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Abstract

Recent advances in reinforcement learning (RL) with numerical feedback, such as scalar
rewards, have significantly enhanced the complex reasoning capabilities of large language
models (LLMs). Despite this success, we identify three key challenges encountered by RL
with solely numerical feedback: performance plateaus, limited effectiveness of spontaneous
self-reflection, and persistent failures. We then demonstrate that RIL-finetuned models,
even after exhibiting performance plateaus, can generate correct refinements on persistently
failed problems by leveraging natural language feedback in the form of critiques. Build-
ing on this insight, we propose Critique-GRPO, an online RL framework that integrates
both natural language and numerical feedback for effective policy optimization. Critique-
GRPO enables LLMs to learn from initial responses and critique-guided self-refinements
simultaneously while maintaining exploration. Additionally, we employ a shaping func-
tion to amplify learning from correct, especially unfamiliar, refinements and penalize in-
correct ones. Extensive experiments with Qwen2.5-7B-Base, Qwen2.5-Math-7B-Base, and
Qwen3-8B demonstrate that Critique-GRPO consistently outperforms supervised learning
and RL-based fine-tuning methods across eight challenging mathematical, STEM, and gen-
eral reasoning tasks, improving average pass@1 scores by approximately 4.4% and 3.8%
on Qwen2.5-7B-Base and Qwen3-8B, respectively. Notably, Critique-GRPO enables effec-
tive self-improvement through self-critiquing and weak-to-strong generalization, achieving
consistent gains over GRPO, such as 16.7% and 10.0% pass@1 improvements on AIME 2024.

1 Introduction

Reinforcement learning (RL) has been a key driver of recent advancements in enhancing the reasoning
capabilities of large language models (LLMs) [Yang et al.| (2025); [DeepSeek-Al et al| (2025); [OpenAT et al.
(2024)); [OpenAl| (2025)). In particular, reinforcement learning with numerical feedback, typically in the form
of scalar rewards and often referred to as the R1-Zero training paradigm DeepSeek-Al et al.| (2025)), enables
base LLMs to learn from their own generations through trial-and-error learning. High-quality generations
are rewarded positively, while low-quality generations are penalized. This paradigm has revolutionized the
post-training pipeline for LLMs, shifting from imitation learning of expert demonstrations to learning from
the model’s own generations (i.e., experiences) [Zhang et al. (2022); [Silver & Sutton| (2025)), resulting in
significant performance improvements.

Despite recent advancements, RL with solely numerical feedback faces significant challenges. Our analysis
of Qwen2.5-7B-Base |Qwen et al.| (2025) and Qwen3-8B Yang et al.| (2025) highlights three key issues: (%)
Performance Plateaus: Peak performance does not improve even when scaling training data by 8x (from 4k to
32k examples). (i) Limited Effectiveness of Spontaneous Self-Reflection: Spontaneous self-reflection during
fine-tuning, often described as “Aha moments,” has limited impact on enhancing problem-solving success.
(ii1) Persistent Failures: Models consistently fail on certain problems despite extensive trial-and-error fine-
tuning. We hypothesize that these limitations stem from the inherent constraints of numerical feedback,
which provides limited information about why a response is correct or incorrect and how to improve it.
Additionally, the limited effectiveness of spontaneous self-reflection behaviors exacerbates these challenges.
Together, these issues underscore the need for richer feedback mechanisms to enable more effective learning.



Under review as submission to TMLR

. 70
Policy 68.1368.26 933
. . 68 90
Finetuning w/ Sampling
Critique-GRPO __66 B 80.0
] ) S 63.75 < 80
Finetuning 64 o 7 073-3
® = .
w/ GRPO 2 62 < 70%6.7
o S c 63.3
Self- (Initial) % 60 + Critique-GRPO f‘ 60.0
Refinements ~ Combining Generations 2 QeI © 00 + Critique-GRPO

558 - + Critique-GRPO a (Self-Critique)

4 56.25 (Self-Critique) & —9— + R1-GRPO
<56 - :;GRPO 5014 /6.7 +SFT

+
.. Qwen3-8B
Self-Refining 54| 53.36 Qwen3-8B 0 40.0 (w/ Think)
- (w/ Think)
w/ Critiques 5 51 PE 55 37
Math, STEM, and General K
(a) Online Reinforcement Learning with Critique-GRPO (b) Results on Eight Reasoning Tasks (c) Self-Improvement via Self-Critiquing

Figure 1: (a) Critique-GRPO enhances online reinforcement learning by enabling the model to learn from
both initial responses and self-refinements through natural language feedback (critiques), highlighted in
green, instead of relying solely on numerical feedback (scalar rewards). (b) Critique-GRPO improves the
average Pass@1 score on Qwen3-8B by approximately 4.5% across eight reasoning tasks compared to GRPO.
(c) Critique-GRPO facilitates self-improvement via self-critiquing, obtaining 66.7% pass@1 on AIME 2024
and consistent gains across pass@k scores (k=1-256) over GRPO.

Natural language feedback (NLF) in the form of textual critiques offers a promising solution by providing
detailed, targeted guidance |Saunders et al| (2022)); |Chen et al. (2024); McAleese et al.| (2024). However,
existing approaches often fail to fully exploit the potential of textual critiques. Many studies
(2023); Whitehouse et al.| (2025)); Liu et al.| (2025b)); [ILightman et al.| (2024); |Zhang et al.|(2024) primarily use
critiques for evaluation, transforming them into numerical rewards for model improvement via RL algorithms
such as Proximal Policy Optimization (PPO) [Schulman et al|(2017) or Group Relative Policy Optimization
(GRPO) [Shao et al. (2024). This transformation often discards valuable constructive information embedded
within the critiques. Some studies |Chen et al. (2024); Wang et al| (2025) utilize critiques to generate
refinements and fine-tune models on these refinements through supervised learning. While effective, these
offline approaches are limited by their inability to support consistent exploration and online refinement. This
raises a key research question: Can we incorporate critiques into an online reinforcement learning framework
to enable LLMs to spontaneously learn from both initial generations and refinements?

To answer this, we first investigate whether RL-finetuned models, even after their performance has plateaued,
can successfully refine responses to persistently failed problems when guided by critiques. Our findings in
Section [3|confirm this holds true even for simple indicative critiques (“correct”/“incorrect”) and is particularly
effective with chain-of-thought (CoT) critiques, which provide a step-by-step evaluation Wang et al, (2025));
[Whitehouse et al.|(2025)). Building on this insight, we propose Critique-GRPO, a novel online RL framework
that synergizes numerical and natural language feedback for effective policy optimization. As depicted in
Figure [1], Critique-GRPO allows the model to learn from both its initial sampled responses and subsequent
self-refinements, which are guided by critiques from a reward system (model-based or rule-based). This dual
learning mechanism encourages the model to integrate targeted feedback while preserving policy exploration.
Furthermore, we employ a shaping function to amplify learning from correct, unfamiliar refinements while

penalizing incorrect ones (2025).

We evaluate Critique-GRPO on non-reasoning models Qwen2.5-7B-Base [Qwen et al.| (2025)), Qwen2.5-Math-
7B-Base [Yang et al.| (2024), and the reasoning model Qwen3-8B [Yang et al. (2025) across five challenging
in-distribution mathematical reasoning tasks. Additionally, we assess its generalization capability on three
out-of-distribution scientific and general reasoning tasks. Extensive results demonstrate that Critique-GRPO
significantly outperforms both supervised and RL-based fine-tuning methods, improving the state-of-the-art
(SOTA) average pass@1 by approximately 4.4% on Qwen2.5-7B-Base and 3.8% on Qwen3-8B. Furthermore,
exploration into leveraging Critique-GRPO for self-improvement via self-critiquing and weak-to-strong gener-
alization exhibits consistently superior performance over self-improvement with GRPO, e.g., yielding 66.7%
vs. 50.00% and 60.00% vs. 50.00% on AIME 2024, respectively.
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In summary, our contributions are three-fold:

e We conduct an in-depth analysis to identify three key challenges of RL using solely numerical feed-
back and highlight the potential of natural language feedback to address these limitations.

e We propose Critique-GRPO, a framework that enables LLMs to learn simultaneously from both
initial responses and their refinements during online RL by leveraging both natural language and
numerical feedback.

o We validate the efficacy of Critique-GRPO through extensive experiments, demonstrating superior
performance across eight mathematical, STEM, and general reasoning tasks.

2 Related Work

Enhancing LLM Reasoning with Reinforcement Learning. Reinforcement Learning (RL) has
proven highly effective in enhancing the reasoning abilities of LLMs (OpenAl et all [2024; |DeepSeek-Al
et al., 2025} |Fatemi et al., 2025} [Li et al.,|2025|). This is typically achieved by fine-tuning models on complex
reasoning tasks to incentivize diverse reasoning behaviors (Gandhi et al., 2025; [Yue et al., |2025). Recent
advancements have utilized RL with numerical feedback (e.g., +1 for correct responses, -1 for incorrect
ones) (OpenAl et al., [2024} DeepSeek-AT et al., 2025} [Liu et al. 2025a; [Yu et al., 2025)). These methods of-
ten leverage online policy optimization algorithms such as Proximal Policy Optimization (PPO) (Schulman
et al., 2017)), Group Relative Policy Optimization (GRPO) (Shao et al., [2024)), REINFORCE (Williams,
1992), and Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al.l|2025)). However,
numerical feedback is inherently sparse, and models frequently struggle with tasks that extend beyond their
current knowledge boundaries, limiting their ability to achieve meaningful improvement (Xi et al., [2024;
Gandhi et all 2025). While recent approaches address this limitation by incorporating high-quality expert
demonstrations alongside online exploration (Yan et all [2025]), our approach distinctly enables models to
refine their outputs by incorporating textual feedback (e.g., CoT critiques) that directly addresses potential
errors. This integration of textual feedback with online exploration for policy optimization results in superior
performance.

Learning from Natural Language Feedback. Natural Language Feedback (NLF), provided in the
form of textual critiques, offers a powerful mechanism for improving LLMs. NLF provides detailed and
targeted insights into flaws in model-generated outputs, enabling both accurate evaluation and/or response
refinement (Saunders et al., |2022; |Chen et al., [2024). Many existing methods convert NLF into numerical
reward signals for reinforcement learning (Kim et al., [2023; |Whitehouse et al.| [2025; |Liu et al., |2025b;
Lightman et al., |2024; |(Ouyang et al.l [2022; |Casper et al., 2023} Rafailov et al.l [2024). Other approaches
explore learning directly from NLF, often by fine-tuning models to imitate the provided feedback (Hancock
et al., 2019; |Wang et al., 2025). Additional strategies involve either employing a dedicated refinement
model (Chen et al., 2024) or using the primary model itself (Wang et al., 2025) to incorporate feedback into
erroneous responses. These corrected responses are then used for further optimization, typically through
supervised fine-tuning. In contrast, our approach enables LLMs to directly learn from NLF to iteratively
refine their responses, while simultaneously maintaining online exploration through reinforcement learning.
This integration of textual feedback and RL further enhances the model’s ability to address errors dynamically
and improve performance.

3 Limitations of RL with Numerical Feedback and the Promise of Natural Language
Guidance

3.1 Limitations of Learning with Numerical Feedback

We investigate the limitations of fine-tuning with RL using numerical feedback from three key perspectives:
(i) How performance evolves over time. (ii) The cognitive behaviors that contribute most significantly to
successful problem-solving. (%) The model’s ability to solve previously failed problems through trial-and-
€error.
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Setup. We conduct experiments on non-reasoning models, Qwen2.5-7B-Base (Qwen et al., |2025) and
Qwen3-8B-Base (Yang et al.,|2025), and a reasoning model, Qwen3-8B (Yang et al., 2025)), for mathematical
reasoning tasks. Specifically, we fine-tune the models using GRPO (Shao et al) |2024) with numerical
feedback[1]

Datasets and Evaluation Metrics. We utilize randomly sampled subsets of 4k, 8k, 16k, and 32k examples
from a reorganized 45k subset (Yan et al. [2025)) of OpenR1-Math-220k (Bakouch et al. [2025)). The prompts
are sourced from NuminaMath 1.5 (Li et al. |2024)), while the ground truth chain-of-thought (CoT) reason-
ing paths are generated by Deepseek-R1 (DeepSeek-Al et all [2025). Unless otherwise specified, experiments
primarily use 4k training prompts. For validation, we randomly sample 500 examples from the valida-
tion set curated by (Yan et al., [2025)), which includes examples from Olympiad Bench (He et al., [2024b)),
MATH (Hendrycks et al., 2021), Minerva-Math (Lewkowycz et al., [2022), AIME 2024 (Li et al., |2024), and
AMC 2023 (Li et al.,|2024). To enable a holistic evaluation, we assess performance on in-distribution (ID)
tasks using Minerva-Math (Lewkowycz et al., [2022)) and on out-of-distribution (OOD) tasks using GPQA-
Diamond (physics, chemistry, biology) (Rein et all 2024). During evaluation, we use greedy decoding
(temperature = 0) and report accuracy (pass@1

Reward Design. We employ rule-based evaluation to provide numerical feedback (scalar rewards), using
Math—Verinyl to validate the correctness of generated answers against ground truth during fine-tuning. Bi-
nary rewards are assigned as follows: +1 for correct final answers and 0 for incorrect ones. These rewards
serve as a proxy for assessing the accuracy of generated responses.

Implementation Details. Our implementation leverages the VERL library (Sheng et all [2024) and samples
four candidate responses per prompt during fine-tuning.
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(a) RL fine-tuning dynamics of Qwen2.5-7B-Base. (b) RL fine-tuning dynamics of Qwen3-8B.

Figure 2: RL fine-tuning dynamics of Qwen2.5-7B-Base (left) and Qwen3-8B (w/ Thinking) (right) using
GRPO with numerical feedback on the validation set with varying numbers of training examples.

Results. RL with solely numerical feedback frequently encounters performance plateaus. Fig-
ure 2] illustrates the RL fine-tuning dynamics of Qwen2.5-7B-Base and Qwen3-8B across varying numbers of
training examples. On-policy RL frequently stagnates, as reflected in validation set accuracy: Qwen2.5-7B-
Base reaches its highest performance at approximately 45-46% accuracy after 120 steps (Figure , while
Qwen3-8B plateaus at 65-67% accuracy after 200 steps (Figure 2b). Notably, both models show minimal
improvement in peak performance, even with an 8x increase in the number of training prompts.

Spontaneous self-reflection has limited impact on enhancing problem-solving success. Cognitive
behaviors are widely recognized as key contributors to successful complex reasoning (DeepSeek-Al et al.l

LGRPO is used without loss of generality, as RL algorithms such as PPO and GRPO exhibit comparable performance.
?pass@k measures the percentage of problems where the model produces a correct solution within its first k attempts.
Shttps://github.com/huggingface/Math-Verify
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2025; |Gandhi et al., [2025). In particular, increased self-reflection behaviors after RL fine-tuning, which
mimic humans reflecting on past experiences and refining their approach to reach a solution (commonly
referred to as the “Aha moment” (DeepSeek-Al et al. 2025)), have drawn significant attention. However,
does spontaneous self-reflection play the most critical role in improved performance?

To address this question, we characterize six key cognitive behaviors that contribute to self-improving rea-
soning during RL fine-tuning: () Subgoal Setting: Decomposing complex problems into smaller, manageable
subtasks. (if) Summarization: Summarizing the current state by identifying completed subtasks and de-
termining the next steps in reasoning. (ii7) Verification: Systematically checking intermediate results or
computations to ensure correctness. (i) Backtracking: Identifying errors or dead-ends in reasoning and
revising previous methods or approaches. (v) Backward Chaining: Reasoning from desired outcomes back
to the initial inputs or steps required to achieve the result. This is particularly useful in multiple-choice
questions where answer options are provided. (Gandhi et al., 2025) (vi) Anticipation: Anticipating poten-
tial inaccuracies or considering alternative solutions to a problem. We refer to the first two behaviors as
planning behaviors, while the last four are categorized as self-reflection behaviors. We analyze the
contribution of these behaviors to solving problems that the base model was previously unable to solve.
For Qwen2.5-7B-Base, we identify 87 previously unsolved problems from the Minerva-Math dataset and 37
from the GPQA-Diamond dataset. For Qwen3-8B, we identify 33 previously unsolved problems from the
Minerva-Math dataset and 15 from the GPQA-Diamond dataset. More details can be found in Appendix [C]
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Figure 3: Impact of different reasoning behaviors on solving previously failed problems after RL fine-tuning
with numerical feedback for Qwen2.5-7B-Base (left) and Qwen3-8B (right) on test tasks.

Figure [3] presents the average success contribution of various behaviors, showing that planning behaviors
are the primary contributors to successful problem-solving, while self-reflection behaviors contribute less in
both the mathematical (Minerva-Math) and STEM (GPQA-Diamond) domains. In Figure [3a] self-reflection
behaviors barely contribute in the mathematical domain for the non-reasoning model. Thanks to extensive
training on expert demonstrations with diverse reasoning behaviors in the mathematical domain (Yang et al.,
2025)), the reasoning model shows that self-reflection behaviors make a noticeable contribution (Figure .
Nevertheless, self-correction-related behaviors, such as backtracking, backward chaining, and anticipation,
still contribute considerably less. These observations suggest the limited effectiveness of spontaneous self-
reflection. Further analysis on Qwen3-8B-Base is provided in Appendix

Models exhibit persistent failures on a subset of problems despite trial-and-error fine-tuning.
We evaluated the best-performing RL-finetuned Qwen2.5-7B-Base and Qwen3-8B models on the 4k training
prompts. As shown in the left panel of Table [I} these models consistently failed on approximately 29%
and 3.75% of problems, respectively, with pass@4 = 0, despite undergoing trial-and-error fine-tuning, where
correct responses are rewarded, and incorrect responses are penalized. While the reasoning model (Qwen3-
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8B) demonstrates higher performance with considerably fewer persistent failures, the results suggest that
both models struggle with certain problems when relying solely on numerical feedback.

A likely cause of these performance plateaus and persistent failures is the sparse informational content of
numerical feedback. Scalar rewards often fail to convey why a response is correct or incorrect or how to
improve multi-step reasoning. Furthermore, the limited effectiveness of spontaneous self-reflection exacer-
bates these challenges, making it difficult for models to address problems beyond their existing knowledge
boundaries without additional guidance. Together, these limitations highlight the necessity of richer feedback
mechanisms to enable more effective learning.

3.2 Promise of Learning from Natural Language Feedback

To move beyond the limitations of purely numerical reward signals, we explore the potential of leveraging
natural language feedback to help models identify errors and refine their responses. Specifically, we examine
three types of critiques: (i) Indicative Critique: A heuristic-based critique that merely indicates the binary
correctness of the generated solution. (%) Indicative Critique with Ground Truth (Critique w/ GT): A
heuristic-based critique that provides both the binary correctness indication and the ground truth answer.
(itt) CoT Critique: A model-generated critique providing step-by-step reasoning to justify correctness or
incorrectness, concluding with a binary correctness indicationﬁ Examples of these three critique types are
shown later.

We summarize the process for leveraging textual critiques to guide the refinement of LLM-generated responses
in Algorithm [T} A more detailed description is provided in Appendix [F] and an illustrative example of the
refinement process with a CoT critique is available in Appendix [H]

Algorithm 1 Leveraging Textual Critiques for Refinement of LLM-Generated Responses

Require: LLM 7y, Reasoning-based reward model 7gyys, evaluation function Eval, set of questions Q = {q},
predefined instructions I, ar_ld Liefine, number of samples k
Ensure: Refined responses {yfg%ncd} for persistently failed questions

1: for each question ¢ € ) do # Step 1: Initial Response Sampling
2 Sample k initial responses: {y((f)}f:l ~ (- | q)

3: end for

4: for each question ¢ € () do # Step 2: Response Evaluation and Critique Generation
5: for each initial response y(()i) € {y(()i) k  do

6 Generate CoT critique: C(&T ~arym (| Ies g, y(()i))

7 Evaluate correctness: Eval(q,y(()i)) €{0,1}

8 if Eval(q, y(()i)) =0 then

9: Construct heuristic-based critiques: cgi) (indicative) and c(ézr (with ground truth)

10: end if

11: end for

12: end for

13: Identify persistently failed questions:

Qraited < {7 € Q | Vi : Bval(q,yg”) = 0}

14: Form triplets (g, yéj), c9) for each q € Qfajleq and each y(()j), where ¢l9) ¢ {cggT, cgr)r, c%j)}

15: for each triplet (q,y(()j), c(j)) do # Step 3: Self-Refinement Generation
16: Generate refined response: yfi%ned ~ 79 (- | Trefine, G y(()J), c)
17: end for

return Refined responses {ygf)ined} for all (q, y(()j ), cl))

Setup. As described in the previous section, We evaluate the best-performing RIL-finetuned Qwen2.5-7B-
Base and Qwen3-8B models, generating four responses per question for a set of 4k prompts. Persistently

4The CoT critique includes step-by-step evaluation and an improvement recipe but does not contain an expert demonstration.
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failed question-response pairs are identified as those with pass@4 = 0. For each such pair, we prompt GPT-
4o (Hurst et al., 2024) to generate a CoT critique and then construct the two corresponding heuristic-based
critiques. Examples of these critique types are shown below. Subsequently, we prompt the models to refine
these failed responses.

Evaluation Metrics. To assess the efficacy of the critique and refinement process, we define the following
metrics: (7) Valid Critiques Generated: The percentage of initially erroneous responses for which the
critique model (my) successfully generated a well-formed and usable critique. This accounts for potential
failures in the critique generation process itself. (i7) Successful Refinements: The percentage of initially
erroneous responses (that received a valid critique) for which the LLM () subsequently generated a correct
refined response. (7)) Critiqued Questions: The percentage of unique questions (all of whose initial &
responses were erroneous) for which at least one of their erroneous responses received a valid critique. (7v)
Questions Successfully Refined: The percentage of unique questions (all of whose initial k& responses
were erroneous) for which at least one of their erroneous responses was successfully corrected through the
refinement process. We evaluate the correctness of the refinements using the rule-based method described
earlier.

[COT Critique )

Let’s analyze the student’s solution step-by-step and identify any errors:

#+#4 Step 1: Geometry Understanding The student correctly identifies the geometry of the problem,
noting that the sphere is tangent to the base and sides of the cone, and that the axial section forms an
isosceles triangle.

#+#4 Step 2: Variable Definitions The student defines r as the radius of the sphere, R as the radius of
the base of the cone, and h as the height of the cone. These definitions are appropriate.

#+#+# Step 3: Relating Sphere and Cone The student attempts to relate r, R, and h using similar
triangles. However, the equation derived:

Rh
=
h+ R
is not directly applicable to the problem as it does not consider the specific condition that the areas are

equal.
##4# Step 4: Equating Areas The student correctly equates the areas of the sphere and the base of the
cone:

47’ =7R? = R=2r

This step is correct.
##4 Step 5: Substitution and Error The student substitutes R = 2r into the earlier equation, leading
to:
(2r)h
T =
h+ 2r

This substitution is unnecessary and results in incorrect simplification. The correct approach would
involve using the inradius formula for the triangle formed by the axial section of the cone.

### Step 6: Angle Calculation The student calculates tanf = 1 and concludes 0 = 45°, leading to
cos(90°) = 0. This is incorrect because the angle calculation should be based on the relationship between
h and R, derived from the inradius formula.

##4 Step 7: Precise Calculation The student attempts to verify the angle calculation but repeats the
same incorrect logic, leading to the same incorrect conclusion.

### Correct Solution Approach The correct approach involves using the inradius formula for the triangle
formed by the axial section of the cone: - Calculate the inradius using the area and semi-perimeter of
the triangle. - Substitute R = 2r and solve for A in terms of r. - Relate h and 6 using trigonometric
identities. - Calculate cos(26) using the double angle identity.

The correct final answer is:

cos(26) = %

Conclusion: incorrect [END]
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(Indicative Critique The generated solution is incorrect. )

[Indicative Critique w/ GT The generated solution is incorrect, the ground truth is % ]

Table 1: Analysis of performance gains from critique-based self-refinement.

Method % Failed Questions Critique % Valid % Valid % Critiqued % Questions
(Pass@4=0) Type Critiques Refinements Questions Refined
RI-finetuned Indicative Critique 100.00 2.09 100.00 7.05
Qwen2.5-7B-Base 29.07 Indicative Critique w/ GT  100.00 1.98 100.00 6.88
CoT Critique 60.06 36.47 95.10 55.37
RL-finetuned Indicative Critique 100.00 3.33 100.00 8.67
Qwen3-8B 3.75 Indicative Critique w/ GT  100.00 3.67 100.00 10.67
(w/ Thinking) CoT Critique 50.17 10.63 88.67 20.00

Results. CoT Critiques facilitate effective model refinement. Table [I] shows that refinement guided
by CoT critiques achieves the highest valid refinement rate (36.47% and 10.63%) and the largest percentage
of successfully refined questions (55.37% and 20.00%) on Qwen2.5-7B-Base and Qwen3-8B, respectively. This
performance significantly surpasses refinement based on indicative critiques or critiques with ground truth,
even though the CoT critique generation process produces valid critiques for only 60.06% and 50.17% of
erroneous responses. The effectiveness of CoT critiques can be attributed to their richness: by providing
a step-by-step explanation of the reasoning along with targeted guidance on the correct solution approach,
they offer substantially more informative feedback than simpler alternatives.

Binary correctness signals alone can provide refinement benefits. Refinement with indicative
critiques with/without ground truth also yields some successful refinements, albeit at a substantially lower
rate (approximately 2%-4% valid refinements). This suggests that even simply indicating the correctness of
a response can provide a minimal benefit, indicating some promise in leveraging natural language feedback
to augment learning from numerical signals. However, the lack of a substantial difference between indicative
critiques and critiques with ground truth suggests that providing only the ground-truth answer, without
any explanation or reasoning, provides little additional guidance to the model. The model appears to
struggle to effectively leverage the ground truth answer without an understanding of why the initial response
was incorrect or how to arrive at the correct solution. Additional results on Qwen3-8B-Base are shown in

Appendix [D]
4 Critique-GRPO

Motivated by the potential of leveraging critiques, particularly CoT critiques, for effective model refinement
(Section , we introduce Critique-GRPO, an online optimization algorithm that learns from both natural
language and numerical feedback. As illustrated in Figure [4] Critique-GRPO facilitates effective online
learning and exploration by enabling the model to learn from both its generated responses and its effective
refinements by incorporating natural language feedback (specifically, critiques). Before delving into the
details of Critique-GRPO (Section, we briefly review Group Relative Policy Optimization (GRPO) (Shao
et al., [2024) (Section [4.2).

4.1 From GRPO to Critique-GRPO

GRPO is an online RL algorithm widely used during the fine-tuning stage of LLMs. It builds on Proximal
Policy Optimization (PPO) (Schulman et al2017)), but eliminates the need for value function approximation
by estimating advantages based on the relative performance of groups of actions. In the context of LLM
policy optimization, let the model policy be parameterized by 6. For each question ¢ in a given set @, a
group of responses {y¥}7_, is sampled from the old policy 7oq. A reward model then scores these responses,
yielding rewards {R(i) ™ .. The GRPO training objective is formulated as:
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Figure 4: Overview of Critique-GRPO. Given a question, Critique-GRPO samples initial responses and then
refines these responses using critiques generated by a reward system (either model-based or rule-based).
These refinements are combined with the initial responses to optimize the policy within an online reinforce-
ment learning framework. A weighted advantage function, combined with policy shaping, emphasizes correct
refinements while strongly penalizing incorrect ones.

Jarro(0) = Eyq, yyn mroala)

no Iy (1)
1 1 i NG . i 2 (i

- E g g {min {r,g )(H)A,E ),chp(rt( )(9), 1—e1+ e)A,g )} - ﬁDKL[mHﬂ'ref]} ,
i=1

(%)

[yl t=1
where r,gi) (0) is the probability ratio, comparing the current policy 7y to the old policy 7ol from which the
responses were sampled:

(@) (@)
% T ) %
rt( )(9) = %qy%)), where rt( )(901d) =1, (2)
Told(Yy 19 Y<t)

Here, € and ( are hyperparameters. The term € controls the range of the clipped probability ratio, enforcing
a pessimistic lower bound on policy performance to prevent excessively large policy updates. Meanwhile, 8
regulates the KL divergence penalty, constraining the trained policy from deviating significantly from the
reference policy.

The advantage /19 for all tokens in a response is calculated by normalizing the rewards { R®)}7_, using the

group mean and standard deviation:

RO — mean({RO)...., R}
std({RM), ..., R} '

AW = (3)

Recent work (Liu et all [2025a)) suggests that the token-level normalization and the standard deviation
term in the advantage calculation (highlighted in gray) may introduce biased optimization. Following their
implementation, we remove these terms to obtain an unbiased optimization objective.
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4.2 Online Learning with Critique-GRPO

We introduce Critique-GRPO, an online policy optimization framework that enables a model to learn si-
multaneously from its generated responses and their refinements by incorporating critiques generated by a
reasoning-based reward model. This approach helps the model discover new solutions and mitigate repeated
failures on specific questions, as discussed in Section [3]

Specifically, Critique-GRPO operates in three main steps (Figure :

Step 1: Initial Response Sampling. Given an LLM and a set of questions @ = {q}, we sample k initial
responses for each question from the old policy 7r01d {y(z)}" ~ To1d(* | ¢). These responses are evaluated
using a reward system to generate both critiques {c()}7_, and scalar rewards {R("}2_, formulated as:

. RW « Reward(q,y ), Vi.

We consider two types of reward systems: model-based (the primary focus of this work) and rule-based (a

variant). () For the model-based reward system, we use a reasoning-based reward model wrps to generate

CoT critiques: c(c())T ~ mrm (s | Ic,q,y(i)), where I, is the critique instruction. These critiques, based

on question-response pairs, are described in Section Binary correctness labels from the critiques are
converted into scalar reward scores: R(®) <« cg)T (i) For the rule-based reward system, we compare
the generated responses against ground- truth answers using a string-matching function to compute scalar

rewards: R = is __equivalent(y ) ,yar) From these evaluations, two heuristic-based critiques, i.e., c%z)
(indicative critique) and ch (critique with ground truth) are derived: c% ), (l) — R as detailed in
Section B

Step 2: Critique-Guided Self-Refinement. Next, we prompt the LLM to generate refined responses

conditioned on the question-response-critique triplet (g, y(@® c(i)) and a reﬁnement instruction Iiefine (detailed

in Appendix yrggmed ~ Towa (- | Trefine, 45 ¥?, c(‘)) where ¢V € {CCOT, cézf, o } The reward model scores

these self-generated refinements, producing {chﬁnc ™, (alternatively, the rule-based evaluation function

discussed in Section (3] I could be used). To mitigate potential distributional shifts induced by the refine-
ments7 we randomly sample a subset of &k refinements, denoted by {yggned}iﬁ 1, from the full refinement set
{yreﬁned . This sampling prioritizes correct refinements; if no correct refinements are generated, incorrect
reﬁnements are sampled randomly. We then combine the sampled subset of refinements with the initial
responses to form a mixed group of responsesﬁ

Step 3: Online Policy Optimization. Finally, the model is fine-tuned on a mixed set of initial and
refined responses using scalar rewards. The training objective, adapted from GRPO, is given by:

j iti - 9 :E . il . .
Critique-GRPO (f) 4~ QYD Y ~Tro1a (1) (Y o0} ~To1a (I resine 0,y ()

n lv®| k |yrchncd @) (4)
7
|: E E :Tt ki : 2 : f(reﬁnedt( )>A :|7
=1 t=1 =1 t=1
Objective for Initial Responses Objective for Refined Responses

where the advantages Agi), Agi/) for all tokens in a response are defined as:

AP = RO —mean({RO}Y_, U{RYY 4 Yhsy),
AEZ,) = R(l/) - mean({R(j)}n U {Rreﬁned}k’:1)7

T,gi) (0) and f (rﬁgﬁ)nedyt(G)) represent the token-level probability ratios:

5To ensure consistency, we align the results of model- and rule-based evaluations, isolating the effects of incorporating natural
language feedback.
6Currently, only one refined response is retained. Future work may explore the optimal data ratio.

10



Under review as submission to TMLR

(i )

(1) (%) ) (i
i 7T9(y ‘qu ) i 7T9(yr fin d,t|q7yr fined, t)
P () = RS f(radiea (0) = e s (6)
Told (yt |Q7 y<t)

G .
o (yreﬁned,t|q’ yr;ﬁned,<t) + v

The shaping function f(-) (Yan et al) 2025) (0 < v < 1), depicted in the lower right corner of Figure
reweights the gradients to assign greater importance to low-probability tokens in refined responses. This
encourages the model to effectively learn from unfamiliar (i.e., low-probability under the current policy)
but correct refinements while penalizing failed refinements. In addition, we remove the clipping function for
probability ratios and the KL-divergence penalty term (present in the original GRPO formulation) to reduce
restrictions on policy updates. This enables more substantial model adjustments and facilitates effective
learning from refinements. We summarize Critique-GRPO in Algorithm [2| (Appendix .

5 Experiments

In this section, we evaluate the efficacy of Critique-GRPO on challenging mathematical, scientific and general
reasoning tasks.

5.1 Experimental Setup

Datasets and Evaluation Metrics. We use randomly sampled subsets of 4k examples from a reorganized
45k subset (Yan et all 2025) of OpenR1-Math-220k (Bakouch et al., 2025|) as the training set (as described
in Section . For validation, we use the curated validation set provided by (Yan et all [2025). We evaluate
the model on five well-established mathematical reasoning benchmarks: MATH-500 (Hendrycks et al., [2021)),
Minerva-Math (Lewkowycz et al., 2022)), OlympiadBench (He et al.,[2024al), MATH (Hendrycks et al., [2021)),
AIME 2024 (Li et al., 2024), AIME 2025 (Li et al., 2024), and AMC 2023 (Li et al., 2024). For broader
analysis, we assess the model’s generalization ability on three scientific and general reasoning tasks: Theo-
remQA (Math, Physics, EE&CS, and Finance) (Chen et al., [2023), GPQA-Diamond (Physics, Chemistry,
and Biology) (Rein et all [2024), and MMLU-Pro (Business, Computer Science, Law, etc.) (Wang et al.l
2024). During evaluation, we use greedy decoding (temperature = 0) and report pass@1 over three runs.

Reward Design. During RL fine-tuning, we use model-based evaluation to generate critiques and rule-based
evaluation to provide binary scalar rewards, as described in Section [3}

Compared Methods. We compare Critique-GRPO against the following representative approaches, cate-
gorized into supervised learning and reinforcement learning-based finetuning. All differences are considered
significant at p < 0.01.

Supervised Learning-based Finetuning:

(i) Supervised Finetuning (SFT): Finetuning the base model on high-quality annotated training data using
supervised learning.

(it) Reward rAnked Finetuning (RAFT) (Dong et al., 2023): Finetuning on self-generated correct responses,
sampled based on rule-based evaluation.

(it1) Refinement Finetuning (Refinement FT) (Chen et al., |2024): Finetuning on refined correct responses
generated conditionally on the question, initial response, and CoT critiques.

(i) Critique Finetuning (Critique FT) (Xi et al.,|2024)): Finetuning on annotated CoT critique data to train
the model to critique a given query-response.

(v) Critique-in-the-Loop Finetuning (CITL-FT) (Xi et al.,[2024): Finetuning on mixed data consisting of self-
generated correct responses and refined correct responses, conditioned on the question-initial response-CoT
critique triplet.

Reinforcement Learning-based Finetuning:

11
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(vi) R1-GRPO (DeepSeek-Al et al., [2025): Finetuning the base model on its own generations using the
GRPO algorithm with binary scalar rewards.

(vid) R1-Dr.GRPO (Liu et al.|2025a)): Finetuning the base model on its own generations using the Dr.GRPO
algorithm, which removes terms that cause biased optimization, with binary scalar rewards.

(viii) Critique-GRPO (Indicative Critique): A variant of our framework that utilizes indicative critiques (as
discussed in Section |3)) for refinements.

(iz) Critique-GRPO (Critique with Ground Truth): A variant of our framework that utilizes indicative
critiques paired with ground-truth answers (as discussed in Section [3)) for refinements.

Implementation Details. We conduct experiments using Qwen2.5-7B-Base, Qwen2.5-Math-7B-Base, and
Qwen3-8B, with GPT-40 (which can be replaced by other reasoning-based reward models) serving as the
reasoning-based reward model, as outlined in Section For supervised finetuning baselines, models are
finetuned until convergence, and the best performance is reported. For reinforcement learning approaches,
models are finetuned for 400 steps, and the best performance is recorded. To ensure a fair comparison:
In R1-GRPO, 8 responses (rollouts) are sampled per training prompt with temperature = 1. In LUFFY,
7 responses are sampled per prompt along with one ground truth response (expert demonstration). In
Critique-GRPO, 7 responses are sampled per prompt, along with one refined response from the refinement
sets. All experiments are conducted on 40 NVIDIA A800 80G GPUs. To ensure consistency, we only use
critiques generated by the reward model that align with rule-based evaluations; otherwise, the reward model
is prompted to regenerate the critiques. More implementation details are provided in Appendix [B]

5.2 Main Results

Table [2] presents the evaluation results, highlighting the following key observations:

Incorporating natural language feedback (critiques) into online reinforcement learning en-
hances policy optimization. Critique-GRPO consistently outperforms both supervised learning-based
and RL-based fine-tuning approaches on Qwen2.5-7B-Base and Qwen3-8B across in-distribution and out-
of-distribution tasks. Specifically, Critique-GRPO (CoT critique) improves state-of-the-art (SOTA) average
pass@1 scores by approximately 4.4 points (42.66% — 47.08%) on Qwen2.5-7B-Base and 3.8 points (64.46%
— 68.26%) on Qwen3-8B.

Online self-refinements are more effective than offline self-refinements. Critique-GRPO (CoT
critique) substantially outperforms Refinement FT by approximately 11.9 points (47.08% wvs. 35.21%) and
8.81 points (68.26% wvs. 59.45%) in average pass@1l on Qwen2.5-7B-Base and Qwen3-8B, respectively. Fur-
thermore, it surpasses CITL-FT by approximately 11.4 points (47.08% vs. 35.66%) and 12.4 points (68.26%
vs. 55.84%) on Qwen2.5-7TB-Base and Qwen3-8B, respectively.

Incorporating online refinements facilitates effective policy optimization. Critique-GRPO with
three types of critiques consistently outperforms R1-GRPO and R1-Dr.GRPO on nearly all tasks. Notably,
Critique-GRPO (CoT critique) achieves an average Pass@l improvement of +5.9% over R1I-GRPO and
+4.4% over R1-Dr.GRPO on Qwen2.5-7B-Base. Similarly, on Qwen3-8B, it achieves improvements of +4.5%
over R1I-GRPO and +3.8% over R1-Dr.GRPO. This confirms the effectiveness of natural language feedback
in guiding the model to explore valid responses for problem-solving, consistent with the findings in Section [3]
Furthermore, Critique-GRPO significantly enhances the model’s generalization ability, particularly in science
and general reasoning tasks.

Higher-quality refinements, guided by richer critiques, lead to more effective policy optimiza-
tion. Critique-GRPO (CoT critique) consistently outperforms its two variants across all tasks, achieving
average pass@1 gains of +1.8-2.4% and +2-2.3% on Qwen2.5-7B-Base and Qwen3-8B, respectively. This
improvement arises from the superior ability of CoT critiques to facilitate effective model refinements com-
pared to binary correctness signals, with or without ground-truth answers, as discussed in Section [3| The
detailed guidance provided by CoT critiques enables more precise and impactful policy updates.

12
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Table 2: Zero-shot evaluation results (Pass@1) on Mathematical reasoning (ID) and Scientific and Gen-
eral (OOD) reasoning tasks. “Expert Demo. (Demonstration)” refers to ground-truth CoT generated by
Deepseek-R1, as described in Section “Num. Feedback” and “Lang. Feedback” denote numerical and
natural language feedback, respectively.

Supervision Math (ID) Science & General (OOD)
Method R R Avg.
Expert Num. Lang. MATH Minerva Olympiad AMC23 AIME24 Theorem GPQA MMLU
Demo. FB FB 500 MATH Bench QA Diamond Pro

Non-Reasoning Model
Qwen2.5-7TB-Base - -

Supervised Learning-based Finetuning

60.80 20.20 30.40 35.00 13.30 21.60 28.79 46.24  32.04

+ SET v X X 61.60 24.30 23.40 40.00 6.70 26.50 30.30 51.49 33.04
+ RAFT X v X 67.00 19.50 32.40 50.00 10.00 24.40 23.74 47.12  34.27
+ Refinement FT X v v 65.80 21.30 32.10 47.50 13.30 24.40 29.80 47.51 35.21
+ Critique FT X X v 66.00 19.10 29.30 47.50 13.3 29.60 28.79 44.46 34.76
+ CITL-FT X v v 70.20 19.90 30.70 42.50 16.70 28.70 28.28 48.31 35.66
Reinforcement Learning-based Finetuning

+ R1-GRPO X v X 74.00 32.00 38.50 42.50 16.70 40.60 33.33 51.81 41.18
+ R1-Dr.GRPO X v X 78.40  34.90 39.90 40.00 13.30 43.10 38.89 52.83 42.66

+ Critique-GRPO (Ours)
(Indicative Critique)
+ Critique-GRPO (Ours)
(Critique w/ GT)
+ Critique-GRPO (Ours)
(CoT Critique)

Reasoning Model (w/ Thinking)

v v 76.00 36.00 41.00 55.00 13.30 41.80 37.88 55.97 44.62

v v 76.80 35.70 39.60 62.50 10.00 44.00 38.89 54.88 45.30

v v 77.80  36.80 42.40 62.50 20.00 44.00 37.88 55.28 47.08

Qwen3-8B . . - 8200 41.20 4410 6750  40.00  46.90 35.86 69.31 53.36
Supervised Learning-based Finetuning

+ SFT v x x  83.20  43.80 46.40 8250  40.00  48.90 38.38  66.81 56.25
+ RAFT x v ox 8280 4410 46.40 75.00  36.70  46.80 37.88  69.00 54.84
+ Refinement FT x v v 8740  46.00 5450  80.00  40.00  55.40 4545  66.82 59.45
+ Critique FT x x v 8440  37.10 49.80  80.00  36.70  46.40 35.35  64.10 54.23
+ CITL-FT x Vv 8500  43.00 46.80 70.00  43.30  48.00 41.92  68.73 55.84
Reinforcement Learning-based Finetuning

+ R1-GRPO x v x  91.00  52.60 65.60 8250  50.00  57.90 40.40  70.00 63.75
+ R1-Dr.GRPO x v x 9120  51.10 63.60 8250  53.30  59.00 44.44 7051 64.46
2> O PIEHelH0) (s v v 9100 47.80 63.30  85.00 63.30 60.40  47.47  70.00 66.03

(Indicative Critique)
> Cslitoue-CIIEQ (Omw) v v 9200  50.00 66.80 87.50  56.70  59.00 4747 70.87 66.29
(Critique w/ GT)
- eGP0 (G v v 92.00 5290 66.80 92.50 63.30 60.10  47.98  70.47 68.26

(CoT Critique)

5.3 Investigation on Math-Centric Backbone Models

Table 3: Investigation of RL finetuning with Critique-GRPO on Qwen2.5-Math-7B-Base (Yang et al., 2024).
Results marked with an asterisk are cited from [Yan et al.| (2025)).

Math (ID) Science & General (OOD)
Method MATH Minerva Olympiad , ' oo o 10 Theorem GPQA MMLU Avg.
500 MATH Bench QA Diamond Pro
Qwen2.5-Math-7TB-Base  51.20  13.20  17.60  47.50  13.30 2640  26.77  39.70 29.46
+ SimpleRL-Zero® 76.00  25.00 3470 5490  27.00 - 23.20 3450 -
+ PRIME-Zero* 81.40 39.00 4030 5400  17.00 - 1820 3270 -
+ Oat-Zero* 7800 3460 4340  61.20  33.40 - 23.70 4170 -

+ Critique-GRPO (Ours)

i 83.20 39.00 44.00 67.50 26.70 51.40 40.40 43.79 49.50
(CoT-Critique)
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We evaluate the efficacy of RL fine-tuning with Critique-GRPO on the math-centric backbone model,
Qwen2.5-Math-7B-Base. Specifically, we compare its performance against three representative RL fine-
tuning approaches: (i) SimpleRL-Zero (Zeng et all 2025): an open-source reproduction of R1-GRPO; ()
PRIME-Zero (Cui et al}2025a): fine-tuning the base model with both outcome rewards and process rewards;
(#i4) Oat-Zero (Liu et al. [2025a): fine-tuning the base model with Dr.GRPO.

As shown in Table [3] Critique-GRPO significantly improves the base model with an average pass@1 gain
of +20%, clearly outperforming these representative RL fine-tuning approaches on nearly all tasks, e.g.,
achieving a +6.3% pass@1 gain on AMC23. This result aligns with the performance gains observed on
general-purpose backbone models.

5.4 Self-Improvement via Self-Critiquing

Table 4: Potential for self-improvement through RL fine-tuning using Critique-GRPO with self-generated
CoT critiques (self-critiquing) on Qwen3-8B.

Math (ID) Science & General (OOD)
Method w/ External . R Avg.
Supervision MATH Minerva Olympiad AMC23 AIME24 Theorem GPQA MMLU
500 MATH Bench QA Diamond Pro
Qwen3-8B (w/ Think) - 82.00 41.20 44.10 67.50 40.00 46.90 35.86 69.31 53.36
+ SFT v 83.20 43.80 46.40 82.50 40.00 48.90 38.38 66.81 56.25
+ R1-GRPO v 91.00 52.60 65.60 82.50 50.00 57.90 40.40 70.00 63.75
+ Critique-GRPO (Ours)
(Self-Critique& X 92.00 52.20 65.50 87.50 53.30 59.80 47.47 70.93 66.09
Self-Evaluation
> Catitiieteii 20) (Ot v 92.60 52.60 66.20 95.00 60.00 60.60  47.98  70.03 68.13

(Self-Critique)
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(a) Pass@k on AIME24 of Qwen3-8B. (b) Pass@k on AIME25 of Qwen3-8B.

Figure 5: Comparison of Pass@k for self-improvement using RL fine-tuning via Critique-GRPO (self-
critique), compared to methods relying on external numerical feedback (R1-GRPO), expert demonstrations
(SFT), the base model Qwen3-8B.

To explore the potential of Critique-GRPO in enabling an LLM’s self-improvement through self-critiquing,
we prompt the model itself to serve as a reasoning-based reward model. Specifically, we investigate two types
of self-critiquing: (%) Self-critique, where the model evaluates the correctness of its own responses using CoT
critiques with ground truth answers as reference; and (i) Self-critique & self-evaluation, where the model
evaluates its responses using CoT critiques without any reference (Zhang et al. |2024). These approaches
result in Critique-GRPO (self-critique) and Critique-GRPO (self-critique & self-evaluation), respectively.
Details of the prompts are provided in Appendix [E] Table [] shows the evaluation results on Qwen3-8B, and
Figure |5| presents pass@k performance changes on AIME24 and AIME25 (Li et al., [2024)).
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Critique-GRPO enhances self-improvement through self-critiquing. Table [4| RL fine-tuning with
Critique-GRPO (self-critique) significantly outperforms fine-tuning with GRPO using external numerical
feedback (R1I-GRPO) and supervised fine-tuning with expert demonstrations (SFT). On average, Critique-
GRPO (self-critique) improves pass@1 by +4.5% and +12.0% compared to R1-GRPO and SFT, respectively.
Additionally, the unsupervised approach—Critique-GRPO (self-critique & self-evaluation)—achieves an av-
erage pass@1 improvement of 2.3% over R1-GRPO, highlighting the potential of leveraging self-critique for
self-improvement without any external supervision.

Self-critiquing aids effective exploration. Figure |p| highlights the consistently superior performance
of Critique-GRPO (self-critique) across pass@k metrics, with k ranging from 1 to 256, indicating genuine
improvements. Notably, Critique-GRPO (self-critique) achieves remarkable gains over R1-GRPO for pass@k
with k£ =1 to 4, yielding improvements of 10-16.7% on AIME24 (Figure [5a)).

5.5 Exploration of Weak-to-Strong Generalization

Table 5: Exploration of RL fine-tuning with Critique-GRPO for weak-to-strong generalization on Qwen3-8B.
Refinements, termed as “weaker refinement,” are generated by a weaker model.

Math (ID) Science & General (OOD)
Method MATH Minerva Olympiad , \ ' oo o100 Theorem GPQA MMLU Avg.
500 MATH Bench QA Diamond Pro
Qwen3-8B (w/ Think) 82.00 41.20 44.10 67.50 40.00 46.90 35.86 69.31 53.36
+ R1-GRPO 91.00 52.60 65.60 82.50 50.00 57.90 40.40 70.00 63.75

+ Critique-GRPO (Ours)
(Weaker Refinement 90.40 50.70 64.90 85.00 60.00 59.00 43.43 70.94 65.55
via Critique w/ GT)

We investigate the potential of weak-to-strong generalization (Burns et al. [2023)) using Critique-GRPO,
where a strong model learns from refinements generated by a weaker teacher model. Specifically, we use
Qwen3-8B-Base (Yang et al.}2025)) as the weaker teacher to generate refinements based on indicative critiques
with the ground truth answers, guiding the improvement of Qwen3-8B.

Critique-GRPO enables effective weak-to-strong generalization. As shown in Table [5] Critique-
GRPO (weaker refinement via critique with ground truth) achieves a +12.2% average pass@1 improvement
over Qwen3-8B and outperforms R1I-GRPO (65.55% vs. 63.75%). This demonstrates that refinements from
a weaker model can significantly enhance the performance of a stronger model.

5.6 Investigation of Policy Exploration During RL Finetuning

To investigate policy exploration, we analyze two primary aspects of our RL-finetuned models: () entropy
dynamics during RL fine-tuning for self-improvement using compared RIL-based finetuning approaches on
Qwen2.5-7B-Base and Critique-GRPO (self-critique) on Qwen3-8B (Figure [6]), and (i) changes in response
length during fine-tuning (Figure .

Learning from natural language feedback helps sustain exploration. As shown in Figure the
policy entropy of Critique-GRPO generally remains higher than that of R1-GRPO and R1-Dr.GRPO, sug-
gesting more consistent exploration. The peaks in Critique-GRPO’s entropy dynamics (before step 200) likely
occur when its self-generated refinements deviate significantly from the initial sampled responses, leading
to increased entropy and potentially beneficial distributional shifts. The subsequent decrease in entropy
indicates that the model quickly internalizes these refinements, reducing the distributional deviation. This
dynamic aligns with the observation that rare actions with high advantage can increase policy entropy (i.e.,
unfamiliar but correct responses with high rewards promote effective exploration), whereas high-probability
actions with high advantage tend to reduce entropy (Cui et al.l |2025b). In contrast, R1I-GRPO exhibits
entropy collapse, where policy entropy drops sharply at the start of training and continues to decline mono-
tonically to near zero. R1-Dr.GRPO initially exhibits higher entropy (before step 50) but rapidly drops
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(a) Entropy dynamics for RL-based finetuning ap- (b) Entropy dynamics of self-improvement through
proaches over training steps on Qwen2.5-7B-Base. self-critiquing and weak-to-strong generalization across

training steps on Qwen3-8B.

Figure 6: Entropy dynamics during RL finetuning. A comparison of RL-based finetuning approaches for self-
improvement on Qwen2.5-7B-Base (left) and self-improvement through self-critiquing with Critique-GRPO
on Qwen3-8B (right).

to comparable near-zero values with R1I-GRPO after step 150. Combined with the results in Table [2] the
superior performance of Critique-GRPO over R1-Dr.GRPO and R1-GRPO highlights the importance of
maintaining a certain level of entropy for better performance.

Learning through self-critiquing facilitates policy exploration. Figure[6b]shows that Critique-GRPO
(self-critique) avoids entropy collapse and maintains higher entropy than R1-GRPO. This finding aligns with
the observation that increased exploration improves performance.

1200 + Critique-GRPO
6000 " (CoT Critique)

1 + Critique-GRPO
c 000 £ 5000 (Critique w/ GT)
> =3 M + R1-GRPO
£ 800 < “»'k Qwen3-8B (w/ Think)
- ] f
” 34000, iy
@ 600 @ Wk,
e + Critique-GRPO e TR o |
o J— u¢ o \ ‘ LA s aihe
2 400 (CoT Critique) $3000 N | 'Il'\ 'W:‘.’v"\""“"*} 'r;'w','.
4 + Critique-GRPO o

~ (Critique w/ GT) 2000
200 + R1-GRPO
Qwen2.5-7B-Base
0 50 100 150 200 250 1000 50 100 150 200 250 300
Steps Steps
(a) Response length changes on Qwen2.5-7B-Base. (b) Response length changes on Qwen3-8B.

Figure 7: Comparison of response length changes during RL finetuning on Qwen2.5-7B-Base (left) and
Qwen3-8B (right).

Higher entropy does not always guarantee effective exploration. Unexpectedly, as shown in Fig-
ure Critique-GRPO (weaker refinement via critique with ground truth), shown in green, achieves higher
entropy than Critique-GRPO (self-critique), shown in dark blue, yet performs worse (average pass@1: 65.55%
vs. 68.13%). This discrepancy may be due to refinements from weaker models causing larger distributional
shifts compared to self-refinements, while also being of lower quality. This suggests that the quality of
exploration signals is more critical than the extent of exploration (as reflected solely by entropy).
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Critique-GRPO facilitates concise reasoning. In Figure [7] Critique-GRPO achieves superior perfor-
mance (Table[2)) while minimally increasing response length on Qwen2.5-7B-Base (Figure. This efficiency
likely stems from its critique mechanism, which enables precise error identification and refinement, reducing
the need for verbose reasoning. Additionally, Critique-GRPO tends to reduce response length on Qwen3-8B
(Figure . This trend can be attributed to the correction of Qwen3-8B’s tendency toward redundant and
ineffective self-reflection, as discussed in Section

5.7 Impact of Policy Shaping on RL Finetuning

Table 6: Tmpact of policy shaping on the token-level probability ratios of generated refinements (as introduced
in Section [4) during RL finetuning of Qwen2.5-7B-Base.

Policy Math (ID) Science & General (OOD)
Method Shaping MATH Minerva Olympiad AMC23 AIME24 Theorem GPQA MMLU Avg
500 MATH Bench QA Diamond Pro
Qwen2.5-7B-Base - 60.80  20.20 30.40 35.00 13.30 21.60 28.79 46.24 32.04

+ Critique-GRPO (Ours)
(CoT Critique)

+ Critique-GRPO (Ours)
(CoT Critique)

w/o 77.40  41.00 39.70 45.00 16.70 42.60 34.34 54.88  43.95

w/ 77.80  36.80 42.40 62.50 20.00 44.00 37.88 55.28 47.08

To clarify the impact of policy shaping on the generated refinements during RL finetuning, we present the
results of removing policy shaping during the RL finetuning of Qwen2.5-7B-Base in Table [6]

Policy shaping enhances learning from refine-
ments during online RL finetuning. Critique-GRPO Conciseness
with policy shaping applied to the token-level probability
ratios of generated refinements consistently outperforms
the variant without policy shaping across nearly all tasks,

improving average pass@1 scores by 3.1%. Correctness

5.8 Qualitative Analysis

Fine-Grained Analysis. We conduct a fine-grained
analysis of 100 generated responses on the Minerva- :
MATH dataset across four key dimensions: factuality, Logicality Average Score
conciseness, correctness, and logicality, using the prompt
in Appendix [E] Figure [ shows that fine-tuning with

—— + Critique-GRPO (CoT Critique)

Critique-GRPO on Qwen2.5-7B-Base achieves the best 4 RI-GRPO
performance across all four dimensions as well as in aver- ¥ SFT
age performance. Additionally, the superior performance —— Qwen2.5-7B-Base

of RL fine-tuning with Critique-GRPO over R1-GRPO

in terms of factuality and correctness indicates that CoT Figure 8: Qualitative analysis of generated re-
critiques help the model effectively identify errors and sponses on Minerva-Math across four dimen-
improve valid exploration. The inferior performance of sions: logicality, factuality, conciseness, correct-
SFT in logicality and conciseness may be attributed to ness, and average performance.

the presence of redundant and sometimes illogical self-

reflective reasoning behaviors in expert demonstrations,

which could negatively impact user experience.

Case Study. We present a qualitative comparison between the responses generated by the base Qwen3-8B
model and the RL-finetuned Qwen3-8B model using Critique-GRPO on the MATH-500 dataset. The given
question is: Evaluate sin(arcsin 0.4 4 arcsin 0.5), sin(arcsin 0.5 — arcsin 0.4).
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(- )
Response Generated by Base Qwen3-8B (Abridged)

Okay, so I need to evaluate this expression: sin(arcsin0.4 + arcsin0.5) multiplied by sin(arcsin 0.5 —
arcsin 0.4). Hmm, that looks a bit complicated with all those inverse sine functions. Let me try to break
it down step by step. First, let me recall some trigonometric identities that might help here. I remember
that there are formulas for sin(A+ B) and sin(A — B). Maybe I can use those? Let me write them down:
sin(A + B) = sin A cos B + cos Asin B, sin(A — B) = sin A cos B — cos Asin B

So if T let A = arcsin 0.4 and B = arcsin 0.5, then the expression becomes:

sin(A + B) - sin(A — B)

Wait, so maybe I can compute sin(A + B) and sin(A — B) separately using those identities and then
multiply them together? But before that, maybe I should figure out what A and B are? Well, A is
arcsin 0.4, which means that sin A = 0.4, and similarly sin B = 0.5. But I need cos A and cos B to use
the identities. Since sin? @+ cos?6 = 1, I can find cos A and cos B. Let me compute cos A first. For angle
A, sin A =04, so

cosA=11-sin?A=+v1-0.16 = v0.84.
Wait, 1/0.84... So cos B = §
Okay, so now I can compute sin(A + B) and sin(A — B) using the identities.
So
V21

sin(A + B) = 0.2v3 + ST

Okay, now moving on to sin(A — B): sin(A — B) = sin A cos B — cos A sin B
So
2v/3 — /21

sin(A — B) = T

Therefore, the original expression is:

sin(A + B) - sin(A — B) = (2\/§+ \/ﬁ> . (2\/5_ \/ﬁ>

10 10

That seems correct. But let me verify with another approach. Maybe using another identity? Alterna-
tively, I remember that sin(A+ B)-sin(A — B) can be expressed as sin? A —sin? B. Wait, is that correct?
Wait, let me recall the identity:

sin(A + B) -sin(A — B) = sin® A —sin? B
Let me check that. Yes, because:

sin(A + B) - sin(A — B) = [sin A cos B + cos A sin B][sin A cos B — cos A sin B|
= (sin A cos B)? — (cos Asin B)? = sin? A cos® B — cos® Asin® B

Let me compute sin? A — sin? B:

sin? A — sin? B = (0.4)? — (0.5)> = 0.16 — 0.25 = —0.09 = %
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(. I
Response Generated by RL-Finetuned Qwen3-8B using Critique-GRPO (Abridged)

Okay, so I need to evaluate this expression: sin(arcsin0.4 + arcsin0.5) multiplied by sin(arcsin 0.5 —
arcsin 0.4). Hmm, let me think.

First, I remember that arcsin is the inverse sine function, so arcsin 0.4 is an angle whose sine is 0.4, and
similarly for arcsin 0.5. Let me denote some variables to make this easier. Let me set @ = arcsin 0.4 and
B = arcsin 0.5. Then the expression becomes sin(a + 3) *

Alright, so I need to compute sin(a + ) and sin(8 — «) separately and then multiply them. Maybe
I can use sine-addition formulas here. Let me recall that sin(A + B) = sin A cos B + cos A sin B, and

sin(A — B) = sin A cos B — cos A sin B.

Since a and f are arcsin values, I know that sin @ = 0.4 and sin 8 = 0.5. Therefore, I need to find cos «
and cos 3 to use in the formulas.

For cos , since sin? o + cos® a = 1, we have
cosa=V1-sin2a =+1-0.16 = v0.84.

Note that 0.84 = % = %, SO cos . = % = @

Similarly,

3
cos f = 1—sin25:\/1—0.25=¢0.75:\/gzg.

Now, let me compute sin(a + ). Using the formula,

sin(a + ) = sina cos § 4 cosa sin 8 = O.4(é§> + <\/5271) (0.5).

Compute each term:

0 Y3_2 VE_VB VAL L v
= a2 3 2 B B T
Therefore /3 vl V34 o
3 21 2v/3+v21
sinle+f) =T+ 95 =35
Similarly, compute
Thus
. VI _2/3_ VAI-2/3
sin(8 — ) = ¥ - 22 .

10 10 10

Therefore, the original expression is

<2\/§+ \/ﬁ) (x/ﬁ%/g)

10 10

Let A = 2v/3+ /21 and B = /21 — 2v/3; then the product is %. Note that A B = (v/21)? — (2V/3)% =
21 — 12 =9, so the value is
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The base Qwen3-8B model produces an incorrect response due to an incorrect formulation of the expression
as sin(A + B) -sin(A — B), as shown in the red square. In contrast, the RL-finetuned Qwen3-8B model using
Critique-GRPO generates a correct response by correctly formulating the expression as sin(a+3)- ,
as shown in the green square. Furthermore, the base Qwen3-8B model exhibits numerous redundant and
ineffective self-reflection attempts (e.g., “Wait, ...” highlighted in blue), which fail to help the model identify
the actual errors and answer the question correctly. This results in an excessively long response (over 6000
tokens). In contrast, the RL-finetuned Qwen3-8B model using Critique-GRPO demonstrates concise and
effective reasoning. It remains on the correct path to solve the problem, exhibits valid self-reflection to
validate the answer (e.g., “Let me check with approximate values. ...”), and ultimately generates the correct
answer. Detailed responses are provided in Appendix [[}

6 Conclusion

In this paper, we first identify three key challenges faced by reinforcement learning relying solely on nu-
merical feedback. We then demonstrate the efficacy of leveraging natural language feedback in the form of
critiques to address these challenges. To this end, we propose Critique-GRPO, an online RL framework that
enables LLMs to learn from both natural language and numerical feedback simultaneously for effective pol-
icy optimization. Specifically, Critique-GRPO facilitates learning from initial responses and critique-guided
self-refinements while preserving exploration. Additionally, we employ a shaping function to amplify learn-
ing from correct, especially unfamiliar, refinements and penalize incorrect ones. Extensive experiments with
Qwen2.5-7B-Base, Qwen2.5-Math-7B-Base, and Qwen3-8B demonstrate that Critique-GRPO consistently
achieves superior performance across eight challenging reasoning tasks. Furthermore, Critique-GRPO en-
ables efficient self-improvement through self-critiquing and weak-to-strong generalization. Future work could
explore extending Critique-GRPO to multimodal reasoning tasks to strengthen connections between visual
understanding and textual reasoning.

Broader Impact Statement

This research adheres to ethical guidelines prioritizing privacy, fairness, and the well-being of individuals
and groups. All benchmark datasets used are solely for research purposes and were verified to contain
no personally identifiable information, ensuring user privacy. Prompts for data generation were carefully
designed to exclude biased or discriminatory language, and all generated data was manually reviewed to
confirm the absence of offensive content or personal information. These measures ensure the ethical integrity
of our work.

Limitations

While Critique-GRPO establishes a promising foundation for leveraging both natural language and numerical
feedback, notable limitations remain.

Performance limitations due to failed refinements. Policy models sometimes fail to follow CoT
critiques to refine their responses. We attribute this to the lack of deliberate training for self-refinement. An
example of a failed refinement is provided in Appendix [J] Future work could focus on improving the model’s
refinement capabilities or training a specialized model dedicated to refinement tasks.

Critique-GRPO requires longer training time. Critique-GRPO enables models to learn simultaneously
from initial responses and self-generated refinements during online policy learning. However, generating these
refinements requires an additional inference step, leading to longer training times compared to standard fine-
tuning with GRPO.

The role of critique detail in refinement quality. We currently utilize three types of critiques (see
Section, with CoT critiques demonstrating the greatest benefits for refinement. This advantage likely stems
from their detailed step-by-step evaluations and concise improvement suggestions, which help models identify
and correct errors in initial responses. It follows that more detailed critiques could result in higher-quality
refinements. For simplicity, we use GPT-40 as the reasoning-based reward model, not for expert knowledge
distillation. Consequently, the generated CoT critiques do not include expert demonstrations. Future work
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may explore alternative reasoning-based reward models. One might assume that directly incorporating
expert demonstrations into critiques would significantly improve performance. However, our experiments
reveal otherwise. Upon analyzing the generated refinements, we observe that both pre-trained models (e.g.,
Qwen2.5-7B-Base) and alignment-tuned models (e.g., Qwen3-8B) tend to produce conclusive sentences and
correct answers as refinements, rather than detailed step-by-step reasoning to derive the correct answer.
This behavior limits the effectiveness of expert demonstrations as critiques.

Future work could investigate, in greater depth, which types of critiques provide the most significant benefits
for refinement, particularly in reasoning-intensive tasks.
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B Implementation Details

Table 7: Default hyperparameters and training configurations used in Critique-GRPO.

Value
Name for Qwen2.5-7B-Base or
Qwen2.5-Math-7B-Base

Value

for Qwen3-8B Description

RL Finetuning

Default number of training prompts

num_training_prompts 4k 4k (unless specified otherwise).

training steps 400 300 Total number of training steps.

eval_freq 20 25 Frequency of evaluations (in updates).
batch_size 128 128 Accumulated batch size during training.
Ir le=6 le=6 Learning rate.

max_ prompt_ length 1024 1024 Maximum input context length.
max__response__length 8192 6144 Maximum length of generated responses.
n_ rollouts 7 7 Number of rollouts per prompt.

n_ refinements 1 1 Number of refinements per prompt.
rewards lor0 lor0 Scalar rewards for responses.

kl loss coef 0.0 0.0 Coefficient for KL divergence loss.

¥ 0.1 0.1 Hyperparameter in the policy shaping function.
train_temp 1.0 1.0 Sampling temperature during rollouts.
val__temp 0.6 0.6 Sampling temperature during validation.
total_epochs 30 30 Total number of training epochs.
Evaluation

eval__temp 0.0 0.0 Sampling temperature during evaluation.
max__tokens 8192 8192 Inference token budget during evaluation.
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C Analysis of Cognitive Behaviors

To systematically investigate this question, we characterize six key cognitive behaviors that contribute to
self-improving reasoning during RL fine-tuning, as follows:

e Subgoal Setting: Breaking down complex problems into smaller, manageable steps or subtasks.
For example, “Step 1... Step 2...”

e Summarization: Summarizing the current state by identifying completed subtasks and determining
what remains to be done. This helps guide the next steps in reasoning. For example, “Now we have
obtained..., next, we need to...”

e Verification: Systematically checking intermediate results or computations to ensure correctness.
For example, “Let’s verify this result by...”

o Backtracking: Identifying errors or dead-ends in reasoning and explicitly revising previous methods
or approaches. For example, “This approach won’t work because..., let’s try another method...”

e Backward Chaining: Reasoning from desired outcomes back to initial inputs or steps required to
achieve the result. This is particularly applicable to multiple-choice questions where answer options
are provided. For example, “To get 24, I could do 24 + 2 = 12...” (Gandhi et al., |2025])

e Anticipation: Anticipating potential inaccuracies or exhaustively considering multiple possibilities
to solve a problem. For example, “Alternatively, this problem can be solved by...”

We analyze the reasoning (cognitive) behaviors using the prompts shown below.

When assessing the contributions of reasoning behaviors in Section [3] to successful problem-solving in RL
fine-tuned models, we count each behavior appearing in the generated responses only once. For example, if
the model produces multiple subgoals in a single response, the occurrence of “subgoal setting” is counted as
one.

Prompts for Analyzing Reasoning Behaviors (1/2)

System: You are a helpful assistant.

User: The following is a chain-of-thought produced by a language model in response to a math &
science problem:

Question: <Question Content>

Reasoning: <Model Reasoning>

Ground Truth: <Ground Truth Content>

Task 1: Answer Verification

Determine whether the reasoning includes any ezplicit or implicit answer verification steps — mo-
ments where the model checks intermediate computations or final results for correctness.

Example: "Let’s verify this result by..."

- Report the number of distinct answer verification steps using: <count>n</count>. If none are
found, return <count>0</count>. - If such behavior is present and the final answer matches the
ground truth, indicate whether the behavior contributed to the correct answer using the format:
contribution: yes/no.

Task 2: Backtracking Behavior

Determine whether the reasoning demonstrates backtracking — where the model identifies an error
or dead end and switches to a different approach.

Example: "This approach won’t work because..., let’s try another method..."

- Report the number of distinct backtracking instances using: <count>n</count>. If none are found,
return <count>0</count>. - If such behavior is present and the final answer matches the ground truth,
indicate whether the behavior contributed to the correct answer using the format: contribution:
yes/no.
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Prompts for Analyzing Reasoning Behaviors (2/2)

Task 3: Subgoal Setting

Determine whether the reasoning includes any explicit subgoals — intermediate steps that break the
problem into smaller, manageable parts.

Example: "First, I'll try to..., then I’ll..."

- Report the number of clearly defined subgoals using: <count>n</count>. If none are found, return
<count>0</count>. - If such behavior is present and the final answer matches the ground truth,
indicate whether the behavior contributed to the correct answer using the format: contribution:
yes/no.

Task 4: Backward Chaining

Determine whether the reasoning includes backward chaining — starting from the target result and
reasoning backward to infer inputs or steps.

Example: "To get 24, I could do 24 = 2 = 12..."

- Report the number of distinct backward chaining attempts using: <count>n</count>. If none
are found, return <count>0</count>. - If such behavior is present and the final answer matches
the ground truth, indicate whether the behavior contributed to the correct answer using the format:
contribution: yes/mno.

Task 5: Anticipation

Determine whether the reasoning includes enumeration or anticipation and re-proposal — suggesting
alternative approaches or revising prior methods.

Examples: "Alternatively, this problem can be solved by...", "Let’s try a different approach..."

- Report the number of such instances using: <count>n</count>. If none are found, return
<count>0</count>. - If such behavior is present and the final answer matches the ground truth,
indicate whether the behavior contributed to the correct answer using the format: contribution:
yes/no.

Task 6: Summarization

Determine whether the reasoning includes summarization — identifying completed subtasks, sum-
marizing progress, and determining the next steps.

Example: "Now we have obtained..., next, we need to..."

- Report the number of summarization instances using: <count>n</count>. If none are found, return
<count>0</count>. - If such behavior is present and the final answer matches the ground truth,
indicate whether the behavior contributed to the correct answer using the format: contribution:
yes/no.
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D Preliminary Investigation on Qwen3-8B-Base
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Figure 9: Average contribution of reasoning behaviors to successful completions of previously failed questions
by Qwen3-8B-Base on Minerva-Math (in-distribution) and GPQA-Diamond (out-of-distribution) datasets.

We identify 50 previously unsolved problems from the Minerva-Math dataset and 15 from the GPQA-
Diamond dataset for Qwen3-8B-Base. Figure [J] shows the average contribution of reasoning behaviors to
successful completions of previously failed questions by Qwen3-8B-Base. Notably, self-reflection behaviors
contribute minimally to successful problem-solving.

Table 8: Analysis of performance gains from critique-based self-refinement on Qwen3-8B-Base.

Method % Failed Questions Critique % Valid % Valid % Critiqued % Questions
(Pass@4=0) Type Critiques Refinements Questions Refined
RI-finetuned Indicative Critique 100.00 3.57 100.00 11.21
Qwen3-8B-Base 17.18 Indicative Critique w/ GT  100.00 3.93 100.00 12.23
CoT Critique 66.08 44.71 98.25 66.96

Table [§] reveals that the best-performing RL-finetuned Qwen3-8B-Base persistently failed on 17.18% of
training problems. In addition, all three types of critiques facilitate the LLM’s self-refinements. These
findings are consistent with the observations in Section
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E Prompts

Training Prompt. The following training prompt is used during all RL fine-tuning experiments:

Training Prompt

System: You are a helpful assistant.
User: <Question Content>
Please reason step by step and place your final answer within \boxed.

Prompt for Generating Chain-of-Thought Critique. We adopt a prompt inspired by (Wang et al.,
2025) to enable GPT-40 (Hurst et al., 2024} to generate CoT critiques. For quality control, we retained only
those model-generated critiques whose evaluative conclusions (correct/incorrect) aligned with rule-based
verification. When inconsistencies occurred, we prompted the critique model to regenerate the critiques.

Prompt for Generating Chain-of-Thought Critique

System: You are a science expert. A student is trying to solve a question. Please explain briefly
(step-by-step) whether the student’s solution is correct or not. Finally, conclude your judgment with:
“Conclusion: correct/incorrect [END].”

User:

Question: <Question Content>

Ground Truth Answer: <Ground Truth>

Student’s Solution: <Generated Solution>

Critique:

Prompt for Generating Chain-of-Thought Critique with Internal Knowledge The following
prompt is designed to enable an LLM to leverage its internal knowledge and evaluate the correctness of
its own generated responses through step-by-step CoT critiques.

Prompt for Generating Chain-of-Thought Critique with Internal Knowledge

System: You are a science expert. A student is trying to solve a question. Please explain briefly
(step-by-step) whether the student’s solution is correct or not. Finally, conclude your judgment with:
“Conclusion: correct/incorrect [END]”

User:

Question: <Question Content>

Student’s Solution: <Generated Solution>

Critique:

Refinement Prompt. The following refinement prompt is used to guide the model in improving its
response by incorporating the critique.
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Refinement Prompt

System: You are a helpful assistant.

User: Given the following inputs:

Question: <Question Content>

Previous Solution: <Generated Solution>

Critique: <Critique Content>

Please re-answer by:

- Correcting potential errors identified in the critique, if they exist.

- Providing clear, step-by-step reasoning.

- Placing your final answer within \boxed.

Ensure the revised solution addresses all issues raised in the critique.

Future work could explore designing prompts (Zhang et al., [2023) to enable LLMs to generate high-quality
CoT critiques.

Prompt for Qualitative Analysis. We employ the following prompt to conduct qualitative analysis of
the generated responses using GPT-4o.

Prompt for Qualitative Analysis

System: You are a science expert. You are provided with a question, the correct ground truth
answer, and a student’s solution. Please conduct a fine-grained qualitative analysis of the student’s
solution based on the following four aspects, rated on a scale of 1-5:

1. Correctness of the Final Answer: Is the final numerical answer correct based on your calculations
or the ground truth? If incorrect, provide the correct answer and explain the discrepancy.

2. Verbosity: Is the reasoning path too verbose, too concise, or appropriate? Identify areas for
condensation or expansion to improve clarity.

3. Factual Accuracy: Are all formulas, conversions, and physical principles factually accurate? High-
light any errors or misleading statements.

4. Logical Coherence: Does the reasoning flow logically from one step to the next? Identify gaps in
logic, missing steps, or irrelevant details that detract from the solution.

End your analysis with:

“Conclusion:” Provide ratings (1-5 scale) for each aspect.

User:

Question: <Question Content>

Ground Truth Answer: <Ground Truth>

Student’s Answer: <Answer>

Conclusion:
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F Leveraging Textual Critiques for Refining LLM Responses

We describe the process for leveraging these textual critiques to guide the refinement of LLM-generated
responses:

1. Initial Response Sampling: Given an LLM my parameterized by 6 and a set of questions {q}, we
sample multiple initial responses for each question {y((f)}i?z1 ~ 7 (- | ¢), where k is the number of samples.

2. Response Evaluation and Critique Generation: We use an evaluation function Eval(q, yo) to assess
the correctness of each response yy. The function outputs 1 if yg is correct and 0 otherwise. Specifically,
we adopt a model-based evaluation with a reasoning-based reward model mrys. The reasoning-based reward

model generates a CoT critique cgz)T ~7mrym (- | Iy q, yéi)), where I, is a predefined instruction (detailed in

Appendix . Based on the binary correctness label within cgc))T, we construct the corresponding heuristic-

based critiques: an indicative critique c%i) (containing only the correctness label) and a critique with ground

truth c(é)T (correctness label plus the known ground truth answer for q).

To focus on the model’s ability to learn from critiques for initially incorrect solutions and to control for
spontaneous self-correction, we identify persistently failed questions. A question ¢ is classified as persistently
failed if all k of its initial responses {yél)}le are deemed incorrect based on the labels from their respective

CoT critiques. For each such incorrect response y(()j ) from a persistently failed question, we form a triplet

(q, y(()j), c(j))7 where ¢\9) is one of the three critique types: ngTv cg%ﬂ, or 9.

3. Self-Refinement Generation: For each selected triplet (g, y(()j ), el )) corresponding to an initial incorrect
response, we prompt the original LLM 7y to generate a refined response yr(gf)incd ~ 7o (- | Trefine, 4, y(()J ), c(j)).
This generation is conditioned on a specific refinement instruction Iefine (detailed in Appendix 7 the
original question ¢, the initial failed response y((f ), and its associated critique ¢\,

The full process is summarized in Algorithm[I} An example illustrating the self-refinement process, including

the application of a CoT critique, is provided in Appendix [H]
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G The Critique-GRPO Algorithm

The Critique-GRPO algorithm is summarized in Algorithm

Algorithm 2 Critique-GRPO: Online Policy Optimization Framework with Critiques

1: Input: Pretrained LLM policy moq parameterized by 6, reward model gy, set of questions Q = {¢},
refinement instruction I egne, critique instruction I
Goal: Improve LLM policy by learning from initial responses and their refinements
Step 1: Initial Response Sampling
for each question ¢ € @ do
Sample n initial responses from the old policy: {y"}7_; ~ moa(-|q)
Score the responses using the reward model mras to obtain CoT critiques:

A

{eShatims ~ mrm (- | Ie g,y ™)

7 Translate binary correctness labels in the critiques into scalar reward scores: {R®}7_,
8: end for

9: Step 2: Critique-Guided Self-Refinement

10: for each initial response ¥ € {y®}2_, do

11: Generate refined responses conditioned on (g, y@, cng) and instruction I efine:
yﬁé%‘med ~ 7Told(' ‘ Ireﬁne7 q, y(l)> C(C?())T)
12: Score the refined responses using the reward model (or rule-based evaluation function):

{Rreﬁne i=1
13: end for .
14: Sample a subset of k refinements to mitigate distributional shifts: {yﬁéﬁ)ned} 4 C {yreﬁned
15: Combine the sampled refinements with the initial responses to form a mixed group:
k
{y( )} =1 U {yreﬁned i'=1
16: Step 3: Online Policy Optimization
17: Fine-tune the model on the mixed group of responses using scalar rewards with the Critique-GRPO
training objective:

JCritique- 0) =E
critiane-GRPO(0) =By (6031~ Cla) (0 e Moldﬂfrehneqy“” o)
(i)
n [yl Yetmed
Ly Z S (i) (7)
[ ]ﬂ f( reﬁnedt( )) At ’
i=1 t=1 =1 t=1
Objective for Initial Responses Objective for Refined Responses

18: Compute the advantage for each token in a response:
Ai(tz)/(ll) = ‘R(l)/(Z mean({R( )}n U { reﬁned} )
19: Calculate the probability ratios for initial and refined responses:

@) (@)
i o Y q,Y i’ o (yrefilﬂed7 |q’ yreﬁned7 )
) = TR o gy t <

t ’ refined,t i’
Toia(ys” 4, y%) i

(@)
o (yreﬁned7t|q’ yréﬁned,<t> + v

20: Output: Fine-tuned LLM policy gy
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H An Example of Successful Refinement using a CoT Critique

The example below demonstrates a successful refinement using a CoT critique. This output was generated
by the best-performing RL-finetuned Qwen3-8B model using GRPO algorithm in Section [3] utilizing the
refinement prompt detailed in Appendix

Question

2. A sphere is inscribed in a cone, such that the area of the sphere and the area of the base of the cone
are equal. Calculate the cosine of the angle of the axial section of the cone at the vertex which is also
the apex of the cone.

[COT Critique )

Let’s analyze the student’s solution step-by-step and identify any errors:

#+#4 Step 1: Geometry Understanding The student correctly identifies the geometry of the problem,
noting that the sphere is tangent to the base and sides of the cone, and that the axial section forms an
isosceles triangle.

### Step 2: Variable Definitions The student defines r as the radius of the sphere, R as the radius of
the base of the cone, and h as the height of the cone. These definitions are appropriate.

#+#+# Step 3: Relating Sphere and Cone The student attempts to relate r, R, and h using similar
triangles. However, the equation derived:

Rh
=
h+ R
is not directly applicable to the problem as it does not consider the specific condition that the areas are

equal.
##4# Step 4: Equating Areas The student correctly equates the areas of the sphere and the base of the
cone:

47’ =7R? = R=2r

This step is correct.
##4 Step 5: Substitution and Error The student substitutes R = 2r into the earlier equation, leading
to:
(2r)h
T =
h+ 2r

This substitution is unnecessary and results in incorrect simplification. The correct approach would
involve using the inradius formula for the triangle formed by the axial section of the cone.

### Step 6: Angle Calculation The student calculates tanf = 1 and concludes 0 = 45°, leading to
cos(90°) = 0. This is incorrect because the angle calculation should be based on the relationship between
h and R, derived from the inradius formula.

##4 Step 7: Precise Calculation The student attempts to verify the angle calculation but repeats the
same incorrect logic, leading to the same incorrect conclusion.

### Correct Solution Approach The correct approach involves using the inradius formula for the triangle
formed by the axial section of the cone: - Calculate the inradius using the area and semi-perimeter of
the triangle. - Substitute R = 2r and solve for A in terms of r. - Relate h and 6 using trigonometric
identities. - Calculate cos(26) using the double angle identity.

The correct final answer is: 7

cos(26) = o

Conclusion: incorrect [END]
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~

Incorrect Initial Response
To solve the problem, let’s break it down step by step.
##4# Step 1: Geometry Understanding - **Sphere Inscribed in a Cone**: The sphere is tangent to the
base and the sides of the cone. - **Axial Section**: The cross-section along the cone’s central axis forms
an isosceles triangle. - **Vertex Angle**: Let the vertex angle of the cone be 26, so each base angle is 6.
### Step 2: Variable Definitions - r: Radius of the sphere. - R: Radius of the base of the cone. - h:
Height of the cone.
#+## Step 3: Relating the Sphere and the Cone The sphere is inscribed in the cone, so: - The vertical
distance from the center of the sphere to the base is h — r. - The horizontal distance from the center of
the sphere to the cone’s side is r.
Using similar triangles, we relate r, R, and h:

r h—r Rh

=7 :>Th:R(h—r)zr(h—i—R):Rh:r:m.

### Step 4: Equating Areas The area of the sphere is 4772, and the area of the base of the cone is
7R?. From the problem:
4’ =7R? — 4 =R?> — R=2r

##4 Step 5: Substituting R = 2r Substituting R = 27 into the earlier equation:

_(2r)h
"= h+ 2r

= r(h+2r)=2rh = h+2r=2h = h=2r.

##4# Step 6: Finding the Angle 0 In the axial section of the cone, we have a right triangle with: - Height
h = 2r. - Base radius R = 2r.
The tangent of 6 is:
R 2r

tanf = — = — =1 = 0 =45°.

at h 2r
The cosine of the vertex angle 26 is:

cos(20) = cos(90°) = 0.

### Step 7: Verifying with Precise Calculations For the axial section, the cone forms an isosceles
triangle with: - Two equal slant heights [. - Base 2R = 4r. - Height h = 2r.
Using the Pythagorean theorem, the slant height [ is:

I=Vh2+R2=/(2r)2 + (2r)2 = V82 = 2rV/2.

The tangent of the base angle 0 is:

R 2r
tanf = — = — =1 = 0 =45°.
at h 2r
Thus, the vertex angle is 20 = 90°, and:
cos(90°) = 0.
#+## Final Answer
- _J
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4 )
Correct Refined Response (1/2)

Let’s revise the solution by addressing the issues identified in the critique and providing a clear, step-by-
step reasoning.
#+## Step 1: Geometry Understanding The problem involves a cone with a sphere inscribed in it, such
that the sphere is tangent to both the base and the sides of the cone. Additionally, the area of the sphere
equals the area of the base of the cone.
### Step 2: Variable Definitions - r: Radius of the sphere. - R: Radius of the base of the cone. - h:
Height of the cone.
#+#+# Step 3: Relating the Sphere and the Cone The sphere is inscribed in the cone, so: - The vertical
distance from the center of the sphere to the base is h — r. - The horizontal distance from the center of
the sphere to the cone’s side is 7.
Using similar triangles, we relate r, R, and h:

%:% = r(h+ R) = Rh = T:%.
### Step 4: Equating Areas The area of the sphere is 4772, and the area of the base of the cone is
7R?. From the problem:

47’ = 7R? = 4’ =R? — R=2r.

##4 Step 5: Substituting R = 2r Substitute R = 2r into the earlier equation:

B (2r)h
"= h+ 2r

= r(h+2r)=2rh = h+2r=2h = h=2r.

### Step 6: Finding the Angle 6 In the axial section of the cone: - The height is h = 2r. - The base
radius is R = 2r.
The tangent of @ is:
R 2r

tanf = — = — =1 = 0 =45°.

a h 2r
The cosine of the vertex angle 26 is:

cos(20) = cos(90°) = 0.

However, this leads to an incorrect conclusion. Let’s apply the **inradius formula** for a more accurate
approach.

#+#+# Correct Approach: Using the Inradius Formula The axial section of the cone is an isosceles triangle
with: - Height h. - Base 2R. - Slant height | = v/h2 + R2.

The inradius r of this triangle is given by:

r=—,
s

where A is the area, and s is the semi-perimeter.
### Area and Semi-Perimeter: The area A of the triangle is:

A:%X2Rxh:Rh.
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-
Correct Refined Response (2/2)

The semi-perimeter s is:
204+ 2R
s== " —1+R=VI2T R +R

### Inradius: Substitute A and s:
Rh

VR2+R?+R

Given R = 2r and h = 2r, substitute into the equation:

(2r)(2r) 47?2 4r?

- (2r)2 4+ (2r)% +2r - V8r2 4 2r B 2rv/2 +2r

r

Simplify:
4r 2r

"ToV2+1) Vo4l

### Rationalizing the Denominator:

_2r _\/5—1_27«(\/5—1)_ B
T Al 21 =2r(v2-1).

### Step 7: Find the Final Angle Given h = 2r and R = 2r, the slant height [ is:

I=+Vh2+ R?=/(2r)2 + (2r)2 = V82 = 2rV/2.

The tangent of 6 is:
R 2r
tanf = — = — =1 = 6 =45°.
a h 2r

The cosine of the vertex angle 26 is:

I—tan?e 1-(3)? I 7
cos(20) = 5= 5= 95 = 5F
1+tan“0 1 4 (%) s 25

### Final Answer:

-
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I Responses Utilized in Qualitative Analysis

Question
Evaluate
sin(arcsin 0.4 + arcsin 0.5) - sin(arcsin 0.5 — arcsin 0.4).

\
Response Generated by Qwen3-8B (1/4)

Okay, so I need to evaluate this expression: sin(arcsin0.4 + arcsin0.5) multiplied by sin(arcsin 0.5 —
arcsin 0.4). Hmm, that looks a bit complicated with all those inverse sine functions. Let me try to break
it down step by step. First, let me recall some trigonometric identities that might help here. I remember
that there are formulas for sin(A+ B) and sin(A — B). Maybe I can use those? Let me write them down:

sin(A + B) = sin A cos B + cos Asin B

sin(A — B) = sin A cos B — cos Asin B

So if T let A = arcsin 0.4 and B = arcsin 0.5, then the expression becomes:

sin(A + B) - sin(A — B)

Wait, so maybe I can compute sin(A + B) and sin(A — B) separately using those identities and then
multiply them together? But before that, maybe I should figure out what A and B are? Well, A is
arcsin 0.4, which means that sin A = 0.4, and similarly sin B = 0.5. But I need cos A and cos B to use
the identities. Since sin? @+ cos?§ = 1, I can find cos A and cos B. Let me compute cos A first. For angle
A, sin A =04, so

cosA=1+1-sin? A=+1-0.16 = 1/0.84.
Wait, 1/0.84... Let me calculate that. 0.84 is 5%, so v/0.84 = Y81, Simplify v/84... v/84 = 4 21 =
2-/21. So

—— V84 2-4/21 21
0.84 - = \/> = \/>.

10 10 5
Wait, let me check that again. /84 is v/4 - 21 which is 2- /21, so yes, v/84/10 = 2-1/21/10 = v/21/5. So
cos A = /21/5. Wait, but /21 is approximately 4.583, so v/21/5 is about 0.9166. Let me check if that’s
correct. Since sin A is 0.4, then cos A should be /1 — 0.16 = v/0.84 ~ 0.9165, which matches. So that’s

correct. Similarly, for angle B, sin B = 0.5, so cos B = /1 — 0.25 = 1/0.75 = § ~ 0.8660. That’s right

because sin (I) = 0.5, so cos (T) = L2, So cos B = ¥3. Okay, so now I can compute sin(A + B) and

sin(A — B) using the identities. Starting with sin(A + B):

sin(A + B) = sin A cos B + cos Asin B

Plugging in the values:

sinA =04, cosB= ?, cos A = g, sin B = 0.5
So:
21
sin(A+ B) =04 (?) + ({) (0.5)
_ J
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-
Response Generated by Qwen3-8B (2/4)
Let me compute each term: First term:

0.4 (‘f) = (O;> V3=02V3

Second term:

(o= (2) ()7

So

—
[

sin(A + B) = 0.2v/3 +
Hmm, maybe I can write 0.2 as %? Let me check: 0.2 is %, SO
1 V21
—V3+ —.
5 V3t 10
To combine these terms, maybe get a common denominator? Yes, common denominator is 10:

23 VAL _ 23+ VA

10 10 10
So
sin(A + B) = %

Okay, now moving on to sin(4 — B):
sin(A — B) = sin A cos B — cos Asin B

Which is similar to the previous one, but with a minus sign. So plugging in the same values:

3 V21
sin A cos B — cos Asin B = 0.4 ({) - <5> (0.5)
Which is the same as: First term:
0.2v3 — ﬂ
10

Again, converting 0.2 to é:

1 V21 23— V21
3\/;;_ 10 10
So

sin(A — B) = %

Therefore, the original expression is:

sin(A + B) - sin(A — B) = (2\/§+ \/ﬁ> . (2\/§—\/ﬁ>

10 10
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(" )
Response Generated by Qwen3-8B (3/4)

Hmm, this looks like a difference of squares. Because (a + b)(a — b) = a® — b*>. Let me check: Let me
denote a = 2v/3 and b = v/21. Then the product is (a + b)(a — b) = a® — b>. So compute a? — b:

a?=(2v3) =4-3=12

b= (v21)2 =21

Therefore, a® — b* =12 — 21 = —9

-9 -9
10-10 100
Wait, so the entire expression simplifies to %? But let me check my steps again to make sure I didn’t
make a mistake. First, sin(A+ B) and sin(A — B) were calculated as 2‘/§1+0‘/ﬁ and 2‘/51’0‘/ﬁ. Multiplying
them gives:

Therefore, the product is

(2v3)° = (V21! _12-21 9
100 © 100 100
That seems correct. But let me verify with another approach. Maybe using another identity? Alterna-
tively, I remember that sin(A+ B)-sin(A — B) can be expressed as sin? A —sin? B. Wait, is that correct?
Wait, let me recall the identity:

sin(A + B) -sin(A — B) = sin® A —sin® B
Let me check that. Yes, because:

sin(A + B) - sin(A — B) = [sin A cos B + cos A sin B|[sin A cos B — cos A sin B|

= (sin A cos B)? — (cos Asin B)? = sin? A cos® B — cos? Asin? B

But that’s not exactly sin? A — sin? B. Wait, unless there’s another identity. Alternatively, maybe using
product-to-sum formulas? Alternatively, let me compute sin? A — sin? B. Let me see:

sin? A — sin? B = (sin A — sin B)(sin A + sin B). Not sure if that helps.
But let me check if sin(A + B) - sin(A — B) equals sin? A — sin? B. Let me compute sin? A — sin? B:

-9
sin? A — sin? B = (0.4)> — (0.5)> = 0.16 — 0.25 = —0.09 = G
Which is exactly the same as before! So that’s a shortcut. Therefore:
: : .9 . 9 -9
sin(A + B) - sin(A — B) =sin“ A — sin”“ B = 100
Therefore, the answer is %. So that confirms the previous result. Therefore, the value of the original
expression is ﬁ%. But let me check once more with actual numbers to make sure. Let me compute

arcsin(0.4) and arcsin(0.5) numerically, then compute the sines of their sum and difference, multiply

them, and see if it’s approximately —0.09. First, arcsin(0.5) is 7/6 ~ 0.5236 radians. arcsin(0.4)... Let

me calculate that. Let me recall that sin(0.4115radians) ~ 0.4. Let me check with calculator: Well,

sin(0.4115) = sin(0.4115) ~ 0.4.

Let me check with calculator steps: But since I don’t have a calculator here, maybe approximate.

Alternatively, use known values. For example, sin(w/6) = 0.5, sin(r/12) &~ 0.2588, so 0.4 is between
k71'/12 and /6. Let me approximate arcsin(0.4).

J
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(. )
Response Generated by Qwen3-8B (4/4)

Let me use Taylor series or something? Maybe not. Alternatively, just take that arcsin(0.4) =
0.4115radians (as I thought before). Let me take that as approximate value. So A ~ 0.4115radians,
B = 71/6 ~ 0.5236 radians. Compute A + B =~ 0.4115 4 0.5236 =~ 0.9351 radians. Compute sin(0.9351).
Let me recall that sin(7/3) ~ 0.8660, 7/3 ~ 1.0472radians. So 0.9351 is less than 7/3. Let me compute
sin(0.9351). Let me use calculator-like approximation.

Alternatively, use the value we found earlier: 2‘/§+‘/ﬁ Let me compute that numerically. First, v/3 ~
1.732, V21 ~ 4.5837. So 2v/3 ~ 3.464, V21 ~ 4 5837 Then 2v/3 + /21 ~ 3.464 + 4.5837 ~ 8.0477.
Divide by 10: ~ 0.80477. So sin(A + B) ~ 0.8048. Similarly, sin(4 — B) = 2‘[ ‘ﬁ 3.464-4.5837 oy
’1%0197 —0.11197. Therefore, multiplying them: 0.8048 - (—0.11197) ~ —0.090. Wthh is —0. 09 which
is — 100 So that matches. Therefore, the exact value is — and the approximate decimal is —0.09. So
that seems correct. Therefore, the answer is — 180

But let me check once more if there’s any mistake in the sign. Wait, when I calculated sin(A — B), I had
%. Since v/21 ~ 4.583 and 2v/3 ~ 3.464, so 2v/3 — /21 is negative, so sin(A — B) is negative. Then
sin(A + B) is positive, so multiplying them gives negative. Which matches with _W So that’s correct.
Alternatively, if T think about angles: A is arcsin(0.4), which is in the first quadrant, B is arcsin(0.5)
which is 7/6, also first quadrant. So A + B is the sum of two first quadrant angles. Depending on their
measures, A+ B could be in the first or second quadrant. Similarly, A — B could be positive or negative.
Let me check if A — B is positive or negative. Since arcsin(0.4) ~ 0.4115radians, arcsin(0.5) =
0.5236 radians. So A — B ~ 0.4115 — 0.5236 ~ —0.1121 radians. So a negative angle, which is equiv-

9
100

alent to a positive angle by adding 27, but sine is an odd function, so sin(—z) = —sinz. Therefore,
sin(A — B) = —sin(B — A). So the negative value makes sense. Therefore, multiplying sin(A + B) which
is positive with sin(A B) which is negative gives a negative result. So —1%0 is correct. Therefore, 1

think the answer is — 100 Let me check once more with another identity.

Alternatively, using complex numbers or other methods? Maybe not necessary. Since two different
approaches gave me the same answer, and numerical approximation also matches, I think it’s safe. But
just to make sure, let me compute sin? A — sin? B:

sin? A = (0.4)? = 0.16
- J
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(- )
Response Generated by RL-Finetuned Qwen3-8B using Critique-GRPO (1/2)

Okay, so I need to evaluate this expression: sin(arcsin0.4 + arcsin0.5) multiplied by sin(arcsin 0.5 —
arcsin 0.4). Hmm, let me think.

First, I remember that arcsin is the inverse sine function, so arcsin 0.4 is an angle whose sine is 0.4, and
similarly for arcsin 0.5. Let me denote some variables to make this easier. Let me set o = arcsin 0.4 and
B = arcsin 0.5. Then the expression becomes sin(a + ) * sin(8 — ).

Alright, so I need to compute sin(a + ) and sin(8 — «) separately and then multiply them. Maybe
I can use sine-addition formulas here. Let me recall that sin(A + B) = sin A cos B + cos A sin B, and

sin(A — B) = sin A cos B — cos A sin B.

Since a and S are arcsin values, I know that sin @ = 0.4 and sin § = 0.5. Therefore, I need to find cos «
and cos 3 to use in the formulas.

For cos a, since sin? a + cos? o = 1, we have
cosa=V1-sin2a =+1-0.16 = vV0.84.

Note that 0.84 = % = %, SO cos . = % = @

Similarly,

3
cos f = 1—sin25:\/1—0.25=¢0.75:\/gzg.

Now, let me compute sin(a + ). Using the formula,

sin(a + ) = sina cos § 4 cos a sin 8 = 0.4(\23) + <\/5271) (0.5).

Compute each term:

0a Y3_2 VB_VB VAV
T2 5 2 57 5 10

Therefore . S
3 21  2v3++21

sinff@+8) = 7=+ 75 = I) '

Similarly, compute sin(8 — «):

sin(8 — «) =sin 8 cosa — cos 8 sina = 0.5(\/5271) - ? (0.4).

Thus
V2l 23 _ V21-2v3
10 10 10 ’

sin(f — a) =

Therefore, the original expression is

<2\/§+ \/ﬁ) (x/ﬁ%/g)

10 10

Let A = 2v/3++/21 and B = /21 — 2v/3; then the product is %. Note that A B = (v/21)%? — (2V/3)% =

21 — 12 =9, so the value is %
_ J
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-
Response Generated by RL-Finetuned Qwen3-8B using Critique-GRPO (2/2)

i, which is 0.09.

Therefore, the value of the original expression is 100

Let me check with approximate values. Take arcsin0.5 = ¢ =~ 0.5236rad and arcsin 0.4 ~ 0.4115 rad.
Then o + S ~ 0.9351 rad, so sin(a + §) =~ 0.805; also 8 — a ~ 0.1121rad, so sin(8 — «) ~ 0.1118. Their
9

product 0.805 x 0.1118 ~ 0.09, confirming

100°

Final Answer

To evaluate the expression
sin(arcsin 0.4 4 arcsin 0.5) - sin(arcsin 0.5 — arcsin 0.4),
we begin by introducing a substitution to simplify the notation. Let
«a = arcsin 0.4, [ = arcsin 0.5,
so that sina = 0.4 and sin § = 0.5.
We rewrite the expression as sin(a + ) sin(f — a).

Step 1: Use the Sine Addition and Subtraction Formulas
Recall
sin(a + ) = sin a cos § + cos « sin 3, sin(8 — «) = sin 8 cos @ — cos f sin a.

Using

)

val V3
2

COSOLIT, cos 3 =

we compute

2v/3 + 21 ) V21 —24/3
————, sin(f-—a)= ————.
10 10

sin(a + 8) =
Step 2: Multiply the Two Sine Values

(2\/3;5@) (\/ﬁl—om/ﬁ) _ (V) -(2v3)? 9

100 100°

Final Answer

100
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J An Example of Failed Refinement

The following example demonstrates a failed refinement using a CoT critique, where RL-finetuned Qwen3-8B
using Critique-GRPO fails to follow the critique to refine its responses.

Question
Example 15: Let a, b, ¢ be positive real numbers, and abc + a + ¢ = b, find the maximum value of

2 2 N 3
T az+1 B2+1 0 241

p

(COT Critique h

The student’s solution contains several errors and misunderstandings. Let’s go through the mistakes
step-by-step:

1. **Misinterpretation of the Constraint:** - The student correctly rearranges the constraint abc+a+c =
b to express b in terms of a and ¢, but then incorrectly assumes b = tan(a++) without proper justification.
The trigonometric substitution should be used more carefully, ensuring that the constraint is satisfied
throughout.

2. **Incorrect Use of Trigonometric Identities:** - The student attempts to use trigonometric identities
to simplify the expression for p, but the application is incorrect. The identities used do not lead to a
valid simplification of the expression.

3. **Incorrect Derivative Calculation:** - The student attempts to find the maximum by taking deriva-
tives, but the calculations are incorrect. The derivative should be taken with respect to the correct
variables, and the critical points should be found accurately.

4. **Incorrect Evaluation of p:** - The student evaluates p at specific points, but the calculations are
inconsistent and do not match the constraint. The values chosen for a, b, and ¢ do not satisfy the
constraint abc + a + ¢ = b.

5. **Incorrect Final Answer:** - The student concludes with an incorrect maximum value of p = 1?%5,
which is not supported by the calculations. The correct maximum value, as derived from a proper
analysis, should be %.

Conclusion: wrong [END]

J
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-
Incorrect Initial Response (1/3)
Okay, so I need to find the maximum value of this expression:

2 2 o 3
a?+1 bv+1 241
given that a, b, ¢ are positive real numbers satisfying abc+a+c = b. Hmm, let me start by understanding

the constraint equation better.
The equation is:

p:

abc+a+c=b.

Maybe I can rearrange this to express one variable in terms of the others. Let me try to solve for b. Let’s

see:
a-+c

1—ac’

abc+a+c=b = b—abc=a+c = b(l—ac)=a+c = b=

Wait, but since a, b, c are positive real numbers, the denominator 1 — ac must be positive because the
numerator a + ¢ is positive. Therefore:

l—ac>0 = ac< 1.

So, the product of a and ¢ must be less than 1. That’s an important condition.
Now, the expression for p involves a, b, c. Since b is expressed in terms of a and ¢, perhaps I can substitute
that into p and then try to maximize with respect to a and c. Let me try that.

Substituting b = 1“;";6 into p, we get:

2 2 N 3
a?+1 (a+0)2+1 c2+1°

l—ac

p:

This looks complicated. Maybe there’s a substitution or some symmetry here. Let me check if there’s a
way to simplify the expression for b. Alternatively, maybe using substitution variables.

### Trigonometric Substitution

Let’s consider substituting variables to simplify the constraint. For example, sometimes in equations with
products, substitutions like = a,y = ¢ are helpful, but I’'m not sure in this case. Alternatively, maybe
trigonometric substitution? Since we have terms like a® + 1, which reminds me of tan 6 substitutions.
For example:

- Let a = tan o, ¢ = tan~y, where o,y € (0,7/2). - Then:

2

a2 +1=secla = =cos?a,

a? +1
and similarly for c.
Let me try that. Substituting a = tan @ and ¢ = tan~, and using the constraint abc 4+ a + ¢ = b, we get:

tana - b-tany + tan « + tany = b.

Solving for b:

tan a + tan
b(tanatany — 1) = tana + tany — b= #
tanatany — 1

Wait, but earlier we had:
_a+c

T 1—ac’

. J
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Incorrect Initial Response (2/3) Since ac =tanatan~y, so 1 —ac =1 — tan atan~y. Therefore:

b— tan o + tany
~ 1—tanatany’
##4# Simplifying Further
Notice that: . L
an a + tan -y
Laparany o _
1 —tanatany an(a +7)
Thus:
b =tan(a + 7).

Therefore, since b > 0, tan(a + ) > 0. Since «, v € (0,7/2), @« + v € (0,7/2). This gives:

ty<
@ —.
T3
#+## Substituting Back into p
Using the substitution:
2 2 3
P i it er1

Since a = tan a, we have:

1 1 1

a2+1:c03204, 2+1:C082% il (a+7)

Thus:
p=2cos®a — 2cos®(a + ) + 3cos? .

#+#+# Reducing the Problem

The problem now reduces to maximizing:
p = 2cos® a — 2cos?(a 4 ) + 3 cos? 1y,

subject to .,y > 0 and o + v < 7/2.
Let 6 = o+ . Then:
p=2cos’a —2cos?f + 3cos?(0 — a).

### Symmetry Assumption
Assume « = «, which implies § = 2a.. Then:

p = 2cos®a — 2cos*(2a) + 3cos® a = 5cos® a — 2 cos? (2a).
Using the identity cos(2a) = 2cos? a — 1, we get:
cos?(2a) = (2cos? a — 1)2.

2

Let x = cos® a, so = € (%, 1). Substituting:

L p=>5x—2(2x—1)? =5z — 2(4x*> — 4z + 1) = —82° + 13z — 2.
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s
Incorrect Initial Response (3/3)
This is a quadratic equation, and its maximum occurs at:

L_—b_13
T 2 16

Substituting = = % back into p:

13\ 2 13 105
=-8(—= 13(=)_—2=—.
P 8(16) * 3(16) 32

#+## Final Answer

105
32

50



Under review as submission to TMLR

(
Incorrect Refined Response (1/2)
The given problem asks us to find the **maximum value** of the expression:

2 2 N 3
a?+1 b2+1 241

p:

subject to the constraint:

abc+a+c=0>

where a, b, ¢ are **positive real numbers**.

#+## Step 1: Analyze the Constraint
From the constraint:
abct+a+c=0b

we can rearrange to isolate b:

a+c

b(1 — = = b= ]
(I1—ac)=a+c T—ac

Since a, b, ¢ > 0, the denominator 1 — ac must be positive, so:
ac <1

This condition will be important in limiting the domain of possible values for a and c.
#+## Step 2: Trigonometric Substitution

To simplify the expression for p, we use the following substitutions:

- Let a =tana - Let ¢ = tanvy

Then, since a? + 1 = sec? a, we have:

L =cos’a, ——— =cos?n.
a?+1 o241
Also, from the tangent addition formula:
a—+c
T an(a + )
Therefore:
; — 2(a + )
2l cos ).

Substituting into p, we get:
p=2cos®a — 2cos?(a + ) + 3cos? .

Let 0 = a + 7, and express v = 6 — a. Then:

p=2cos’a —2cos? 0 + 3cos?( — a).

o1
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(
Incorrect Refined Response (2/2)
### Step 3: Assume Symmetry for Simplification
To simplify further, assume a = -y, which implies § = 2a.. Then:

p = 2cos®a — 2cos*(2a) + 3cos? a = 5cos? a — 2 cos?(2a).
Using the double-angle identity cos(2a) = 2cos? a — 1, we get:
cos?(2a) = (2cos? a — 1)2.
Let x = cos?a, so = € (%, 1). Then:
p=>5z—22c—1)% =822+ 13z — 2.
This is a quadratic in x, opening downward, so its maximum occurs at:

-b 13
r=—-—=—.
2a 16

2
13 13 105
= 8(=2) +13(=) —2=22.
P 8(16) * 3(16) 32

Substituting back:

### Final Answer

105
32
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