URL
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/
Model_Card_Claude_3.pdf.

Marianne Arriola, Subham Sekhar Sahoo, Aaron Gokaslan, Zhihan Yang, Zhixuan Qi, Jiaqi Han,
Justin T Chiu, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=tyEyYT267x.

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=h7-XixPCAL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155, 2003.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877–
1901, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=DmT862YAieY.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and Christopher D Manning. What does bert look at?
an analysis of bert’s attention. In Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pp. 276. Association for Computational Linguistics,
2019. URL https://aclanthology.org/W19-4828/.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung Bui, Seokhwan Kim, Walter Chang,
and Nazli Goharian. A discourse-aware attention model for abstractive summarization of long
documents. In Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
615–621, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988, 2019.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical society: series B (methodological), 39(1):
1–22, 1977.

11

https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf
https://openreview.net/forum?id=tyEyYT267x
https://openreview.net/forum?id=h7-XixPCAL
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://openreview.net/forum?id=DmT862YAieY
https://aclanthology.org/W19-4828/

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to internalize
cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 889–898, Melbourne, Australia, July 2018. Association for Computational Linguistics.
doi: 10.18653/v1/P18-1082. URL https://aclanthology.org/P18-1082/.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. In The Thirty-eighth Annual Conference on Neural Infor-
mation Processing Systems, 2024. URL https://openreview.net/forum?id=GTDKo3Sv9p.

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=ph04CRkPdC.

Ishaan Gulrajani and Tatsunori Hashimoto. Likelihood-based diffusion language models. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=e2MCL6hObn.

Shibo Hao, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong
Tian. Training large language models to reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Zhengfu He, Tianxiang Sun, Qiong Tang, Kuanning Wang, Xuan-Jing Huang, and Xipeng Qiu. Dif-
fusionbert: Improving generative masked language models with diffusion models. In Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 4521–4534, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in
Neural Information Processing Systems, volume 33, pp. 6840–6851. Curran Associates,
Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf.

Frederick Jelinek. Interpolated estimation of markov source parameters from sparse data. In Proc.
Workshop on Pattern Recognition in Practice, 1980, 1980.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
variational methods for graphical models. Machine learning, 37:183–233, 1999.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020. URL https://openreview.net/forum?id=HklBjCEKvH.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT
Press, 2009.

Jeongyeol Kwon, Wei Qian, Yudong Chen, Constantine Caramanis, Damek Davis, and Nhat Ho.
Global optimality of the em algorithm for mixtures of two-component linear regressions. IEEE
Transactions on Information Theory, 70(9):6519–6546, 2024. doi: 10.1109/TIT.2024.3435522.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
in nlp. In Proceedings of the 2016 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 681–691, 2016.

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022a. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

12

https://aclanthology.org/P18-1082/
https://openreview.net/forum?id=GTDKo3Sv9p
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=ph04CRkPdC
https://openreview.net/forum?id=e2MCL6hObn
https://openreview.net/forum?id=e2MCL6hObn
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://openreview.net/forum?id=HklBjCEKvH
https://openreview.net/forum?id=3s9IrEsjLyk

Xiang Lisa Li, John Thickstun, Ishaan Gulrajani, Percy Liang, and Tatsunori Hashimoto. Diffusion-
LM improves controllable text generation. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022b. URL
https://openreview.net/forum?id=3s9IrEsjLyk.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the Association for Computational Linguistics, 4:
521–535, 2016. doi: 10.1162/tacl_a_00115. URL https://aclanthology.org/Q16-1037/.

Sulin Liu, Juno Nam, Andrew Campbell, Hannes Stark, Yilun Xu, Tommi Jaakkola, and Rafael
Gomez-Bombarelli. Think while you generate: Discrete diffusion with planned denoising. In
The Thirteenth International Conference on Learning Representations, 2025. URL https://
openreview.net/forum?id=MJNywBdSDy.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios
of the data distribution. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=CNicRIVIPA.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

Radford M Neal and Geoffrey E Hinton. A view of the em algorithm that justifies incremental, sparse,
and other variants. In Learning in graphical models, pp. 355–368. Springer, 1998.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text. In The Thirteenth International Conference on
Learning Representations, 2025a. URL https://openreview.net/forum?id=WNvvwK0tut.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin, Ji-
Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint arXiv:2502.09992,
2025b.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan
Li. Your absorbing discrete diffusion secretly models the conditional distributions of clean
data. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=sMyXP8Tanm.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc-Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 4195–4205, 2023.

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. MAUVE: Measuring the gap between neural text and human text using
divergence frontiers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/
forum?id=Tqx7nJp7PR.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Yangjun Ruan, Neil Band, Chris J Maddison, and Tatsunori Hashimoto. Reasoning to learn from
latent thoughts. arXiv preprint arXiv:2503.18866, 2025.

Subham Sekhar Sahoo, Marianne Arriola, Aaron Gokaslan, Edgar Mariano Marroquin, Alexander M
Rush, Yair Schiff, Justin T Chiu, and Volodymyr Kuleshov. Simple and effective masked diffusion
language models. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=L4uaAR4ArM.

13

https://openreview.net/forum?id=3s9IrEsjLyk
https://aclanthology.org/Q16-1037/
https://openreview.net/forum?id=MJNywBdSDy
https://openreview.net/forum?id=MJNywBdSDy
https://openreview.net/forum?id=CNicRIVIPA
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=WNvvwK0tut
https://openreview.net/forum?id=sMyXP8Tanm
https://openreview.net/forum?id=Tqx7nJp7PR
https://openreview.net/forum?id=Tqx7nJp7PR
https://openreview.net/forum?id=L4uaAR4ArM

Subham Sekhar Sahoo, Justin Deschenaux, Aaron Gokaslan, Guanghan Wang, Justin T Chiu, and
Volodymyr Kuleshov. The diffusion duality. In Forty-second International Conference on Machine
Learning, 2025. URL https://openreview.net/forum?id=9P9Y8FOSOk.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=qFVVBzXxR2V.

Yair Schiff, Subham Sekhar Sahoo, Hao Phung, Guanghan Wang, Sam Boshar, Hugo Dalla-torre,
Bernardo P de Almeida, Alexander M Rush, Thomas PIERROT, and Volodymyr Kuleshov. Simple
guidance mechanisms for discrete diffusion models. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=i5MrJ6g5G1.

Zhenyi Shen, Hanqi Yan, Linhai Zhang, Zhanghao Hu, Yali Du, and Yulan He. Codi: Compressing
chain-of-thought into continuous space via self-distillation. arXiv preprint arXiv:2502.21074,
2025.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis Titsias. Simplified and generalized
masked diffusion for discrete data. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=xcqSOfHt4g.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Francis Bach and David Blei (eds.), Proceedings
of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine
Learning Research, pp. 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://
proceedings.mlr.press/v37/sohl-dickstein15.html.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
International conference on machine learning, pp. 3319–3328. PMLR, 2017.

Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta, Philip M Pham, Zhen Qin, Dara Bahri,
Da-Cheng Juan, and Donald Metzler. Omninet: Omnidirectional representations from transformers.
In International Conference on Machine Learning, pp. 10193–10202. PMLR, 2021.

Team-Gemini, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023. URL https://arxiv.
org/pdf/2312.11805.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. BERT rediscovers the classical NLP pipeline. In Anna
Korhonen, David Traum, and Lluís Màrquez (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 4593–4601, Florence, Italy, July 2019. Association
for Computational Linguistics. doi: 10.18653/v1/P19-1452. URL https://aclanthology.
org/P19-1452/.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. URL https:
//arxiv.org/abs/2302.13971.

Harshit Varma, Dheeraj Mysore Nagaraj, and Karthikeyan Shanmugam. Glauber generative model:
Discrete diffusion models via binary classification. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=HyjIEf90Tn.

Dimitri von Rütte, Janis Fluri, Yuhui Ding, Antonio Orvieto, Bernhard Schölkopf, and Thomas
Hofmann. Generalized interpolating discrete diffusion. arXiv preprint arXiv:2503.04482, 2025.
URL https://arxiv.org/pdf/2503.04482.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and it must speak: Bert as a markov random field
language model. arXiv preprint arXiv:1902.04094, 2019.

14

https://openreview.net/forum?id=9P9Y8FOSOk
https://openreview.net/forum?id=qFVVBzXxR2V
https://openreview.net/forum?id=i5MrJ6g5G1
https://openreview.net/forum?id=xcqSOfHt4g
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://arxiv.org/pdf/2312.11805
https://arxiv.org/pdf/2312.11805
https://aclanthology.org/P19-1452/
https://aclanthology.org/P19-1452/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=HyjIEf90Tn
https://arxiv.org/pdf/2503.04482

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025a. URL
https://arxiv.org/abs/2503.00307.

Guanghan Wang, Yair Schiff, Subham Sekhar Sahoo, and Volodymyr Kuleshov. Remasking discrete
diffusion models with inference-time scaling. arXiv preprint arXiv:2503.00307, 2025b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=
_VjQlMeSB_J.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
classification. Advances in neural information processing systems, 28, 2015.

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope as dicussed in §1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been included in §6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

15

https://arxiv.org/abs/2503.00307
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions and proofs have been provided in §4 and §A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information have been disclosed in §5 and §C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

16

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides open access to the data and code (https://anchored-diffusion-
llm.github.io/), with sufficient instructions to faithfully reproduce the main experimental
results in §5 and §C.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the training and test details have been included in §5 and §C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments have been conducted by fixing the seed for different sources
of randomness, which ensures that multiple runs produce nearly the same result. We have
included results with 2 independent runs for the base generative models, and matched
the numbers up to the first decimal point, which indicates robustness of the conducted
experiments. We provide additional information about the statistical significance of the
experiments in §C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17

https://anchored-diffusion-llm.github.io/
https://anchored-diffusion-llm.github.io/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources have been discussed in §C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper broader impacts have been discussed in §C.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate

18

https://neurips.cc/public/EthicsGuidelines

to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The safeguards have been described in §C.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets are properly credited in §C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the dataset/code/model has been discussed in §C.
Guidelines:

• The answer NA means that the paper does not release new assets.

19

paperswithcode.com/datasets

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There is no crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There is no human subject involved in the experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not use LLMs in this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Additional Theoretical Results and Proofs

This appendix provides complete theoretical results that were either stated without proof or omitted
from the main text due to space constraints. For completeness, we restate key theorems and provide
detailed proofs, along with additional theoretical insights. In §A.1, we present the full proof of
Theorem 4.1. In §A.2, we derive the transition kernel for masked DLM for completeness. Finally, in
§A.3, we provide a detailed discussion on the statistical benefits of anchoring in both diffusion and
autoregressive models, with an emphasis on sample complexity and likelihood modeling.

A.1 Proof of Theorem 4.1

We follow the standard discrete diffusion analysis for the NELBO objective (Sohl-Dickstein et al.,
2015), but incorporate our anchored parameterization into the divergence computation.
Theorem A.1 (Anchored Negative Evidence Lower Bound). Suppose the forward process follows
(1), and the inference posterior is parameterized by anchored denoising as in (6). Denote by θ
the collection of parameters of the anchor and denoiser networks, i.e., θ = [ψ,φ]. Let A(·) be
an operator that takes a sequence x = (xl)Ll=1 as input and returns an important token mixture
y = (yl)Ll=1 = A(x) as output. Then, the anchored negative log-likelihood is bounded by:

− log pθ(x) + γLAnchor(x;φ) ≤ LANELBO(x;ψ,φ), where

LANELBO(x;ψ,φ) := EZ0∼q(·|x) [− log pψ(x|yφ(Z0))]

+

T∑
i=1

EZt(i)∼q(·|x)

[
λt(i)

L∑
l=1

(
log⟨xlψ(yφ(Zt(i))),xl⟩+ γ log⟨ylφ(Zt(i)),yl⟩

)]
,

with weight λt(i) =
(1−σt(i))αt(i)−αs(i)

1−αt(i)
and γ > 0.

Proof. We first derive the bound for sequence length L = 1; the extension to L > 1 is straightforward
following the standard analysis (Sohl-Dickstein et al., 2015).

We start from the standard negative log-likelihood:

− log pθ(x) = − log

∫
pθ(x, Z0, . . . , Z1) d(Z0, . . . , Z1)

= − log

∫
pθ(x, Z0:1)

q(Z0:1|x)
q(Z0:1|x) d(Z0:1).

Applying Jensen’s inequality yields:

− log pθ(x) ≤ Eq(Z0:1|x)

[
− log pθ(x|Z0) + log

q(Z1|x)
pθ(Z1)

+

T∑
i=1

log
q(Zs(i)|Zt(i),x)
pθ(Zs(i)|Zt(i))

]
:= LNELBO(x; θ)

Thus, the NELBO decomposes into:

LNELBO(x; θ) = Eq(Z0:1|x)

[
− log pθ(x|Z0) + DKL

(
q(Z1|x) ∥ pθ(Z1)

)
+

T∑
i=1

DKL

(
q(Zs(i)|Zt(i),x) ∥ pθ(Zs(i)|Zt(i))

)]
Combining the NELBO decomposition with our anchored loss (9) gives:
LANELBO(x;ψ,φ) = LNELBO(x;ψ,φ) + γLAnchor(x;φ)

= Eq(Z0:1|x)

[
− log pθ(x|Z0) + DKL(q(Z1|x)∥pθ(Z1)) +

T∑
i=1

DKL(q(Zs(i)|Zt(i),x)∥pθ(Zs(i)|Zt(i)))

]

+ γEq(Z0:1|x)

[
T∑
i=1

DKL(r(Ys(i)|Zt(i),y)∥rφ(Ys(i)|Zt(i)))

]

= Eq(Z0:1|x)

[
− log pθ(x|Z0)

]
+ Eq(Z0:1|x)

[
DKL(q(Z1|x)∥pθ(Z1))

]

+ Eq(Z0:1|x)

[
T∑
i=1

DKL(q(Zs(i)|Zt(i),x)∥pθ(Zs(i)|Zt(i))) + γDKL(r(Ys(i)|Zt(i),y)∥rφ(Ys(i)|Zt(i)))

]

21

The three terms in the above expression have natural interpretations:

• The first term captures the reconstruction loss at the final step of the reverse process.
• The second term measures the error due to mismatch between the stationary distribution of

the forward process and the initial distribution of the reverse process. This vanishes when
the reverse process is initialized with a sequence of all masks.

• The third term aggregates the KL divergences across diffusion steps, and encodes the
difficulty of denoising masked tokens. Our anchor network aims to reduce this difficulty by
enabling early decoding of important tokens.

We now focus on analyzing the third term defined as:

Ldiffusion(x;ψ,φ) :=

T∑
i=1

DKL(q(Zs(i)|Zt(i),x)∥pθ(Zs(i)|Zt(i))) + γDKL(r(Ys(i)|Zt(i),y)∥rφ(Ys(i)|Zt(i)))

Since y = A(x), each KL divergence can be computed by splitting into two cases, depending on
whether the token Zt(i) is already unmasked.

Case 1: Zt(i) ̸= m (unmasked). In this case, the diffusion loss for the ith KL-Divergence term:

Lidiffusion (x;ψ,φ) = Eq(Zs(i)|Zt(i),x)

[
log

(
q(Zs(i)|Zt(i),x)
pθ(Zs(i)|Zt(i))

)]
+ γEr(Ys(i)|Zt(i),y)

[
log

(
r(Ys(i)|Zt(i),y)
rφ(Ys(i)|Zt(i))

)]

= q(Zs(i) = m|Zt(i) ̸= m,x) log

(
q(Zs(i) = m|Zt(i) ̸= m,x)

pθ(Zs(i) = m|Zt(i) ̸= m)

)

+ q(Zs(i) = x|Zt(i) ̸= m,x) log

(
q(Zs(i) = x|Zt(i) ̸= m,x)

pθ(Zs(i) = x|Zt(i) ̸= m)

)

+ γr(Ys(i) = m|Zt(i) ̸= m,y) log

(
r(Ys(i) = m|Zt(i) ̸= m,y)

rφ(Ys(i) = m|Zt(i) ̸= m)

)

+ γr(Ys(i) = y|Zt(i) ̸= m,y) log

(
r(Ys(i) = y|Zt(i) ̸= m,y)

rφ(Ys(i) = y|Zt(i) ̸= m)

)

= q(Zs(i) = m|Zt(i) ̸= m,x) log

(
q(Zs(i) = m|Zt(i) ̸= m,x)

q(Zs(i) = m|Zt(i) ̸= m,xψ(yφ(Zt(i)))

)

+ q(Zs(i) = x|Zt(i) ̸= m,x) log

(
q(Zs(i) = x|Zt(i) ̸= m,x)

q(Zs(i) = x|Zt(i) ̸= m,xψ(yφ(Zt(i)))

)

+ γr(Ys(i) = m|Zt(i) ̸= m,y) log

(
r(Ys(i) = m|Zt(i) ̸= m,y)

r(Ys(i) = m|Yt(i) ̸= m,yφ(Zt(i)))

)

+ γr(Ys(i) = y|Zt(i) ̸= m,y) log

(
r(Ys(i) = y|Zt(i) ̸= m,y)

r(Ys(i) = y|Zt(i) ̸= m,yφ(Zt(i)))

)

= (1 + γ)σt(i) log

(
σt(i)

σt(i)

)
+ (1 + γ)(1− σt(i)) log

(
(1− σt(i))
(1− σt(i))

)
= 0.

Implications. This result demonstrates that when the generative model’s reverse transition aligns
with the inference posterior for unmasked tokens, the diffusion loss becomes zero. This validates the
effectiveness of our two-stage parameterization. The key implications are:

• Unbiased Learning: Anchoring introduces no additional bias when its distribution matches
the inference posterior (6).

• Tight Variational Bound: The ANELBO objective (7) remains a tight bound on the data
likelihood, ensuring the theoretical soundness of our formulation.

Case 2: Zt = m (masked). Following the anchored denoising formulation, we obtain:

22

Lidiffusion (x;ψ,φ) = Eq(Zs(i)|Zt(i),x)

[
log

(
q(Zs(i)|Zt(i),x)
pθ(Zs(i)|Zt(i))

)]
+ γEr(Ys(i)|Zt(i),y)

[
log

(
r(Ys(i)|Zt(i),y)
rφ(Ys(i)|Zt(i))

)]

= q(Zs(i) = m|Zt(i) = m,x) log

(
q(Zs(i) = m|Zt(i) = m,x)

pθ(Zs(i) = m|Zt(i) = m)

)

+ q(Zs(i) = x|Zt(i) = m,x) log

(
q(Zs(i) = x|Zt(i) = m,x)

pθ(Zs(i) = x|Zt(i) = m)

)

+ γr(Ys(i) = m|Zt(i) = m,y) log

(
r(Ys(i) = m|Zt(i) = m,y)

rφ(Ys(i) = m|Zt(i) = m)

)

+ γr(Ys(i) = y|Zt(i) = m,y) log

(
r(Ys(i) = y|Zt(i) = m,y)

rφ(Ys(i) = y|Zt(i) = m)

)

= q(Zs(i) = m|Zt(i) = m,x) log

(
q(Zs(i) = m|Zt(i) = m,x)

q(Zs(i) = m|Zt(i) = m,xψ(yφ(Zt(i))))

)

+ q(Zs(i) = x|Zt(i) = m,x) log

(
q(Zs(i) = x|Zt(i) = m,x)

q(Zs(i) = x|Zt(i) = m,xψ(yφ(Zt(i))))

)

+ γr(Ys(i) = m|Zt(i) = m,y) log

(
r(Ys(i) = m|Zt(i) = m,y)

r(Ys(i) = m|Zt(i) = m,yφ(Zt(i)))

)

+ γr(Ys(i) = y|Zt(i) = m,y) log

(
r(Ys(i) = y|Zt(i) = m,y)

r(Ys(i) = y|Zt(i) = m,yφ(Zt(i)))

)

=
(1− αs − σtαt

1− αt

)
log

[(1−αs−σtαt

1−αt

)
(

1−αs−σtαt

1−αt

)]+ (αs − αt + αtσt
1− αt

)
log

[(
αs−αt+αtσt

1−αt

)
(
αs−αt+αtσt

1−αt

)
⟨xψ(yφ(Zt))),x⟩

]

+ γ
(1− αs − σtαt

1− αt

)
log

[(1−αs−σtαt

1−αt

)
(

1−αs−σtαt

1−αt

)]+ γ
(αs − αt + αtσt

1− αt

)
log

[(
αs−αt+αtσt

1−αt

)
(
αs−αt+αtσt

1−αt

)
⟨yφ(Zt))),y⟩

]

=
((1− σt(i))αt(i) − αs(i)

1− αt(i)

)[
log⟨xψ(yφ(Zt(i))),x⟩+ γ log⟨yφ(Zt(i)),y⟩

]

Combining Case 1 and Case 2, we conclude the proof.

Summary. The complete derivation of the ANELBO (7) formally establishes the theoretical sound-
ness of our two-stage ADLM parameterization. It confirms that anchoring introduces no additional
bias and remains a tight bound on the data manifold. When the anchor and denoising networks are
properly aligned with the inference posterior, the KL terms decompose nicely under our parameteri-
zation. This leads to a variational bound that reflects both token-level reconstruction and anchor-level
guidance, enabling effective learning in large-scale diffusion language models.

A.2 Derivation of Absorbing Transition Kernel

This derivation is a special case of the D3PM framework (Austin et al., 2021) applied to masked
diffusion language modeling. We include a simplified proof here for completeness.

Recall from §2.2 that the forward noising process is defined as:

q(zt|x) := Cat (zt;αtx+ (1− αt)m) , t ∈
{
1

T
,
2

T
, . . . , 1

}
, (10)

23

where m denotes the mask token distribution and αt ∈ [0, 1] controls the corruption level at time t.

We aim to derive the transition kernel:

q(zt|zs) = Cat
(
zt;αt|szs + (1− αt|s)m

)
, (11)

where αt|s := αt/αs for t > s.

Law of Total Probability. We begin by marginalizing over Zs:

q(zt|x) =
∑
zs

q(zt|zs,x) q(zs|x)

= q(zt|zs = m) q(zs = m|x) + q(zt|zs = x) q(zs = x|x).

Simplifying the Components. From the forward process in Eq. (10), we know:

q(zs = x|x) = αs,

q(zs = m|x) = 1− αs.

Let α := q(zt = x|zs = x), and note that since m is an absorbing state, we have:

q(zt = x|zs = m) = 0,

q(zt = m|zs = m) = 1.

Then, the marginal probability of zt = m given x becomes:

q(zt = m|x) = q(zt = m|zs = m) q(zs = m|x) + q(zt = m|zs = x) q(zs = x|x)
= (1− αs) + (1− α) αs
= 1− ααs.

From Eq. (10), we also know:
q(zt = m|x) = 1− αt.

Equating the two expressions:

1− ααs = 1− αt ⇒ α =
αt
αs

= αt|s.

Thus, we have shown:

q(zt|zs = zs) = Cat
(
zt;αt|szs + (1− αt|s)m

)
,

which completes the derivation of the absorbing transition kernel.

A.3 Anchored Graphical Model Analysis

The foundational principle behind both AR and DLM pre-training is Maximum Likelihood Estimation
(MLE), which optimizes their respective log-likelihood objectives. MLE has been extensively studied
in the context of graphical models (Koller & Friedman, 2009), offering a principled framework to an-
alyze expressiveness, tractability, and sample complexity. In this section, we recast AR and diffusion
training as instances of learning in Directed Graphical Models (DAGs) and use this perspective to
formally analyze our anchoring mechanism. We show that anchoring—conditioning only on a small,
important subset of tokens—leads to significant reduction in parameters and sample complexity.
While related ideas are well-established in probabilistic modeling, we demonstrate their effectiveness
in large-scale language model pre-training (§5.1.1) and fine-tuning (§5.2.1) tasks.

Setup. Given a sample x =
(
x1, · · · ,xL

)
, we consider a DAG denoted by G = (L,E), where

L = {1, 2, . . . , L} denotes the set of nodes (each corresponding to a token position in the sequence),
and E denotes the set of directed edges representing conditional dependencies. Each node xl takes a
discrete value from a vocabulary V of size K, so xl ∈ V . Let πl ⊆ {1, . . . , L} \ {l} denote the set of
parent indices of node l, and define xπl = {xj : j ∈ πl} to be the corresponding parent tokens.

In the following, we analyze the sample complexity of learning graphical models for language,
comparing standard approaches with our proposed anchored models. Our focus is to demonstrate that
anchoring—by conditioning on a small, important subset of tokens—can dramatically reduce the
number of parameters and training samples required.

24

Assumption A.2. Suppose the following properties hold.

• Each conditional distribution p(xl|·) is modeled as a categorical distribution.
• The model is parameterized by Conditional Probability Tables (CPTs); that is, a distinct

parameter is assigned to each possible configuration of the conditioning set.
• Anchor sets πl ⊂ {1, . . . , L} \ {l} are fixed and of bounded size |πl| ≤ d, with d≪ L.

Proposition A.3 (Reduced Sample Complexity via Anchoring). Let x = (x1, . . . ,xL) be a sequence
of discrete random variables, each taking values in a finite vocabulary V of size K, i.e., xl ∈ V with
|V| = K. Suppose we are given N i.i.d. samples {xi}Ni=1 ∼ q, and Assumption A.2 holds. Then the
sample complexity of MLE under different modeling paradigms is as follows:

1. Standard Autoregressive Modeling: Since each token xl is conditioned on all previous
tokens x1:l−1, the total number of parameters is O(KL), resulting in a sample complexity
of O(KL).

2. Standard Diffusion Modeling: Each masked token xl is conditioned on all other tokens
x \ xl. The per-token parameter count is O(KL), leading to total sample complexity of
O(LKL).

3. Anchored Autoregressive Modeling (A2R): Since each token xl is conditioned only on a
fixed-size anchor set xπl , the number of parameters per conditional is O(Kd+1), giving
total sample complexity O(LKd+1).

4. Anchored Diffusion Language Modeling (ADLM): Each masked token xl is predicted
using only anchor tokens xπl \ {xl}. The per-token parameter count becomes O(Kd+1),
resulting in a total sample complexity of O(LKd+1).

Implications. Assuming the existence of important tokens in an anchor set of fixed cardinality
d, anchored modeling achieves exponential reductions in sample complexity without sacrificing
model expressiveness or decoding fidelity. A2R improves upon standard AR models by reducing the
sample complexity from O(KL) to O(LKd+1). ADLM offers an analogous benefit, reducing the
sample complexity from O(LKL) to O(LKd+1). These results highlight the theoretical advantage
of anchoring in high-dimensional structured prediction settings, particularly for language modeling.
Remark A.4. Consider a sequence of length L = 1024 and vocabulary size K = 50257 (as used
in MDLM training) for a line network x1 → x2 → · · · → xL. Under standard autoregressive
modeling, the total number of parameters in CPTs required to model the full joint distribution is
O(KL) = O(502571024), which is computationally intractable to estimate.

In contrast, under the anchored autoregressive model (A2R) with a small anchor set size, e.g., d = 1
for the line network, the total number of parameters reduces to O(LK2) = O(1024 × 502572),
which is within the scale of modern large language models.

Similarly, for diffusion models, anchoring reduces the per-token parameter complexity from KL =
502571024 to Kd+1 = 502572, leading to a sample complexity of O(LKd+1) = O(1024× 502572).

These exponential savings illustrate that anchored modeling makes otherwise intractable parameter
estimation feasible in large-scale (diffusion/AR) language modeling.

We provide detailed derivations and discussion of these results in the subsequent sections A.3.1
and A.3.2. Our anchored training procedure also has an interpretation of expectation-maximization
(EM) (Dempster et al., 1977), which we discuss in A.3.3. In A.3.4, we provide an example to show
how anchoring helps improve the likelihood of decoding important tokens.

A.3.1 Sample Complexity in Standard Training

Assume we are given N i.i.d. samples {xi}Ni=1 drawn from an unknown distribution q over sequences
xi ∈ VL, where V is a vocabulary of size K. Our goal is to estimate the parameters of a conditional
probability model p(x|θ), where θ = [ψ,φ], using MLE. The standard MLE objective is defined as:

LMLE(ψ,φ) =

N∑
i=1

log p(xi|ψ,φ).

Since the structure of the underlying graphical model G is typically unknown, a common modeling
assumption is to use a fully autoregressive factorization of the joint distribution. This leads to the

25

following objective:

LAR(ψ,φ) =

N∑
i=1

[
log p(x1

i |ψ,φ) +
L∑
l=2

log p(xli|x1:l−1
i , ψ, φ)

]
,

which models the joint probability by conditioning each token on all previous tokens.

Alternatively, in masked diffusion language modeling, the likelihood of the missing token is computed
by conditioning on all tokens except the masked token:

LDiffusion(ψ,φ) =

N∑
i=1

[
L∑
l=1

log p(xli|xi \ xli, ψ, φ) · 1{xl
i=m}

]
,

where m denotes a masked token and xi \ xli is the set of all other tokens in the sequence.

In both formulations, each conditional probability is modeled as a categorical distribution over V and
is thus associated with a CPT. Learning such a model amounts to estimating these CPTs. The number
of parameters required for each CPT depends exponentially on the size of its conditioning set. For
example:

• To model q(x1), we need K parameters to define p(x1|θ).
• For q(x2|x1), we require K2 parameters, one categorical distribution for each value of x1.
• In general, for q(xl|x1:l−1), the CPT size is Kl, as we require a distribution over K values

for each of the Kl−1 configurations of the conditioning context x1:l−1.

Summing over all positions yields the total number of parameters in the model:

L∑
l=1

Kl =
K(KL − 1)

K − 1
.

In this tabular setting, it is well known that the sample complexity of MLE grows at least linearly with
the number of parameters in order to guarantee accurate estimation. Thus, the sample complexity of
learning such a model is O(KL), which becomes infeasible even for modest values of L and K. For
example, with L = 1024 and K = 50257 (as in GPT-2’s vocabulary size), the number of parameters
is on the order of 502571024, which is computationally intractable.

This exponential order highlights the need for structure-aware modeling techniques, such as anchoring,
which constrain the dependency structure and significantly reduce the number of learnable parameters.
In the following sections, we show how anchoring enables more sample-efficient learning by focusing
on a subset of important tokens that govern the generative structure of the data.

A.3.2 Reduced Sample Complexity via Anchored Modeling

A key motivation for our approach is the observation that a sentence can often be accurately decoded
given a small set of important tokens. We propose to leverage this property by computing the
likelihood of missing tokens while conditioning only on a carefully selected subset of important
tokens, referred to as anchor tokens, rather than the full context. This design leads to a substantial
reduction in the sample complexity required for maximum likelihood estimation.

Identifying the most informative tokens is an exciting problem that has been studied extensively
in the NLP literature (Linzen et al., 2016; Li et al., 2016; Sundararajan et al., 2017; Clark et al.,
2019; Tenney et al., 2019; Khandelwal et al., 2020). In this work, we adopt a simple yet effective
information-theoretic strategy: tokens with low marginal frequency in the given sample tend to carry
more information (§3). Hence, we treat such low-frequency tokens as candidates for anchoring in
language modeling tasks. Our empirical results support this strategy across two commonly used
generative modeling benchmarks: (1) LM1B (Chelba et al., 2013) and (2) OWT (Gokaslan & Cohen,
2019), and seven downstream evaluation benchmarks (§5). We further demonstrate the benefits of
anchoring in AR models by exploring alternate anchoring strategies:

• In logical reasoning benchmarks such as ProntoQA (Saparov & He, 2023) and ProsQA (Hao
et al., 2024), root nodes of reasoning traces reliably serve as effective anchors.

26

• In mathematical reasoning benchmarks like GSM8K, we find that early steps in reasoning
traces—excluding arithmetic operators (such as +, −, ×, and ÷)—contain the important
information needed to derive the correct answer.

Anchored Autoregressive Modeling. Incorporating anchored tokens into our graphical model
framework yields a more compact parameterization of the conditional likelihood. Specifically, we
introduce Anchored Autoregressive (A2R) modeling, which modifies the conditioning structure in the
likelihood. The training objective becomes:

LA2R(ψ) = −
N∑
i=1

[
log p(x1

i |ψ) +
L∑
l=2

log p(xli|x
πl
i , ψ)

]
,

where xπl
i denotes the set of parent nodes treated as anchor tokens.

This formulation significantly reduces the number of parameters and thus the sample complexity.
Consider a line graph where each token depends only on its immediate predecessor: x1 → x2 →
· · · → xL. In standard AR modeling, xL is conditioned on all preceding tokens, requiring KL

parameters and yielding a sample complexity of O(KL). In contrast, A2R limits dependencies to
single-token anchors (i.e., |πl| = 1), so each conditional requires only O(K2) parameters. The
total sample complexity becomes O(LK2), a drastic reduction from O(KL). For example, with
sequence length L = 1024 and vocabulary size K = 50257 (as in GPT-2), standard modeling scales
as O(502571024), whereas A2R scales as O(1024× 502572).

Anchored Diffusion Language Modeling. The anchoring mechanism generalizes to the diffusion
setting via our ADLM parameterization (§3). The corresponding training objective is:

LADLM(ψ) = −
N∑
i=1

[
L∑
l=1

log p(xli|x
πl
i \ x

l
i, ψ) · 1{xl

i=m}

]
,

where m is the ‘mask’ token, and 1{xl
i=m} ensures that only masked tokens contribute to the overall

loss. As in A2R, anchoring reduces the size of the conditioning context, leading to significantly lower
sample complexity in estimating the parameters of the denoising model.

Learning Anchors via KL-Divergence. While anchored modeling reduces sample complexity for
the decoder, learning the anchor network could be challenging because the number of possible token
subsets grows exponentially with sequence length. To address this, we use a simple strategy—such as
selecting low-frequency tokens—for anchoring, which are easy to compute from the input sequence.

We introduce a regularization term based on KL-divergence that encourages the learned anchor distri-
bution rφ(y|x) to align with the chosen anchor distribution r(y|x). Since the model doesn’t have ac-
cess to the actual parents during inference, we replace xπl

i with predicted anchor tokens—yφ(x
1:l−1
i)

for AR and yφ(xi \ xli) for diffusion—leading to the following regularized objective:

argmin
ψ,φ

[
LA2R/ADLM(ψ,φ) + γDKL (r(y|x) ∥ rφ(y|x))

]
,

where γ > 0 controls the anchor strength. This objective encourages the model to first decode the
important tokens before reconstructing the rest of the sequence.

Summary. By leveraging inductive biases about the distribution of important tokens within sequences,
our anchoring approach achieves substantial improvements in sample complexity. Crucially, it
avoids the combinatorial explosion of full-context modeling while delivering strong performance on
generative modeling and complex reasoning tasks. Importantly, the proposed method is theoretically
grounded, computationally tractable, and readily scalable to modern language models.

We note that exact inference in graphical models is NP-hard in the worst case (Koller & Friedman,
2009). However, many real-world scenarios do not exhibit worst-case behavior. As a result, such
problems can often be effectively tackled using approximate inference techniques that operate over
functional representations, rather than tabular. While the tabular form remains sufficient to highlight
the importance of anchoring, more expressive functional representations can further complement and
enhance its effectiveness.

27

A.3.3 Interpretation Through Expectation-Maximization

Our anchored training procedure can be naturally interpreted through the lens of the EM algo-
rithm (Dempster et al., 1977), a classical framework for MLE in models with latent variables. In
our setting, the anchor tokens y act as latent variables. The anchor network (parameterized by
φ) estimates a soft distribution over important tokens from the observed sequence x (E-step), and
the denoising model (parameterized by ψ) uses this distribution to reconstruct the full sequence
(M-step). While classical EM alternates between these steps, this is computationally expensive for
large language models due to the doubled training time. Instead, we unify both steps into a single
ANELBO training objective, which allows efficient end-to-end training (approximately two months
to train ADLM). Although our implementation does not explicitly perform separate E and M steps
during training, the EM interpretation offers valuable theoretical insight for future research.

We now formalize this interpretation. Consider a parameterized model p(x|θ) with parameters
θ = [ψ,φ], where ψ governs the denoising (generative) model and φ governs the anchor network.
Recall from anchor transition function in §3 that r(y|x, φ) = r(y|x) when zt ̸= m. Therefore,
minimizing the ANELBO objective is equivalent to maximizing the log likelihood in the fully-
observed DAG1. Thus, the task simplifies to maximizing the marginal likelihood of observed data:

ψ∗, φ∗ = argmin
ψ,φ
L(x;ψ,φ) = argmax

ψ,φ
log p(x|ψ,φ). (12)

In practice, this objective is generally non-convex and does not have a closed-form solution. However,
meaningful convergence analysis can be carried out under simplifying assumptions (Neal & Hinton,
1998; Koller & Friedman, 2009; Kwon et al., 2024). In the following, we assume a specific update
rule analogous to EM and show that it leads to monotonic improvement of the ANELBO objective.

Assumption A.5. Suppose the parameter updates follow the anchored EM update rule:

ψi+1, φi+1 = argmin
ψ,φ
−
∑
y∈V

r(y|x, φi) log p(x,y|ψ,φ),

where r(y|x, φi) is the anchor distribution predicted by the anchor network at the current iterate i,
and p(x,y|ψ,φ) is the joint likelihood of observed variables and anchor tokens.

Theorem A.6 (Monotonic Improvement of Anchored Likelihood). Suppose Assumption A.5 holds.
Let the anchor distribution be parameterized as p(y|x, ψ, φ) = r(y|x, φ). Then the ANELBO
objective undergoes monotonic improvement:

L(x;ψi+1, φi+1) ≤ L(x;ψi, φi).

Implications. Theorem A.6 guarantees that the anchored EM procedure produces non-increasing
negative log-likelihood at each iteration, thereby ensuring stability and convergence to a first-order
stationary point. Notably, this convergence behavior emerges even though the anchor tokens are
unobserved (Kwon et al., 2024); they are estimated in the E-step and subsequently used in a regularized
M-step to update both the denoiser and anchor network parameters. In practice, we approximate
these two steps using a single gradient update for efficient scaling.

Proof. Optimal distribution over anchors. We begin by conditioning the standard negative log-
likelihood on the anchor tokens y ∈ V . By introducing an arbitrary distribution r(y) over the anchors,

1We note that our analysis can be easily extended to the case where some tokens have been masked. This
follows from conditioning on the latent variables similar to diffusion models (Sohl-Dickstein et al., 2015). We
also refer to our derivation in Appendix A.1 for extending this analysis to latent variables.

28

we apply Jensen’s inequality to obtain an upper bound:

L(x;ψ,φ) = − log p(x|ψ,φ) = − log
∑
y∈V

p(x,y|ψ,φ)

= − log
∑
y∈V

(
r(y)

r(y)

)
p(x,y|ψ,φ)

≤ −
∑
y∈V

r(y) log

(
p(x,y|ψ,φ)

r(y)

)
(Jensen’s inequality)

= −

(∑
y∈V

r(y) log p(x,y|ψ,φ)︸ ︷︷ ︸
Expected Energy

−
∑
y∈V

r(y) log r(y)︸ ︷︷ ︸
Entropy

)

:= F(r, [ψ,φ]).

The upper bound F(r, [ψ,φ]) is referred to as the free energy. The free energy is minimized in two
steps. First, we minimize with respect to r for a fixed ψ,φ, and then use the optimal r∗ to optimize
ψ,φ. We now simplify this expression to identify the optimal choice of r:

F(r, [ψ,φ]) = −
∑
y∈V

r(y) log p(x,y|ψ,φ) +
∑
y∈V

r(y) log r(y)

= −
∑
y∈V

r(y) log p(y|x, ψ, φ)−
∑
y∈V

r(y) log p(x|ψ,φ) +
∑
y∈V

r(y) log r(y)

= −
∑
y∈V

r(y) log p(x|ψ,φ) +
∑
y∈V

r(y) log

(
r(y)

p(y|x, ψ, φ)

)
= −

∑
y∈V

r(y) log p(x|ψ,φ) + DKL (r(y)||p(y|x, ψ, φ))

= − log p(x|ψ,φ) + DKL (r(y)||r(y|x, φ)) (since p(y|x, ψ, φ) = r(y|x, φ)).

The inequality becomes an equality when DKL (r(y)||r(y|x, φ)) = 0. Therefore, the minimum is
attained when r∗(y) = r(y|x, φ) for a fixed [ψ,φ], motivating our choice of anchor transitions in §3.

Next, we show that the anchored log likelihood improves monotonically under the anchored EM
procedure using the optimal distribution r∗(y).

Decomposition of the log-likelihood. Using the identity

p(x,y|ψ,φ) = p(y|x, ψ, φ) p(x|ψ,φ),

we can write:

F(r∗, [ψ,φ]) = − log p(x|ψ,φ) = − log p(x,y|ψ,φ) + log p(y|x, ψ, φ).

Expectation over r∗(y). Multiplying both sides by r(y|x, φi) and summing over y ∈ V:

−
∑
y∈V

r(y|x, φi) log p(x|ψ,φ) = −
∑
y∈V

r(y|x, φi) log p(x,y|ψ,φ) +
∑
y∈V

r(y|x, φi) log p(y|x, ψ, φ).

Since log p(x|ψ,φ) is constant with respect to y, we simplify:

− log p(x|ψ,φ) = −
∑
y∈V

r(y|x, φi) log p(x,y|ψ,φ) +
∑
y∈V

r(y|x, φi) log p(y|x, ψ, φ).

29

Difference of log-likelihoods. We now compute the difference between two consecutive iterations:

− log p(x|ψi+1, φi+1) + log p(x|ψi, φi)

= −
∑
y

r(y|x, φi) log p(x,y|ψi+1, φi+1) +
∑
y

r(y|x, φi) log p(y|x, ψi+1, φi+1)

+
∑
y

r(y|x, φi) log p(x,y|ψi, φi)−
∑
y

r(y|x, φi) log p(y|x, ψi, φi)

=

[
−
∑
y

r(y|x, φi) log p(x,y|ψi+1, φi+1) +
∑
y

r(y|x, φi) log p(x,y|ψi, φi)

]

+
∑
y

r(y|x, φi) log
(
p(y|x, ψi+1, φi+1)

p(y|x, ψi, φi)

)
.

Applying Jensen’s Inequality. Using Jensen’s inequality on the last term:∑
y

r(y|x, φi) log
(
p(y|x, ψi+1, φi+1)

p(y|x, ψi, φi)

)
≤ log

∑
y

r(y|x, φi)
(
p(y|x, ψi+1, φi+1)

p(y|x, ψi, φi)

)
= log

∑
y

p(y|x, ψi+1, φi+1)

= log 1 = 0,

where we use the fact that r(y|x, φi) = p(y|x, ψi, φi) and that p(·|x, ·, ·) is a valid probability
distribution.

Monotonicity. Thus, we conclude:

− log p(x|ψi+1, φi+1) + log p(x|ψi, φi) ≤ −
∑
y

r(y|x, φi) log p(x,y|ψi+1, φi+1)

+
∑
y

r(y|x, φi) log p(x,y|ψi, φi)

≤ 0,

where the final inequality holds because (ψi+1, φi+1) is chosen to minimize the expected negative
log-joint likelihood under r(y|x, φi).
Therefore,

L(x;ψi+1, φi+1) ≤ L(x;ψi, φi),
which proves monotonic improvement of the ANELBO objective.

A.3.4 Improved Likelihood Modeling During Inference

Example. To illustrate how anchoring improves likelihood modeling during inference, we consider a
DAG model with L = 3 nodes: x = (x1,x2,x3). Each token takes values from a discrete vocabulary
V = {0, 1,m} of size K = 3, where m denotes the ‘mask’ token. We discretize time into T = 3
steps, with t ∈ {0, 13 ,

2
3 , 1}. Each token xl is represented as a one-hot vector, i.e., a corner point of

the 3-dimensional probability simplex.

The full state space is S = VL and contains 33 = 27 possible states. Let X be a random variable
taking values in S (such as X = x = (1, 0,m) ∈ S), which is represented by a mixture distribution:

x = (x1,x2,x3) =

[
0 1 0
1 0 0
0 0 1

]

We define a DAG structure where x2 is the parent node, and x1 and x3 are its children:

q(x) = q(x2) q(x1|x2) q(x3|x2)

30

Suppose the data distribution q is supported on two states:

x1 = (1, 0, 0) with probability 0.9, and x2 = (0, 1, 1) with probability 0.1.

This structure can be interpreted as a logical circuit: if x2 = 1, it activates the bulb on the right
(x3 = 1); otherwise, if x2 = 0, it activates the bulb on the left (x1 = 1). In this circuit, x2 determines
the entire configuration of the sequence and thus acts as an important node.

It is easy to verify that the token x2 is the most informative variable for modeling the joint likelihood.
When x2 = 0, which occurs with high probability in q, the entire sequence is determined. Thus, the
anchor token is x2 = 0 and it is represented as a column vector: x2 = [1, 0, 0]⊤.

This example is designed to illustrate how identifying and conditioning on such informative tokens
(anchors) can improve the estimation of masked token likelihoods. Anchoring thus provides, as we
discuss next, a principled mechanism for improving inference quality in discrete diffusion models.

Forward Process. In our discrete diffusion framework, the forward process gradually corrupts an
input sequence x = (x1,x2,x3) by replacing tokens with a special mask token m, according to a
fixed noise schedule. We choose the forward noise schedule to be:

αt(i) = 1− t(i) = 1− i

3
This defines the amount of information retained from the original input x at time step t. The forward
transition at each step is defined such that the token xl is preserved with probability αt(i) and replaced
with the mask token m with probability (1− αt(i)). For brevity, we drop i from the noise schedule
and denote by αt. The conditional distribution of the forward process is given by:

q(zt|x) =
3∏
l=1

q(zlt|x), q(zlt|x) = Cat
(
zlt;αtx

l + (1− αt)m
)
, l ∈ {1, 2, 3} (13)

Here, zlt denotes the corrupted version of token xl at time t, and Cat(·) denotes the categorical
distribution over the vocabulary V = {0, 1,m}. The vector xl ∈ R3 is a one-hot column vector
corresponding to the original token xl, and m = [0, 0, 1]⊤ is the one-hot vector for the mask token.

To make this concrete, consider the example input x1 = (1, 0, 0) from our earlier setup. This
corresponds to the one-hot matrix:

x1 =

[
0 1 1
1 0 0
0 0 0

]
.

At time t = 1
3 (i.e., i = 1), we have αt = 1− 1

3 = 2
3 . Substituting into the forward conditional gives:

q(z1/3|x1) =


0 2

3
2
3

2
3 0 0

1
3

1
3

1
3

 .

Each column of this matrix represents the categorical distribution over V = {0, 1,m} for the
corresponding position in the sequence. For example:

• The first column corresponds to z11/3 ∼ Cat(0, 23 ,
1
3)

• The second column corresponds to z21/3 ∼ Cat(23 , 0,
1
3)

• The third column corresponds to z31/3 ∼ Cat(0, 0, 1)

Similarly, we compute the following conditionals:

q(z2/3|x1) =


0 1

3
1
3

1
3 0 0

2
3

2
3

2
3

 , q(z1|x1) =

[
0 0 0
0 0 0
1 1 1

]
.

31

This formulation captures the probabilistic corruption of each token independently according to the
noise schedule, blending its original identity with increasing uncertainty (i.e., masking) over time. It
provides a concrete foundation for analyzing how anchoring improves denoising, especially when
key tokens (like x2 in our setup) are retained or inferred with higher confidence.

To illustrate the benefit of anchoring during inference, we analyze a single reverse step in the diffusion
process: transitioning from z2/3 to z1/3. Suppose we observe z2/3 = (m,m,m) ∼ q(·|x1), i.e.,
the sequence is fully masked at this step. Ideally, we would prefer to unmask z22/3 = [0, 0, 1]⊤ to
z21/3 = [1, 0, 0]⊤, since this corresponds to the parent node x2 = 0 = [1, 0, 0]⊤, which is the most
informative token in the sequence. Decoding this parent token early makes it significantly easier
to infer the full sequence, and conditioning on it reduces the sample complexity of estimating the
model’s conditional probability tables from exponential to polynomial, as discussed in §A.3.2.

We now compute the likelihood of correctly recovering the important token under both the standard
reverse process and our anchored reverse process. Finally, we show that anchored reverse process
yields a higher probability of decoding the important token.

Standard Reverse Process. As described in §2, the reverse process is parameterized as:

pθ(z
l
1/3|z2/3) = q(zl1/3|z

l
2/3,x

l
θ(z2/3))

=

{
Cat(zl1/3; z

l
2/3), zl2/3 ̸= m

Cat
(
zl1/3;

1
2x

l
θ(z2/3) +

1
2m
)
, zl2/3 = m.

(14)

In this case, all tokens are masked at z2/3. To proceed, we estimate xlθ(z2/3) using samples from the
data distribution q. Recall that q is supported on:

x1 = (1, 0, 0) with probability 0.9, x2 = (0, 1, 1) with probability 0.1.

Thus, we compute the predicted token mixture as:

x1
θ(z2/3) = [0.1, 0.9, 0]⊤, x2

θ(z2/3) = [0.9, 0.1, 0]⊤, x3
θ(z2/3) = [0.9, 0.1, 0]⊤.

This concurs with the zero-masking parameterization discussed in §2. Substituting into the reverse
conditional (14), we obtain:

pθ(z1/3|z2/3) =

[
0.05 0.45 0.45
0.45 0.05 0.05
0.50 0.50 0.50

]
.

Each column represents the categorical distribution over the vocabulary {0, 1,m} for z11/3, z
2
1/3, z

3
1/3

respectively. We now compute the likelihood of decoding the target partial sequence (m,0,m), i.e.,
correctly unmasking the important token:

pθ(z1/3 = (m,0,m)|z2/3 = (m,m,m)) = (0.5) · (0.45) · (0.5) = 0.1125.

This probability reflects the chance of correctly decoding only the important token using the standard
reverse process. In the following section, we contrast this with the likelihood achieved under the
anchored reverse process used in ADLM.

ADLM Reverse Process. As discussed in §3, our anchored reverse process is parameterized as:

p[ψ,φ](z
l
1/3|z2/3) = q(zl1/3|z

l
2/3,x

l
ψ(yφ(z2/3)))

=

{
Cat(zl1/3; z

l
2/3), if zl2/3 ̸= m

Cat
(
zl1/3;

1
2x

l
ψ(yφ(z2/3)) +

1
2m
)
, if zl2/3 = m

(15)

Given an input sequence x, let the operator A(·) construct the anchored sequence y = A(x) =
(x1,0,x3). This operator overwrites the second position with the important anchor token [1, 0, 0]⊤,
while copying the first and third tokens from x. Since the anchor loss (see Eq. (9)) is applied only to
important tokens, the anchor network is trained to predict y2

φ(z2/3) = [1, 0, 0]⊤. In contrast, the first
and third tokens are jointly parameterized and optimized with the denoiser network to maximize the
overall sequence likelihood. The denoiser network xlψ(·) behaves as follows:

32

• If ylφ(z2/3) is unmasked, then xlψ(yφ(z2/3)) simply copies it to the output due to the
carry-over unmasking parameterization (§2).

• Otherwise, it defaults to a standard MLE estimate as in the vanilla reverse process.

Therefore, the predicted token mixture becomes:

x1
ψ(yφ(z2/3)) = [0.1, 0.9, 0]⊤, x2

ψ(yφ(z2/3)) = [1, 0, 0]⊤, x3
ψ(yφ(z2/3)) = [0.9, 0.1, 0]⊤.

Substituting these predictions into Eq. (15), the conditional distribution under the ADLM reverse
process becomes:

p[ψ,φ](z1/3|z2/3) =

[
0.05 0.50 0.45
0.45 0.0 0.05
0.50 0.50 0.50

]
.

We now compute the likelihood of decoding the desired partial sequence (m,0,m):

p[ψ,φ](z1/3 = (m,0,m)|z2/3 = (m,m,m)) = (0.5) · (0.5) · (0.5) = 0.125

This is higher than the standard reverse process likelihood computed earlier:

pθ(z1/3 = (m,0,m)|z2/3 = (m,m,m)) = 0.1125

This example illustrates how anchoring improves the recovery of important tokens during inference.
Similarly, the likelihood of z1/3 = (1,0,m) given z2/3 = (m,m,m) is higher for ADLM com-
pared standard DLM. By prioritizing important tokens like x2, ADLM improves masked likelihood
modeling and reduces sample complexity of the denoiser.

Practical Considerations. While this example assumes sampling from the anchor distribution
followed by denoising, such a two-step pipeline is not end-to-end differentiable due to the intermediate
sampling operation. In practice, we implement anchoring by projecting the anchor logits through a
linear layer into the embedding space of the denoiser. This allows gradients to flow from the denoiser
output back to the anchor network though the linear projection, enabling efficient joint training of
both the modules; refer to implementation details in §C.1.3.

Summary. Our anchored graphical model analysis demonstrates the dual advantage of anchoring
in language models: (1) reduced sample complexity during training (§A.3.2) and (2) improved
likelihood modeling during inference (§A.3.4). While this analysis was performed on a small DAG
(L = 3) and coarse time discretizations (T = 3), the insights generalize to broader classes of DAGs
and finer time discretizations. We believe this theoretical understanding complements our strong
empirical results across generative modeling (§5.1) and complex reasoning benchmarks (§5.2) in the
main draft (§5) and also in the Appendix C. We hope it offers a compelling justification for the use of
anchoring as a general framework for language modeling.

B Additional Background and Related Works

In this section, we provide extended background and related work relevant to our proposed approach.
We focus on two model families: diffusion language models (§B.1) and autoregressive models (§B.2),
covering their recent developments.

B.1 Diffusion Language Models

Diffusion models are built on two stochastic processes: a forward (noising) process that gradually
corrupts a clean input x into a noisy latent representation zt for t ∈ [0, 1], and a reverse (denoising)
process that reconstructs x from z1. The effectiveness of diffusion models is primarily attributed
to two factors: iterative refinement through multiple steps, and a simple regression-based training
objective (Sohl-Dickstein et al., 2015; Ho et al., 2020).

For continuous domains (e.g., image generation), the forward process is typically modeled as an
Ornstein–Uhlenbeck (OU) process that adds Gaussian noise with increasing variance (Sohl-Dickstein
et al., 2015; Ho et al., 2020). In the discrete setting, the forward process is defined by either: (a)
uniform noising, where each token is replaced with another random token from the vocabulary (Austin

33

et al., 2021; Lou et al., 2024; Liu et al., 2025; Varma et al., 2025), or (b) random masking, where each
token is independently replaced by a special mask token m (Austin et al., 2021; Lou et al., 2024;
Sahoo et al., 2024; Arriola et al., 2025; Wang et al., 2025a; Ou et al., 2025; Nie et al., 2025a,b).

Recent studies (Austin et al., 2021; Sahoo et al., 2024; Lou et al., 2024; Shi et al., 2024; Ou et al., 2025)
demonstrate that random masking provides improved training stability and sample quality compared
to uniform noising. In these masked DLMs, the reverse process is trained to progressively reconstruct
the sequence from a fully masked input z1 = (m,m, . . . ,m) by unmasking tokens step-by-step.
Training is done via a negative evidence lower bound objective (Austin et al., 2021), which admits a
score-based interpretation (Lou et al., 2024) and supports time-independent parameterization (Ou
et al., 2025), enabling simplified training and efficient scaling (Nie et al., 2025a,b).

The time-independent formulation is based on the insight that in masked DLMs, the number of masked
tokens implicitly encodes the timestep. Therefore, the denoising network does not require an explicit
time embedding as input. Our proposed ADLM follows this time-independent parameterization,
simplifying the model training and improving scalability without sacrificing performance.

B.2 Auto-Regressive Models

Explicit CoT Fine-Tuning (GPT-2 baseline). In this baseline, a GPT-2 model is fine-tuned to
generate chain-of-thought (CoT) reasoning traces followed by the final answer (Wei et al., 2022).
It serves as a strong supervised benchmark for comparison, and we include several variants in our
experimental evaluation. We demonstrate how anchoring can be integrated on top of standard CoT to
complement reasoning.

COCONUT (Chain-of-Continuous-Thought). COCONUT (Hao et al., 2024) extends CoT by replac-
ing discrete reasoning tokens with continuous latent representations. A GPT-2 model is fine-tuned
using a multi-stage procedure that gradually introduces continuous latent “thoughts” between the
question and answer. When integrated with our anchoring mechanism, this approach also yields
strong performance on symbolic reasoning benchmarks like ProsQA (see §C.2).

CODI (Continuous Chain-of-Thought via Self-Distillation). CODI (Shen et al., 2025) distills
reasoning steps into a continuous latent space, achieving a final accuracy of 43.7% on GSM8K (Cobbe
et al., 2021). This approach outperforms the previous best GPT-2 finetuned model by roughly 9.6%
(from 34.1% to 43.7%) as shown in Table 5. CODI is orthogonal to our method: while it compresses
reasoning via distillation, our model explicitly guides reasoning via anchor tokens without relying on
distillation. Exploring combinations of both ideas is an interesting direction for future work.

Since CoT and COCONUT are closely related to our work, we provide a more detailed discussion of
these baselines and their variants in §C.2.

B.3 Token Unmasking Strategies in Diffusion and AR Language Models

A large body of work has explored strategies for adaptive unmasking tokens during the generative
process in diffusion and AR language models. These strategies include:

• Greedy decoding, where the most confident (i.e., high-probability) tokens are unmasked
first (Nie et al., 2025a,b).

• Locked-in sampling, where once a token is unmasked, it is fixed for the remainder of the
generation (Sahoo et al., 2024).

• Remasking sampling, which allows previously unmasked tokens to be re-masked and
resampled in future steps (Wang et al., 2025a).

• Top-p (nucleus) sampling, where the sampling distribution is restricted to the smallest
subset of tokens whose cumulative probability mass exceeds a threshold p (Radford et al.,
2019; Wang & Cho, 2019; Varma et al., 2025).

• Top-k sampling, where only the top k tokens with the highest logits are retained for
sampling (Fan et al., 2018).

• Beam search, where a set of candidate sequences (beam) is expanded and pruned at each
step until a termination condition is met.

While these approaches focus on selecting tokens based on confidence or likelihood, our work
introduces a new approach: token importance. Rather than decoding the most likely tokens, which

34

often correspond to frequent but semantically shallow tokens such as articles or conjunctions, our
anchoring mechanism prioritizes decoding informative tokens—typically content-bearing nouns,
verbs, or entities that anchor a sentence.

By identifying (using a jointly trained anchor network) and decoding these anchor tokens first, our
model improves contextual understanding and enables the denoiser to more accurately recover the
remaining tokens. We demonstrate that this strategy is effective across two representative sampling
strategies in DLMs: the locked-in sampler (Sahoo et al., 2024), and the remasking sampler (Wang
et al., 2025a), which internally integrates top-p (nucleus) sampling.

This shift from decoding based on likelihood to decoding based on semantic utility offers a new
perspective on generative planning and opens the door to further improvements in interpretability,
reasoning, and controllable generation. This also opens up an interesting research direction—look
ahead planning and reasoning in AR models—as we demonstrate in §C.2.

C Additional Experiments

This section provides additional experimental details on our proposed anchoring mechanism, applied
to both masked diffusion language models in §C.1 and autoregressive models in §C.2. We present
benchmark datasets, training procedure, ablation studies, and additional quantitative and qualitative
results to support the findings discussed in the main paper.

Broader Impact. This work introduces an anchoring framework that improves likelihood modeling
and generation quality in DLMs, while also enhancing complex reasoning in AR models. On the
positive side, ADLM has the potential to increase the accuracy, interpretability, and efficiency of
language models applied to critical domains such as education, healthcare, and scientific research.
Its ability to prioritize semantically important tokens may contribute to the development of more
transparent and explainable AI systems.

However, these same capabilities also carry risks. Enhanced reasoning and generation fidelity may
increase the potential for misuse, such as generating persuasive misinformation, reinforcing biases,
or enabling manipulation. As with other generative models, there is a possibility of producing
deceptive or harmful content if deployed irresponsibly. We emphasize the importance of safeguards
and responsible deployment to mitigate these risks.

Reproducibility. To support reproducibility, we provide complete pseudo-code and all hyperparam-
eter settings used in our experiments. Our training and evaluation protocols are aligned with prior
work to ensure fair and transparent comparisons.

Safeguards. To mitigate risks of misuse, we recommend applying standard safeguards such as dataset
filtering, usage auditing, and model alignment techniques, including Reinforcement Learning from
Human Feedback (RLHF). We also advocate for releasing models and code under responsible use
guidelines with access controls and documentation to promote ethical deployment.

C.1 Diffusion Language Models

This subsection provides extended experimental details for diffusion language models. We describe
the compared baselines in §C.1.1, outline the training and evaluation benchmarks in §C.1.2, and
present implementation details along with additional results in §C.1.3. Finally, we include qualitative
examples and analysis of samples generated by ADLM in §C.1.4.

C.1.1 Compared Baselines

We compare ADLM against a broad range of autoregressive, diffusion, and hybrid (autregres-
sive+diffusion) language models. Each baseline is evaluated under the same training and evaluation
protocol as ADLM, using identical tokenizers, data splits, and sampling steps. Hyperparameters are
adopted from official implementations or tuned for fairness when not explicitly provided. Below, we
summarize each method and provide links to source code where available:

• Autoregressive Transformer (AR): A standard GPT-style transformer trained using next-
token prediction. We use the architecture from the MDLM repository.2

2https://github.com/kuleshov-group/mdlm/blob/master/models/autoregressive.py

35

https://github.com/kuleshov-group/mdlm/blob/master/models/autoregressive.py

• SEDD (Lou et al., 2024): A discrete diffusion language model that denoises using a neural
network trained to approximate score entropy. Source: https://github.com/louaaron/
Score-Entropy-Discrete-Diffusion

• MDLM (Sahoo et al., 2024): A masked diffusion language model trained with the NELBO
objective (4). MDLM uses a locked-in sampler where tokens, once unmasked, remain fixed.
Source: https://github.com/kuleshov-group/mdlm

• MD4 (Shi et al., 2024): A masked diffusion model for discrete data trained with the NELBO
objective (4). Source: https://github.com/google-deepmind/md4

• BD3LM (Arriola et al., 2025): A hybrid model that combines autoregressive generation
with block-wise diffusion-based refinement. This enables parallel sampling in each block
and sequential across blocks. Source: https://github.com/kuleshov-group/bd3lms

• ReMDM (Wang et al., 2025a): Extends MDLM by incorporating a re-masking sam-
pler, which allows the model to re-mask and re-predict tokens during inference. This
re-masking sampler improves generated text quality. Source: https://github.com/
kuleshov-group/remdm

• GIDD (von Rütte et al., 2025): GIDD introduces a general interpolation between masking
and uniform noising in discrete diffusion models. As a concurrent work to ReMDM, it
addresses a key limitation of MDLM (i.e., the inability to revise tokens once unmasked) by
allowing previously unmasked tokens to be updated during inference. This flexibility enables
the model to iteratively correct its own mistakes and refine its outputs more effectively.
Source: https://github.com/dvruette/gidd/

• DFM (Discrete Flow Matching) (Gat et al., 2024): DFM is a flow-based approach for
discrete data that replaces the diffusion loss with a flow matching objective (Gat et al., 2024).
At the time of writing, the official implementation was unavailable. We instead reference
a simplified public version capturing the core ideas3. For evaluation, we adopt the DFM
sampler built on top of the MDLM base model, available in the ReMDM repository:4.

• Forward-Backward (FB) (Campbell et al., 2022): FB is a corrective sampler that combines
forward and backward transitions to improve reconstruction accuracy (Campbell et al.,
2022). It is applied as a post-hoc sampling method on top of pretrained models such as
MDLM. We use the publicly available implementation from the ReMDM repository:5.

All models are evaluated using the same number of neural function evaluations (NFEs), training
tokens, and sampling steps where applicable. This ensures a consistent and fair comparison across all
baselines, allowing us to isolate the effect of anchoring on model performance.

C.1.2 Training and Evaluation Benchmarks

We evaluate diffusion language models on two fronts: (1) generative modeling quality and (2)
zero-shot generalization to downstream tasks.

For generative modeling, we use two widely adopted masked language modeling benchmarks: One
Billion Words (LM1B) (Chelba et al., 2013) and OpenWebText (OWT) (Gokaslan & Cohen, 2019).
These datasets provide large-scale and diverse natural language corpora for evaluating the ability of
models to understand and generate natural language.

For downstream evaluation, we assess zero-shot likelihoods on seven standard benchmarks spanning
commonsense reasoning, scientific language, and formal language domains. These include Lambada,
PTB, WikiText, LM1B, AG News, PubMed, and ArXiv. Below, we briefly describe these benchmarks.

One Billion Words (LM1B). We use the LM1B dataset (Chelba et al., 2013)6 which consists of news
crawl data collected by Chelba et al. (2013). The dataset is released under the Apache 2.0 license.
Following prior work (Sahoo et al., 2024; Wang et al., 2025a), we train ADLM for 1M steps using
a batch size of 512 and a context length of 128, which corresponds to approximately 33B tokens.
A larger variant trained for 2M steps sees approximately 65B tokens. The autoregressive baseline
is trained for 0.5M and 1M steps respectively to match the total number of tokens processed. For
evaluation, we use the standard LM1B test split.

3https://github.com/facebookresearch/flow_matching
4https://github.com/kuleshov-group/remdm/blob/main/scripts/dfm.sh
5https://github.com/kuleshov-group/remdm/blob/main/scripts/fb.sh
6https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/

36

https://github.com/louaaron/Score-Entropy-Discrete-Diffusion
https://github.com/louaaron/Score-Entropy-Discrete-Diffusion
https://github.com/kuleshov-group/mdlm
https://github.com/google-deepmind/md4
https://github.com/kuleshov-group/bd3lms
https://github.com/kuleshov-group/remdm
https://github.com/kuleshov-group/remdm
https://github.com/dvruette/gidd/
https://github.com/facebookresearch/flow_matching
https://github.com/kuleshov-group/remdm/blob/main/scripts/dfm.sh
https://github.com/kuleshov-group/remdm/blob/main/scripts/fb.sh
https://code.google.com/archive/p/1-billion-word-language-modeling-benchmark/

OpenWebText (OWT). We use the OpenWebText dataset (Gokaslan & Cohen, 2019)7, which is a
public reproduction of the WebText dataset originally used in GPT-2 (Radford et al., 2019). It consists
of web content extracted from high-quality Reddit URLs. The dataset is licensed under Creative
Commons CC0 license (“no rights reserved”).

Zero-Shot Evaluation Benchmarks. To assess generalization, we perform zero-shot evaluation
on seven diverse benchmarks covering language understanding, scientific articles, and long-context
reasoning. We measure the perplexity on the validation sets of the following benchmarks:

• Lambada (Paperno et al., 2016): This benchmark evaluates the ability of language models
to predict a target word based on a broad context. Each example consists of a short narrative
(context) followed by a target sentence with its final word omitted. Unlike typical language
modeling tasks, solving Lambada requires understanding of longer-range dependencies
beyond just the last sentence.

• Penn Treebank (PTB) (Marcus et al., 1993): A classical benchmark for language modeling,
which is used to evaluate syntactic fluency and local coherence in generated outputs.

• WikiText (Merity et al., 2017): A long-form language modeling benchmark based on
Wikipedia articles. This evaluation emphasizes factual correctness and world knowledge.

• AG News (Zhang et al., 2015): A text classification dataset with four categories, which is
designed to predict the topic label given a news headline or excerpt.

• PubMed (Cohan et al., 2018): A benchmark based on biomedical research articles, cu-
rated for studying text summarization. Each example consists of a document body and a
corresponding summary, typically derived from the abstract or conclusion section.

• ArXiv (Cohan et al., 2018): A benchmark similar to PubMed, but based on research articles
from the ArXiv repository across diverse scientific domains. Summaries are typically
derived from the abstract or conclusion sections of the papers.

Licenses and Usage. All datasets used in this work are publicly available and licensed for research
use. OWT is distributed under the Creative Commons CC0 license, and LM1B is under the Apache 2.0
license. All baseline models (e.g., SEDD, MDLM, BD3LM, ReMDM, GPT-2) and implementations
are sourced from repositories released under MIT or Apache 2.0 licenses.

All reported perplexity values for diffusion language models in this paper are upper bounds, rather
than exact likelihoods. This is because diffusion models do not compute normalized likelihoods in
closed form due to the intractability of the reverse process. Instead, we follow prior work (Lou et al.,
2024; Sahoo et al., 2024; Arriola et al., 2025; Wang et al., 2025a) and evaluate diffusion models by
estimating a negative log-likelihood upper bound via importance sampling or ELBO-based objectives.
In contrast, perplexities for autoregressive models are computed exactly via standard token-wise
cross-entropy. As such, direct PPL comparisons should be interpreted with this distinction in mind.

C.1.3 Implementation Details & Additional Results

Architecture Details. We apply a learnable linear projection within the denoiser network xψ(·) that
maps the anchor logits yφ(zt) directly into the embedding space of the ψ-transformer. This modular
design avoids explicit decoding and re-embedding of anchor predictions, enabling fully end-to-end
differentiability between the anchor and denoising networks.

Although the ANELBO loss (7) is defined over all tokens {xl}Ll=1 in the sequence x, only the masked
tokens contribute to the denoiser loss via xψ(yφ(zt)), and only the important tokens contribute to
the anchor loss via yφ(zt). In practice, this is implemented using carry-over unmasking (Sahoo
et al., 2024) or by multiplying indicator functions in (7). Specifically, we use 1{zl

t=m} to mask the
denoising loss, and 1{yl=(A(x))l} to mask the anchor loss.

Both networks follow the DiT-Base architecture (Peebles & Xie, 2023), which is consistent with
SEDD (Lou et al., 2024) and MDLM (Sahoo et al., 2024). The anchor transformer network uses 12
DiT blocks. The denoising network uses 6 DiT blocks. Each block has hidden dimension = 768 and
12 attention heads. The input sequence length is 1024 for OWT and 128 for LM1B. We use the same
AdamW optimizer for both anchor and denoising transformers with learning rate = 3e-4 and and no
weight decay.

7http://Skylion007.github.io/OpenWebTextCorpus

37

http://Skylion007.github.io/OpenWebTextCorpus

Algorithm 1: Anchored Diffusion Language Model (ADLM)
Input: Anchor network yφ(·), denoising network xψ(·), number of steps T , noise schedule αt,

remasking schedule σt
Output: Generated sequence z0

1 Initialize zT ← (m,m, . . . ,m) ▷ Fully masked sequence
2 for i = T to 1 do
3 t = i/T , s = (i− 1)/T
4 Compute noise schedule: αt, αs
5 Compute remasking schedule: σt ∈ [0, σmax

t] ▷ Follows Eq. (9) (Wang et al., 2025a)
6 Compute anchor transition using noisy sequence: ▷ Eq. (5) in §3

r(yls|zlt,yφ(zt)) =

{
Cat(zls; (1− σt)yl + σtm), zlt ̸= m

Cat(zls;
αs−(1−σt)αt

1−αt
ylφ(zt) +

1−αs−αtσt

1−αt
m), zlt = m

7 Compute inference posterior using anchored prediction yφ(zt): ▷ Eq. (6) in §3

q(zls|zlt,xlψ(yφ(zt))) =

{
Cat(zls; (1− σt)xl + σtm), zlt ̸= m

Cat(zls;
αs−(1−σt)αt

1−αt
xlψ(yφ(zt)) +

1−αs−αtσt

1−αt
m), zlt = m

8 Sample zls ∼ q(zls|zlt,xlψ(yφ(zt))) for all l ∈ {1, . . . , L}
9 Update zt ← zs

10 end
11 return z0

Table 6: Evaluation metrics on OWT (78B tokens) for our ADLM algorithm across different (a)
anchoring loss coefficients (γ) and (b) anchoring thresholds (τ).

(a) γ 3e-2 3e-3 3e-5

NLL (↓) 3.1084 3.1055 3.1663
PPL (↓) 22.386 22.321 23.719
BPD (↓) 4.4878 4.4803 4.5680

(b) τ 1 5 10 20

NLL (↓) 3.1429 3.1055 3.1358 3.1770
PPL (↓) 23.171 22.321 23.008 23.976
BPD (↓) 4.5342 4.4803 4.5241 4.5835

Sampling Implementation. We provide the pseudo-code for ADLM sampling in Algorithm 1, which
employs the standard locked-in sampler (Sahoo et al., 2024) with a remasking schedule σt (Wang
et al., 2025a). The locked-in sampler is a special case obtained by setting σt = 0.

Implementation Details for OWT. As OWT dataset does not provide an official train/test split, we
use the splits used in prior work (Sahoo et al., 2024) and train ADLM for 1M and 2M steps with a
GPT-2 tokenizer, batch size of 512, sequence length of 1024, and a log-linear diffusion schedule.
This results in approximately 262B (1M steps) and 524B (2M steps) tokens. The AR baseline is
trained for half as many steps under the same configuration to ensure a comparable number of tokens
seen. We use the last 100K documents (held out during training) for evaluation.

Ablation Study for OWT. In Table 1(b) (262B tokens) of the main paper, we show that simply using
our two-stage architecture without the anchor loss already improves test perplexity from 23.17 to
21.79, validating our architectural choice. Adding the anchor loss further reduces perplexity to 20.62,
highlighting the effectiveness of anchoring in likelihood modeling.

To better understand the role of anchoring, we conduct an ablation study on OWT using 78B tokens
over 300K training iterations. We evaluate the impact of two hyperparameters: the anchoring loss
coefficient (γ) and the anchor threshold (τ), as discussed in §3. Table 6 reports results across different
values. In Table 6(a), we observe that γ = 3e-3 yields the best trade-off across negative log-likelihood
(NLL), perplexity (PPL), and bits-per-dimension (BPD), outperforming both higher (3e-2) and lower
(3e-5) values. Similarly, Table 6(b) shows that τ = 5 achieves the best results, outperforming
thresholds such as 1, 10, and 20. Based on this study, we use γ = 3e-3 and τ = 5 as our default
configuration across all experiments. With this default configuration, the training loss and validation
PPL per iteration is shown in Figure 3.

38

Number of iterations Number of iterations

Tr
ai

ni
ng

 L
os

s

Va
lid

at
io

n
PP

LMDLM
ADLM (ours)

MDLM
ADLM (ours)

0 500K 1M 1.5M
3

0 500K 1M 1.5M

40

3.5

4

4.5
5

5.5

30

50

Figure 3: Training loss and validation PPL versus number of iterations on OWT. We train both
MDLM (Sahoo et al., 2024) and our ADLM model for 2M iterations (524B tokens). As discussed in
§4, anchoring improves the sample complexity during training, resulting in faster convergence and
lower validation perplexity. While the anchor loss is part of the training objective, we only visualize
the NELBO here for a direct comparison with MDLM.

Implementation Details for LM1B. The experimental setup follows prior works (Sahoo et al., 2024;
Wang et al., 2025a). For LM1B, we follow the same setup as OWT, except a shorter sequence length
of 128 tokens and the BERT-base-uncased tokenizer. Since LM1B includes an official test split, we
use it for evaluation. We use the same anchoring configuration (γ = 3e-3, τ = 5) as in OWT.

Remasking Evaluation. For the results reported in Table 3, we generate 5,000 samples using
sampling steps ranging from 128 to 4096. We evaluate each set of samples using MAUVE score, GPT-
2 perplexity, and entropy. All hyperparameters follow the settings recommended in the remasking
sampler developed in ReMDM (Wang et al., 2025b). For clarity, we report the exact values used in
our experiments:

• sampling steps: Number of sampling steps used per generation; values range over {128, 256,
512, 1024, 2048, 4096}.

• p: 0.9 Top-p value used in nucleus sampling.
• η: 0.02 Parameter used in ReMDM strategies.
• ton: 0.55 Activation time for remasking in the ReMDM loop.
• toff: 0.05 Deactivation time for remasking in the ReMDM loop.
• αon: 0.9 Fixed masking schedule α(ton) used in the ReMDM loop.

Discussion on Anchoring vs. Attention. Anchoring is completely different from the traditional
attention mechanism. In the example shown in Figure 1, attention layers operate only over the tokens
available in Zt. A key limitation arises when important tokens are masked—standard attention
mechanisms are unable to access or reason about these missing tokens. In contrast, our anchoring
mechanism explicitly predicts important tokens in its output, which can then be attended to by the
downstream attention layers of the denoiser network. As such, our method is orthogonal to attention
mechanisms. In fact, anchoring provides an efficient way to reduce the sample complexity of these
layers and improve training as discussed in §A.3.

Discussion on Size vs. Generative Perplexity. In Table 7, we compare the generative perplexities of
ADLM against a range of autoregressive, masked language, and diffusion-based models, all evaluated
using GPT2-Large over 1024 unconditional generations. A key advantage of ADLM lies in its ability
to produce high-quality generations with significantly fewer parameters and fewer sampling steps
than prior diffusion language models.

Specifically, ADLM achieves a perplexity of 15.7 using 4096 sampling steps, outperforming
Plaid (Gulrajani & Hashimoto, 2023), which reaches a perplexity of 19.7 despite using nearly
five times more parameters (1.3B vs. 293M). Even at lower sampling budgets (e.g., T=2048), ADLM
maintains strong performance (20.1), reducing the performance gap with GPT2-medium (12.4) and
outperforming BERT-Large+Gibbs while using at least 40M fewer parameters. This indicates that
anchoring enables more efficient denoising compared to prior diffusion language models.

Moreover, ADLM demonstrates a consistent reduction in perplexity as the number of sampling
steps increases, validating the role of iterative refinement in enhancing sample quality. These results

39

Table 7: Generative perplexities evaluated over 1024 unconditional generations using GPT2-
Large (774M params) as the evaluation model. ADLM significantly outperforms prior masked
and diffusion language models under comparable sampling configurations. Notably, it surpasses
Plaid (Gulrajani & Hashimoto, 2023) while using only ∼20% of the parameters (5x smaller size),
and nearly matches the performance of GPT2-medium despite having ∼50M fewer parameters.

Model Type Evaluated Model Params Gen. PPL (↓)

Autoregressive GPT2-medium (Radford et al., 2019) 345M 12.4

Masked Language BERT-Large + Gibbs (Wang & Cho, 2019) (T=2048) 334M 487.0
BERT-Large + Gibbs (Wang & Cho, 2019) (T=65536) 334M 28.7

Diffusion

Plaid (Gulrajani & Hashimoto, 2023) (T=4096) 1.3B 19.7
SEDD-medium (Lou et al., 2024) (T=2048) 424M 27.3
SEDD-medium (Lou et al., 2024) (T=1000) 424M 31.95
MD4-medium (Shi et al., 2024) (T=1000) 416M 27.51
SEDD-small (Lou et al., 2024) (T=1000) 165M 42.94
MD4-small (Shi et al., 2024) (T=1000) 165M 33.16
MDLM (Sahoo et al., 2024) (locked-in, T=1000) 170M 44.2
ReMDM (Wang et al., 2025a) (remasking, T=1024) 170M 28.6
GGM (Varma et al., 2025) (T=4096) 387M 19.5
ADLM (ours) (locked-in, T=1000) 293M 32.9
ADLM (ours) (remasking, T=1000) 293M 26.8
ADLM (ours) (remasking, T=1024) 293M 25.1
ADLM (ours) (remasking, T=2048) 293M 20.1
ADLM (ours) (remasking, T=4096) 293M 15.7

highlight the sample efficiency and scalability of our approach, making it a practical alternative to
large autoregressive or parameter-heavy diffusion models for high-quality text generation.

Discussion on MAUVE Evaluation with BERT Embeddings. We recompute MAUVE scores
using bert-base-uncased embeddings (maximum sequence length = 512, T = 4096) to verify
the robustness of our evaluation. Compared to the best-performing baseline ReMDM (Table 3), our
method achieves a 7% higher MAUVE score, confirming that ADLM generates more coherent and
human-like text under both GPT-2 and BERT embedding evaluations.

Table 8: Evaluation on OWT. MAUVE scores computed using bert-base-uncased embeddings
with maximum sequence length = 512 and T = 4096.

Method MAUVE (↑) Gen PPL (↓) Entropy (↑)

ReMDM 0.702 17.6 5.20
ADLM (ours) 0.754 15.9 5.19

C.1.4 Samples Generated using ADLM

In this section, we present qualitative samples generated by our method ADLM and compare them
with MDLM (Sahoo et al., 2024). We illustrate outputs under two sampling strategies: the locked-in
sampler (Examples I and IV) and the remasking sampler (Examples II and III). As shown, increasing
the number of sampling steps and enabling remasking leads to more coherent, paragraph-structured
generations. These qualitative observations align with the quantitative results reported in Table 3,
where ADLM achieves significantly higher MAUVE scores and lower generative perplexities than
the existing diffusion language models.

Example-I. This example shows a sample generated using ADLM with 1000 sampling steps and the
locked-in sampler from MDLM. While the generated content is largely coherent, it lacks structured
paragraph breaks and clear discourse delimiters. The result reads as a continuous stream of thoughts
rather than a segmented essay. Notably, even this partially structured output is both qualitatively
and quantitatively (Table 3) superior to MDLM (Example-IV), which fails to organize ideas into
meaningful paragraphs without breaking logical continuity. In subsequent examples (Example-II and
Example-III), we show that increasing the number of sampling steps and incorporating remasking in
ADLM significantly improves human-like text generation quality.

40

Example-I: Output from Anchored Diffusion Language Model using locked-in sampler

<|endoftext|> knows they didn’t have the answers to answer this. It was a
solid piece of early Survivor and people glossed over it. Sadly guess that’s
where the Tribe go. It wasn’t a family. It was based on a communitynt, and
that was everyone else.” Probst Steve Watson.
Never as good as our pundit, we’ll repair the damage we’ve done!
Tell a Random Story
A large facet of the new season will be to tell a random story, not sure
if it’s how the players are portrayed. But it’s fairly obvious that this
specificity will be replaced by community. The players will be given history,
and the people we’ve seen seemed less and more surprising as the episodes
went.
The host will highlight Tukuku Tshivu as a captain that’s always tried to
respect the senior group and ditches the Amazonians in their barbaric ways.
After that we will see Toatia; some’ve described Tasha as someone who listens
to the players despite scheduling theirs, and she’s a pretty Open Tribal so
far.
“And there’s Andrea the Polarnesian,” Probst continues, remembering the wood
thinner swimmer named Andrea whose entire life she’s been challenging both
Rossheimerk and the predecessor to make IHOPE more racially inclusive. Paris,
so much for standing up to her at the beginning, was willing to take no down.
This showed that the guild wouldn’t just be her. Andrea had been waiting
for free play, few months and months, and she stayed. But boy did she know
that players with such wide access to free play at the beginning of her life
did require a fierce lane for attention. There’s a reason she was ripped
from her alliance for a reason we’ll likely see players end up in separate
struggles with. Paris.
For those players who can’t wait to see the transition into the beginning,
the big reward before the game will be in reality. If you waited for three
weeks for example, you’ll still need fully footed shoes to get your reward,
you won’t get old shoes. The urgency of you signing up long enough to
get this reward makes as big of a social sense because that’s the way the
society goes, as the rewards are physical. The maximum rewards have yet to
be determined but we’ll all keep tabs on the Breck King for progress.
Go Jaeger, the Trienge! It’s some fun! This a system will work well but not
for an individual tribe in particular. With two challenges means a lot of
people can only earn a full one day of fun and rewards. And if you haven’t
yet seen a single challenge, sure not the one played by the KaZinaks. Julie,
Caleb, and Shirishio Polyhrine have chosen creative challenge themes for them,
albeit stoic winter difficult.
Winter’s captains might get less access to raw gameplay, but it doesn’t
have to be a shallow session where everyone goes over to hash out rewards
and conflicts. It won’t take place mid-season like winter, and it won’t go
organically. Book dramas are inevitable, but reboots have less incentive to
fail if the show does, and network commitments can to put everyone peoples
hustle in a sorech we don’t. I’m not sure this makes up for these two
things.
From What Built
Yes for the record, Jason and Miss were from a school group on the
controversial side of history. Now Jay and the photographer will have
an unique way of representing the tribe while keeping the story relevant.
Though the cast will have something to do with it (gohan, skinnyfoots),
there will be some mismatched players who generally won’t fill up the ample,
talented roster. Which they clearly will. Anyone stuck trying to play too
heavy on the other sides of the story? Time out is Rachel Probst, who only
worked one Survivor Bannett final with EMA, ’97: Sandra’s power was barely
that of Bailey Devevaorda, and Candice Burke was Pats to name a few.
Like Raj wound Katie’s name, her tribe will have an extraordinary impact on
all of the stories and alliances.
Thai’s Olympic tribe is another portfolio for the series. Last season,
Zinke Group managed to represent 13 Pacific nations on the world stage
by visiting the indigenous peoples of them in various languages (Lahonese

41

for example) and including First Peoples Tribal Councils; half of Taiwan’s
“transformations” were so successful that they typically received their
return for their contributions. It was a creative action, and even if
one<|endoftext|>

Example-II. The output generated by ADLM exhibits coherent structure and articulates thoughts in
paragraphs like human-written text. In this example, we use our pre-trained ADLM base model and
apply the remasking sampler (Wang et al., 2025a) with 2048 sampling steps during inference. The
model is able to maintain logical progression across long sequences, keeping together facts, statistics,
and historical context into a coherent narrative.

This qualitative output complements the quantitative results reported in Table 3, where ADLM
achieves the highest MAUVE score among all diffusion-based language models. MAUVE is known
to correlate well with human evaluation of fluency and coherence, and this example provides evidence
supporting ADLM’s superior generation quality.

Example-II: Output from Anchored Diffusion Language Model using remasking sampler

<|endoftext|> health and demographics compared to the EU [edit]

Historical European birth rate map

for EU and European men and immigrants[4] [5]

B.R.E.O. [6] Birth rate by country Birth Rate co- Interval Interval 1910
50.4% (3.1%) 4.8% (12.6) 1910 61.5% (4%) 1920 51.1% (3.0%) 4.8% (12.6) 1920
63.5% (2.5%) 3.4% (1925) 59.4% (2.2%) 1930 62.7% (2.1%) 3.4% (1930) 60.2%
(2.0%) Other caregiving* 1910 49.1% (3.0%) 4.8% (12.6) 1910 63.1% (2.8%) 3.4%
(other) 1920 62.7% (2.5%) 1930 60.5% (2.1%) (b) First and (c) Birth: average
(for girls, for boys, both to sexes. d) Sex only and for all is for life and
people can’t be combined, have to be under 15 years of age to have a means to
measure motherhood) Oldest age. In the mid-19th century, at least half the
population had abortions before sterilization had taken. Abortion increased
more rapidly in the twentieth century (nearly half in that time, 1.6 million
births, infant mortality over 2 million during the period up to 1960). In
a study of Austrian prisons, 50% of the prisoners under the age of about 20
had been conscripted or maltreated for purposes before 1882. Even in cases
where there was a thorough investigation, the participant had to remain in
cruel conditions, including medical experimentation, electric lashings, etc.,
while pregnancy rates were very low[[]. The sterilized prisoners were not
only much more likely to have babies than the prisoners with no pregnancy;
they were less likely to have abortions. Researchers found that the number
of births to sterilized prisoners between 1882 and 1930 was historically the
highest in the Czech Republic.

In Egypt, the penal code threatened local women and men with death if they
didn’t marry foreigners. Jihadists were slaughtered and people were forced
to flee out of Egypt’s borders. Likewise, foreigners women were forced to
marry men from Egyptians as well. The Roma continued to rise, creating an
informal climate and assimilated life in the country. Soon Egypt teemed with
lesbian women abandoned by migrants shortly after departing for the country.
This ethnic seeds played a role in the decline of the Ottoman Empire. It is
widely agreed that this prejudice towards foreigners, and other groups, arose
among Orientals and had little influence at the time, probably because of the
security of limited exchanges between the two peoples.

In England, it was a family tradition to ferment wine up until the middle of
the 19th century. After defeating the crown in 1791, the Shelburne brothers
flattened the cladding of the Osgoode Hill to form a pot for setting in their
wine cellar; in the process, they extracted quintense from wine. Thus in the
first half of the nineteenth century, the use of preglycerine only lasted
three thousand years, when any other taxes were levied. In Poland, torus

42

helped prevent tuberculosis before it became widespread, as the pilgrim
resisted wine, showing evidence of the disease. The use of torus accounted
for the extinction of European flu.

Prevention measures [edit]

Pumps and band vein pumping apparatus

Because of increased RME and MMB in the central 20s researchers set about
examining how physical physiological factors might affect pregnancy and
its prevention. As had been done in the epidemics, there were two types
of PNEA delivery devices used: cardiac pumps and ECG band pumps. The
former was placed in the blood vessel, through which 20 mL/mm flow of gold
tubing at 70,744 feet (21,131 m) was rated for blood pressure and had a
continuous output of mL (100 yps) was produced and blood pressure measured.
Approximately 7,000 km (3,200 mi) of gold tubing was used for each of these
two devices. The hg pump that was placed in the patent vein could go from 5
cm (1.8 in) to 5 cm (1.5 in) of tubing to 3,000 feet/1,800 m (2,100 m/720 ft).
The band pump had the same potential but the added disadvantage of releasing
gas too hard. More than 100 million births were prevented by these pumps
every year.[8]

Figure 2 Heart signs in a fetus during conception of the mother.

The gauges measure blood vessel pressure and blood pressure for 24 h during
the first month (32̆0137 weeks) after conception, then a sample cylinder was
placed in<|endoftext|>

Example-III. In this example, we use 4096 sampling steps for ADLM with remasking sampler.
The generated text demonstrates strong discourse-level coherence, well-structured paragraphs, and
natural transitions between topics. For instance, the model begins with a detailed sports commentary
and transitions smoothly into a socio-political news report. These shifts are logically segmented
with paragraph-level breaks and consistent timelines (e.g., 18:00 PST, 30:00 PST), giving the
impression of human-authored journals. This qualitative improvement aligns with the quantitative
results reported in Table 3, where ADLM achieves the highest MAUVE score among existing DLMs.

Example-III: Output from Anchored Diffusion Language Model using remasking sam-
pler

<|endoftext|> were pretty good in that regard. Dwight Howard chipped in 15
points, and who’s to argue that defense doesn’t deserve a stat of the award?

Stephen Curry, who was on the floor as soon as I got there, finished with
27 points. Wesley Matthews put in a great effort as well.

Washington (Curry 30-31, Wall 80-78, Wall 82-7)

I listened to more of this game than originally planned. The Wizards took
control of the game when Otto Porter scored 22 points.

Takeaways:

The Wizards took control of the game during the first quarter, mostly courtesy
of Dennis Schroder and Shaun Livingston. In the second minute, Stephen Curry
hit a perfect layup that bounced to the hoop for a dunk, Durant scored two
quick points to make it 15-7 with about seven minutes left, and in the third
minute Jameer Nelson hit a layup in the corner from range to make it 18-9.

18:00 PST

Wall and Marcus Thornton each dribbled their way through traffic and made
two threes, the first by Andre Drummond with three minutes left to record his

43

10th career triple-double, and the second by Kevin Durant with five minutes
left. However, both shots were blocked at the basket. Kevin Durant missed
most of the rest of it with an ankle injury, and Austin Rivers, getting a
last-second shot off on him pretty badly, tried to knock the ball down, but
couldn’t as the ref just waved it back. Then Rivers shot, then Thornton
drove his way in front of Durant, and Wall had to do a reverse dribble move
to knock Curry’s first shot free. This was probably the highlight of the
game; the defense wasn’t matched with the offense very well against the
Thunder from here on out.

Halftime:

Oklahoma City gave up 10 points for coming up in the final minute, and Zach
LaVine came off the bench. In the fourth minute Russell Westbrook ran in
a low drive to post up screen while the ball was on the floor, but with 10
seconds left in the game, Zach LaVine stepped onto the floor and slammed the
ball in the basket for the bucket.

30:00 PST

Tony Allen was brought in for Monta Ellis, and he just could not start. He
tried his way to the corner for a 3-pointer, but he was shot. Nerlens Noel
quickly got up and knocked it back down low, and Allen ran back into the
stands of the arena, knocking the ball down high and out of bounds.

Oklahoma City’s bench never stopped suiting as the game went on. This is
a team that is making a leap in the NBA, with DeMarcus Cousins and Chauncey
Billups leading the way, and it’s just the right thing to do in such a crazy
situation.<|endoftext|>(CN) Hundreds of Seattle residents Tuesday marched to
Columbia City to protest the construction of Tesla’s new headquarters in one
of the largest nationwide demonstrations in years, as Seattle police clashed
with student protesters at a park near Washington State University.

Thousands of the student marchers gathered at around 2:30 p.m. in Seattle,
capital of Western Washington as they confronted riot police carrying rocks,
rocks bottles, and gas masks. Large demonstrations of this kind are nearly
every weekly in the sprawling city. Tesla CEO Elon Musk said he didn’t know
how much the new headquarters could cost him but that it would be enough for
the car company to complete its plans. However, the cost estimate is unknown.
In the debating point, the city of Seattle, a state infrastructure agency,
the Metropolitan Transportation Authority and the thousand-plus protesters
wait for a judge’s approval to assess possible damages.

Tesla’s headquarters is the second-tallest office building proposed in
Greater Snohomish County. It is planned on the Seattle Pacific University
campus. Tesla also has a 14-story supertall building on Mercer Street that
would also include mixed-use office space. There is also construction of
a 50,000 square foot garage that is expected to open next year. There is
also a parking garage on the 8.7 acre property. No residences are listed in
Tesla’s property plan approved by federal agencies.

Tesla and company officials are expected to have the newest office building
at 240,000 square feet made for public access public, once it’s slated for
completion. The company is already in court for a waiver that allows it to
maintain the building because it is in a park. A lawyer for the company said
on April 27 that a judge in Seattle is expected to rule on the waiver, which
would allow the building to be enabled. This is one of several lawsuits that
have emerged in recent weeks since Tesla’s new headquarters was announced in
March. Across the U.S<|endoftext|>

Example-IV. For completeness, we also include samples generated using MDLM (Sahoo et al.,
2024). In contrast to ADLM, the generated text lacks coherent paragraph structure and clear discourse
delimiters. The output tends to drift semantically and fails to maintain logical continuity across

44

segments. This qualitative degradation is consistent with the lower MAUVE scores and high Gen
PPL reported for MDLM in Table 3, reflecting lower human-like text generation quality.

Example-IV: Output from Masked Diffusion Language Model using locked-in sampler

<|endoftext|> told local reporters. “Any interlocutor was useful for formal
consulting.”UCU basketball coach, classmate of three, David Irving, is a
teacher at Memorial High and is among the same players who recently won
his credentials in PE Illustrated for the category. Four longtime players
make such notable contacts: two career elons (not Columbus native champ
Bobby Pulfres; Erie it’s Duane Wright than Vin Diesel) and he’s the current
fourth student at the entire campus, as far as entrance per pupil is well.
According to Wright, Shaw was about to thirsty with traders celebrating
with an invented flavoral beer and the extra muggers when he approached the
team with a shot on Irving, something he was doing while across on Thursday
afternoon on an acquired Colt rifle. He even spoke as he tried to reach out
with his fists and pose to look good and enhance his visual presentation.
During a photo shirt Shaw took on the stool, his head fell like the head of
fungus straight for a hanging liquid. He could not believe the team were
able to get through.“There were around six or seven guys and somebody takes
shots,” Aggaeed says, "and once they got ready they sat beside them laughing
for a bit. And everyone was super friendly. They usually get been late
and then it would be 104 o’clock while we went...”It surprising people a
lot for the guys here. UCU quarterback Jeffrey Zifits calls him a group
of hives stirring spirits. “This group is meant for the senior players and
one of the best young performers,”the team or the officials or coaches or
whatever, but it’s not meant for Gasta-Grader," Zifit says."You could see
it first hand each time we went fishing with fans... It wasn’t just people
throwing stuff.”It’s the biggest thing they did after third windows and they
put it out there,” Zifits, "we didn’t let them but it brought more energy
here. When we came showled them it was like a CFL game. The fun played with
energy and it’s great.”It is definitely in the vein of the spirit of cabo,
kind of a bar that lets people in two buckets and for Wright, if you can or
can’t squeeze your lip while golfing, go bowling and play.“You expect to be
at the conference in this room that vacillums with everybody else,” Wright
says. “So, just remember, and our motto in a group is ‘Reason,’ when it
comes to material Value, we’re a group and all our resources are all being
used by the future to promote the future. It works out. They do it by
laughing.“Pulkies” students really do love coming back," says Shaw, then a
member of the PE group. "Jefferson will still come back and brilliant and
all that. ‘We can’t let them shut them down. If it goes their way, they are
not letting us down.’ Working title: Mentors, I need to get out here we’re
all together with students to make it through this."PS<|endoftext|>By Colin
Collins Piper for UCMP
PRINT CLOSE British university governors unveiled the cancellation of
student-held protest in defiance of the declaration it government has gone
into a pitch to the Liberal Democrats to sack it for several hours for its
register of support for atheists.
The university’s slaughter of Scottish-encompassing religious figures and
included tacit approval by both houses of parliament before the Niche
government was in administration.
It is understood that the load followed the closure of the university’s
reserve vice chancellor subsequently who died of Parkinson’s syndrome as
his wife’s tombstone was on fire.
Catherine Baird of Parliamentary Coalition for Government (Scrabble) leader
Lassie Mann joined further the condemnation of the stalls.
Ms Baird said: “Good thing the students approached the university and they
were confident that you found much solace.
“It’s a sad day in British life and I think it would be tragic if we ever had
this again but this is a very simple decision, to be clear.”
Scalric-chancellor Jack Major who attended the protest told a press
conference: “It has been very challenging but I would like to later
apologise personally in the language of protesters of what happened.

45

“The Department of Students and Service at the University of California,
Berkeley was placed following people’s request and it is no surprise that the
university is now in administration but those schools needed to be confirmed
afterwards that they would face disciplinary action.
Directors Major said: “I’m a minority Instructors were very disappointed
about the protest within the university and the university’<|endoftext|>

C.2 Auto-Regressive Models

This section provides an extended discussion of our anchoring mechanism as applied to autoregressive
language models. We begin by contrasting standard autoregressive training with our proposed
anchored autoregressive training framework. In §C.2.1, we outline the AR baselines used for
comparison. In §C.2.2, we describe the training and evaluation benchmarks. §C.2.3 provides
implementation details necessary for reproducibility. In §C.2.4, we demonstrate the benefits of
anchoring for likelihood modeling on the OWT benchmark. Finally, §C.2.5 presents results on math
and logical reasoning tasks, showing improved reasoning capabilities due to Anchored Chain-of-
Thought (ACoT) fine-tuning.

Discussion on standard AR and anchored AR models. Figure 4 illustrates the standard training
setup for autoregressive large language models (LLMs), where each token is predicted based on its
left context. This sequential decoding lacks structural guidance to prioritize important tokens.

In contrast, as shown in Figure 5, we decompose LLM training into a two-stage process. In the first
stage, an anchor network is used to predict the likelihoods of important tokens (e.g., ‘cat’ and ‘dog’
higlighted in blue)—referred to as anchor tokens or [ANT]—conditioned on the preceding context.
An anchor token is not necessarily the next token in a sequence. Its prediction is supervised using a
cross-entropy loss applied only at the anchor position.

In the second stage, a lightweight autoregressive LLM (half the number of transformer layers used in
Figure 4) is trained using the standard next-token prediction objective, but conditioned on the output
logits from the anchor network. Rather than sampling tokens and re-embedding them, we project
the anchor logits through a linear layer and feed the resulting representations directly into the LLM
transformer, similar to the ADLM setup discussed in §C.1.3. This allows gradients from the LLM’s
output to backpropagate through the projection layer to the anchor network, enabling joint training.
Importantly, this anchoring mechanism allows the model to “look ahead” by leveraging important
tokens in a sequence, which improves reasoning without significantly altering the decoding process.

Formally, our anchored autoregressive training loss becomes:

LA2R(ψ,φ) = −EX∼q

[
L∑
l=2

log pψ(X
l|Y 1:l−1

φ (X1:l−1))

]
− γEX∼q

[
L∑
l=2

log rφ(Y
l|X1:l−1)

]
,

where Y = A(X) is the sequence of anchors obtained through the operator A as in ADLM (§3).

C.2.1 Compared Baselines

We compare our method against a diverse range of latent reasoning and chain-of-thought (CoT)
approaches. We also include baselines that do not use reasoning traces during training. To ensure
a fair comparison, we use the same base implementation from prior work (Hao et al., 2024) and
integrate our anchoring mechanism into the identical multi-stage training pipeline8.

• CoT (Wei et al., 2022): The base model is fine-tuned using the question as context and the
concatenated (reasoning, answer) as tokens contributing to training loss. During inference,
the model first generates a reasoning trace and then the final answer.

• No-CoT: A standard supervised fine-tuning baseline that does not use reasoning traces. The
model is trained to predict the answer directly given the question as context.

• Pause Token (Goyal et al., 2024): A pause token is inserted between the question and
answer without using reasoning traces. The number of pause tokens is set to match the
training stages of COCONUT, to ensure fair comparison.

8https://github.com/facebookresearch/coconut

46

https://github.com/facebookresearch/coconut

64 349 318 326 329

a cat is with dog

Large Language Model

a
the
lion

playing
fighting
a

1760

playing

64

a

Figure 4: Training of standard autoregres-
sive (AR) models. A neural network is trained to
predict the next token using causal attention (left-
to-right context). All tokens contribute equally
to the training loss, and the model treats the se-
quence uniformly without structural guidance.

Anchor Network

playing
fighting
a

64 349 318 1760 326 64 329

a cat is playing with a dog

a
the
lion

Large Language Model

Figure 5: Training of anchored autoregressive
(A2R) models. An anchor network first identifies
important tokens (e.g., ‘cat’, ‘dog’ shown in blue),
which are supervised via an auxiliary anchor loss.
A lightweight LLM is then trained to predict the
next token based on anchored predictions.

• Pause-as-Thought in COCONUT: This variant replaces the continuous latent thoughts in
COCONUT with pause tokens while following the same multi-stage training schedule.

• iCoT (Deng et al., 2024): Internalizes the reasoning trace into intermediate transformer lay-
ers, allowing the model to reason implicitly without generating explicit steps for reasoning.

• COCONUT (Hao et al., 2024): This method uses continuous latent representations (referred
to as continuous thoughts) instead of discrete reasoning tokens, and inserts these continuous
thoughts directly in the embedding layers before processing through the transformer block.
This is motivated by the idea that reasoning can often be more intuitively encoded in a
continuous latent space, especially when explanation using words is difficult.

• BoLT (Ruan et al., 2025): Bootstraps its “reasoning to learn” ability using latent thoughts
and self-distillation. This is useful in data-constrained environments, such as GSM8K.

One key distinction between methods that introduce new tokens between the question and (reasoning,
answer)—such as Pause, COCONUT+Pause-as-Thought, and our method (ACoT)—is that ACoT
explicitly applies an anchor loss on the inserted [ANT] tokens. This external supervision provides
semantic guidance on which tokens are important, resulting in better performance on both language
modeling and complex reasoning tasks.

C.2.2 Training and Evaluation Benchmarks

Text (OWT). We conduct next-token prediction experiments on the OWT (Gokaslan & Cohen, 2019)
to evaluate likelihood modeling in the AR setting. In this setting, the model does not have access to
structured reasoning traces as in the Math and Logic benchmarks described below. The training and
validation splits follow the same setup used in the diffusion experiments (§C.1.2).

Math (GSM8K). The GSM8K dataset (Cobbe et al., 2021) contains grade-school math word
problems requiring multi-step arithmetic reasoning. Each problem is presented as a natural language
prompt followed by intermediate reasoning steps and a final answer. Successful modeling on GSM8K
requires accurate understanding of the question through natural language and execute multi-step
arithmetic reasoning to derive the final answer.

Logic (ProntoQA, ProsQA). For logical reasoning, we evaluate on ProntoQA (Saparov & He, 2023)
and ProsQA (Hao et al., 2024). ProntoQA consists of deductive reasoning tasks, where the model
must verify or falsify a hypothesis using a given set of symbolic rules. We use the 5-hop variant,
which serves as a controlled benchmark for logical reasoning.

ProsQA (Hao et al., 2024) is a more challenging planning task that requires navigating through
complex reasoning graphs to arrive at the correct answer. The model must identify and follow valid

47

Chain-of-Thought Data

𝑞! 𝑞" 𝑞# 𝑟! 𝑟" 𝑟# 𝑎!

Stage-0: standard pre-training

𝑞! 𝑞" 𝑞# 𝑟! 𝑟" 𝑟# 𝑎![BOA] [EOA]

Stage-1: insert anchor token

𝑞! 𝑞" 𝑞# 𝑟! 𝑟" 𝑟# 𝑎![BOA] [EOA][ANT]

Stage-2: insert anchor token

𝑞! 𝑞" 𝑞# 𝑟! 𝑟" 𝑟# 𝑎![BOA] [EOA][ANT] [ANT]

Figure 6: Multi-stage training pipeline for Anchored Chain-of-Thought (ACoT). Here, [BOA]
and [EOA] denote the beginning and end of anchors, respectively. Many reasoning traces contain
redundant information, increasing entropy and making the reasoning process harder to learn. By
supervising the model through a small set of important tokens extracted from the reasoning trace,
ACoT encourages more structured intermediate computations, guiding the model to reason in a
more targeted and interpretable way. To reduce the number of additional tokens produced, we drop
reasoning tokens for every [ANT] insertion. For example, we drop r1 in Stage-1 and r1, r2 in Stage-2
to demonstrate this phenomenon.

inference paths among distractors. We follow the multi-stage fine-tuning procedure described in (Hao
et al., 2024) to enable direct comparison with previous baselines.

Evaluation Metric. For all reasoning benchmarks, we use accuracy as the primary evaluation metric,
measuring whether the final answer produced by the model matches the ground truth.

C.2.3 Implementation Details

GSM8K. To ensure a fair comparison with prior baselines, we closely follow the training protocol
used in COCONUT (Hao et al., 2024). Below, we highlight the key distinctions in our ACoT training
setup and recall relevant aspects of the original training procedure for completeness.

The primary distinction in our approach is the use of [ANT] tokens to guide the generation of
reasoning traces and final answers. Unlike COCONUT, we do not remove intermediate reasoning
steps when inserting [ANT] tokens. Instead, we treat anchors as auxiliary indicators that help the
model focus on important context of the reasoning trace.

For instance, in Question 1 of Table 10, we identify the tokens 16, 3, 4, 9, 2, and 18 as important due
to their role in the arithmetic operations leading to the final answer. When using two [ANT] tokens,
we select the initial subset of these important tokens—in this case, 16 and 3—to serve as anchors.
These anchors act as planning cues that guide the model’s reasoning trajectory.

Following COCONUT, we adopt a multi-stage training strategy shown in Figure 6 and train all models
for a total of 25 epochs. We report results from the best checkpoint among these 25 epochs. The
first stage is equivalent to standard CoT pre-training, where no [ANT] tokens are inserted between
the question and the (reason,answer) tokens. In the second stage (epochs 1–3), we introduce one
[ANT] token and continue training for 3 more epochs. In the third stage (epochs 4–6), we add one
more [ANT] token and train for another 3 epochs. After a maximum of 2 [ANT] tokens have been
introduced in the span of 6 epochs, we continue training for the remaining epochs (up to 25) using
supervised fine-tuning.

ProntoQA. We follow a similar multi-stage training procedure for the ProntoQA benchmark, with a
total of 50 training epochs. Given the longer context and deeper reasoning chains in this dataset, we
introduce [ANT] tokens progressively over six stages, following an initial stage of CoT fine-tuning.

On this benchmark, we consider the valid nodes in the reasoning trace as important tokens, since they
anchor the generation of the ground truth reasoning steps that ultimately lead to the correct answer.

48

Table 9: Anchoring improves autoregressive modeling on OWT. Test perplexities (PPL; ↓) for
standard AR models and our anchored variant (A2R) at various training scales. † Results from (Sahoo
et al., 2024). A2R consistently improves perplexity by introducing a two-stage prediction process:
anchor tokens are first predicted, then used to guide next-token prediction.

Model PPL (↓) Tokens
AR (retrained) 17.94 110B
AR† 17.54 262B
AR (retrained) 17.53 262B
AR (retrained) 17.26 524B

A2R (ours) 17.29 110B
A2R (ours) 16.23 262B
A2R (ours) 15.86 524B

For example, in Question 1 of Table 11, we treat the tokens Alex, Tumpus, Gorpus, Wompus,
Sterpus, Brimpus, and Happy as anchor tokens. When training with six [ANT] tokens, we select
the first six tokens from this list as supervised labels.

The first stage consists of CoT training without any anchor tokens. In each subsequent stage, we
insert one additional [ANT] token into the input and train for 5 epochs. After completing six such
stages (i.e., 30 epochs in total), each involving an additional anchor token (up to 6), we continue
standard SFT (without further changes to the number of [ANT] tokens) for the remaining 20 epochs.

ProsQA. For the ProsQA benchmark, we follow the same multi-stage training procedure as used
for ProntoQA, with one key distinction: at each stage where a new [ANT] token is introduced, we
remove one reasoning step from the groundtruth reasoning steps used in SFT. This encourages the
model to learn missing reasoning steps based on the guidance provided by [ANT]. As in ProntoQA,
we progressively insert six [ANT] tokens over six stages, training each stage for 5 epochs, totalling
up to 50 epochs. In Question 1 of Table 13, we identify Tom, Terpus, Brimpus, and Lempus as
anchoring tokens. When training with six [ANT], we use the first six valid nodes9 identified in the
reasoning trace as supervised labels.

C.2.4 Generative Modeling using Anchored Auto-Regressive Models

Results on OWT. We evaluate the impact of anchoring on autoregressive language models using the
OWT benchmark. Similar to our approach in diffusion language models, we decompose the standard
next-token prediction task into two stages. In the first stage, an anchor network predicts a distribution
over semantically important tokens (e.g., low-frequency or structurally informative tokens), referred
to as anchor tokens or [ANT] for short. These anchor predictions help the model identify key parts of
the input that provide better context for effectively predicting the next token.

As shown in Table 9, our anchored autoregressive model (A2R) outperforms standard AR models
at 3 training scales. When trained on 262B tokens, A2R achieves a perplexity of 16.23, surpassing
the corresponding AR baseline (17.53). At the largest scale (524B tokens), A2R further reduces
perplexity to 15.86, surpassing the best AR baseline (17.26) by a margin of 1.4 PPL. Interestingly,
while performance gains in standard AR pretraining tend to saturate around a perplexity of 17, our
A2R pretraining continues to improve, reducing perplexity from 17.29 to 15.86 as the number of
training tokens increases from 110B to 524B. This consistent improvement across scales demonstrates
that anchoring provides a more informative latent representation, helping the model better estimate
token likelihoods.

These results confirm that anchoring is not limited to diffusion models and is broadly applicable
to autoregressive architectures. It enables improved context modeling through an anchor network
without requiring many architectural changes to the base model.

9If the number of [ANT]s is larger than the available anchors, then we ignore the loss on extra [ANT]s.

49

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for her
friends everyday with four. She sells the remainder at the farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers’ market?

Anchor Transformer (with causal attention)

[BoA] [EoA] <<16 – 3 – 4 = 9 >> <<9 * 2 = 18>>[BoR] [EoR]

…

18[BoA] [EoA] <<16 – 3 – 4 = 9 >> <<9 * 2 = 18>>[BoR] [EoR]

Language Model Head

Tokens

Embeddings

Embeddings

Tokens16 3

Figure 7: Anchored Chain-of-Thought (ACoT) training pipeline. In this example with two anchor
tokens, we preprocess the original reasoning trace «16-3-4=9» «9*2=18», and extract the numbers
‘16’ and ‘3’ as the anchor tokens (the first two numbers in the reasoning trace). We then create a
modified training trace that is augmented with these anchor tokens (top line in figure). Example trace
from GSM8K dataset.

C.2.5 Improved Reasoning using Anchored Chain-of-Thought

Decoding order is known to affect inference quality, as established in classical structured prediction
literature (e.g., via topological or lexical ordering) (Jordan et al., 1999; Bengio et al., 2003; Koller &
Friedman, 2009). However, most LLMs (especially autoregressive ones) follow a strictly left-to-right
generation scheme, which often leads to shallow, sequential reasoning. This bias can hinder tasks
where intermediate computations depend on later context or global structure.

Our proposed Anchored Chain-of-Thought (ACoT) addresses this issue by leveraging important
tokens (such as root nodes in the underlying reasoning graph) prior to decoding. These tokens serve
as intermediate supervision points, enabling the model to focus on the most critical sub-computations
early in the reasoning trace. We then apply the standard next-token prediction loss conditioned on
these anchor predictions, effectively guiding the model toward more structured and globally coherent
solutions. Thus, anchors allow the model to look ahead and think non-sequentially while retaining
compatibility with standard autoregressive training and decoding pipelines.

During training, as illustrated in Figure 7, the loss function for the Anchor Network is supervised
using future important tokens. As a consequence, during inference, this results in anchor predictions
having logits with higher likelihood on future important tokens. Thus, the auto-regressively generated
tokens depend not only previous tokens (causal attention), but also implicitly on potential future
important tokens that are encoded within the anchor predictions (see Figure 2 in the main paper).
This results in out-of-order reasoning as discussed below.

Results on GSM8K. To evaluate the effectiveness of anchoring in complex reasoning tasks, we
apply our method ACoT on GSM8K (Cobbe et al., 2021). Table 10 presents qualitative examples
comparing standard CoT reasoning traces with those produced by our ACoT model. Each example
includes the input question, ground truth CoT trace, the model’s full output (including anchor tokens),
and the extracted final answer. Table 5 contains the quantitative results.

A key insight from Question 1 is that standard CoT processes the question in a purely left-to-
right manner. It computes 16 - 3 - 4 = 9, and then 9 * 2 = 18, following the order in which
quantities appear in the question. In contrast, ACoT introduces [ANT] to capture important tokens,
which allows it to reason more globally. Specifically, ACoT first computes 3 + 4 = 7 to aggregate
all consumption before subtracting from the total (16 - 7 = 9), a pattern more aligned with human

50

intuition. This demonstrates how anchoring enables a “look-ahead” planning behavior, in contrast to
the left-to-right decoding bias of standard CoT.

In Question 3, ACoT diverges from the gold trace and produces an incorrect final answer. This
example highlights a limitation: while anchoring allows more flexible planning, it still depends on
correctly identifying and utilizing important tokens.

CoT and our method ACoT share a similar experimental setup, with the only exception of anchoring
via multi-strage training. While standard multi-stage training as in COCONUT reduces the performance
from 42.9% to 34.1%, our anchoring mechanism prvoides a substantial gain of 11.1% over these
latent reasoning methods (such as COCONUT and iCoT), and a notable gain of 2.3% over CoT.

Overall, these examples demonstrate that anchoring provides a more flexible and semantically guided
framework for reasoning, enabling the model to break free from strictly left-to-right token prediction.
This leads to improved planning and more human-like reasoning behaviors, especially in problems
requiring multi-step arithmetic reasoning as in GSM8K.

ProntoQA. As shown in Table 11, our ACoT model generates valid reasoning traces and correctly
predicts the final answer across symbolic reasoning tasks in ProntoQA. In the first example, the
question asks whether “Alex is happy” based on a complex chain of relational facts. The standard
CoT trace progresses step-by-step by chaining multiple class membership relations (e.g., “Alex is a
tumpus”, “Tumpuses are gorpuses”, ..., “Brimpuses are happy”). Our ACoT model, guided by six
[ANT] tokens, learns to identify and attend to these anchors in the reasoning process.

Recall from Table 5 that CoT, COCONUT, and ACoT share nearly identical training setups, with
the only distinction being the use of anchor tokens in ACoT and continuous thoughts in COCONUT.
While standard multi-stage training in COCONUT leads to a marginal improvement from 98.8%
(CoT) to 99.8%, our anchoring mechanism further enhances performance. By incorporating explicit
supervision through anchor tokens, ACoT achieves a perfect accuracy of 100% on this relatively
easier benchmark, demonstrating the effectiveness of anchoring in logical reasoning.

ProsQA. This experiment illustrates that ACoT can internalize and reconstruct reasoning traces
through anchor tokens, similar to latent reasoning methods such as iCoT and COCONUT. As in
those prior works, our model avoids explicitly generating intermediate reasoning steps while still
maintaining logical coherence in the final answer.

We evaluate ACoT under a variant of the training setup where we do not remove any reason-
ing steps (i.e., following the setup used in ProntoQA). In this setting, ACoT achieves 81% accu-
racy—outperforming standard CoT (77.5%) but still falling short of the 97.0% achieved by COCONUT.
Prior work (Hao et al., 2024) has shown that gradually removing reasoning steps during multi-stage
training provides a significant performance boost on ProsQA. Following this recommendation, we
integrate reasoning step removal into our ACoT fine-tuning. This modification improves our model’s
accuracy from 81% to 97.3%. Importantly, ACoT generates much less tokens compared to CoT and
COCONUT while surpassing their accuracy, as shown in Table 12.

In the first example from Table 13, the question asks whether “Tom is a lempus or scrompus”,
requiring a multi-hop reasoning chain through symbolic class hierarchies. The ground truth reasoning
trace proceeds via three steps: (1) Tom is a terpus, (2) Every terpus is a brimpus, and (3) Every
brimpus is a lempus. Our ACoT model accurately identifies and anchors this chain using six [ANT]
tokens, and directly generates the correct final inference: Tom is a lempus. Notably, this is done
without producing intermediate reasoning steps, demonstrating that the model has internalized the
underlying inference structure via the anchor tokens. These results highlight that anchoring provides
complementary benefits to existing fine-tuning strategies (such as CoT and COCONUT), and further
boosts the model’s ability to solve complex reasoning problems.

51

Table 10: Examples of math word problems with reasoning traces from GSM8K (Cobbe et al., 2021).
Each row shows the input question, groundtruth reasoning trace (CoT), answer, our model’s full
output sequence, and the final extracted answer. Our model implicitly reasons through anchoring
tokens ([ANT]) and produces reasonable traces before computing the final answer.

Question 1 Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder
at the farmers’ market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

CoT «16-3-4=9» «9*2=18»
Answer 18
Full Output [ANT][ANT] «3+4=7» «16-7=9» «9*2=18»
Extracted Output 18
Question 2 A robe takes 2 bolts of blue fiber and half that much white. How many bolts

in total?
CoT «2/2=1» «2+1=3»
Answer 3
Full Output [ANT][ANT] «2/2=1» «2+1=3»
Extracted Output 3
Question 3 Josh decides to try flipping a house. He buys a house for $80,000 and then

puts in $50,000 in repairs. This increased the value of the house by 150%.
How much profit did he make?

CoT «80000+50000=130000» «80000*1.5=120000»
«120000+80000=200000» «200000-130000=70000»

Answer 70000
Full Output [ANT][ANT] «50000*.15=7500» «7500+50000=57500»

«57500-80000=-32500»
Extracted Output -32500
Question 4 James decides to run 3 sprints 3 times a week. He runs 60 meters each

sprint. How many total meters does he run a week?
CoT «3*3=9» «9*60=540»
Answer 540
Full Output [ANT][ANT] «3*60=180»
Extracted Output 180
Question 5 Every day, Wendi feeds each of her chickens three cups of mixed chicken

feed, containing seeds, mealworms and vegetables to help keep them healthy.
She gives the chickens their feed in three separate meals. In the morning,
she gives her flock of chickens 15 cups of feed. In the afternoon, she gives
her chickens another 25 cups of feed. How many cups of feed does she need
to give her chickens in the final meal of the day if the size of Wendi’s flock is
20 chickens?

CoT «3*20=60» «60-15-25=20»
Answer 20
Full Output [ANT][ANT] «15+25=40» «40-20=20»
Extracted Output 20

52

Table 11: Examples of logical reasoning tasks with symbolic reasoning traces from Pron-
toQA (Saparov & He, 2023). Each row shows the input question, groundtruth reasoning trace
(CoT), answer, the model’s generated output sequence, and the extracted final answer. Our model
implicitly reasons through anchoring tokens ([ANT]) to infer logical relationships.

Question 1 Tumpuses are floral. Each jompus is not melodic. Tumpuses are numpuses.
Gorpuses are opaque. Each grimpus is small. Sterpuses are dumpuses.
Tumpuses are gorpuses. Every lorpus is not happy. Every wumpus is a
shumpus. Each gorpus is a grimpus. Shumpuses are slow. Every dumpus
is overcast. Gorpuses are wumpuses. Vumpuses are dull. Sterpuses are
brimpuses. Numpuses are not metallic. Jompuses are impuses. Brimpuses
are happy. Sterpuses are hot. Brimpuses are vumpuses. Wumpuses are
sterpuses. Brimpuses are zumpuses. Wumpuses are sour. Alex is a tumpus.
Alex is a jompus. True or false: Alex is happy.

CoT Alex is a tumpus. Tumpuses are gorpuses. Alex is
a gorpus. Gorpuses are wumpuses. Alex is a wumpus.
Wumpuses are sterpuses. Alex is a sterpus. Sterpuses
are brimpuses. Alex is a brimpus. Brimpuses are happy.
Alex is happy.

Answer True
Full Output [ANT][ANT][ANT][ANT][ANT][ANT] Alex is a tumpus.

Tumpuses are gorpuses. Alex is a gorpus. Gorpuses are
wumpuses. Alex is a wumpus. Wumpuses are sterpuses.
Alex is a sterpus. Sterpuses are brimpuses. Alex is a
brimpus. Brimpuses are happy. Alex is happy.

Extracted Output True
Question 2 Brimpuses are sterpuses. Each grimpus is a numpus. Lorpuses are angry.

Grimpuses are moderate. Each dumpus is a lempus. Each lempus is cold.
Gorpuses are yumpuses. Every rompus is not sunny. Each dumpus is a
gorpus. Yumpuses are bitter. Each grimpus is a vumpus. Gorpuses are not
large. Brimpuses are lorpuses. Every vumpus is discordant. Every numpus
is shy. Brimpuses are not brown. Dumpuses are floral. Gorpuses are
grimpuses. Each shumpus is a wumpus. Vumpuses are rompuses. Tumpuses
are brown. Every shumpus is not metallic. Vumpuses are brimpuses. Polly
is a dumpus. Polly is a shumpus. True or false: Polly is brown.

CoT Polly is a dumpus. Each dumpus is a gorpus. Polly is
a gorpus. Gorpuses are grimpuses. Polly is a grimpus.
Each grimpus is a vumpus. Polly is a vumpus. Vumpuses
are brimpuses. Polly is a brimpus. Brimpuses are not
brown. Polly is not brown.

Answer False
Full Output [ANT][ANT][ANT][ANT][ANT][ANT] Polly is a dumpus. Each

dumpus is a gorpus. Polly is a gorpus. Gorpuses are
grimpuses. Polly is a grimpus. Each grimpus is a
vumpus. Polly is a vumpus. Vumpuses are brimpuses.
Polly is a brimpus. Brimpuses are not brown. Polly is
not brown.

Extracted Output False

53

Table 12: Accuracy and Token Usage on ProsQA. ACoT outperforms prior latent reasoning
methods, including COCONUT, while using fewer or comparable reasoning tokens during inference.
† reported in COCONUT.

Method ProsQA

Accuracy (%) # Tokens

No-CoT† 76.7±1.0 8.2
Pause Token† (Goyal et al., 2024) 75.9±0.7 8.2
CoT† (Wei et al., 2022) 77.5±1.9 49.4
iCoT (Deng et al., 2024) 98.2±0.3 8.2
COCONUT† (Hao et al., 2024) 97.0±0.3 14.2

- Pause† 96.6±0.8 8.2

ACoT (ours) 97.3±0.2 8.2

54

Table 13: Examples of logical reasoning tasks with symbolic reasoning traces from ProsQA (Hao
et al., 2024). Each row shows the input question, groundtruth reasoning trace (CoT), answer, our
model’s generated output sequence, and the extracted final answer. Our model implicitly reasons
through anchoring tokens ([ANT]) to infer logical relationships. In this experiment, we employ the
gradual CoT removal scheme used in prior works (Deng et al., 2024; Hao et al., 2024) to demonstrate
the reasoning ability in the anchored latent space without producing word tokens.

Question 1 Every shumpus is a rempus. Every shumpus is a yimpus. Every terpus is
a fompus. Every terpus is a gerpus. Every gerpus is a brimpus. Alex is a
rempus. Every rorpus is a scrompus. Every rorpus is a yimpus. Every terpus
is a brimpus. Every brimpus is a lempus. Tom is a terpus. Every shumpus is
a timpus. Every yimpus is a boompus. Davis is a shumpus. Every gerpus is
a lorpus. Davis is a fompus. Every shumpus is a boompus. Every shumpus
is a rorpus. Every terpus is a lorpus. Every boompus is a timpus. Every
fompus is a yerpus. Tom is a dumpus. Every rempus is a rorpus. Is Tom a
lempus or scrompus?

CoT Tom is a terpus. Every terpus is a brimpus. Every
brimpus is a lempus.

Answer Tom is a lempus.
Full Output [ANT][ANT][ANT][ANT][ANT][ANT] Tom is a lempus.
Extracted Output Tom is a lempus.
Question 2 Sally is a zhorpus. Every yumpus is a fompus. Every zhorpus is a rempus.

Every rompus is a sterpus. Every kerpus is a timpus. Stella is a yumpus.
Every zhorpus is a zumpus. Every wumpus is a yumpus. Sally is a rempus.
Stella is a wumpus. Every zumpus is a rorpus. Sally is a rompus. Every
numpus is a bompus. Every zumpus is a scrompus. Every rempus is a
kerpus. Every zumpus is a vumpus. Every timpus is a yerpus. Every rempus
is a numpus. Every vumpus is a worpus. Every rompus is a felpus. Every
wumpus is a sterpus. Every rompus is a kerpus. Every zumpus is a rempus.
Every rempus is a chorpus. Bob is a rorpus. Every wumpus is a fompus.
Sally is a kerpus. Every zhorpus is a rompus. Is Sally a fompus or worpus?

CoT Sally is a zhorpus. Every zhorpus is a zumpus. Every
zumpus is a vumpus. Every vumpus is a worpus.

Answer Sally is a worpus.
Full Output [ANT][ANT][ANT][ANT][ANT][ANT] Sally is a worpus.
Extracted Output Sally is a worpus.
Question 3 Every shumpus is a yumpus. Every worpus is a yimpus. Every shumpus is a

gwompus. Every tumpus is a boompus. Every worpus is a shumpus. Every
storpus is a terpus. Max is a yimpus. Every shumpus is a rompus. Every
wumpus is a jelpus. Every boompus is a terpus. Fae is a tumpus. Every
tumpus is a worpus. Every rompus is a gorpus. Every timpus is a impus.
Every jompus is a gerpus. Every boompus is a rompus. Fae is a boompus.
Every boompus is a kerpus. Every zumpus is a bompus. Max is a rempus.
Every rompus is a kerpus. Max is a impus. Every rempus is a impus. Every
wumpus is a yumpus. Every grimpus is a terpus. Every tumpus is a jompus.
Every yumpus is a felpus. Every jelpus is a felpus. Every shumpus is a
felpus. Every rempus is a timpus. Every storpus is a jompus. Every rompus
is a storpus. Every tumpus is a wumpus. Every wumpus is a jompus. Every
boompus is a worpus. Fae is a storpus. Every worpus is a jelpus. Every
grimpus is a felpus. Every worpus is a yumpus. Every rempus is a zumpus.
Every kerpus is a grimpus. Is Fae a gwompus or bompus?

CoT Fae is a tumpus. Every tumpus is a worpus. Every
worpus is a shumpus. Every shumpus is a gwompus.

Answer Fae is a gwompus.
Full Output [ANT][ANT][ANT][ANT][ANT][ANT] Fae is a bompus.
Extracted Output Fae is a bompus.

55

	Introduction
	Background
	Auto-Regressive Models
	Diffusion Language Models

	Anchored Diffusion Language Models
	Theoretical Results
	Anchored Negative Evidence Lower Bound
	Anchored Graphical Model Analysis

	Experiments
	Diffusion Language Models
	Improved Likelihood Modeling and Generated Text Quality

	Auto-Regressive Models
	Improved Reasoning using Anchored Chain-of-Thought

	Conclusion
	Additional Theoretical Results and Proofs
	Proof of Theorem 4.1
	Derivation of Absorbing Transition Kernel
	Anchored Graphical Model Analysis
	Sample Complexity in Standard Training
	Reduced Sample Complexity via Anchored Modeling
	Interpretation Through Expectation-Maximization
	Improved Likelihood Modeling During Inference

	Additional Background and Related Works
	Diffusion Language Models
	Auto-Regressive Models
	Token Unmasking Strategies in Diffusion and AR Language Models

	Additional Experiments
	Diffusion Language Models
	Compared Baselines
	Training and Evaluation Benchmarks
	Implementation Details & Additional Results
	Samples Generated using ADLM

	Auto-Regressive Models
	Compared Baselines
	Training and Evaluation Benchmarks
	Implementation Details
	Generative Modeling using Anchored Auto-Regressive Models
	Improved Reasoning using Anchored Chain-of-Thought

