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Abstract

Meta-learning empowers data-hungry deep neural networks to rapidly learn from
merely a few samples, which is especially appealing to tasks with small datasets.
Critical in this context is the prior knowledge accumulated from related tasks.
Existing meta-learning approaches typically rely on preselected priors, such as a
Gaussian probability density function (pdf). The limited expressiveness of such pri-
ors however, hinders the enhanced performance of the trained model when dealing
with tasks having exceedingly scarce data. Targeting improved expressiveness, this
contribution introduces a data-driven prior that optimally fits the provided tasks
using a novel non-injective change-of-variable (NCoV) model. Unlike preselected
prior pdfs with fixed shapes, the advocated NCoV model can effectively approx-
imate a considerably wide range of pdfs. Moreover, compared to conventional
change-of-variable models, the introduced NCoV exhibits augmented expressive-
ness for pdf modeling, especially in high-dimensional spaces. Theoretical analysis
underscores the appealing universal approximation capacity of the NCoV model.
Numerical experiments conducted on three few-shot learning datasets validate
the superiority of data-driven priors over the prespecified ones, showcasing its
pronounced effectiveness when dealing with extremely limited data resources.

1 Introduction

Advances in deep learning (DL) have boosted the notion of “learning from data” with field-changing
performance improvements reported across a wide range of applications [24, 15, 52]. Large-scale DL
models with high fitting capacity have documented ability to cope with the “curse of dimensionality”
by providing compact low-dimensional representations of high-dimensional data. Nonetheless, these
high-capacity models typically require protracted training using massive data records. Humans on the
contrary, can perform exceptionally well on tasks such as object recognition or concept comprehension
with merely a few samples. How to acquire the learning ability of humans in the DL training processes
is thus appealing and imperative for a number of application domains, especially when data are
scarce or costly to annotate. Examples of such applications include machine translation [52], medical
imaging [31], and robot manipulations [27].

Meta-learning, also referred to as “learning to learn,” seeks to gather the prior knowledge shared
across a set of inter-related tasks, to enable quickly solving an unseen yet related learning task using
minimal training samples [10]. This form of higher-level learning effectively extracts domain-generic
inductive biases from prior tasks, which can be subsequently transferred to learn a new task even
with limited data. This mirrors the capability that humans excel at — leveraging past experiences to
rapidly acquire new skills. Meta-learning holds the promise of yielding powerful priors with which
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DL models can generalize better, require fewer data for training, and adapt more effectively to new
tasks in dynamically changing environments.

Conventional approaches to meta-learning have relied on hand-crafted techniques to extract prior
knowledge [47, 46]. With the advent of DL and growing volume of data, there has been a paradigm
shift from such cumbersome procedures towards more efficient data-driven strategies. In particular,
the prior information is encoded in hyperparameters, which are shared across tasks and can be fine-
tuned using the validation data of all tasks. Utilizing these informative hyperparameters, task-specific
learning can be performed even with limited data. Early attempts adopted a neural network (NN)
with its weights serving as the shared hyperparameters [55, 45, 33]. The task-invariant NN leverages
the shared hyperparameters, and training data per task, to output the task-specific model. However,
the selection of an appropriate NN architecture is tailored to the choice of the task-specific models.
In addition, NNs inherently lack interpretability and robustness due to their “black box” nature.

Unlike NN-based meta-learning, model-agnostic meta-learning (MAML) does not rely on any pre-
sumptions about task-specific models [10]. Instead, it relies on an iterative optimizer to learn the
task-specific model. The task-invariant prior information is embodied in the initialization of the
optimizer, which is shared across tasks. By learning an informative initialization, task-specific
learning can rapidly converge to a local minimum within a few iterations. Interestingly, the ini-
tialization generated by MAML can be viewed as a learnable mean of an implicit Gaussian prior
probability density function (pdf) over the task-specific model parameters [18]. Building on MAML,
several optimization-based meta-learning algorithms have been advocated to learn different prior
pdfs [29, 37, 25, 1, 58]. In addition, theoretical studies have been carried out to further offer insights
into these approaches [13, 39, 8, 9, 61]. Nevertheless, the prior models of most existing meta-learning
methods are confined to preselected pdfs, such as the Gaussian one, and thus have limited expres-
siveness, meaning fitting ability. Consequently, generalizing meta-learning to domains that deal with
scarce datasets, and need sophisticated priors, remains a challenging and largely uncharted territory.

To improve the prior expressiveness in meta-learning, this contribution puts forth what we term
non-injective change-of-variable (NCoV) model, which enables learning a universal data-driven prior
from related tasks. The contribution of the resultant method named MetaNCoV is threefold:

i) Our novel NCoV model is proven capable of mapping a known source pdf to an arbitrary target
pdf. This markedly enhances the model expressiveness, especially in high-dimensional spaces.

ii) Theoretical analysis is provided to demonstrate that a parametric NCoV can approximate a broad
spectrum of pdfs, that in turn enables versatile plug-in priors for meta-learning. Moreover, this
parametric NCoV inherently provides a task-invariant initialization, rather nicely eliminating the
need for its explicit learning.

iii) Numerical tests on three benchmark few-shot learning datasets corroborate our theoretical
analysis, and underscore the superior prior expressiveness of the proposed MetaNCoV method
compared to meta-learning approaches with prespecified pdfs.

2 Problem setup

Meta-learning relies on task-invariant prior information from a collection of T given tasks (indexed by
t = 1, . . . , T ), to deal with data-limited settings. For each t, there is a dataset Dt := {(xn

t , y
n
t )}

Nt
n=1

consisting of Nt (data, label) pairs. The dataset is divided into a training subset Dtrn
t ⊂ Dt, and a

validation subset Dval
t := Dt \ Dtrn

t . In addition, a new task indexed by ⋆ is also provided, with its
training set Dtrn

⋆ , and an unannotated test set Dtst
⋆ := {xn

⋆}
Ntst

⋆
n=1 for which the corresponding labels

{yn⋆ }
Ntst

⋆
n=1 are to be inferred. The major premise of meta-learning is that the aforementioned tasks are

related through their underlying data distributions or problem structures. This relationship makes
it feasible to employ a unified large-scale model such as a deep NN to fit all tasks, with each task
tailored by its specific model parameter ϕt ∈ Rd. However, as the cardinality |Dtrn

t | can be much
smaller than d, directly optimizing ϕt over Dtrn

t could readily lead to overfitting.

Meta-learning addresses this issue by capitalizing on the relationships among tasks. Specifically,
since T is considerably large in meta-learning, a task-invariant prior can be extracted to capture
knowledge across tasks, thereby facilitating the data-limited per-task training. This nested structure
of prior extraction and per-task training lends itself to a bilevel optimization problem. The inner-level
(task-level) optimizes the per-task parameter ϕt using Dtrn

t , and the prior provided by outer-level,
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while the outer-level (meta-level) evaluates the trained {ϕt}Tt=1 using {Dval
t }Tt=1, and refines the

prior parameterized by θ ∈ RD.

The bilevel optimization objective of meta-learning can be expressed as

min
θ

T∑
t=1

L(ϕ∗
t (θ);Dval

t ) (1a)

s.t. ϕ∗
t (θ) = argmin

ϕt

L(ϕt;Dtrn
t ) +R(ϕt;θ), t = 1, . . . , T (1b)

where the loss function L assesses the fit of a task-specific model to a designated dataset, and
the regularizer R quantifies the impact of task-invariant prior. From the Bayesian viewpoint,
L(ϕt;Dtrn

t ) = − log p(ytrn
t |ϕt;X

trn
t ) can be interpreted as the negative log-likelihood (nll), and

R(ϕt;θ) = − log p(ϕt;θ) is the negative log-prior (nlp), where Xtrn
t denotes the matrix collecting

all the data vectors in Dtrn
t , and ytrn

t is the corresponding label vector. Using Bayes’ rule, it follows
that ϕ∗

t = argmaxϕt
p(ϕt|ytrn

t ;Xtrn
t ,θ) is the maximum a posteriori (MAP) estimator.

Unfortunately, the global optimum ϕ∗
t in (1b) is generally unreachable when the postulated model is

a nonlinear function of ϕt. Hence, a feasible alternative is to rely on an approximate solver ϕ̂t ≈ ϕ∗
t

obtained by a tractable optimizer. Depending on how the alternative solver is acquired, meta-learning
algorithms can be categorized as either NN- or optimization-based ones. The former harnesses
an NN optimizer ϕ̂t = NN(Dtrn

t ;θ) to model the training process that maps Dtrn
t to ϕ̂t, with the

sought prior encoded in the NN’s learnable weights θ [41, 17]. Despite the effectiveness of NN
optimizers in fitting complex mappings, it is hard to decipher the learned prior due to their black-box
nature. To improve the interpretability and robustness of the approximate solver, optimization-based
meta-learning decodes the “tractable optimizer” as a cascade of a few optimization iterations. The
prior is captured by the shared hyperparameters of the optimizer. The first effort towards this direction
is termed MAML [10], which relies on a K-step gradient descent (GD) optimizer

ϕk+1
t (θ) = ϕk

t (θ)−∇L(ϕk
t (θ);Dtrn

t ), k = 0, . . . ,K − 1 (2)

where task-invariant initialization ϕ0
t = ϕ0 = θ parameterizes the prior information, and ϕ̂t = ϕK

t
gives the desired approximate solver. Interestingly, despite the absence of an explicit regularization
term (that is, R(ϕt;θ) = 0), it has been shown that, under second-order Taylor approximation,
MAML’s GD solver (2) satisfies [18]

ϕ̂t(θ) ≈ ϕ∗
t (θ) = argmin

ϕt

L(ϕt;Dtrn
t ) +

1

2
∥ϕt − ϕ0∥2Λt

where the precision matrix Λt is determined by α, K, and ∇2L(ϕ0;Dtrn
t ). This observation

indicates MAML’s optimizer approximately amounts to an implicit Gaussian prior p(ϕt;θ) ≈
N (ϕt;ϕ

0,Λ−1
t ), with the shared initialization ϕ0 = θ serving as its mean vector.

Building upon MAML, various methods have been investigated to learn different prior pdfs in both
implicit and explicit forms. For example, recent advances further render the (per-step) precision matrix
learnable by replacing it with a Λ that is common across tasks. Letting θΛ denote the parameter
of Λ, the prior parameter is thus augmented as θ := [ϕ0⊤,θ⊤

Λ], where ⊤ denotes transposition.
However, a complete parametrization of Λ would result in θ having prohibitively high dimensionality,
that is, D = O(d2). To ensure scalability with respect to D, Λ should have a sufficiently simple
structure such as isotropic [39], diagonal [29], and or block diagonal [26, 37] matrices. Inspired by
transfer learning, one can instead split the model into an embedding “body” and a classifier/regressor
“head,” and learn their priors independently; that is, with ϕbody

t and ϕhead
t denoting the corresponding

partitions of ϕt, the prior is presumed factorable as p(ϕt;θ) = p(ϕbody
t ;θ)p(ϕhead

t ;θ). On the one
hand, the head typically has a nontrivial prior such as the Gaussian one [3, 25]. On the other hand, the
body’s prior is intentionally restricted to a degenerate pdf p(ϕbody

t ;θ) := δ(ϕbody
t − ϕbody), where

ϕbody is a subvector of θ, and δ(·) is the Dirac delta function. This eliminates the need for optimizing
ϕbody

t in (1b), thus markedly lowering the overall complexity for solving (1). Although freezing
the body in (1b) allows for escalating the dimension of ϕbody

t , it often leads to degraded empirical
performance [38] compared to the full update (2). In addition to Gaussian and degenerate pdfs, sparse
priors (Laplace distributions) have been investigated in the context of network pruning [50].
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3 Meta-Learning using non-injective change of variables

Existing meta-learning algorithms rely on a preselected pdf to parameterize the prior. However,
the chosen pdf can have limited expressiveness; that is, it may have insufficient ability to offer an
accurate fit due to its prefixed shape. Consider for instance a Gaussian prior pdf, which is inherently
unimodal, symmetric, log-concave, and infinitely differentiable by definition. Such a prior may not
be well-suited for tasks with multimodal or asymmetric parametric pdfs.

In this work, we propose to learn a data-driven prior pdf that optimally fits the given tasks using
a novel non-injective change-of-variable (NCoV) model. We thus term the proposed method as
Meta-learning with NCoV (MetaNCoV). In contrast to preselected prior pdfs with fixed shapes, the
advocated prior model can dynamically adjust its form to approximate a considerably wide range
of pdfs, as will be demonstrated both theoretically and numerically. Furthermore, compared to
conventional change-of-variable models such as generative adversarial networks (GANs) [16] and
normalizing flows (NFs) [43], the introduced NCoV exhibits enhanced capacity for pdf estimation,
especially in high-dimensional spaces. Change-of-variable models and their applications in pdf
estimations will be first elaborated. All the proofs are delegated to the Appendix.

3.1 Pdf estimation via change of variables

The key idea of change-of-variable model is to identify a transformation f , through which a known
pdf pZ can be altered to approximate a target pdf q. For instance, GANs [16] and variational
autoencoders (VAEs) [21] seek a generator/encoder such that high-dimensional pdfs can be acquired
from a low-dimensional latent Gaussian pdf pZ = N (0, I). Due to the dimensional discrepancy
between signal and latent spaces, these models are typically utilized to estimate signals living on a
low-dimensional manifold; e.g., images.

To enhance the model capactiy as well as pdf tractability, NFs were introduced in [43] as a surrogate
variational model for posterior inference. Recently, they have been shown also effective in estimating
prior pdfs from a set of unannotated samples [6, 14, 7]. The formulation of NFs relies on the well-
known change-of-variable formula. Given a continuous random vector Z ∈ Rd with prior pdf pZ,
and a bijection f : Rd 7→ Rd, then Z′ := f(Z) is also a continuous random vector with analytical pdf

pZ′(z′) = pZ(f
−1(z′))

∣∣det Jf−1(z′)
∣∣ = pZ(f

−1(z′))

|det Jf (z′)|
(a.e.) (3)

where Jf (z
′) denotes the Jacobian of f at z′ ∈ Rd, det is the determinant, and det Jf ̸= 0 almost

everywhere (a.e.) for bijective f . To ensure the invertibility of f , a prudent choice is to model it as a
composition of a sequence of bijective functions f = f1 ◦ f2 ◦ . . . ◦ fn.

In Bayesian inference [43], q is an intractable posterior, and f is optimized to minimize the KL-
divergence between pZ′ and q, or equivalently, maximize the so-termed evidence lower bound
(ELBO). For density estimation [6], the wanted q is an unknown prior pdf, while f is acquired via
maximum likelihood training. The obtained f can be leveraged in two important applications: i)
probability estimation pZ′(v) ≈ q(v) for a given sample v ∼ q using (3), and ii) generation of a
sample z′ = f(z), z ∼ pZ for which pZ′ ≈ q.

When d = 1, the probability integral transform (PIT) suggests that, the optimal f∗ = Q−1 ◦ PZ

leads to precisely PZ′ = Q a.e., where Q, PZ and PZ′ are the cumulative distribution functions
(cdfs) corresponding to q, pZ and pZ′ , and q > 0 a.e. ensures Q is bijective. The resultant cdf
PZ′ = PZ ◦ f∗−1 is a pushforward measure, also notated as PZ′ = f∗

#PZ. In high-dimensional
spaces (d > 1) however, the existence of such an f∗ may not hold due to the invertibility assumption
of f∗; see examples in e.g., [22, Section 4]. In fact, it has been shown that NFs are capable of
modeling pdfs with a full support; i.e., when q > 0 on Rd [36].

3.2 Improved pdf estimation via non-injective change of variable

To improve the fitting capacity of change-of-variable models for generic q, especially those in high-
dimensional spaces or without full support, the fresh idea of this work is to waive the injectivity
assumption on f . In doing so, we can generalize the PIT to an arbitrary q, as illustrated in the
following theorem.
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Theorem 3.1 (Multivariate PIT). Let PZ : Rd 7→ [0, 1] be the cdf of continuous random vector Z :=
[Z1, . . . , Zd]

⊤ with {Zi}di=1 mutually independent. For any differentiable a.e. cdf Q : Rd 7→ [0, 1],
there exists a non-decreasing function f∗ : Rd 7→ Rd that the random vector Z′ := f∗(Z) has cdf

PZ′ = Q (a.e.). (4)

Remark 3.2 (Choice of source distribution). In the theorem, the prior distribution for the source
random vector Z can be chosen arbitrarily, as if it is continuous and has mutually independent entries.
Popular choices include standard Gaussian N (0d, Id) and uniform U([0, 1]d).
Remark 3.3 (Comparison with injective NFs). While conventional NFs (3) require Jf ̸= 0 a.e. to
ensure the injectivity of f , Theorem 3.1 relaxes this assumption to allows f being non-injective
and thus enables Z′ = f(Z) to match an arbitrary target distribution (even discrete one) in a high-
dimensional space. It is worth mentioning that the mild assumption on the differentiability of Q is
merely used to guarantee the existence of q, which can be easily satisfied. However, one limitation of
the advocated NCoV is that it generally has no analytical solution for the resultant surrogate pdf

pZ′(z′) =

∫
Rd

pZ(z)δ[z
′ − f(z)]dz. (5)

As a remedy, efficient numerical integration can be performed to estimate pZ′ when d is small.
Additional comparisons with NFs and optimal transport are deferred to Appendix E.

While Theorem 3.1 suggests the existence of the optimal f∗ that incurs the exact match pZ′ = q, the
expression for such an f∗ relies on the sought q, which is typically intractable or unknown. Therefore,
a feasible alternative is to resort to a tractable parametric f(·;θf ), which approximates f∗ by learning
θf from the provided data. To further compare NCoVs with NFs, we will focus exclusively on
Sylvester NF [51] in the following sections, but our analysis can be readily generalized to other
transformations; see Remark 3.7. Sylvester NF was introduced in [51] to improve the expressiveness
of planar NF [43] by increasing its “width”. In particular, Sylvester NF adopts the form

f(Z;θf ) := Z+Aσ(BZ+ c), Z ∈ Rd (6)

where A ∈ Rd×m,B ∈ Rm×d, c ∈ Rm are learnable weights with m being the number of hidden
neurons (a.k.a. width), σ is an entry-wise nonlinear operator, and θf := [vec(A)⊤, vec(B)⊤, c⊤]⊤.
It can be easily verified that the Sylvester NF boils down to the planar one when m = 1. Akin to
other NFs, one can also increase the “depth” of the flows by stacking multiple Sylvester NF layers
into a chain f1 ◦ f2 ◦ . . . ◦ fn. The next theorem states that, the optimal f∗ can be approximated to
arbitrary precision using a sufficiently wide one-layer Sylvester NCoV.
Definition 3.4. A random vector on Rd is said to be tail-convergent if i) it has a pdf p : Rd 7→
R+ ∪ {0}, and ii) for ∀ϵ > 0 there exists a bounded E ⊂ Rd for which∫

Rd\E
p < ϵ. (7)

Theorem 3.5 (Universal approximation via Sylvester NCoVs). Let PZ denote the cdf of tail-
convergent continuous random vector Z ∈ Rd with mutually independent entries, and Q a Lip-
schitz cdf of a tail-convergent random vector. For any ϵ > 0, there exists cdfs P̃ , Q̃ for which the
corresponding pdfs p̃, q̃ vanishes outside compact sets Ep, Eq , and

|PZ(v)− P̃ (v)| < ϵ, |QZ(v)− Q̃(v)| < ϵ, ∀v ∈ Rd. (8)

Moreover, let E ⊆ Ep be any set on which the optimal f∗ matching P̃Z to Q̃ is injective and
right-continuous. There exists a Sylvester NCoV f and a zero-measure set E0, such that

|f(Z)− f∗(Z)| < ϵ, ∀Z ∈ Ep \ E0, (9a)
|PZ(z)−Q ◦ f(z)| < ϵ, ∀z ∈ E \ E0. (9b)

We have shown that when f∗ is injective, the cdf of the optimally transformed Z′ = f∗(Z) can be
written as a pushforward Q = PZ′ = PZ ◦ f∗−1. Likewise, this relationship remains valid when
restricting f∗ to a set E on which f∗ is injective. However, since the Sylvester NCoV f may not be
injective on E, one cannot directly compare Q with PZ ◦ f−1. Fortunately, this pushforward can be
equivalently written as PZ(z) = Q ◦ f∗(z), ∀z ∈ E; see Lemma B.1 in the Appendix. Utilizing this
alternative relationship, Theorem 3.5 states that the Sylvester NCoV f not only approximates f∗ a.e.
on Ep, but also results in pushforward approximation PZ ≈ Q ◦ f a.e. on E.
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Algorithm 1 MetaNCoV algorithm
Input: {Dt}Tt=1, step sizes α and β, batch size B, and maximum iterations K and R.
Initialization: randomly initialize θ0

f .
for r = 0, . . . , R− 1 do

Sample random T r ⊂ {1, . . . , T} of cardinality B.
for t ∈ T r do

Initialize z0t = argminzt
RZ(zt).

for k = 0, . . . ,K − 1 do
Descend zk+1

t = zkt − α∇zk
t
[L(f(zkt ;θ

r
f );Dtrn

t ) +RZ(z
k
t )].

end for
Approximate solver ẑt = zKt .

end for
Update θr+1

f = θr
f − β 1

B

∑
t∈T r ∇θr

f
L(f(ẑt(θr

f );θ
r
f );Dval

t ).
end for
Output: θ̂f = θR

f .

Estimated pdfs via Sylvester NCoVs, 𝒁′ = 𝑓(𝒁)

pdfs of interest, 𝑞(⋅) 

(a)                                                                         (b)                                              (c)             

Figure 1: Transforming a standard Gaussian pdf into multi-modal target pdfs using Sylvester NCoVs.

Remark 3.6 (Mild assumptions). The assumptions in Theorem 3.5 are mild and common. In particular,
tail-convergence only requires the probability of large deviation diminishing to 0 as the norm of the
random vector goes to +∞, while imposing no constraint on the decaying rate. This assumption can
be easily satisfied by a wide family of distributions, even including the heavily-tailed ones. Under
this benign assumption, (8) suggests PZ and Q can be approximated by alternatives P̃ , Q̃ with pdfs
p̃, q̃ having truncated tails. This is crucial to universal approximation, which typically requires f∗ to
be bounded or Lebesgue integrable [5]. Moreover, the Lipschitzness of Q is solely utilized to ensure
the boundness of its gradient, namely the pdf q. This can be also readily met by most practical cdfs.

Remark 3.7 (Generalization to other NFs). Although Theorem 3.5 primarily focuses on one-layer
Sylvester NCoVs, similar analysis for other transformation f can be acquired by employing different
universal approximation models. For instance, results for multi-layer planar NCoVs and multi-layer
Sylvester NCoVs can be respectively established leveraging [30] and [32].
Remark 3.8 (Influence of ϵ). It is worth noting that the width m of the Sylvester NCoV depends on ϵ
as well as the optimal f∗. Smaller ϵ typically leads to larger m. Additionally, the nonlinearity σ must
be sigmoidal; see Definition B.3 in the Appendix for details.
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3.3 Meta-learning universal priors via MetaNCoV

Next, we elucidate how universal priors can be learned in meta-learning by harnessing the proposed
NCoV model. Different from existing works that rely on prespecified prior forms such as Gaussian
pdfs, the novel concept of this work is to learn a data-driven prior that optimally conforms with the
given tasks. This is achieved by transforming the random vector Z ∈ Rd with a known prior pZ
to Z′ = f(Z;θf ), whose pdf is given by (5). This pZ′ acts as a surrogate model for the unknown
p(ϕt;θ), and learning the prior parameter θ thus boils down to optimization of the transformation
parameter θf . Nevertheless, as discussed in Remark 3.3, pZ′ typically has no close-form expression
when f is non-injective. Therefore, instead of directly optimizing ϕt, we propose to optimize the
latent vector zt corresponding to ϕt = f(zt;θf ), which yields

min
θf

T∑
t=1

L(f(z∗t (θf );θf );Dval
t ) (10a)

s.t. z∗t (θf ) = argmin
zt

L(f(zt;θf );Dtrn
t ) +RZ(zt), ∀t (10b)

where RZ(zt) := − log pZ(zt) is the nlp regularizer, and z∗t is thus the MAP estimator for zt.

Similar to (2), the global task-level minimizer z∗t is generally infeasible to attain. Hence, a tractable
alternative is to rely on an approximate GD solver. Interestingly, our formulation (10) naturally offers
a convenient initialization using the maximum a priori estimator

z0t = argmax
zt

pZ(zt) = argmin
zt

RZ(zt), ∀t (11)

As an example, choosing pZ = N (0d, Id) automatically gives z0t = 0d and the corresponding ϕ0
t =

f(0d;θf ). This elegantly removes the need for separately learning the task-invariant initialization
ϕ0, which is exactly the maximum a priori estimator of the preselected Gaussian prior pdf p(θt;θ) =
N (ϕ0,Λt). In fact, the task-invariant initialization reflects our optimal guess of ϕt before accessing
any task-specific data, and can be naturally derived by maximizing the prior pdf. It also worth noting
that while the idea of optimizing the latent (instead of primal) variables shares similarities with [44],
the latent space in [44] is designed from a different perspective, which is low-dimensional to the end,
and requires an initialization.

To this end, (10) can be solved using a standard alternating optimizer. The resultant MetaNCoV
algorithm is listed step-by-step in Algorithm 1, where the inner-level (10b) and outer-level (10a) are
respectively optimized using K-step GD and mini-batch stochastic GD.

While our idea has the potential to be broadened beyond meta-learning, we must emphasize that
our current setup is specifically tailored to meta-learning, which does not require a tractable pdf,
but rather demands enhanced prior expressiveness. We should also highlight that the intractability
of (5) prohibits learning NCoV via conventional approaches such as maximum likelihood training
and evidence lower-bound maximization – this thus necessitates careful attention and extra certain
designs when applying NCoV to other domains.

4 Numerical tests

In this section, we test and showcase the empirical superiority of MetaNCoV on both synthetic and real
datasets. All datasets descriptions and hyperparameter setups are deferred to the Appendix C. Codes
for reproducing the results are available at https://github.com/zhangyilang/MetaNCoV.

4.1 Tests with toy data

Here, we investigate an intricate yet interesting scenario to demonstrate the efficacy of NCoVs to
approximate complex multi-modal pdfs in two-dimensional (2D) settings. The primary objective is
to transform a standard Gaussian random vector Z ∼ N (02×1, I2×2) into multi-modal complex pdfs.
The outcomes of this experiment are presented in Figure 1. The lower row displays the ground-truth
pdfs q of interest, while the upper row showcases the numerically estimated pdfs of the transformed
random vector Z′ = f(Z), where f is a Sylvester NCoV, and the pdf of Z′ is estimated via (5). As
clearly evidenced in these results, the advocated NCoVs exhibit their capability to effectively convert
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Table 1: Performance comparison of MetaNCoV against meta-learning methods having different
priors. For fairness, only methods with a 4-block CNN backbone have been included. The highest
accuracy as well as the mean accuracies within its 95% confidence interval are bolded.

Method Prior model 5-class miniImageNet
1-shot (%) 5-shot (%)

Meta-LSTM [41] RNN-based 43.44±0.77 60.60±0.71

MAML [10] implicit Gaussian 48.70±1.84 63.11±0.92

MetaSGD [29] diagonal Gaussian 50.47±1.87 64.03±0.94

R2D2 [3] degenerate body & Gaussian head 51.8±0.2 68.4±0.2

MC [37] block-diagonal Gaussian 54.08±0.93 67.99±0.73

Warp-MAML [12] Gaussian 52.3±0.8 68.4±0.6

MAML + L2F [2] implicit Gaussian 52.10±0.50 69.38±0.46

MeTAL [1] implicit Gaussian 52.63±0.37 70.52±0.29

Minimax-MAML [58] inverted Gaussian & entropy 51.70±0.42 68.41±1.28

MAML + MetaNCoV NCoV-based 57.74±1.47 70.72±0.70

MetaSGD + MetaNCoV 59.10±1.52 71.48±0.68

Table 2: Performance comparison using the WRN-28-10 features [44]. † indicates that both training
and validation tasks are used in the training phase of meta-learning.

Method Crop 5-class miniImageNet 5-class tieredImageNet
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

MetaSGD [29]

center

56.58±0.21 68.84±0.19 59.75±0.25 69.04±0.22

LEO† [44] 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

MC [37] 61.22±0.10 75.92±0.17 66.20±0.10 82.21±0.08

MC† [37] 61.85±0.10 77.02±0.11 67.21±0.10 82.61±0.08

MetaSGD + MetaNCoV center 59.42±1.32 70.24±0.73 60.36±1.29 75.08±0.66

MC + MetaNCoV 63.40±1.30 76.12±0.68 72.38±1.26 86.47±0.56

LEO† [44] multiview 63.97±0.20 79.49±0.70 − −
MC† [37] 64.40±0.10 80.21±0.11 − −
MC + MetaNCoV multiview 66.54±1.29 86.52±0.54 − −

a basic Gaussian distribution into intricate multi-modal distributions in 2D. The expressiveness of
Sylvester NCoVs and numerical comparison of NFs with NCoVs are postponed to Appendix D.

4.2 Performance evaluation using real data

Next, the empirical performance of MetaNCoV is assessed on three real datasets for meta-learning.

The experimental setups follow from the standard M -class N -shot few-shot classification protocol [41,
10]. In particular, Dtrn

t per task t consists of M randomly drawn classes, each containing N labeled
data. The default task-specific model is a standard 4-block convolutional NN (CNN) [55]. Each block
of the CNN comprises a 3× 3 convolution layer, a batch normalization layer, a ReLU activation, and
a 2×2 max pooling layer. After the convolutional blocks, a linear regressor with softmax activation is
appended to perform classification. Following the practices of [37, 12], the number of convolutional
channels is set to 128 to improve its fitting capacity. Additionally, to be consistent with Theorem 3.5,
Sylvester NCoVs are adopted in all the tests.

To illustrate the benefit of learning more expressive priors, the first test compares MetaNCoV
with other meta-learning algorithms having different prespecified priors using the miniImageNet
dataset [55]. As a plug-in prior model, our MetaNCoV can be readily integrated with other meta-
learning methods that adopt different task-level optimizers. In this test, we implement MetaNCoV
with MAML [10] and MetaSGD [29]. The results are listed in Table 1, where the performance metric
is the average classification accuracy with 95% confidence interval on new tasks. It is seen that our
MetaNCoV outperforms all the competitors. This empirically confirms the superiority of data-driven
priors over the prespecified pdfs, as well as the effectiveness of MetaNCoV in learning an expressive
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Table 3: Performance comparison of MetaNCoV against meta-learning and metric-learning methods
on the CUB-20-2011 dataset. For fairness, the backbone model is a 4-block CNN.

Method Type 5-class CUB-200-2011
1-shot (%) 5-shot (%)

MatchingNet [55] metric-learning 45.30±1.03 59.50±1.01

MAML [10] meta-learning 58.13±0.36 71.51±0.30

ProtoNet [48] metric-learning 37.36±1.00 45.28±1.03

RelationNet [49] metric-learning 58.99±0.52 71.20±0.40

DN4 [28] metric-learning 53.15±0.84 81.90±0.60

MattML [62] meta-learning 66.29±0.56 80.34±0.30

MAML + MetaNCoV meta-learning 69.24±1.36 80.41±0.60

MetaSGD + MetaNCoV 69.94±1.34 80.54±0.59

prior. Moreover, a remarkable performance gain can be observed on the 1-shot dataset. This justifies
the claim that prior can be particularly informative when the training data are extremely scarce. For
an apples-to-apples comparison, methods that use pre-trained feature extractors or more complicated
models (e.g., residual networks) are not included in this table. The compatibility of MetaNCoV to
these models will be demonstrated in the subsequent tests.

The second test evaluates MetaNCoV on miniImageNet and tieredImageNet feature embeddings
extracted using a pre-trained Wide ResNet(WRN)-28-10 backbone [44]. Compared to the 4-block
CNN, this model has a greater number of parameters and thus enhanced expressiveness. The results
are summarized in Table 2, where MetaNCoV is implemented with MetaSGD [29] and MC [37]. In
all tests, MetaNCoV brings about notable performance improvement compared to the corresponding
baselines. This validates MetaNCoV’s effectiveness and flexibility as a plug-in prior module.

The last test assesses the performance of MetaNCoV on the CUB-200-2011 dataset [57]. In contrast
to the previous two datasets that contain nature images of distinct objects, this dataset specifically
focuses on birds of various species. While the classification of nature objects primarily relies on
low-level features such as shapes and colors, classifying various birds requires further recognition
of high-level features including textures and segmentations. To learn these complicated features,
the model needs to be either trained with sufficient data, or equipped with a powerful prior. Table 3
showcases the performances of different meta- and metric-learning methods on such a dataset. Again,
our MetaNCoV method is markedly effective on the 1-shot dataset where data are exceptionally
limited. This highlights the significance of an expressive prior. For the 5-shot dataset where data are
relatively abundant, its performance is also comparable to the state-of-the-art ones.

4.3 Ablation study

Table 4: Ablation tests for MetaNCoV.

Ablation setup 5-class miniImageNet
1-shot (%) 5-shot (%)

NCoV (baseline) 59.10±1.52 71.48±0.68

Injective NF 56.72±1.46 69.41±0.68

ReLU σ 56.54±1.46 69.84±0.68

Next, ablation tests are conducted to ana-
lyze the performance gain of MetaNCoV.
The test is carried out on the miniImageNet
dataset, with results gathered in Table 4.
The first ablation investigates the impact
of the advocated NCoVs over the injec-
tive ones. To ensure the injectivity of the
Sylvester NF f , we follow the QR param-
eterization recommended in [51]. One can
see the improved performance of NCoV due to its enhanced expressiveness, which numerically
verifies Theorem 3.1 and Remark 3.3. The second ablation examines the influence of nonlinear
function σ in the Sylvester NCoVs. By changing the σ from sigmoid to the popular ReLU activa-
tion, a degradation of empirical performance can be observed. This observation corroborates with
Remark 3.8. Additional experiments and visualizations can be found in Appendix D.

4.4 Cross-domain generalization

This subsection showcases the generalization capacity of MetaNCoV in cross-domain few-shot
learning. This test is more challenging compared to previous ones due to the domain gap between
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Table 5: Performance comparison of MetaNCoV against meta-learning algorithms in cross-domain
few-shot learning setups. The prior models are trained on miniImageNet and tested on three datasets.

Method 5-class TieredImageNet 5-class CUB 5-class Cars
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

MAML [10] 51.61±0.20 65.76±0.27 40.51±0.08 53.09±0.16 33.57±0.14 44.56±0.21

ANIL [38] 52.82±0.29 66.52±0.28 41.12±0.15 55.82±0.21 34.77±0.31 46.55±0.29

BOIL [35] 53.23±0.41 69.37±0.23 44.20±0.15 60.92±0.11 36.12±0.29 50.64±0.22

SparseMAML+ [56] 53.91±0.67 69.92±0.21 43.43±1.04 62.02±0.78 37.14±0.77 53.18±0.44

GAP [19] 58.56±0.93 72.82±0.77 44.74±0.75 64.88±0.72 38.44±0.77 55.04±0.77

MetaNCoV 61.50±1.49 73.10±0.74 47.84±1.49 65.27±0.73 41.66±1.48 57.19±0.75

the meta-training and meta-testing phases. By shifting the task domain, this test aims to assess the
overfitting of the learned prior to a specific domain. Our test setup follows from [35], where the prior
model is meta-trained on the miniImageNet [55] dataset, and meta-tested on tieredImageNet [42],
Cars [23], and CUB [57] datasets. Our MetaNCoV is implemented with MetaSGD [29] in this test.
As shown in Table 5, our method consistently outperforms popular meta-learning approaches in such
a setup, especially in the 1-shot case. This not only confirms the cross-domain generalization of
MetaNCoV, but again justifies the importance of expressive prior when data are exceedingly limited.

5 Conclusions and outlook

An informative prior plays a crucial role in training a large-scale model with limited small-scale
data. This work introduced a novel NCoV model for learning an expressive task-invariant prior.
By transforming a known pdf of a continuous random vector, the NCoV model enables a large
family of target pdfs. As a flexible plug-in prior model, our MetaNCoV method offers enhanced
prior expressiveness compared to existing meta-learning methods that rely on preselected prior
pdfs. Numerical studies validate our theoretical analysis, and highlight the superior performance of
the proposed method, especially when datasets are scarce. Our future research agenda includes i)
investigation of more generic universal approximation theorems; ii) bilevel convergence analysis for
the MetaNCoV method; and, iii) implementation of MetaNCoV with alternative transformations,
backbone models, and meta-learning methods.
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A Proof of Theorem 3.1

Theorem A.1 (Multivariate PIT, restated). Let PZ : Rd 7→ [0, 1] be the cdf of continuous random
vector Z := [Z1, . . . , Zd]

⊤ with {Zi}di=1 mutually independent. For any differentiable a.e. cdf
Q : Rd 7→ [0, 1], there exists a non-decreasing function f∗ : Rd 7→ Rd that the random vector
Z′ := f∗(Z) has cdf

PZ′ = Q (a.e.). (12)

Proof. We claim that the i-th entry of transformation f∗ adopts the form

f∗
i = gi ◦ hi, i = 1, . . . , d (13)

where gi : Ri 7→ R will be specified soon, and hi(Z) := [PZ1
(Z1), . . . , PZi

(Zi)]
⊤. The proof

follows from the mathematical induction on d.

First consider the base case d = 1. By univariate probability transformation, f∗ = Q−1 ◦ PZ directly
verifies Theorem 3.1 and the claim (13), where Q−1(u) := inf{v | Q(v) ≥ u}, u ∈ [0, 1]. What
remains is the proof for the monotonicity of f∗. Since Q and PZ are cdfs, they are non-decreasing by
definition. Using the monotonicity of Q, it holds that {v | Q(v) ≥ u1} ⊆ {v | Q(v) ≥ u2}, ∀u1 ≥
u2. From the definition of Q−1, we have Q−1(u1) ≥ Q−1(u2), ∀u1 ≥ u2, meaning that Q−1 is
also non-decreasing. As a result, the composition f∗ = Q−1 ◦ PZ is non-decreasing.

Subsequently, assuming Theorem 3.1 and the validity of claim (13) for d = 1, . . . , d0, we establish
them for d = d0 + 1. This induction-based argument gives the proof of Theorem 3.1. For notational
compactness, define random variable Ui := PZi

(Zi), i = 1, . . . , d0 + 1, and likewise random vector
U1:i := [U1, . . . , Ui] = hi(Z). The univariate PIT indicates that each Ui ∼ U [0, 1]. Besides, since
{Zi}d0+1

i=1 are mutually independent, it follows that {Ui}d0+1
i=1 are also mutually independent.

Let f̃ : Rd0 7→ R denote the transformation provided by the inductive hypothesis for case d =
d0. The first d0 entries of the desired f∗ (for case d = d0 + 1) can be defined as f∗

1:d0
(Z) :=

f̃(Z1:d0), Z ∈ Rd0+1. Thus, the inductive hypothesis suggest the joint cdf for Z′
1:d0

= f∗
1:d0

(Z) ∈
Rd0 is PZ′

1:d0
(ξ) = Q([ξ⊤,+∞]⊤), ξ ∈ Rd0 (notice that Q(·) is a function defined on Rd0+1 for

d = d0 + 1, while Q([·,+∞]⊤) is on Rd0 ).

Next, it will be shown that (12) can be obtained upon defining f∗
d0+1 = gd0+1 ◦ hd0+1 with

gd0+1(U1:d0+1) := Q−1
d0+1|1:d0

(Ud0+1 | [g1(U1), . . . , gd0(U1:d0)]
⊤)

:= inf
{
v | Qd0+1|1:d0

(v | [g1(U1), . . . , gd0
(U1:d0

)]⊤) ≥ Ud0+1

}
(a)
= min

{
v | Qd0+1|1:d0

(v | [g1(U1), . . . , gd0
(U1:d0

)]⊤) ≥ Ud0+1

}
(14)

where conditional cdf Qd0+1|1:d0
(vd0+1|v1:d0) := Pr(V ′

d0+1 ≤ vd0+1 | V1:d0 ⪯ v1:d0) for (d0+1)-
dimensional random vector V obeying cdf Q, and (a) is because the conditional cdf is non-decreasing
and right continuous so the infimum can be attained. First notice that the transformed random vector

Z′ = f∗(Z) = [g1 ◦ h1(Z), . . . , gd0+1 ◦ hd0+1(Z)]
⊤ = [g1(U1), . . . , gd0+1(U1:d0+1)]

⊤ (15)

has cdf

PZ′(v) =

∫ v1:d0

−∞
pZ′

1:d0
(ξ)PZ′

d0+1|Z
′
1:d0

(vd0+1 | ξ)dξ, v ∈ Rd0+1 (16)

where the equality is due to PXY (x, y) =
∫ x

−∞ pX(ξ)PY |X(y|ξ)dξ for random variables X,Y .
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On one hand, it holds that

PZ′
d0+1|Z

′
1:d0

(vd0+1 | ξ) = Pr
(
Z ′
d0+1 ≤ vd0+1 | Z′

1:d0
= ξ

)
(a)
= Pr(gd0+1 (U1:d0+1) ≤ vd0+1 | g1(U1) = ξ1, . . . , gd0

(U1:d0
) = ξd0

)

(b)
= Pr

(
Q−1

d0+1|1:d0
(Ud0+1|ξ) ≤ vd0+1 | g1(U1) = ξ1, . . . , gd0

(U1:d0
) = ξd0

)
(c)
= Pr

(
Q−1

d0+1|1:d0
(Ud0+1|ξ) ≤ vd0+1

)
= Pr

(
Ud0+1 ≤ Qd0+1|1:d0

(vd0+1|ξ)
)

(d)
= Qd0+1|1:d0

(vd0+1|ξ) (17)

where (a) is from (15), (b) uses (14), (c) follows from the mutual independency of {Ui}d0+1
i=1 , and

(d) is because Ud0+1 ∼ U [0, 1].
On the other hand, it has already been shown using the inductive hypothesis that, the random vector
Z′

1:d0
= f∗

1:d0
(Z) has cdf PZ′

1:d0
(ξ) = Q([ξ⊤,+∞]⊤), ξ ∈ Rd0 . Since Q is differentiable a.e., we

have the corresponding pdf pZ′
1:d0

(ξ) =
∫
R q([ξ⊤, η]⊤)dη := q1:d0

(ξ) a.e.. As a result, it follows
from (16) and (17) that

PZ′(v) =

∫ v1:d0

−∞
q1:d0

(ξ)Qd0+1|1:d0
(vd0+1|ξ)dξ = Q(v) (a.e.) (18)

where we use PXY (x, y) =
∫ x

−∞ pX(ξ)PY |X(y|ξ)dξ again. It should be noted that the only type of
discontinuities for a monotone function is the jump discontinuity and there are at most countably
many of them. Consequently, PZ′ may fail to match Q only on a set of measure zero.

Finally, we will prove the monotonicity of this constructed f∗ by showing that Jf∗ ⪰ 0(d0+1)×(d0+1).
First notice from (14) that gd0+1(U1:d0+1) is a conditional cdf non-decreasing w.r.t. Ud0+1. By
the definition of hd0+1, we have ∂[hd0+1(Z)]d0+1

∂Zd0+1
= P ′

Zd0+1
(Zd0+1) ≥ 0 because PZd0+1

is a

cdf. As a result, applying the chain rule leads to
∂f∗

d0+1(Z)

∂Zd0+1
=

∂gd0+1(hd0+1)

∂[hd0+1]d0+1

∂[hd0+1(Z)]d0+1

∂Zd0+1
=

∂gd0+1(U1:d0+1)

∂Ud0+1

∂[hd0+1(Z)]d0+1

∂Zd0+1
≥ 0. Additionally, the inductive hypothesis implies f̃ is non-

decreasing on Rd; that is Jf̃ ⪰ 0d0×d0 . To the end, f∗(Z) := [f̃(Z1:d0)
⊤, f∗

d0+1(Z)]
⊤ has a

block triangular Jacobian

Jf∗(Z) =

Jf̃ (Z) ∂f∗
d0+1(Z)

∂Z1:d0

0⊤
d0

∂f∗
d0+1(Z)

∂Zd0+1

 .

It has been shown that diagonal blocks Jf̃ (Z) ⪰ 0d0×d0
and

∂f∗
d0+1(Z)

∂Zd0+1
≥ 0, Thus, it follows that

Jf∗ ⪰ 0(d0+1)×(d0+1), which completes the proof.

B Proof of Theorem 3.5

To aid the proof of Theorem 3.5, the following lemma offers an alternative expression for (4).
Lemma B.1. Consider the notational conventions of Theorem 3.1. Let E ⊆ Rd be the set on which
f∗ is injective and right-continuous. Then, it holds a.e. that

PZ(z) = Q ◦ f∗(z), ∀z ∈ E. (19)

Proof. With (4) in effect, it holds a.e. that

PZ(z) = Pr(Z ⪯ z)
(a)
= Pr(f∗(Z) ⪯ f∗(z)) = PZ′(f∗(z)) = Q(f∗(z)) = (Q ◦ f∗)(z) (20)

where (a) is because f∗ is injective thus increasing and right-continuous on E. This proves (19).

The next lemma suggests the cdf of tail-convergent random vector can be approximated by truncating
its pdf on a sufficiently large compact set.

15



Lemma B.2. For any tail-convergent random vector with cdf P : Rd 7→ [0, 1], and ∀ϵ > 0, there
exists a cdf P̃ : Rd 7→ [0, 1] for which the pdf p̃ vanishes outside a compact set E ⊂ Rd, and

|P (v)− P̃ (v)| < ϵ, ∀v ∈ Rd. (21)

Proof. For a tail-convergent random vector, Definition 3.4 suggests that for ∀ϵ > 0, there exists a
bounded E′ ⊂ Rd such that

∫
Rd\E′ p < ϵ/2. Taking E := cl(E′) to be the closure, it follows from

the definition of closure that E is compact and∫
Rd\E

p
(a)

≤
∫
Rd\E′

p < ϵ/2. (22)

where (a) is due to E′ ⊆ E. Now define

p̃ :=

{
p/(1−

∫
Rd\E p), on E

0, otherwise
. (23)

Notice that
∫
Rd p̃ =

∫
E
p̃ =

∫
E
p/(1 −

∫
Rd\E p) = 1, which verifies p̃ is a valid pdf. Thus, the

induced cdf is
P̃ (v) =

∫
{ξ|ξ⪯v}

p̃(ξ)dξ. (24)

It then follows for ∀v ∈ Rd that

|P (v)− P̃ (v)| =

∣∣∣∣∣
∫
{ξ|ξ⪯v}

p− p̃(ξ)dξ

∣∣∣∣∣
=

∣∣∣∣∣
∫
{ξ|ξ⪯v}∩E

p(ξ)− p̃(ξ)dξ

∣∣∣∣∣+
∣∣∣∣∣
∫
{ξ|ξ⪯v}\E

p(ξ)− p̃(ξ)dξ

∣∣∣∣∣
(a)
=

∫
Rd\E p(ξ)dξ

1−
∫
Rd\E p(ξ)dξ

∫
{ξ|ξ⪯v}∩E

p(ξ)dξ +

∫
{ξ|ξ⪯v}\E

p(ξ)dξ

≤

∫
Rd\E p(ξ)dξ

1−
∫
Rd\E p(ξ)dξ

∫
E

p(ξ)dξ +

∫
Rd\E

p(ξ)dξ

=

∫
Rd\E

p(ξ)dξ +

∫
Rd\E

p(ξ)dξ (25)

(b)

≤ ϵ/2 + ϵ/2 = ϵ. (26)

where (a) uses (23), and (b) is from (22).

Next, the classic universal approximation theorem will be generalized to suit for the case of NCoVs.
Definition B.3 ([5]). A function σ : R 7→ R is said to be sigmoidal if

σ(t) →
{
1, as t → +∞
0, as t → −∞ . (27)

Definition B.4 ([5], generalized). Let E be a compact set with positive Borel measure. A function
σ : R 7→ R is said to be discriminatory on E if for a finite signed regular Borel measure µ, it holds
that ∫

E

σ(b⊤z+ c)dµ(z) = 0 (28)

for all b ∈ Rd and c ∈ R implies µ = 0.
Theorem B.5 ([5, Theorem 1]). Let σ be a bounded measurable sigmoidal function. Then finite sum
of the form

G(z) =

N∑
j=1

ajσ(b
⊤
j z+ cj) (29)

is dense in C([0, 1]d).
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Corollary B.6. Let σ be a bounded measurable sigmoidal function, and E ⊂ Rd a locally compact
set of finite Borel measure. Then finite sum of the form

G(z) =

N∑
j=1

ajσ(b
⊤
j z+ cj) (30)

is dense in C(E).

Proof. When µ(E) = 0, one can take E0 = E and the Corollary holds trivially. Next we consider
the case µ(E) > 0.

The original proof of Theorem B.5 relies on Lebesgue Bounded Convergence Theorem, Hahn-Banach
theorem, and Riesz Representation Theorem. All these four theorems hold for a locally compact set
E with finite Borel measure.

The proof of Corollary B.6 follows by i) generalizing the definition of discriminatory in [5] to
definition B.4, and ii) replacing [0, 1]d in the proof of Theorem B.5 with E.

Building upon Lemma B.1, Lemma B.2, and Corollary B.6, the proof of Theorem 3.5 is provided as
follows.
Theorem B.7 (Universal approximation via Sylvester NCoVs, restated). Let PZ denote the cdf
of tail-convergent continuous random vector Z ∈ Rd with mutually independent entries, and Q a
Lipschitz cdf of a tail-convergent random vector. For any ϵ > 0, there exists cdfs P̃ , Q̃ for which the
pdfs p̃, q̃ vanishes outside compact sets Ep, Eq , and

|PZ(v)− P̃ (v)| < ϵ, |QZ(v)− Q̃(v)| < ϵ, ∀v ∈ Rd. (31)

Moreover, let E ⊆ Ep be any set on which the transform f∗ matching P̃Z to Q̃ (cf. Theorem 3.1) is
injective and right-continuous. There exists a Sylvester NCoV f and a zero-measure set E0, such that

|f(Z)− f∗(Z)| < ϵ, ∀Z ∈ Ep \ E0, (32a)
|PZ(z)−Q ◦ f(z)| < ϵ, ∀z ∈ E \ E0. (32b)

Proof. Since Z is tail-convergent, Lemma B.2 suggests that there exists a cdf P̃Z for which the pdf
p̃Z vanishes outside a compact set EP ⊂ Rd, and |PZ(z)− P̃Z(z)| < ϵ/4, ∀z ∈ Rd. Similarly, there
is also a cdf Q̃ for which q̃ is supported on a compact set EQ, and |Q(z)− Q̃(z)| < ϵ/4, ∀z ∈ Rd.

Moreover, let LQ be the Lipschitz constant of Q. Then, (22), (23) and (24) indicates Q̃ is also
Lipschitz with constant

LQ/(1−
∫
Rd\EQ

q) <
1

LQ − ϵ/8
. (33)

Using Rademacher theorem, we have Q̃ differentiable a.e.. Then, let f∗ : Rd 7→ Rd denote the
optimal transform by Theorem 3.1, which matches P̃ to Q̃. Lemma B.1 suggests that

P̃Z(z) = Q̃ ◦ f∗(z), ∀z ∈ E. (34)

Let Z̃ and Z̃′ = f∗(Z̃) be random vectors obeying cdfs P̃Z and Q̃. Since p̃Z is supported on EP , (5)
implies that f∗ can have arbitrary value outside EP , which will not change p̃Z′ .

We assert that f∗ is bounded on EP . Otherwise, for any B > 0, there must be some z0 ∈ EP such
that ∥f∗(z0)∥ > B, and using (5) that

q̃(f∗(z0)) = p̃Z′(f∗(z0)) =

∫
p̃Z(z)δ[f

∗(z0)− f∗(z)]dz

≥
∫

p̃Z(z)δ[z0 − z]dz

= p̃Z(z0) > 0 (35)
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where the inequality is because f∗ is non-decreasing. Since B can be arbitrarily large, this contradicts
with the fact that supp(q̃) = EQ is compact (cf. Lemma B.2).

Moreover, the monotonicity of f∗ indicates the only possible discontinities of it must be jump
discontinuities, and there are at most countably many of them. Let E0 ⊆ Ep be the set where f∗ is
discontinuous. From the countability of E0 we have µ(E0) = 0. Thus, f∗

i (z)− zi is bounded and
continuous on Ep \ E0, where f∗

i and zi are the i-th entries of f∗ and z.

Then, applying Corollary B.6 implies that there exists a Gi(z) of form (30) such that

|Gi(z)− [f∗
i (z)− zi]| <

ϵ(1− ϵ/8)

2LQ

√
d

, ∀z ∈ Ep \ E0. (36)

Now, define fi(z) = Gi(z) + zi, i = 1, . . . , d on Rd. One can easily verify from (6) that such a
definition renders f a Sylvester NCoV, and (9a) holds. Moreover, it follows for ∀z ∈ Ep \ E0 that

|PZ(z)−Q ◦ f(z)| ≤ |P̃Z(z)− Q̃ ◦ f(z)|+ |PZ(z)− P̃Z(z)|+ |Q ◦ f(z)− Q̃ ◦ f(z)|
< |P̃Z(z)− Q̃ ◦ f(z)|+ ϵ/4 + ϵ/4

(a)
= |Q̃ ◦ f∗(z)− Q̃ ◦ f(z)|+ ϵ/2

(b)

≤ LQ

1− ϵ/8
∥f∗(z)− f(z)∥2 + ϵ/2

(c)

≤ ϵ/2 + ϵ/2 = ϵ (37)

where (a) follows from (34), (b) is due to (33), and (c) uses (36). The proof is thus completed.

C Detailed setups of numerical tests

Our codes are run on a server equipped with an Intel Core i7-12700 CPU, and an NVIDIA RTX
A5000 GPU. The experimental setups adopted in this paper will be next elaborated.

C.1 Toy tests

The numerical tests for the 2D toy examples demonstrated in Figure 1 are carried over by training
a Sylvester NCoV with a width m = 50. We used SGD optimizer with learning rate of 10−3 and
momentum of 0.9. The ground truth samples used to train the model were generated by transforming
2D Gaussian random vectors Z ∼ N (02×1, I2×2) through a non-injective ground truth transformation
f∗(Z) = Aσ(B sin(Z) + c), where sin(·) function is applied element-wise to each dimension of
vector Z separately. A set of i.i.d. samples {zi, f∗(zi)}10

5

i=1 was randomly generated and used to train
the Sylvester NCoV model. The results presented in Figure 1 were obtained using three different
settings of ground truth f∗(·). In each of these settings, the elements of the underlying matrices
A,B, and the vector c were generated from Gaussian distributions with zero mean and unit variance.
The result for 1D case presented in Figure 2 was obtained using a smaller Sylvester NCoV with width
m = 3, trained using SGD with learning rate of 10−2 and momentum of 0.6, and the histogram of
the generated samples was normalized to represent a pdf. To generate training samples, we employed
the probability integral transform (PIT). Specifically, we first draw ground truth Z ′ from a mixture of
Gaussians, denoted as Z ′ ∼ q(z′), where q :=

∑2
k=1

1
2N (µk, σ

2
k). Here, µ1 = −10 and µ2 = 10,

with σ2
1 = σ2

2 = 1. Then, we rely on the inverse transformation f∗−1(Z ′) to find its paired Z, where
f∗(Z) := (Q−1 ◦ PZ)(Z) is the ground truth transformation obtained via PIT. Having find this
mapping, we draw a set of i.i.d. samples {zi, f∗(zi)}10

5

i=1 to train Sylvester NCoV model in 1D.

C.2 Few-shot classifications

A brief description of the three benchmark datasets used in our experiments are provided next.

MiniImageNet [55] contains 60, 000 images sampled from the full ImageNet (ILSVRC-12) dataset,
which are divided into 100 classes, each with 600 instances. All images are cropped and resized into
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Table 6: Hyperparameter setups.

Hyperparameter Notation Value

Task-level iterations K 5
Task-level learning rate (ConvNet-4) α 10−2

Task-level learning rate (WRN-28-10) α 2
Meta-level iterations R 60, 000
Meta-level learning rate β 10−3

Meta-level SGD batch size B 4

84× 84 pixels. In the experiments, we adopt the dataset split suggested by [41], where 64, 16 and 20
disjoint classes can be accessed during the training, validation, and testing phases of meta-learning.

TieredImageNet [42] is a larger subset of the ImageNet dataset, composed of 779, 165 images from
608 classes. Likewise, all the images are preprocessed to have size 84 × 84. Instead of using a
random split, classes are partitioned into 34 categories according to the hierarchy of ImageNet dataset.
Each category contains 10 to 30 classes. These categories are further grouped into 3 different sets: 20
for training, 6 for validation, and 8 for testing.

CUB-200-2011 [57] is an extended version of the Caltech-UCSD Birds(CUB)-200 dataset, which
consists of 11, 788 fine-grained images from 200 bird species. The dataset split follows from [4],
dividing the species into 100 training, 50 validation, and 50 testing classes. Similar to the preceding
two datasets, the images are also resized to 84× 84.

The hyperparameters used for the few-shot classification experiments are the same as those in
MAML [10], which are listed in Table 6. To enhance the statbility of the training process, we use
SGD with Nesterov momentum instead of Adam as the optimizer for (10a). The width m of Sylvester
NCoV is determined through a grid search using the validation tasks. For miniImageNet dataset
with a 4-block CNN model, m = 10 in the 1-shot experiment and m = 5 in the 5-shot one. For
miniImageNet and tieredImageNet with WRN-28-10 embeddings, m is fixed to be 10 under both
center and multi-view crops. For the CUB dataset, we use m = 5 in all the tests.

D Additional experiments

D.1 NCoVs in 1D

Here, we demonstrate the efficacy of Sylvester NCoVs in approximating mixture of Gaussians in
one-dimensional (1D) scenario. The primary objective is to transform 1D Gaussian random variables,
denoted as Z ∼ N (0, 1), into a mixture of Gaussians using a trained Sylvester NCoV. As depicted in

𝑍

𝑍′

co
un

ts

pd
f

Sylvester NCoV 𝑍′ = 𝑓(𝑍)

Figure 2: Transforming 1D Gaussian random variable Z ∼ N (0, 1) to a mixture of Gaussians
Z ′ = f(Z) using Sylvester NCoV f(·).
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Estimated pdfs via Sylvester NCoVs, 𝒁′ = 𝑓(𝒁)

pdfs of interest, 𝑞(⋅) 

Estimated pdfs via Injective Sylvester Flow, 𝒁′ = 𝑓(𝒁)

(a)                                                                                              (b)                         (c)             

Figure 3: Comparison of NFs and NCoVs in learning 2D toy pdfs.

Figure 2 (left), we illustrate the histogram of the original random variable Z and the estimated pdf of
the transformed random variables Z ′ = f(Z) on the right-hand side. The dashed red curve represents
the ground truth mixture of Gaussians that we seek to estimate. This experiment demonstrates the
ability of Sylvester NCoVs to effectively transform a basic Gaussian random variable in 1D to the
desired mixture of Gaussians Z ′ ∼ pZ′(z′) :=

∑2
k=1

1
2N (µk, σ

2
k), where µ1 = −10, and µ2 = 10,

with σ2
1 = σ2

2 = 1.

D.2 Comparison of NFs and NCoVs using toy data

To demonstrate the expressiveness of NCoVs compared to an injective Sylvester NF, we conducted
a 2D toy test showcased in Figure 3. We have employed the QR factorization technique described
in [51] to enforce the injectivity constraint for Sylvester NF, which requires m ≤ d. Here, m is the
width of the NF, and d = 2 is the dimension of z for this 2D example. To ensure the injectivity
of Sylvester NF, m is thus chosen as 2. For a fair comparison, our NCoV is implemented with the
same setup. The three rows in the figure display respectively the learned NCoVs, injective NFs, and
the target pdf q. It is seen that NCoVs are more expressive than valid NFs when learning complex
distributions.

To illustrate the ability of NCoVs in learning pdfs whose support is not full in Rd, we consider a 4×4
checkerboard pdf. The test has been visualized in Figure 4, where we employ an injective Sylvester
NF and a non-injective Sylvester NCoV to learn the target distribution. In our test, we stacked 40 base
injective Sylvester NFs, and compared the results with those obtained using a Sylvester NCoV with
the same number of parameters and the same training setup. It is observed that NCoV demonstrates
remarkable performance in learning the checkerboard pdf compared with that of the injective NF. This
observation underscores the expressiveness of NCoVs in effectively learning particular distributions,
especially in scenarios involving discrete distributions or those with incomplete support.
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Table 7: Performance comparison using a 4-block CNN backbone with different number of channels.

Method Channels per block 5-class miniImageNet
1-shot (%) 5-shot (%)

MAML [10] 32-32-32-32 48.70±1.84 63.11±0.92

MetaSGD [29] 32-32-32-32 50.47±1.87 64.03±0.94

Meta-LSTM [41] 64-64-64-64 43.44±0.77 60.60±0.71

MAML [10] 64-64-64-64 49.5±1.8 -
R2D2 [3] 64-64-64-64 49.5±0.2 65.4±0.2

MAML + L2F [2] 64-64-64-64 52.10±0.50 69.38±0.46

Minimax-MAML [58] 64-64-64-64 51.70±0.42 68.41±1.28

MAML + MetaNCoV (ours) 64-64-64-64 55.86±1.49 68.90±0.71

MetaSGD + MetaNCoV (ours) 64-64-64-64 57.44±1.48 69.15±0.71

R2D2 [3] 96-192-384-512 51.8±0.2 68.4±0.2

MC [37] 128-128-128-128 54.08±0.93 67.99±0.73

Warp-MAML [12] 128-128-128-128 52.3±0.8 68.4±0.6

MAML + MetaNCoV (ours) 128-128-128-128 57.74±1.47 70.72±0.70

MetaSGD + MetaNCoV (ours) 128-128-128-128 59.10±1.52 71.48±0.68

D.3 Influence of backbones

Next, we show the performance comparison using the 4-block CNN backbone with different number
of channels. All the hyperparameters are the same with Appendix C, and the results are gathered
in Table 7. One can observe tht reducing the number of channels from 128 to 64 leads to slightly
decreased accuracies, yet still superior than all the state-of-the-art competitors thanks to the improved
expressive power of NCoV.

D.4 Complexity and scalability

To demonstrate the scalability of MetaNCoV, this test measures numerically the time and space
complexities of MetaNCoV and several popular meta-learning methods during the meta-training
phase. The test is conducted on the miniImageNet dataset, and the comparison is conducted using
the 4-block CNN with 64-channel and 128-channel setups, respectively. The experimental results
are summarized in the Table 8. It is observed that MetaNCoV has a dimension D comparable to
MetaSGD, yet notably smaller than MC. One can also see that the increase of D only brings about
a marginal growth in both time and space consumption. This is because the key factor affecting
the complexity is the Hessian-vector product (HVP) computations when backpropagating the meta-
gradient ∇θL(ϕ̂t(θ);Dval

t ). Since all the methods relied on a K-step GD to obtain ϕ̂t(θ) (where
MC adopted an additional Kronecker-factorized preconditioner [37]), the complexity for computing
this meta-gradient is O(Kd) in both time and space.

Non-injective Sylvester NCoV Injective Sylvester NFTarget pdf 𝑞(⋅) 

Figure 4: Learning a 4× 4 checkerboard pdf with NFs and NCoVs.
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Table 8: Time and Space complexity comparison.

64-channel (d = 121, 093) MAML MetaSGD MC MAML + MetaNCoV

Dimension D of θ 121, 093 242, 186 2, 710, 896 605, 465
Time (Relative) ×1 ×1.022 ×1.189 ×1.199
GPU space (MB) 1, 700 1, 704 1, 726 1, 724

128-channel (d = 463, 365) MAML MetaSGD MC MAML + MetaNCoV

Dimension D of θ 463, 365 926, 730 10, 819, 952 2, 316, 825
Time (Relative) ×1.806 ×1.828 ×2.023 ×2.028
GPU space (MB) 2, 982 3, 002 3, 052 3, 040

E Additional related works and comparisons

Normalizing flows (NFs). Our NCoV is similar to conventional NFs in the sense that they are both
distribution models relying on the change-of-variable formula. Nevertheless, NCoV is distinct from
NF in four key aspects: expressiveness, tractability, training strategy, and application fields.

i) First, NCoV has been proved capable of modeling an arbitrary pdf, whereas NF is restricted to
pdfs with full support.

ii) Second, while NFs aim for closed-form pdf (3), NCoV sacrifices its tractability for augmented
expressiveness.

iii) Third, NFs are typically trained in an unsupervised manner by maximizing the likelihood
function pf(Z) over a dataset sampled from target pdf q. In contrast, NCoV requires latent
optimization (10) given the intractability of likelihood.

iv) Finally, NFs can be thus utilized in applications including probability estimation and sample
generation, while NCoV is tailored specifically to learn a prior over model parameters in the
meta-learning context.

Non-injective transformations. Moreover, it is worth mentioning that non-injective transformations
have been also considered by [34] to enhance the expressiveness. While [34] allows Z and Z′ to have
different dimensions, it does not provides theoretical guarantees of its expressiveness. In contrast, the
design of our MetaNCoV is based on Theorem 3.1 that requires f being a mapping from Rd to Rd.
In addition, other works such as [20] also forgo the analytical invertibility, but typically necessitate
an efficient approximation of f−1.

Bayesian meta-learning. Our approach is also related to Bayesian meta-learning [60, 40, 59,
11]. While these approaches aim to quantify the uncertainties in ϕt by identifying its posterior
p(ϕ|ytrn

t ;Xtrn
t ,θ) ∝ p(ytrn

t |ϕt;X
trn
t )p(ϕt;θ), our MetaNCoV is deterministic by formulating the

task-level optimization (10b) as a MAP problem. In addition, these methods also rely on tractable
prior and (surrogate) posterior pdfs of prefixed forms such as Gaussian. For example, [60] relies
on a predefined conjugate prior over the extracted features (rather than parameters ϕt) to ensure
the tractability of the feature posterior. In [40, Section 3.3], the surrogate (variational) posterior is
prespecified as a diagonal Gaussian distribution, while the prior is fixed to be the Gaussian-Gamma
form. For [59], particle sampling with SVGD is utilized to parameterize and optimize the prior, where
RBF kernels (i.e., Gaussian kernels) are selected to interpolate the particles. As also noted in [11,
Section 4.2], both the prior and surrogate posterior distributions are predefined as diagonal Gaussian
forms. In contrast, our approach forgoes the tractability for enhanced prior expressiveness.

Optimal transport. Lastly, the introduced NCoV model is related to the optimal transport problem
in statistics [54], which aims to minimize the total cost of transporting one distribution to another.
However, the existence of the transport maps f can impose strong assumptions on both the source
and target distributions, and is closely connected to the choice of cost function. For instance, the
well-known Brenier’s theorem suggests that f exists when Z and Z′ have finite second moments (or,
q has a compact support), and Z assigns no mass to any set of Hausdorff dimension d− 1 [53]. In
comparison, Theorem 3.1 puts constraints only on the source random vector Z, as we can choose PZ

flexibly to suit our needs. This enables PZ′ to match an arbitrary target Q.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations have been discussed in Remark 3.3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All the assumptions are clearly presented in the theorem statements, and the
corresponding proofs are provided in Appendices A and B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our methodology is clearly stated in Algorithm 1. Codes and scripts for
reproducing our results are also uploaded, with instructions incorporated.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in the experiments are available online, for which proper
citations and descriptions have been provided in Appendix C. Our codes and scripts used in
the experiments are also uploaded as the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All detailed experimental setups including hyperparameters and optimizers are
included in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: 95% confidence interval of the averaged classification accuracy has been
adopted as the uncertainty metric in all the tables.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The server (including CPU and GPU information) used in our experiments
is specified in Appendix C, while the time and space (memory) complexities have been
provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research project conforms every aspect of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work mainly focuses on algorithm design and its theoretical guarantees.
There is no malicious societal impact or direct path to any negative applications.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and model used in this paper are from safe public databases available
online.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The original owners of the assets used in this paper have been properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: A "readme" document is included in the supplementary submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: There is no crowdsourcing nor human subjects in this research projection.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: There is no crowdsourcing nor human subjects in this research projection, and
thus no necessity for IRB approvals.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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