111

112

113

114

115

116

59

Anonymous Author(s)*

Abstract

1 2

5

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

As multimedia content continues to grow on the Web, the integration of visual and textual data has become a crucial challenge for Web applications, particularly in recommendation systems. Large Vision Language Models (LVLMs) have demonstrated considerable potential in addressing this challenge across various tasks that require such multimodal integration. However, their application in multimodal sequential mmendation (MSR) has not been extensively studied, despite their potential to significantly enhance the performance of web-based multimodal recommendations. To bridge this gap, we introduce MSRBench, the first comprehensive benchmark designed to systematically evaluate different LVLM integration strategies in web-based recommendation scenarios. We benchmark three state-of-the-art LVLMs, i.e., GPT-4 Vision, GPT-40, and Claude-3-Opus, on the next item prediction task using the constructed Amazon Review Plus dataset, which includes additional item descriptions generated by LVLMs. Our evaluation examines five integration strategies: using LVLMs as recommender, item enhancer, reranker, and various combinations of these roles. The benchmark results reveal that 1) using LVLMs as rerankers is the most effective strategy, significantly outperforming others that rely on LVLMs to directly generate recommendations or only enhance items; 2) GPT-40 consistently achieves the best performance across most scenarios, particularly when employed as a reranker; 3) the computational inefficiency of LVLMs presents a major barrier to their widespread adoption in real-time multimodal recommendation systems. Our codes and datasets will be made publicly available upon acceptance.

CCS Concepts

• Information systems → Recommender systems.

Keywords

Benchmark, Large Vision Language Model, Multimodal Recommendation

ACM Reference Format:

Anonymous Author(s). 2024. When Large Vision Language Models Meet Multimodal Sequential Recommendation: An Empirical Study. In *Proceedings* of Make sure to enter the correct conference title from your rights confirmation emai (Conference acronym 'XX). ACM, New York, NY, USA, 19 pages. https: //doi.org/10.1145/nnnnnnnnnn

1 Introduction

The explosive growth of multimedia content on the Web has fueled the need for more sophisticated recommendation systems that can handle diverse data modalities, such as images and text, to enhance user experiences. Multimodal Sequential Recommender Systems

2024. ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/10.1145/nnnnnnnnnnnn

(MSRs), which integrate these multiple modalities, have witnessed a surge in popularity in recent years due to their superior capability in delivering more accurate and personalized web-based recommendations [28]. These systems typically encode each modality with a unique encoder and then employ complex fusion mechanisms to align the disparate data into a unified representation for the downstream recommendation task [28]. However, this shallow alignment approach may overlook the intricate correlations between different modalities, particularly when substantial differences exist across modalities [44]. As a result, the performance of these systems in integrating visual and textual features on the Web can be suboptimal.

Recently, the rapid development of Large Vision-Language Models (LVLMs) has profoundly influenced various Web applications, particularly those requiring the integration of visual and textual data, such as visual question answering [2, 3, 27], image captioning [38, 42], and cross-modal retrieval [21, 24]. The performance improvements in these fields can be largely attributed to LVLMs' strong ability to capture the complex relationships between images and text. However, how to effectively apply such strong ability of LVLMs to Web-based recommendation systems remains an open question. So far, only a few preliminary exploratory studies have been conducted: [47] and [29] are pioneer works that leverage prompt engineering to harness the recommendation capabilities of GPT-4 Vision [34]; [15] and [39] have also investigated the feasibility of directly employing LVLMs as multimodal recommenders. These studies do not use pre-trained LVLMs. Instead, they integrate vision encoders into language models, thereby endowing the language models with the capability to process visual signals. Different from the above works, [44] adopts LVLMs as a feature extractor and builds recommenders within traditional multimodal recommendation framework. Specifically, this work replaces separate encoders with pretrained LVLMs, demonstrating their potential to deeply align multimodal data and overcome the limitations of traditional shallow alignment methods.

Despite these advancements, the aforementioned studies have primarily focused on exploring the effectiveness of applying LVLMs in recommendation scenarios using a single integration approach. However, there is a lack of a comprehensive performance evaluation of different integration approaches (e.g., LVLMs as a recommender, LVLMs as a reranker) for the same task within the context of Web applications. In other words, we still do not fully understand the performance disparities among these various integration strategies when applied to Web-based recommendation systems. Thus, there is an urgent need for a systematic benchmark to thoroughly assess the different integration strategies of LVLMs in multimodal sequential recommendation scenarios, facilitating more informed decisions in model selection and deployment.

To fill this gap, we construct MSRBench, the first benchmark that comprehensively evaluates different strategies for integrating

Conference acronym 'XX, June 03–05, 2018, Woodstock, NY

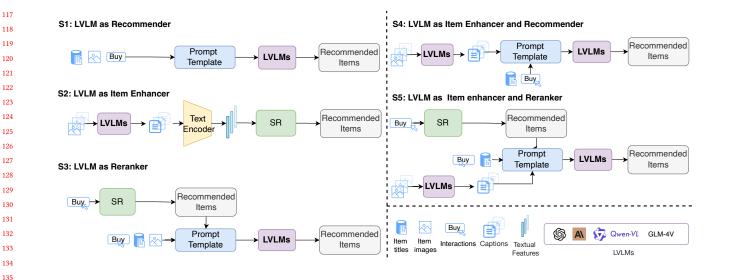


Figure 1: Illustration of different strategies for integrating LVLMs into multimodal sequential recommendation. SR denotes traditional sequential recommenders, such as SASRec.

LVLMs into the multimodal recommendation scenario. Specifically, we benchmark three state-of-the-art LVLMs, including GPT-4 Vision [34], GPT-4o [34], and Claude-3-Opus [1], on the sequential recommendation task. This task aims at predicting the subsequent item which may interest a given user based on their historical interactions with items. As shown in Figure 1, we design five integration strategies for LVLMs, with each strategy representing either a single role or a combination of roles that LVLMs can play during the recommendation process: *recommender*, *item enhancer*, and *reranker*. To facilitate the reproducibility of our experiments and reduce associated costs, we further augment the Amazon Review dataset [33], a large-scale dataset derived from a prominent e-commerce platform, to create a new dataset called Amazon Review Plus, which includes image captions generated by LVLMs.

Comparing different LVLM integration strategies on the Amazon Review Plus dataset, we uncover several key insights: First, using LVLMs as rerankers consistently outperforms other roles, such as recommender and item enhancer. Second, combining roles (e.g., item enhancer and reranker) does not always lead to performance gains and can sometimes even perform worse than simpler single-role strategies. Third, among the three LVLMs evaluated, GPT-40 demonstrates superior performance across most strategies. Finally, and most importantly, despite these performance gains, the computational inefficiency of LVLMs, especially in more complex strategies, remains a significant challenge for real-time deployment in industrial systems. We hope these insights can deepen the understanding of how different LVLM integration strategies impact recommendation performance, highlight the most promising approaches for leveraging LVLMs, and validate both their utility and the challenges they currently present. Furthermore, we hope MSRBench can guide future improvements in model design and integration techniques, and encourage further exploration of LVLMs in diverse web-based recommendation scenarios.

- To summarize, our contributions are threefold:

- We design multiple strategies for leveraging LVLMs in multimodal sequential recommendation and augment the Amazon Review dataset by creating Amazon Review Plus, which includes richer item descriptions to enable more flexible item modeling.
- We introduce MSRBench, the first benchmark specifically tailored for evaluating LVLMs in multimodal recommendation scenarios, and conduct extensive evaluations of state-of-the-art LVLMs, including GPT-4V, GPT-40, and Claude-3-Opus.
- Our experimental results offer clear guidance for future research and practical applications, outlining both the potential and the challenges of integrating LVLMs into recommender systems.

2 Integrate LVLM into Mutimodal Sequential Recommendation

In this section, we explore how LVLMs can be integrated into multimodal sequential recommendation, focusing on three key roles that LVLMs can play: *recommender*, *item enhancer*, and *reranker*. Each role represents a different way in which LVLMs contribute to the recommendation process:

- **Recommender**: The LVLM directly generates recommendations by processing multimodal data (e.g., item images and titles) to predict the items the user is most likely to be interested in.
- **Item Enhancer**: The LVLM enriches item descriptions by converting visual information into textual form, such as generating image captions to improve item metadata.
- **Reranker**: The LVLM refines the output of a traditional sequential recommender by reevaluating the recommended items and adjusting their order based on multimodal input.

We propose five distinct integration strategies based on these roles, as illustrated in Figure 1. The first three strategies (S1, S2, S3) focus on LVLMs taking on a single role, while the latter two strategies (S4, S5) explore whether combining different roles can Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

lead to performance improvements. We describe the details of eachstrategy as follows:

235 Strategy 1 (S1): LVLM as a direct recommender. This strategy inputs both the images and titles of items previously interacted with 236 by the user into the LVLM, enabling it to identify the user's pref-237 erences and generate personalized recommendations. Specifically, 238 the images of all previously interacted items are concatenated into 239 a single image, arranged in chronological order. As shown in Figure 240 241 6 in the appendix, the prompt template guides the LVLM on how to 242 interpret the concatenated image and link it to the corresponding item titles. In this setup, the LVLM simultaneously leverages both 243 visual and textual information to generate its recommendations. 244 Additionally, the prompt imposes format constraints, requiring the 245 model to output the recommendation list in a structured format 246 (e.g., JSON) and provide explanations for its recommendations. 247

Strategy 2 (S2): LVLM as an item enhancer. In this strategy, 248 we leverage LVLMs to transform visual information into textual 249 form¹. Specifically, the LVLM generates image captions that de-250 scribe the content of item images, thereby enriching the item's 251 textual metadata. To assess the effectiveness of this strategy, we use 252 BERT [9] to encode the enhanced textual data (i.e., the combination 253 254 of titles and image captions) and obtain semantic representations 255 of the items. These representations are then used to initialize the embedding table of traditional sequential recommendation models, 256 such as SASRec [19], thereby incorporating prior knowledge from 257 the LVLM-enhanced data into the recommendation models. 258

Strategy 3 (S3): LVLM as a reranker. In this strategy, we design 259 a prompt template that can be used for reranking recommenda-260 261 tion lists from other recommendation models, such as SASRec. As shown in Figure 6, the template prompts the LVLM to reassess the 262 relevance of the recommended items based on both the titles and 263 images of previously interacted items. The LVLM then outputs a 264 reranked recommendation list, prioritizing items that better align 265 with the user's preferences. 266

267 Strategy 4 (S4): LVLM as both item enhancer and recom-268 mender. This strategy first utilizes an LVLM to generate captions for each item's image. These captions, combined with the item 269 titles, are then used to represent the items. As shown in Figure 6, 270 271 this textual representation is injected into the prompt template from S1, replacing the original image input. The updated prompt is processed by the LVLM, and the final recommendations are de-273 rived from its output. Notably, in S4, item images are not directly 274 fed into the LVLM for recommendations. Instead, the images are 275 transformed into captions, and the recommendations are generated 276 277 based on these captions and the associated titles.

Strategy 5 (S5): LVLM as both item enhancer and reranker.
This strategy first utilizes LVLM to obtain image captions. These
captions, combined with item titles, are then used to rerank the
recommendation list produced by other models. Similar to S4, this
approach does not use the raw image data for reranking; instead,
it leverages the transformed textual information. For the prompt
template used in S5, please refer to Figure 6 in the appendix.

285

286

287

290

3 MSRBench

In this section, we conduct comprehensive experiments to answer the following key research questions:

- **RQ1:** How do LVLMs perform when integrated into multimodal sequential recommendation systems in various roles?
- **RQ2:** How do different item modalities and different image input modes (e.g., multiple images vs. concatenated images) affect recommendation performance?
- **RQ3:** Can LVLMs, when used as rerankers, consistently enhance the performance of different traditional sequential recommenders?
- RQ4: Which LVLM integration strategy offers the best trade-off between computational efficiency and recommendation accuracy?

3.1 Experimental Settings

3.1.1 Model Selection. The primary goal of MSRBench is to investigate the impact of LVLMs in different roles within a sequential recommendation process. To this end, we select three state-of-theart commercial LVLMs: GPT-4V, GPT-4o, and Claude-3-Opus.These models are used to evaluate the five integration strategies introduced in Section 2. We also explored several open-source LVLMs, including Qwen-VL [2] and GLM-4V [16]. Unfortunately, these open-source models exhibited poor instruction-following capabilities, with outputs that were either difficult to parse or plagued by severe hallucination issues. Therefore, we exclude them in our following experiments.

For our recommendation baselines, we categorize the models into three groups: classical sequential recommendation methods, collaborative multimodal recommendation methods, and state-of-the-art multimodal sequential recommendation methods. The classical sequential recommendation methods include: 1) Pop, which ranks items based solely on their popularity, recommending the most popular items to users first, and 2) SASRec[19], an ID-based sequential recommendation model that uses self-attention mechanisms to capture user-item interaction patterns, enabling long-term preference modeling. The collaborative multimodal recommendation methods consist of: 1) MMGCN[40], a graph-based model that leverages multimodal features and graph convolutional networks to enhance recommendation performance, 2) FREEDOM[49], which freezes the item-item graph and denoises the user-item graph for efficient and accurate multimodal recommendations, and 3) BM3[50], a selfsupervised model that uses dropout to generate contrastive views without the need for negative samples, improving the robustness of the recommendations. Finally, the state-of-the-art multimodal sequential recommendation methods include: 1) MoRec[45], which integrates multimodal features to enhance recommendation accuracy and is evaluated using three input configurations: text-only (MoRec (T)), image-only (MoRec (I)), and a combination of text and image features (MoRec (T+I)), and 2) IISAN[11], a cutting-edge method that employs a decoupled parameter-efficient fine-tuning (PEFT) framework, leveraging both intra- and inter-modal adaptation to improve training efficiency and memory usage while maintaining strong recommendation performance.

345

346

347

348

291

 ²⁸⁸ ¹/₁we discuss why the reverse approach (i.e., converting textual modality into visual modality) is not considered in Appendix A.5

9	Table 1: Performance comparison between different strategies for integrating LVLM into multimodal recommendation. T and I
0	denote <i>title</i> and <i>image</i> of items, respectively. Bold text indicates the highest score, and <u>underlined</u> text indicates the second
1	highest score. "*" denotes statistical significance for $p < 0.01$ between the best method and all other methods, based on a paired
2	t-test. All results are presented as percentages to ensure clarity and ease of reading.

Method Strategy Beauty			Sports			Toys			Clothing				
Method	Strategy	H@1	H@5	N@5	H@1	H@5	N@5	H@1	H@5	N@5	H@1	H@5	N@5
Random	-	4.75	16.50	10.57	3.75	14.75	9.01	5.25	18.25	11.54	4.50	15.00	9.68
Рор	-	14.00	41.00	28.00	14.50	38.00	26.81	10.25	33.50	21.86	15.25	42.00	28.41
SASRec	-	26.25	50.50	38.09	18.25	50.00	34.01	22.25	43.00	32.54	13.75	36.50	25.12
MMGCN	-	22.50	49.75	36.70	20.00	54.25	37.40	18.75	45.25	32.55	16.25	42.00	29.29
FREEDOM	-	33.00	59.25	46.89	33.75*	64.25	49.53	32.50	61.00	47.64	26.75	49.75	38.80
BM3	-	29.00	54.75	42.91	29.75	62.50	47.11	25.00	53.50	40.09	22.25	50.00	36.21
IISAN	-	9.92	29.48	19.60	12.70	37.64	24.97	11.57	31.57	21.68	9.48	30.02	19.52
MoRec (T)	-	31.00	58.00	45.51	27.25	62.50	45.62	28.00	60.00	44.70	24.50	55.50	40.12
MoRec (I)	-	34.00	58.25	47.08	23.50	63.00	43.94	30.75	59.50	45.74	24.50	56.75	40.81
MoRec (T+I)	-	33.00	61.50	47.92	28.75	67.50*	49.23	33.25	64.75*	50.03	27.00	59.75	43.92
	S1	23.74	46.46	34.98	23.00	54.25	38.77	28.50	49.00	39.41	20.41	47.70	34.49
GPT-4V	S2	30.75	60.75	46.46	28.50	62.25	45.77	27.75	60.00	44.91	22.50	59.50	41.45
	S3	31.71	57.54	45.30	32.06	63.61	48.37	32.91	59.80	46.84	28.17	57.36	43.04
	S4	22.86	48.74	35.84	21.91	51.64	37.25	29.32	53.38	41.86	20.25	48.86	35.29
	S5	32.15	55.44	44.09	31.38	62.76	47.12	32.04	57.88	45.40	22.28	53.58	38.45
	S1	23.37	49.00	36.84	26.50	56.00	41.36	30.00	55.25	43.11	22.31	51.88	37.42
	S2	30.75	60.00	46.03	26.50	62.50	44.98	29.75	59.25	45.00	26.50	53.25	40.20
GPT-40	S3	38.85*	61.90*	50.66*	30.83	65.41	49.01	37.50	64.75*	52.14	32.83*	61.40*	47.63*
	S4	25.25	48.25	37.30	23.25	56.75	40.79	32.75	55.50	44.71	23.31	48.12	35.90
	S5	38.00	59.50	<u>49.17</u>	33.00	65.00	49.71*	40.50*	64.00	52.84*	<u>29.57</u>	58.90	45.28
	S1	22.42	38.79	30.95	21.25	52.00	37.13	29.00	51.25	40.76	19.35	48.74	34.28
	S2	31.00	59.75	46.10	26.00	62.00	44.82	29.25	59.25	44.94	21.50	60.00	41.17
Claude 3-Opus	S3	30.40	53.77	42.06	26.75	60.00	43.96	32.75	55.75	44.98	26.82	55.64	41.64
	S4	26.00	51.75	39.15	22.61	57.04	39.76	27.25	52.25	40.78	22.56	51.13	37.67
	S5	30.75	53.50	42.13	24.56	62.66	44.16	29.00	53.50	41.63	26.07	55.89	41.51

Note that we deliberately exclude models [22, 39] with complex architectures or intricate fusion mechanisms, as they could obscure the isolated effects of LVLM integration. Therefore, we only choose these seven models to maintain a controlled environment that allows us to provide clear insights into the specific benefits LVLMs bring to sequential recommendation systems.

3.1.2 Dataset. In this study, we conduct experiments using the Amazon Review dataset²[32], which is widely adopted in sequential recommendation research[4, 11, 15, 25]. This dataset is particularly well-suited for our benchmark for two key reasons. First, it offers a rich collection of user interactions along with textual and visual product information. Second, it reflects real-world e-commerce scenarios, where users frequently rely on both product images and descriptions during their decision-making processes. Following prior works [15, 19, 48], we focus on four categories: beauty, sports, toys, and clothing, as they represent diverse consumer goods with distinct characteristics and interaction patterns.

In addition, we extend the original Amazon Review dataset to create the **Amazon Review Plus** dataset³. The motivation behind this extension is that in Strategy 2 (S2) and Strategy 5 (S5), LVLMs are used to enhance items by converting visual information into

textual descriptions, specifically by generating image captions to enrich item metadata. The generation of these captions required approximately 192,480 API calls, covering 64,160 images across the four categories, each processed by three state-of-the-art LVLMs. This process took approximately 7 days, with API costs exceeding \$2,000. Beyond financial costs, we faced challenges such as API rate limits, which required careful scheduling and batching to efficiently complete the task. To support the research community and mitigate these costs and challenges, we plan to make all generated image captions publicly available by integrating them into the original Amazon Review dataset, forming the Amazon Review Plus dataset. This resource offers a valuable foundation for future multimodal recommendation research, enabling others to leverage LVLM-enhanced item descriptions to improve recommendation performance. Following common practice, we apply the 5-core filtering, which retains only users and items with at least five interactions. Additionally, we employ the leave-one-out strategy to split the dataset: for each user, the last interacted item is used for testing, the second-to-last for validation, and the rest for training. Detailed statistics of the Amazon Review Plus dataset are presented in Appendix Table 4. Further analysis of the image captions, including quality evaluations, can be found in the Appendix A.7.

²http://jmcauley.ucsd.edu/data/amazon/

³The dataset consists of the four aforementioned categories

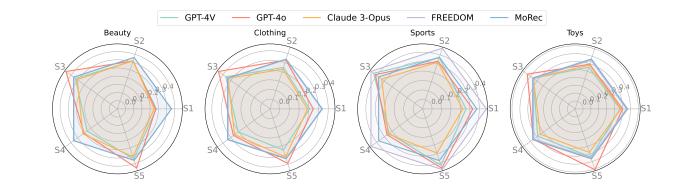


Figure 2: Performance (H@1) comparison of GPT-4V, GPT-4o and Claude-3-Opus under different integration strategies.

3.1.3 Evaluation Metrics. We adopt two widely-used metrics, top-k Hit Ratio (H@k) and top-k Normalized Discounted Cumulative Gain (N@k), to evaluate the recommendation performance of LVLMs under the five strategies.

When using LVLMs as recommenders or rerankers, the candidate items must be included in the input prompt for the model to rank them⁴. Given the prompt length limitations and high inference costs, evaluating with all unrated items (i.e., full-item ranking) is impractical. Therefore, following previous studies [8, 25, 30], we evaluate the models by ranking a subset of candidate items. This subset consists of 1 target item and 29 randomly sampled negative items. We do not use the commonly applied 99 negative samples because our experiments on the Beauty category show that, while absolute metrics differ, the relative model rankings remain consistent, and the overall performance trends and conclusions stay unchanged. Using 29 samples also significantly reduces prompt length, which lowers inference time and costs, making it a more efficient and practical choice for large-scale applications without compromising result reliability.

499 3.1.4 Implementation Details. For the five integration strategies, 500 we design task-specific prompts for LVLMs to handle the multi-501 modal sequential recommendation task (details shown in Fig 6). In 502 S2, we use the bert-base-uncased⁵ as the text encoder, with a text 503 embedding dimension of 768. For all LVLM-related experiments, 504 we set the temperature of LVLMs to 0 to ensure reproducibility. 505 Following [12, 41], we set the maximum user interaction sequence 506 length to 10 for inputs to the model. For the recommendation base-507 lines, we implement SASRec and MoRec using the code⁶ provided 508 by [45] with default hyperparameters: the number of transformer 509 blocks and attention heads are both set to 2, embedding dimensions 510 to 512, and the dropout ratio to 0.1. To ensure fair performance 511 reporting, we search for the optimal batch size from 32, 64 and the 512 best learning rate from 1e - 5, 5e - 5, 1e - 4, ultimately setting the 513 batch size to 64 and the learning rate to 1e-4 for all experiments. 514 For MMGCN, FREEDOM, and BM3, we use the implementations 515 provided in MMRec⁷. For IISAN, we utilize the code⁸ released by 516

⁶https://github.com/westlake-repl/IDvs.MoRec 520

521 ⁸https://github.com/GAIR-Lab/IISAN

465

466

467

468

469

470

471

472

473

474 475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

the authors and perform a grid search over the hyperparameters as recommended in the original paper, reporting the best results. Due to space limitations, more detailed implementation settings of these baselines can be found in the Appendix A.6.

3.2 Overall Performance (RQ1)

Table 1 demonstrates the performance of various LVLMs when evaluated using the five proposed strategies on the four categories of Amazon Review Plus dataset. We make the following observations: LVLM as a reranker (S3) is the most effective single-role strategy, outperforming both the recommender (S1) and item enhancer (S2) strategies. The reranking mechanism allows LVLMs to refine existing recommendation lists, effectively leveraging multimodal data for better item ordering. For example, in the beauty category, GPT-40 as a reranker (S3) achieves an H@1 of 38.85% and N@5 of 50.66%, significantly outperforming its performance as a recommender (S1), where H@1 was 23.37%. This suggests that LVLMs perform best when refining pre-generated recommendations, rather than directly generating recommendations (S1) or solely enriching item descriptions (S2), particularly when handling complex multimodal data.

Combination strategies (S4 and S5) show mixed results when compared to their corresponding single-role strategies (S1, S2, and S3), and neither consistently outperforms them. S5, which combines item enhancement and reranking, often improves upon the item enhancer (S2) and reranker (S3) strategies, but the gains are not always substantial. For instance, in the toys category, S5 achieves an H@1 of 40.50%, which is an improvement over S2's 30.75%, but only marginally better than S3's 37.50%. In contrast, in the beauty category, S3 outperforms S5, achieving an H@1 of 38.85% compared to S5's 38.00%. Similarly, S4, which combines item enhancement and recommender roles, fails to consistently outperform its single-role counterparts. In the sports category, S4 achieves an H@1 of 23.25%, which is lower than both S1 (26.50%) and S2 (30.75%). These results suggest that while combining roles (as in S4 and S5) can occasionally offer improvements, particularly for S5, the more straightforward single-role strategies often deliver comparable or even better results.

GPT-40 consistently outperforms GPT-4V and Claude 3-Opus across all strategies, especially as a reranker (S3). GPT-40 demonstrates superior handling of multimodal data, achieving the highest scores with S3 across categories such as beauty, where it

545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580

523

524

525

526

527

528

529

530

531

533

534

535

536

537

538

539

540

541

542

543

⁵¹⁷ ⁴As shown in [25], directly performing sequential recommendation without including 518 candidate items leads to severe hallucination

⁵https://huggingface.co/google-bert/bert-base-uncased 519

⁷https://github.com/enoche/MMRec

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

638

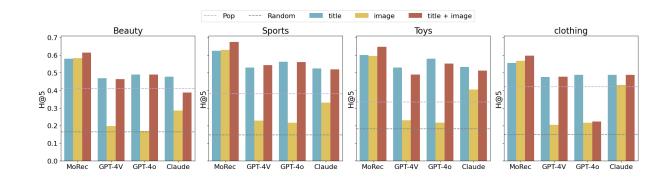


Figure 3: Impact of different item modalities (title only, image only, title + image) on recommendation performance.

reaches an H@1 of **38.85**%, and clothing, where it reaches **32.83**%. GPT-4V, though stable, underperforms GPT-40 in more complex strategies, such as S4 and S5, while Claude 3-Opus struggles the most, particularly in the direct recommender strategy (S1), where its ability to generate accurate recommendations from raw multimodal data is limited.

Comparison among recommendation baselines. Classical SR methods like Pop and SASRec perform weaker, with Pop achieving only 14.00% H@1 in beauty and 14.50% in sports. These models, which rely on popularity-based ranking or simple sequential modeling, struggle to compete with more advanced multimodal approaches. Furthermore, we select the best-performing models from the baseline groups, namely FREEDOM and MoRec (T+I), and compare them with our proposed LVLM-based methods in Figure 2. We observe that both S3 and S5 applied to GPT-40 outperform these baselines in most cases, particularly in the beauty, clothing, and toys categories. This highlights the ability of these two strategies to more effectively leverage multimodal data, leading to improved recommendation accuracy.

3.3 Impact of Different Item Modalities (RQ2)

This section explores the influence of different item modalities 618 when using LVLMs as a recommender (S1). As shown in Figure 3, 619 item titles consistently emerge as the most critical information for 620 generating accurate recommendations, while images alone lead to 621 significantly poorer performance. For instance, when relying solely 622 on images, GPT-4V and GPT-40 produce results close to random 623 selection, and although Claude 3 Opus performs better, it still falls 624 625 short of the Pop baseline. This suggests that LVLMs cannot yet depend on image data alone for reliable recommendations, possibly 626 due to noise or ambiguity in the images. Additionally, combining 627 628 titles and images does not improve performance in S1, indicating 629 that current LVLMs struggle to process raw image data effectively in this context. As highlighted in the Sec. 3.2, transforming im-630 631 ages into textual descriptions or using images as auxiliary signals 632 for reranking items remains the most effective way for LVLMs to enhance recommendation accuracy. 633

When leveraging LVLMs as recommenders or re-rankers, one essential step is to input images of items from users' historical interactions into the LVLM. We explore two different input modes: (Mode 1) concatenating images into a single composite image, and (Mode 2) inputting images individually. In both modes, the images are arranged in chronological order based on the interaction timestamp. For instance, in Mode 1, the leftmost item in the concatenated image represents the first interaction. Our experiments using GPT-4V on the beauty dataset reveal that Mode 1 consistently outperforms Mode 2 across key metrics. Specifically, Mode 1 achieves an H@1 of 23.74%, whereas Mode 2 results in lower H@1 scores of 22.86%. This indicates that concatenating images into a single composite (Mode 1) helps the model capture the relationships between items more effectively, thereby reflecting the user's preferences more accurately.

3.4 In-depth Analysis of LVLM as Reranker (RQ3)

In this section, we investigate whether LVLMs, when used as rerankers, can enhance the performance of different sequential recommendation models (referred to as backbones for simplicity), such as SASRec and MoRec. Specifically, we first generate the initial recommendation lists from both backbone, and then apply two reranking strategies: S3 (LVLM as reranker) and S5 (LVLM as both item enhancer and reranker). Due to space constraints, as shown in Figure 4, we present results for GPT-40 only. We observe that for both SASRec and MoRec, S3 and S5 can consistently improve their recommendation performances. Notably, the S3 strategy, where the LVLM operates purely as a reranker by directly processing product images, performs best in most cases. In contrast, S5 first converts images into textual descriptions before reranking, which can lead to information loss or the introduction of irrelevant details, diminishing its effectiveness in certain scenarios. These results highlight the combination of textual and visual data, alongside effective reranking strategies, provides a promising avenue for enhancing the overall performance of recommendation systems.

In addition to improving accuracy, both S3 and S5 offer explainable recommendations by providing detailed explanations alongside the results. These explanations help users understand the reasoning behind the recommendations, which is key to enhancing user satisfaction. Figure 5 showcases GPT-40 functioning as an (item enhancer and) reranker, compared to the traditional SASRec system. In this instance, SASRec incorrectly suggests a finger puppet, unrelated to the user's history with dolls, and offers no explanation for this error. In contrast, S3 highlights the user's preference for

Anon.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

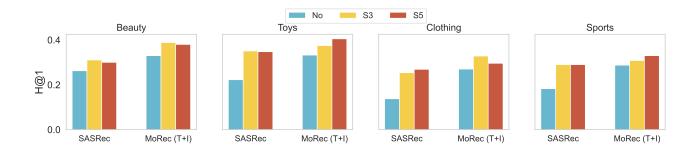


Figure 4: Performance comparison between different LVLM-based reranking strategies (S3 and S5) using two different recommendation backbones. In this analysis, GPT-40 is used as the LVLM.

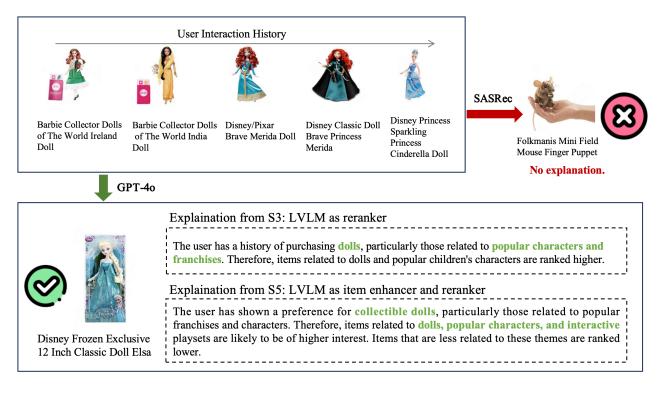


Figure 5: Case study between GPT-40 and SASRec. GPT-40 can provide detailed explainations for its recommendation results.

dolls related to popular characters, while S5 enriches the explanation by factoring in collectible dolls and interactive playsets. This added depth improves transparency and personalization, ultimately increasing user trust and satisfaction.

3.5 Efficiency Comparison (RQ4)

This section investigates the computational efficiency of different LVLM integration strategies and all baseline models in multimodal sequential recommendation. We conduct experiments on the Beauty category of the Amazon Review Plus dataset, with batch size unified to 64 for all baselines to ensure fair comparison. Table 2 summarizes the results, and our key observations are as follows:

SASRec and MoRec demonstrate the fastest training speed, outperforming collaborative multimodal recommendation

methods. SASRec completes an epoch in 5.4 seconds, while MoRec (T+I) takes 11 seconds per epoch. In contrast, collaborative models such as FREEDOM and BM3 exhibit similar training times, around 401.89 and 411.45 seconds per epoch, respectively. MMGCN is the slowest, requiring 674.99 seconds per epoch. The slower training time of MMGCN can likely be attributed to its graph-based architecture, which adds computational complexity. Despite these differences, all baseline models maintain high inference speeds, with most achieving 0.0025 seconds per user.

The computational inefficiency of LVLMs poses a major barrier to their widespread adoption in multimodal recommendation systems. Among the LVLM integration strategies, S2 (item enhancer) stands out as the most practical and feasible approach for industrial deployment. It achieves a training time of 5.9

814

815

816

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

SASRec 5.4 819 SASRec 820 FREEDOM 674.99 820	e Time (s/user) 0.0025 0.0030 0.0029 0.0025 0.0004				
819 MMGCN 674.99 820 FREEDOM 401.89	0.0030 0.0029 0.0025				
820 MMGCN 674.99 FREEDOM 401.89	0.0029 0.0025				
FREEDOM 401.89	0.0025				
821 BM2 411.45					
DIVIS 411.45	0.0004				
822 IISAN 363.00	0.0004				
823 MoRec (T) 5.9	0.0025				
824 MoRec (I) 9.75	0.0025				
825 MoRec (T+I) 11	0.0025				
S1: Recommender					
826 GPT-4V N/A	41.7488				
827 GPT-40 N/A 22	25.8993				
828 Claude-3-Opus N/A 2	24.9818				
829 S2: Item Enhancer					
830 GPT-4V/o, Claude-3-Opus 5.9	0.0025				
S3: Reranker					
	42.4901				
832 GPT-40 N/A 2	24.4900				
833 Claude-3-Opus N/A 2	24.7115				
834 S4: Enhancer + Recommender					
835 GPT-4V N/A 2	29.8392				
6PT-40 N/A	18.3205				
Claude-3-Opus N/A	23.5321				
837 S5: Enhancer + Reranker					
838 GPT-4V N/A 3	35.4451				
839 GPT-40 N/A	28.8022				
840 Claude-3-Opus N/A 2	21.8895				

seconds per epoch and an inference time of 0.0025 seconds per user, making it the most computationally efficient LVLM integration strategy. Additionally, S2 performs comparably to current SOTA multimodal sequential recommendation methods across multiple metrics, positioning it as a promising candidate for further exploration and optimization. More complex strategies, such as S3 to S5, which combine multiple roles, incur significantly higher inference costs. For example, S3, which uses LVLMs as rerankers, achieves the best recommendation performance but requires 42.49 seconds per user for inference with GPT-4V, far exceeding the inference times of baseline models. This presents a significant challenge for the application of LVLMs in real-time industrial systems, where low-latency requirements are critical.

4 **Related Work**

858 Multimodal Sequential Recommendation. multimodal sequen-859 tial recommendation (MSR) integrates various data modalities (e.g., 860 text and image) to better capture user preferences and improve rec-861 ommendation accuracy. Early work like MV-RNN [7] introduced a multi-view recurrent neural network that dynamically fused mul-862 timodal features, while MML [35] leveraged meta-learning to ad-863 dress the cold-start problem using multimodal side information. 864 Building on these advances, MMSR [17] introduced a graph-based 865 model with dual attention mechanisms to fuse multimodal features 866 from both homogeneous and heterogeneous user-item interactions. 867 868 MMMLP [22] demonstrated the effectiveness of simpler, purely MLP-based architectures by efficiently fusing multimodal sequences

Anon

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

for large-scale recommendation tasks. Despite the recent success of LVLMs in various NLP tasks, only a few works have explored their application in the MSR domain. For instance, MLLM-MSR [43] and Rec-GPT4V [29] leverage LVLMs to summarize item images and combine them with titles to model user preferences, while UniMP [39] proposes a general framework for personalized recommendations. However, these methods apply LVLMs in a single integration manner without comprehensively evaluating their performance across different strategies. To address this gap, our work introduces MSRBench, the first benchmark designed to systematically explore the impact of different LVLMs, integration methods, and input modalities on recommendation performance. By investigating LVLMs in various roles, our analysis can provide new insights into performance differences across strategies, offering a more thorough evaluation than previous approaches.

Large Language Models in Recommendation. Large Language Models (LLMs) have revolutionized AI research by pushing the boundaries of natural language understanding and generation. Commercial close-sourced models like GPT [34] and Claude [1] demonstrate the impressive ability of coherent text generation and instruction following. The open-source counterparts, e.g., LLaMA [37] and Vicuna [5], provide transparency into the model architecture and training details, allowing more flexible and customized development. For the recommendation side, several works [23, 25, 26, 31, 46] prompt or finetune LLMs to adapt them for recommendation. As the pioneer attempt, Liu et.al [25] prompt and evaluate ChatGPT's performance on the recommendation scenarios in a training-free way. LlamaRec [46] resorts to the open-source LLMs and renders a real-time recommendation to streamline the autoregressive generation during inference time. Since the recommendation system is essentially a multimodal system requiring the understanding of both textual and visual data, our paper focuses on investing multimodal LLMs for recommendations to uncover and unleash their ability for the effective and personalized recommendation.

Conclusion and Future Work 5

In this work, we introduced MSRBench, a comprehensive benchmark designed to evaluate different integration strategies of LVLMs in multimodal recommendation systems. By systematically benchmarking state-of-the-art LVLMs, including GPT-4 Vision, GPT-4o, and Claude-3-Opus, on the next item prediction task using the enhanced Amazon Review Plus dataset, we uncovered significant performance disparities among various integration approaches. Our findings highlight the most effective methods for leveraging LVLMs in multimodal recommendation contexts, providing valuable insights and guidance for future research and practical implementation. MSRBench sets the stage for further exploration and innovation in this field, aiming to advance the development of more accurate and personalized recommendation systems.

Limitations and Future Work: This work focuses on evaluating different strategies for applying LVLMs in multimodal sequential recommendation. However, due to resource limitations, we did not explore the potential impact of fine-tuning these models, which we plan to address in future research. Additionally, we recognize the importance of dataset diversity and aim to incorporate more varied datasets in subsequent studies.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 1044

929 References

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

- Anthropic. 2024. The Claude 3 Model Family: Opus, Sonnet, Haiku. https: //www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/ Model Card Claude 3.pdf
- [2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. 2023. Qwen-vl: A frontier large visionlanguage model with versatile abilities. arXiv preprint arXiv:2308.12966 (2023).
- [3] Yakoub Bazi, Mohamad Mahmoud Al Rahhal, Laila Bashmal, and Mansour Zuair. 2023. Vision-language model for visual question answering in medical imagery. *Bioengineering* 10, 3 (2023), 380.
- [4] Shuqing Bian, Xingyu Pan, Wayne Xin Zhao, Jinpeng Wang, Chuyuan Wang, and Ji-Rong Wen. 2023. Multi-modal mixture of experts representation learning for sequential recommendation. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 110–119.
- [5] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. 2023. Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality. https://lmsys.org/blog/2023-03-30-vicuna/
- [6] William G Cochran. 1977. Sampling techniques. John Wiley& Sons (1977).
- [7] Qiang Cui, Shu Wu, Qiang Liu, Wen Zhong, and Liang Wang. 2020. MV-NNN: A Multi-View Recurrent Neural Network for Sequential Recommendation. IEEE Transactions on Knowledge and Data Engineering (2020), 317–331.
- [8] Sunhao Dai, Ninglu Shao, Haiyuan Zhao, Weijie Yu, Zihua Si, Chen Xu, Zhongxiang Sun, Xiao Zhang, and Jun Xu. 2023. Uncovering ChatGPT's Capabilities in Recommender Systems. In Proceedings of the 17th ACM Conference on Recommender Systems (RecSys '23). ACM. https://doi.org/10.1145/3604915.3610646
- [9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs.CL]
- [10] Dario Di Palma, Giovanni Maria Biancofiore, Vito Walter Anelli, Fedelucio Narducci, Tommaso Di Noia, and Eugenio Di Sciascio. 2023. Evaluating chatgpt as a recommender system: A rigorous approach. arXiv preprint arXiv:2309.03613 (2023).
- [11] Junchen Fu, Xuri Ge, Xin Xin, Alexandros Karatzoglou, Ioannis Arapakis, Jie Wang, and Joemon M Jose. 2024. IISAN: Efficiently Adapting Multimodal Representation for Sequential Recommendation with Decoupled PEFT. In Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. 687–697.
- [12] Junchen Fu, Fajie Yuan, Yu Song, Zheng Yuan, Mingyue Cheng, Shenghui Cheng, Jiaqi Zhang, Jie Wang, and Yunzhu Pan. 2024. Exploring adapter-based transfer learning for recommender systems: Empirical studies and practical insights. In Proceedings of the 17th ACM International Conference on Web Search and Data Mining. 208–217.
- [13] Yunfan Gao, Tao Sheng, Youlin Xiang, Yun Xiong, Haofen Wang, and Jiawei Zhang. 2023. Chat-rec: Towards interactive and explainable llms-augmented recommender system. arXiv preprint arXiv:2303.14524 (2023).
- [14] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets for datasets. Commun. ACM 64, 12 (2021), 86–92.
- [15] Shijie Geng, Juntao Tan, Shuchang Liu, Zuohui Fu, and Yongfeng Zhang. 2023. Vip5: Towards multimodal foundation models for recommendation. arXiv preprint arXiv:2305.14302 (2023).
- [16] Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, et al. 2024. ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All Tools. arXiv preprint arXiv:2406.12793 (2024).
- [17] Hengchang Hu, Wei Guo, Yong Liu, and Min-Yen Kan. 2023. Adaptive multimodalities fusion in sequential recommendation systems. In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. 843–853.
- [18] Glenn D Israel. 1992. Sampling the evidence of extension program impact. Citeseer.
- [19] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recommendation. In 2018 IEEE international conference on data mining (ICDM). IEEE, 197–206.
- [20] Robert V Krejcie and Daryle W Morgan. 1970. Determining sample size for research activities. *Educational and psychological measurement* 30, 3 (1970), 607–610.
- [21] Yongqi Li, Wenjie Wang, Leigang Qu, Liqiang Nie, Wenjie Li, and Tat-Seng Chua. 2024. Generative Cross-Modal Retrieval: Memorizing Images in Multimodal Language Models for Retrieval and Beyond. arXiv preprint arXiv:2402.10805 (2024).
- [22] Jiahao Liang, Xiangyu Zhao, Muyang Li, Zijian Zhang, Wanyu Wang, Haochen Liu, and Zitao Liu. 2023. MMMLP: Multi-modal Multilayer Perceptron fornbsp;Sequentialnbsp;Recommendations. In *Proceedings of the ACM Web Conference 2023*. New York, NY, USA, 1109–1117.
- Jiayi Liao, Sihang Li, Zhengyi Yang, Jiancan Wu, Yancheng Yuan, Xiang Wang, and Xiangnan He. 2024. Llara: Large language-recommendation assistant.

- Preprint (2024).
- [24] Weizhe Lin, Jinghong Chen, Jingbiao Mei, Alexandru Coca, and Bill Byrne. 2024. Fine-grained late-interaction multi-modal retrieval for retrieval augmented visual question answering. Advances in Neural Information Processing Systems 36 (2024).
- [25] Junling Liu, Chao Liu, Peilin Zhou, Renjie Lv, Kang Zhou, and Yan Zhang. 2023. Is ChatGPT a Good Recommender? A Preliminary Study. arXiv:2304.10149 [cs.IR]
- [26] Junling Liu, Chao Liu, Peilin Zhou, Qichen Ye, Dading Chong, Kang Zhou, Yueqi Xie, Yuwei Cao, Shoujin Wang, Chenyu You, and Philip S. Yu. 2023. LLMRec: Benchmarking Large Language Models on Recommendation Task. arXiv:2308.12241 [cs.IR]
- [27] Junling Liu, Ziming Wang, Qichen Ye, Dading Chong, Peilin Zhou, and Yining Hua. 2023. Qilin-med-vl: Towards chinese large vision-language model for general healthcare. arXiv preprint arXiv:2310.17956 (2023).
- [28] Qidong Liu, Jiaxi Hu, Yutian Xiao, Jingtong Gao, and Xiangyu Zhao. 2023. Multimodal recommender systems: A survey. arXiv preprint arXiv:2302.03883 (2023).
- [29] Yuqing Liu, Yu Wang, Lichao Sun, and Philip S Yu. 2024. Rec-GPT4V: Multimodal Recommendation with Large Vision-Language Models. arXiv preprint arXiv:2402.08670 (2024).
- [30] Yuqing Liu, Yu Wang, Lichao Sun, and Philip S. Yu. 2024. Rec-GPT4V: Multimodal Recommendation with Large Vision-Language Models. arXiv:2402.08670 [cs.AI]
- [31] Sichun Luo, Yuxuan Yao, Bowei He, Yinya Huang, Aojun Zhou, Xinyi Zhang, Yuanzhang Xiao, Mingjie Zhan, and Linqi Song. 2024. Integrating Large Language Models into Recommendation via Mutual Augmentation and Adaptive Aggregation. arXiv preprint arXiv:2401.13870 (2024).
- [32] Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. 2015. Image-Based Recommendations on Styles and Substitutes. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, August 9-13, 2015, Ricardo Baeza-Yates, Mounia Lalmas, Alistair Moffat, and Berthier A. Ribeiro-Neto (Eds.). ACM, 43–52. https://doi.org/10.1145/2766462.2767755
- [33] Jianmo Ni, Jiacheng Li, and Julian McAuley. 2019. Justifying recommendations using distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP). 188–197.
- [34] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
- [35] Xingyu Pan, Yushuo Chen, Changxin Tian, Zihan Lin, Jinpeng Wang, He Hu, and Wayne Xin Zhao. 2022. Multimodal Meta-Learning for Cold-Start Sequential Recommendation. In Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Association for Computing Machinery, 3421–3430.
- [36] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021. Learning transferable visual models from natural language supervision. In International conference on machine learning. PMLR, 8748–8763.
- [37] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971 (2023).
- [38] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu, Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie Zhou, Yu Qiao, et al. 2024. Visionllm: Large language model is also an open-ended decoder for vision-centric tasks. Advances in Neural Information Processing Systems 36 (2024).
- [39] Tianxin Wei, Bowen Jin, Ruirui Li, Hansi Zeng, Zhengyang Wang, Jianhui Sun, Qingyu Yin, Hanqing Lu, Suhang Wang, Jingrui He, et al. 2024. Towards unified multi-modal personalization: Large vision-language models for generative recommendation and beyond. arXiv preprint arXiv:2403.10667 (2024).
- [40] Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, and Tat-Seng Chua. 2020. MMGCN: Multi-modal Graph Convolution Network for Personalized Recommendation of Micro-video. In Proceedings of the 27th ACM International Conference on Multimedia.
- [41] Yueqi Xie, Peilin Zhou, and Sunghun Kim. 2022. Decoupled side information fusion for sequential recommendation. In Proceedings of the 45th international ACM SIGIR conference on research and development in information retrieval. 1611– 1621.
- [42] Xu Yang, Yongliang Wu, Mingzhuo Yang, Haokun Chen, and Xin Geng. 2024. Exploring diverse in-context configurations for image captioning. Advances in Neural Information Processing Systems 36 (2024).
- [43] Yuyang Ye, Zhi Zheng, Yishan Shen, Tianshu Wang, Hengruo Zhang, Peijun Zhu, Runlong Yu, Kai Zhang, and Hui Xiong. 2024. Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation. arXiv preprint arXiv:2408.09698 (2024).
- [44] Zixuan Yi, Zijun Long, Iadh Ounis, Craig Macdonald, and Richard Mccreadie. 2023. Large multi-modal encoders for recommendation. arXiv preprint arXiv:2310.20343 (2023).
- [45] Zheng Yuan, Fajie Yuan, Yu Song, Youhua Li, Junchen Fu, Fei Yang, Yunzhu Pan, and Yongxin Ni. 2023. Where to go next for recommender systems? idvs. modality-based recommender models revisited. In *Proceedings of the 46th*

International ACM SIGIR Conference on Research and Development in Information Retrieval. 2639–2649.

- [46] Zhenrui Yue, Sara Rabhi, Gabriel de Souza Pereira Moreira, Dong Wang, and Even Oldridge. 2023. LlamaRec: Two-stage recommendation using large language models for ranking. arXiv preprint arXiv:2311.02089 (2023).
- [47] Peilin Zhou, Meng Cao, You-Liang Huang, Qichen Ye, Peiyan Zhang, Junling Liu, Yueqi Xie, Yining Hua, and Jaeboum Kim. 2023. Exploring recommendation capabilities of gpt-4v (ision): A preliminary case study. arXiv preprint arXiv:2311.04199 (2023).
- [48] Peilin Zhou, You-Liang Huang, Yueqi Xie, Jingqi Gao, Shoujin Wang, Jae Boum Kim, and Sunghun Kim. 2024. Is Contrastive Learning Necessary? A Study of Data Augmentation vs Contrastive Learning in Sequential Recommendation. In Proceedings of the ACM on Web Conference 2024. New York, NY, USA, 3854–3863.
- [49] Xin Zhou and Zhiqi Shen. 2023. A Tale of Two Graphs: Freezing and Denoising Graph Structures for Multimodal Recommendation. In Proceedings of the 31st ACM International Conference on Multimedia.
- [50] Xin Zhou, Hongyu Zhou, Yong Liu, Zhiwei Zeng, Chunyan Miao, Pengwei Wang, Yuan You, and Feijun Jiang. 2023. Bootstrap Latent Representations for Multi-modal Recommendation. In Proceedings of the ACM Web Conference 2023.

A Appendix

A.1 Ethics

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

General Ethical Conduct. Our work follows standard ethical 1063 guidelines in AI and machine learning research. We clearly state 1064 our motivations, methodology, and results, ensuring transparency 1065 and reproducibility. The dataset used, Amazon Review Plus, is an 1066 extension of the publicly available Amazon Review dataset, and the 1067 data augmentation is conducted using LVLMs to generate additional 1068 item descriptions. The use of this data respects user privacy as the 1069 dataset does not include personally identifiable information. The 1070 primary aim of our proposed MSRBench and the Amazon Review 1071 Plus dataset is to explore improved strategies for integrating LVLMs 1072 into multimodal recommendation systems, potentially benefiting 1073 users by delivering more accurate and personalized recommenda-1074 tions. 1075

Potential Negative Societal Impacts. While our work aims 1076 to enhance recommendation systems, it is crucial to consider the 1077 potential negative societal impacts. One significant concern is the 1078 reinforcement of existing biases present in the training data. LVLMs, 1079 trained on vast amounts of internet data, can inadvertently learn 1080 and propagate biases related to gender, race, and other sensitive 1081 attributes. When integrated into recommendation systems, these 1082 biases could lead to unfair or discriminatory recommendations, 1083 affecting user experience and perpetuating stereotypes. While our 1084 work does not directly cause negative societal impacts, it is crucial 1085 to take appropriate precautions to mitigate these potential effects. 1086

A.2 Prompts

1087

1088

1089

1090

1091 1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

The integration of LVLMs into multimodal recommendation systems is facilitated through a series of carefully designed prompts. Figure 6 shows examples of the prompts we use. Each color in the prompt structure highlights a specific component of the recommendation process, ensuring that the model can accurately interpret the information and perform the task.

Blue text represents the item titles that are passed to the LVLM. These are essential for identifying the products that the user has interacted with or is likely to be interested in.

Yellow text indicates the candidate item list, which is the preranked list of items that the LVLM needs to process or rerank. This list is generated based on the user's previous interaction history and passed to the model for further refinement. **Green** text refers to the generated image descriptions. These are automatically created by the LVLM based on the images of the items. These descriptions enrich the multimodal nature of the data by providing textual representations of visual elements.

Red text highlights the output format constraints. These instructions guide the LVLM on how to structure its output, ensuring that the recommendations are generated in a specific format that is easy to interpret and integrate into the system.

Purple text is used exclusively for the reranking process, where the LVLM is instructed to refine the pre-ranked list based on the likelihood of the user purchasing each item.

Table 3: The hallucination rate (%) of three LVLMs across four datasets.

Model	Beauty	Clothing	Sports	Toys
Claude	0.55	0.88	0.69	1.06
GPT-4V	1.33	1.22	1.15	1.52
GPT-40	0.31	0.45	0.88	1.00

A.3 Hallucination

10

Similar to the application of Large Language Models (LLMs) in recommendation systems, LVLMs for multimodal sequential recommendations also face the issue of hallucination, where the recommended item may not be in the valid candidate list. This section highlights the hallucination problem across various LVLMs. As shown in Table 3, the hallucination rates are below 2% across all datasets and models, indicating that the issue is generally not severe. Moreover, GPT-40, which exhibits the strongest capabilities in recommendation tasks, also demonstrated the lowest hallucination rates.

A.4 Analysis of Image Captions in the Amazon Review Plus Dataset

Distribution of token length. Figure 7 presents the distribution of token lengths for image captions generated by three different LVLMs (Claude-3-Opus, GPT-4V, GPT-4o) across four categories: beauty, clothing, sports, and toys. A consistent pattern is observed across all categories: Claude-3-Opus consistently generates longer and more detailed captions, indicated by higher mean token lengths and more concentrated distributions. In contrast, GPT-4V produces the shortest captions on average, with more spread-out distributions and significantly lower means. GPT-40 falls between the two, generating captions that are shorter than those of Claude-3-Opus but longer and less variable than those of GPT-4V. These findings suggest that Claude-3-Opus is more verbose and detailed in its captioning approach, GPT-4V is more concise, and GPT-4o strikes a balance between verbosity and conciseness. This highlights the varying strengths of each model in generating image captions, potentially influencing their suitability for different applications based on the required level of detail and verbosity.

Word Cloud. Furthermore, Figure 8 visualizes the word clouds for image captions generated by the three LVLMs across the four categories. Each row corresponds to a specific category, with columns

Anon

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

	This image shows 4 items from user's purchase history. The items are arranged in order of purchase, from left to right.						
C1	The side information of these purchased items are as follows: ['Step 2 Wagon for Two Plus Willow Green',].						
S1	It's important to note that the order of this side information aligns with the sequence of items in the image. There are 30 candidate items in the item pool: [Minecraft Sheet Magnets',].						
	Considering the visuals and accompanying side information of the purchased items, Please rank these 30 candidate items in order of likelihood that the user will purchase them, from highest to lowest, based on the provided purchase history. Do not search on the Internet.						
	Output format: Please output directly in JSON format, including keys "explanation", and "recommendations". It follows this structure:						
	 explanation: [Brief explanation of the rationale behind the recommendations]. recommendations: [A list of 30 items ranked by likelihood, from highest to lowest. Do not explain each item and just show its title. Do not generate 						
	items that are not in the given item pool.].						
S2							
	What's in this image? 👸 What's in this image? What's in this image? What's in this image?						
	This image shows 4 items from user's purchase history. The items are arranged in order of purchase, from left to right.						
S3	The side information of these purchased items are as follows: ['Step 2 Wagon for Two Plus Willow Green',].						
	It's important to note that the order of this side information aligns with the sequence of items in the image. This is a pre-ranked item recommendation sequence in order of likelihood that the user will purchase them, from highest to lowest: ["Fisher-Price						
	Disney's Handy Manny Talking Tool Box',].						
	Please re-rank these 30 candidate items based on the provided purchase history and the pre-ranked item recommendation sequence. Do not search on the Internet.						
	Output format: Please output directly in JSON format, including keys "explanation", and "recommendations". It follows this structure: - explanation: [Brief explanation of the rationale behind the recommendations].						
	- recommendations: [A list of 30 items ranked by likelihood, from highest to lowest. Do not explain each item and just show its title. Do not generate						
	items that are not in the given item pool.].						
	What's in this image? What's in this image? What's in this image? What's in this image?						
	Image Description 1 Image Description 2 Image Description 3 Image Description 4						
.	The user has purchased 4 items (including title and description) in chronological order: (title: 'Step 2 Wagon for Two Plus Willow Green' description: Image Description 1.),						
S4	There are 30 candidate items in the item pool: ['Minecraft Sheet Magnets',].						
	Please rank these 30 candidate items in order of likelihood that the user will purchase them, from highest to lowest, based on the provided purchase history. Do not search on the Internet.						
	Output format: Please output directly in JSON format, including keys "explanation", and "recommendations". It follows this structure: - explanation: [Brief explanation of the rationale behind the recommendations].						
	- recommendations: [A list of 30 items ranked by likelihood, from highest to lowest. Do not explain each item and just show its title. Do not generate						
	items that are not in the given item pool.].						
	What's in this image? What's in this image? What's in this image? What's in this image?						
	Image Description 1 Image Description 2 Image Description 3 Image Description 4						
	and a second and a second and a second and a second and a						
	The user has purchased 4 items (including title and description) in chronological order: (title: 'Step 2 Wagon for Two Plus Willow Green' description:						
S5	Image Description 1.), This is a pre-ranked item recommendation sequence in order of likelihood that the user will purchase them, from highest to lowest:[""Fisher-Price						
	Disney's Handy Manny Talking Tool Box',]. Please re-rank these 30 candidate items based on the provided purchase history and the pre-ranked item recommendation sequence. Do not search on the						
	Internet.						
	Output format: Please output directly in JSON format, including keys "explanation", and "recommendations". It follows this structure: - explanation: [Brief explanation of the rationale behind the recommendations].						
	- recommendations: [A list of 30 items ranked by likelihood, from highest to lowest. Do not explain each item and just show its title. Do not generate items that are not in the given item pool.].						
	items inat are not in the given item pool.j.						

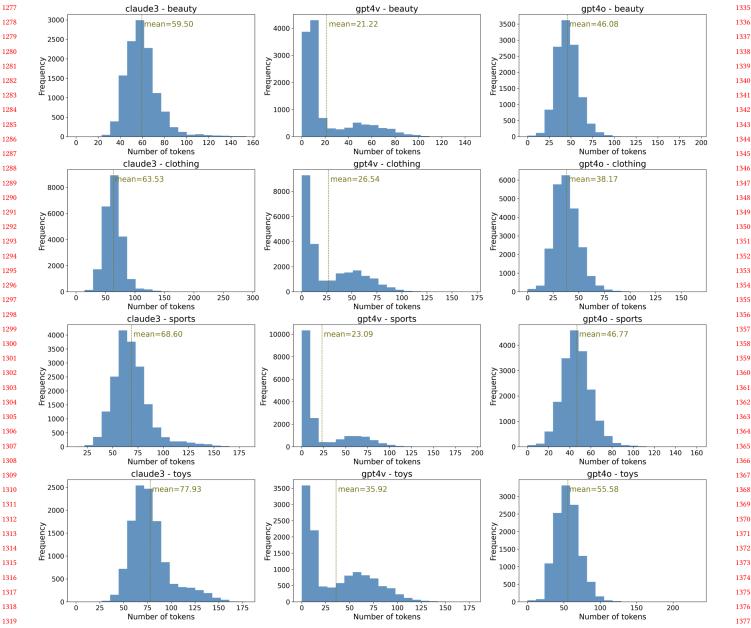


Figure 7: Distribution of token lengths for image captions generated by three different LVLMs across four categories. The mean token length indicated by the dotted line.

representing the different LVLMs. The size of each word indicates its frequency within the generated captions, highlighting the common terms and themes prevalent in the descriptions produced by each model. For instance, in the beauty category, frequent terms include "bottle," "hair," "color," and "nail." In the toys category, common words are "toy," "game," "set," and "children." This visualization effectively demonstrates the linguistic patterns and focal points of each model's captioning capabilities.

Human Evaluation. The human evaluation involved assessing the quality of image captions generated by three LVLMs across four distinct categories. Two evaluators (Eva_1 and Eva_2) participated in ranking the captions based on their quality. The evaluation metrics included the top1_ratio and the average position (avg_position), detail of which is showed in Table 5. The top1_ratio indicates the percentage of times a model's generated caption was ranked first by the evaluators. A higher top1_ratio signifies that the model

Anon

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1393	Table 4: Detailed statistics of the four categories in the Ama-
1394	zon Review Plus dataset.
1395	

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

Dataset	Beauty	Sports	Clothing	Toys
#Users	22,363	35,598	39,387	19,412
#Items	12,101	18,357	23,033	11,924
#Photos	12,023	17,943	22,299	11,895
#Reviews	198,502	296,337	278,677	167,59
Sparsity (%)	99.93	99.95	99.97	99.93
Avg. Caption Len. (Claude-3-opus)	59.49	68.59	63.52	77.93
Avg. Caption Len. (GPT4-v)	21.21	23.08	26.53	35.91
Avg. Caption Len. (GPT4-0)	46.08	46.76	38.16	55.57

frequently produced the best caption compared to others. The average position (avg_position) reflects the average rank of a model's captions, where a lower average position indicates better overall performance, as the model's captions were ranked higher (closer to first place) on average. The results indicate that Claude-3-Opus consistently outperformed the other models across all categories, achieving the highest top1_ratio and the best average position in every dataset. Specifically, Claude-3-Opus had an overall top1_ratio of 72.5% and an average position of 1.33, demonstrating its superior performance. In contrast, GPT-40 and GPT-4V lagged behind, with overall top1_ratios of 18.8% and 8.8%, respectively, and average positions of 2.04 and 2.63. These findings highlight the effectiveness of Claude-3-Opus in generating high-quality image captions, significantly surpassing the capabilities of GPT-40 and GPT-4V.

A.5 Clarification on S2: LVLM as Item Enhancer

We do not adopt the strategy of converting textual modality into visual modality due to several significant challenges. One of the main concerns is the introduction of noise. Text-to-image generation, particularly at scale, often produces unreliable or low-quality visual representations. Moreover, the textual data we use, such as product titles, is often semantically abstract and includes specific brand names and concise descriptions that are difficult to accurately convert into meaningful images. As a result, generating images from these abstract texts likely results in visuals that lack the necessary detail and relevance to be useful in a recommendation context. Given these challenges, text-to-image conversion is not a practical solution for our study.

A.6 More Implementation Details

For MoRec, we employ bert-base-uncased [9] as the text en-1436 1437 coder and clip-vit-base-patch32 [36] as the vision encoder. In MoRec(T) and MoRec(I), the output from the respective modality 1438 encoder is passed through a linear layer to generate the item rep-1439 resentation. In the case of MoRec(T+I), the outputs from both the 1440 text encoder (BERT) and vision encoder (ViT) are concatenated and 1441 passed through a linear layer to form the final item vector. The 1442 dimensionality of the vectors from the text encoder is 768, while 1443 the vision encoder produces vectors of 512 dimensions. The final 1444 item vector, used by both SASRec and MoRec, is reduced to 512 1445 dimensions. During training, the weights of BERT and ViT remain 1446 frozen to avoid overfitting. 1447

For IISAN, we use a batch size of 64 and a maximum sequence 1448 length of 10. The learning rates are set as follows: 0.0005 for the 1449 1450

Beauty category, 0.0002 for Sports, 0.0003 for Toys, and 0.0005 for Clothing. All other training hyperparameters are consistent with those outlined in the main text.

For MMGCN, the regularization weight and learning rate are set to (0.1, 0.001) for Beauty, (0.0, 1e-4) for Clothing, (0.01, 5e-4) for Sports, and (1e-5, 0.001) for Toys. For FREEDOM, the learning rate is uniformly set to 0.001 across all datasets, with the regularization weight and dropout rate configured as follows: (0.9, 0.0001) for Beauty, (0.9, 0.0) for Clothing, (0.9, 0.0) for Sports, and (0.8, 0.0) for Toys. For BM3, we select a single GCN layer for all datasets, with the regularization weight and dropout rate set to (0.01, 0.3) for Beauty, (0.01, 0.5) for Clothing, and (0.1, 0.5) for both Sports and Tovs.

The versions of the LVLMs we used are as follows: GPT-40 (gpt-4o-2024-05-13), GPT-4V (gpt-4-vision-preview), and Claude 3-Opus (aws_claude3_sdk_opus). Considering the substantial cost of API calls across the full test set, we follow the approach of prior works [8, 10, 13] by randomly sampling users from each category for evaluation. However, a critical question arises: how many samples are sufficient to ensure representativeness? To address this, we use Cochran's Modified Formula for Finite Populations [6, 18, 20], balancing representativeness and computational efficiency. Specifically, we select a 95% confidence level and a ±5% margin of error, which is a commonly accepted standard in similar studies, providing a good trade-off between statistical accuracy and the high costs associated with API calls. The formula is as follows:

$$n = \frac{N \cdot Z^2 \cdot p \cdot (1-p)}{e^2 \cdot (N-1) + Z^2 \cdot p \cdot (1-p)},$$
¹⁴⁷⁸
¹⁴⁷⁹

where n is the sample size, N the population size, Z the Z-value for 95% confidence (1.96), p the sample proportion (0.5), and ethe margin of error (0.05). For each category, the population sizes (N) are as follows: 22,363 for Beauty, 35,598 for Sports, 39,387 for Clothing, and 19,412 for Toys. Based on these values, we calculated the required sample sizes: approximately 378 for Beauty, 380 for Sports, 380 for Clothing, and 377 for Toys. To ensure consistency and representation, we sample 400 users per category. We validate this sampling approach on the Beauty dataset by comparing the recommendation performance trends between the 400 sampled users and the full dataset. Using metrics such as NDCG@5 and HR@5, we find that the difference between the full dataset and the sample results is less than 1%. This small difference is statistically insignificant and does not affect the overall trends or conclusions of our study, making the sample size of 400 users a reliable and computationally efficient choice.

A.7 Dataset documentation and intended uses

The following questions are copied from "Datasheets for Datasets" [14].

A.7.1 Motivation.

• For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that needed to be filled? Please provide a description. The dataset was created to enhance the richness and comprehensiveness of the original Amazon Review Dataset by incorporating LVLM-generated image descriptions, thereby

Anon.

Figure 8: Word cloud for image captions generated by three different LVLMs across four categories. The size of each word represents its frequency, highlighting common terms and themes generated by the models.

addressing the gap of missing textual descriptions for products with only image data. The addition of image descriptions can help recommendation systems better understand product appearance features, potentially improving recommendation accuracy and user satisfaction, particularly for product categories where image descriptions are crucial (e.g., clothing and toys). Additionally, generating image description texts reduces computational complexity, as directly processing image data requires substantial computational resources and time. This transformation of image information into easily processed textual data improves both training and inference efficiency. Furthermore, in crossmodal retrieval tasks (e.g., finding corresponding images

from text descriptions or related text information from images), image description texts serve as a bridge, enhancing the accuracy and practicality of retrieval systems.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?

The Amazon Review Plus dataset was created by a collaborative research team consisting of members from multiple institutions and organizations.

• Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number.

	1			T	
Dataset	Methods	Eva_1	Eva_2	avg_top1_ratio	avg_position
	Claude-3-Opus	70.0%	35.0%	52.5%	1.52
Beauty	GPT-40	30.0%	60.0%	45.0%	1.68
	GPT-4V	0.0%	5.0%	2.5%	2.80
	Claude-3-Opus	80.0%	60.0%	70.0%	1.45
Toys	GPT-40	15.0%	20.0%	17.5%	2.05
	GPT-4V	5.0%	20.0%	12.5%	2.50
	Claude-3-Opus	95.0%	70.0%	82.5%	1.20
Sports	GPT-40	5.0%	10.0%	7.5%	2.17
	GPT-4V	0.0%	20.0%	10.0%	2.62
	Claude-3-Opus	90.0%	80.0%	85.0%	1.15
Clothing	GPT-40	0.0%	10.0%	5.0%	2.25
	GPT-4V	10.0%	10.0%	10.0%	2.60
	Claude-3-Opus	83.8%	61.3%	72.5%	1.33
Overall	GPT-40	12.5%	25.0%	18.8%	2.04
	GPT-4V	3.8%	13.8%	8.8%	2.63

Table 5: Human evaluation of generated image captions from three LVLMs across four amazon review plus categories.

No funding was provided for this study, and it was conducted purely out of academic interest.

A.7.2 Composition.

1625

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1661

1662

1663

1664

1665

1666

1667

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)? Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them; nodes and edges)? Please provide a description.

The Amazon Review Plus dataset builds upon the Amazon Review dataset by adding a new attribute: product image captions. These captions provide visual context and help in understanding the product's appearance and features as described by the powerful LVLMs.

The original Amazon Review dataset includes user IDs, item IDs, item side information, and interactions between users and items such as ratings and reviews. Readers can check the details of this dataset in Amazon Review.

 How many instances are there in total (of each type, if appropriate)?

The dataset comprises several types of instances across four 1668 categories: Beauty, Sports, Clothing, and Toys. Specifically, 1669 the dataset includes a total of 22,363 users for Beauty, 35,598 1670 users for Sports, 39,387 users for Clothing, and 19,412 users 1671 1672 for Toys. The number of items is 12,101 for Beauty, 18,357 1673 for Sports, 23,033 for Clothing, and 11,924 for Toys. In terms of images, there are 12,023 photos for Beauty, 1674 17,943 for Sports, 22,299 for Clothing, and 11,895 for Toys. 1675 The dataset also contains 198,502 reviews for Beauty, 296,337 1676 for Sports, 278,677 for Clothing, and 167,597 for Toys. 1677 It is important to highlight that we generated captions for 1678 1679 all items that include images, providing visual context and aiding in the understanding of the products' appearances 1680 and features. 1681 1682

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set (e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because instances were withheld or unavailable).

The Amazon Review Plus dataset contain four categories: Beauty, Sports, Clothing, and Toys. These four categories are widely adopted in existing recommendation research. Detailed statistics and descriptions of these datasets can be found in Section 4.2 of our submitted manuscript.

• What data does each instance consist of? "Raw" data (e.g., unprocessed text or images) or features? In either case, please provide a description.

Each instance in the Amazon Review Plus dataset consists of several components. The reviews provide textual feedback from customers, while the image captions, generated for all items with images, offer visual context and help in understanding the product's appearance and features. Additionally, each instance includes structured features such as user ID, item ID, ratings, and review timestamps. These elements collectively enable comprehensive analysis of user interactions and product characteristics.

- Is there a label or target associated with each instance? If so, please provide a description. For each user interaction sequence, the last item in the sequence is used as the target.
- Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because it was unavailable). This

1740

1683

1704

1705

1706

1707

1708

1709

1710

Anon

1856

- does not include intentionally removed information, but 1741 might include, e.g., redacted text. 1742
- 1743 Some instances may have missing image captions. This is because certain products do not have associated images 1744 1745 available at the time of data collection. As a result, these 1746
- products lack the visual context provided by image captions Are relationships between individual instances made 1747 explicit (e.g., users' movie ratings, social network links)? 1748 1749 If so, please describe how these relationships are made ex-

Yes, relationships between individual instances are made

explicit through user IDs and item IDs. For example, a user's

interaction with multiple items is linked by their user ID,

and each item's reviews and ratings can be aggregated

through their item ID. These relationships allow for analysis

1750

plicit.

- 1751
- 1753 1754
- 1755
- 1756
- 1757 1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1791

1792

1793

1794

1795

1796

1797

1798

of user behavior and item popularity. • Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide a description of these splits, explaining the rationale behind

- them. Yes, we recommend using leave-one-out strategy for data splitting. In this approach, for each user interaction sequence, the last item is used for testing, the second-to-last item is used for validation, and the remaining items are used for training.
 - Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.

Yes, the image captions generated by LVLMs might not always be accurate and could contain hallucinations or incorrect descriptions, leading to potential noise in the dataset.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist, and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses, fees) associated with any of the external resources that might apply to a dataset consumer? Please provide descriptions of all external resources and any restrictions associated with them, as well as links or other access points, as appropriate.

The dataset is primarily self-contained, but it may include 1784 links to product pages on Amazon for additional context. 1785 There are no guarantees that these external links will re-1786 main constant over time, and there are no official archival 1787 1788 versions of the complete dataset including these external 1789 resources. Access to product pages is subject to Amazon's terms of service and availability. 1790

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal privilege or by doctor-patient confidentiality, data that includes the content of individuals' non-public communications)? If so, please provide a description.

No, the dataset does not contain data that might be considered confidential. All data included in the dataset is publicly available information from Amazon reviews.

 Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might otherwise cause anxiety? If so, please describe why. The dataset may contain user-generated content that could be offensive, insulting, or otherwise cause anxiety. This includes reviews that may have negative or harsh language, as the content is not filtered or moderated for offensive language before being included in the dataset.

If the dataset does not relate to people, you may skip the remaining questions in this section.

• Does the dataset identify any subpopulations (e.g., by age, gender)? If so, please describe how these subpopulations are identified and provide a description of their respective distributions within the dataset.

The dataset does not explicitly identify any subpopulations such as age or gender. All the data in the dataset is anonymized and does not include demographic information about the users. Therefore, subpopulations are not identified or described within the dataset.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly or indirectly (i.e., in combination with other data) from the dataset? If so, please describe how.

No, it is not possible to identify individuals directly or indirectly from the dataset. All personal identifiers are anonymized, and no additional data is provided that could be used in combination to identify users.

Does the dataset contain data that might be considered sensitive in any way (e.g., data that reveals race or ethnic origins, sexual orientations, religious beliefs, political opinions or union memberships, or locations; financial or health data; biometric or genetic data; forms of government identification, such as social security numbers; criminal history)? If so, please provide a description.

No, the dataset does not contain any data that might be considered sensitive. The data consists solely of user reviews, ratings, and related product information, without including any sensitive personal information such as race, ethnicity, sexual orientation, religious beliefs, political opinions, financial or health data, biometric or genetic data, government identification, or criminal history.

A.7.3 Collection Process.

• How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text, movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g., partof-speech tags, model-based guesses for age or language)? If the data was reported by subjects or indirectly inferred/derived from other data, was the data validated/verified? If so, please describe how.

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1857The data associated with each instance was directly observ-
able, consisting of raw text in the form of user reviews and
ratings from the Amazon platform. Image captions were
generated using LVLMs based on the available product im-
ages. The reviews and ratings are provided by users on
Amazon.1861Amazon.

- What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or sensors, manual human curation, software programs, software APIs)? How were these mechanisms or procedures validated?
 - The image captions were generated using three SOTA LVLMs.

1868

1875

1876

1877

1878

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

- If the dataset is a sample from a larger set, what was
 the sampling strategy (e.g., deterministic, probabilis tic with specific sampling probabilities)?
- 1872The dataset is a sample from a larger set of Amazon re-
views. Specifically, we chose four widely adopted categories:
Beauty, Sports, Clothing, and Toys.
 - Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were they compensated (e.g., how much were crowdworkers paid)?
- 1879The Amazon Review Plus dataset was enhanced from the
existing Amazon Review dataset. The enhancement process,
which involved generating image captions using LVLMs,
was carried out by engineers from Meituan. This work was
done as a voluntary service, and therefore, no compensation
was provided.
 - Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in which the data associated with the instances was created. The current dataset includes interactions spanning from May 1996 to October 2018.
 - Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide a description of these review processes, including the outcomes, as well as a link or other access point to any supporting documentation.
 - All the data utilized in this research are publicly accessible and unrestricted. As the dataset does not contain any private or sensitive information, this research is exempt from ethical review.

If the dataset does not relate to people, you may skip the remaining questions in this section.

- Did you collect the data from the individuals in question directly, or obtain it via third parties or other sources (e.g., websites)?
- The data was obtained from third-party sources, specifically from the Amazon website, where users publicly post their reviews and ratings.
 - Were the individuals in question notified about the data collection? If so, please describe (or show with screen-shots or other information) how notice was provided, and

provide a link or other access point to, or otherwise reproduce, the exact language of the notification itself.

The individuals were not specifically notified about this particular data collection process. However, Amazon's terms of service inform users that their reviews and ratings may be publicly accessible and used for various purposes, including research.

• Did the individuals in question consent to the collection and use of their data? If so, please describe (or show with screenshots or other information) how consent was requested and provided, and provide a link or other access point to, or otherwise reproduce, the exact language to which the individuals consented.

The individuals consented to the collection and use of their data through Amazon's terms of service, which users agree to when they post reviews and ratings on the platform. These terms specify that user-generated content is publicly accessible and can be used for research and other purposes.

• If consent was obtained, were the consenting individuals provided with a mechanism to revoke their consent in the future or for certain uses? If so, please provide a description, as well as a link or other access point to the mechanism (if appropriate).

Users can revoke their consent by deleting their reviews or closing their accounts on Amazon, which removes their data from the platform. More details on how users can manage their data are provided in Amazon's privacy policy.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g., a data protection impact analysis) been conducted? If so, please provide a description of this analysis, including the outcomes, as well as a link or other access point to any supporting documentation.

An explicit data protection impact analysis was not conducted as part of this research. However, all data used are publicly available and do not contain private or sensitive information, minimizing potential negative impacts on data subjects. The research complies with standard ethical guidelines for using publicly accessible data.

A.7.4 Preprocessing/cleaning/labeling.

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If so, please provide a description. If not, you may skip the remaining questions in this section.

Yes, we handled missing values by either imputing or discarding incomplete instances. Additionally, image captions were generated using LVLMs to provide visual context for items with images.

• Was the "raw" data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unanticipated future uses)? If so, please provide a link or other access point to the "raw" data. No.

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087 2088

1973	• Is the software that was used to preprocess/clean/label
1974	the data available? If so, please provide a link or other
1975	access point.
1976	No specific software was used: instead, custom scripts writ-

ten in Python were utilized to interact with APIs from OpenAI and Anthropic.

1980 A.7.5 Uses.

1977

1978

1979

1988

1989

1990

1991

1992

1993

1994

1995

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

- Has the dataset been used for any tasks already? If so, please provide a description.
 Yes, the original Amazon Review dataset has been widely used for various recommendation tasks, such as sequential recommendation, rating prediction, explainable recommendation, and more. Our enhanced version of the dataset is also suitable for these tasks, providing additional visual
 - What (other) tasks could the dataset be used for?

context through image captions.

- In addition to the multimodal recommendation tasks discussed in this paper, the dataset can be used for rating prediction, explainable recommendation, review summarization, cross-modal retrieval, and other related tasks.
- Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/ labeled that might impact future uses? For example, is there anything that a dataset consumer might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping, quality of service issues) or other risks or harms (e.g., legal risks, financial harms)? If so, please provide a description. Is there anything a dataset consumer could do to mitigate these risks or harms?
 - No.
- Are there tasks for which the dataset should not be used? If so, please provide a description.
 - There are no specific tasks for which the dataset should not be used. However, users should ensure that the application of the dataset aligns with ethical guidelines and data usage policies.
- A.7.6 Distribution.
 - Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organization) on behalf of which the dataset was created? If so, please provide a description.
 - Yes, the dataset will be distributed to third parties outside of the entity.
 - How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a digital object identifier (DOI)?
 - The dataset will be distributed via GitHub upon acceptance. It does not have a digital object identifier (DOI) at this time.
 - When will the dataset be distributed? The dataset will be distributed before the conference.
 - Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access point

to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these restrictions. The dataset will be distributed under the Apache License 2.0.

- Have any third parties imposed IP-based or other restrictions on the data associated with the instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees associated with these restrictions. No.
- Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any supporting documentation. No.

A.7.7 Maintenance.

- Who will be supporting/hosting/maintaining the dataset? The first author of this paper, will be supporting, hosting, and maintaining the dataset.
- How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The first author can be contacted via email.
- Is there an erratum? If so, please provide a link or other access point.

No.

- Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so, please describe how often, by whom, and how updates will be communicated to dataset consumers (e.g., mailing list, GitHub)? No, the dataset will not be updated regularly. If updates are planned in the future, the reasons will be elaborated on our GitHub repository.
- If the dataset relates to people, are there applicable limits on the retention of the data associated with the instances (e.g., were the individuals in question told that their data would be retained for a fixed period of time and then deleted)? If so, please describe these limits and explain how they will be enforced. Not applicable, as the dataset does not contain data that directly relates to identifiable individuals.
- Will older versions of the dataset continue to be supported/hosted/maintained? If so, please describe how. If not, please describe how its obsolescence will be communicated to dataset consumers.

Yes, older versions of the dataset will continue to be supported, hosted, and maintained. If updates are made, the old version will be maintained, and the new version will be released with an updated version number, such as Amazon Review Plus 2.0.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so? If so, please provide a description. Will these contributions be validated/verified? If so, please describe how. If not, why not? Is there a process for communicating/distributing

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

these contributions to dataset consumers? If so, please pro- vide a description. Yes, if others want to contribute to the dataset, they can submit a pull request or contact us via email. Contributions will be validated and verified by the maintainers before being merged into the main dataset. This process ensures the quality and integrity of the dataset, and updates will be communicated through the GitHub repository.	 A.8 Accessibility 1. Links to access the dataset and its metadata will be made available upon acceptance. 2. The data is saved in a JSON format, with an example provided in the README file. 3. The dataset will be maintained on an official GitHub account by the authors. 4. The dataset will be released under the Apache License 2.0.
	A.9 Data Usage
	The authors bear all responsibility in case of violation of rights.
1	19