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Abstract
Neural network minima are often connected by
curves along which train and test loss remain
nearly constant, a phenomenon known as mode
connectivity. While this property has enabled ap-
plications such as model merging and fine-tuning,
its theoretical explanation remains unclear. We
propose a new approach to exploring the connect-
edness of minima using parameter space symme-
try. By linking the topology of symmetry groups
to that of the minima, we derive the number of
connected components of the minima of linear
networks and show that skip connections reduce
this number. We then examine when mode con-
nectivity and linear mode connectivity hold or fail,
using parameter symmetries which account for a
significant part of the minimum. Finally, we pro-
vide explicit expressions for connecting curves
in the minima induced by symmetry. Using the
curvature of these curves, we derive conditions
under which linear mode connectivity approxi-
mately holds. Our findings highlight the role of
continuous symmetries in understanding the neu-
ral network loss landscape.

1. Introduction
Among recent studies on the loss landscape, a particularly in-
teresting finding is mode connectivity (Draxler et al., 2018;
Garipov et al., 2018)—the observation that distinct min-
ima found by stochastic gradient descent (SGD) can be
connected by continuous, low-loss paths through the high-
dimensional parameter space. Mode connectivity has impor-
tant implications for other aspects of deep learning theory,
including the lottery ticket hypothesis (Frankle et al., 2020)
and the analysis of loss landscapes and training trajectories
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(Gotmare et al., 2018). Mode connectivity has also inspired
applications in diverse fields, including model ensembling
(Garipov et al., 2018; Benton et al., 2021; Benzing et al.,
2022), model averaging (Izmailov et al., 2018; Wortsman
et al., 2022), pruning (Frankle et al., 2020), improving ad-
versarial robustness (Zhao et al., 2020), and fine-tuning for
altering prediction mechanism (Lubana et al., 2023).

Despite extensive empirical validation, mode connectivity,
especially linear mode connectivity, remains largely a theo-
retical conjecture (Altintas et al., 2023). The limited theoret-
ical explanation suggests a need for new proof techniques.
In this paper, we focus on parameter symmetries, which en-
code information about the structure of the parameter space
and the minimum. Our work introduces a new approach
towards understanding the topology of the minimum and
complements existing theories on mode connectivity (Yunis
et al., 2022; Freeman & Bruna, 2017; Nguyen, 2019; 2021;
Kuditipudi et al., 2019; Shevchenko & Mondelli, 2020;
Nguyen et al., 2021).

Discrete symmetry is known to be related to mode connec-
tivity. In particular, the neural network output, and hence the
minimum, is invariant under neuron permutations (Hecht-
Nielsen, 1990). Several algorithms have been developed
to find optimal permutations for linear connectivity (Singh
& Jaggi, 2020; Ainsworth et al., 2023), and Entezari et al.
(2022) conjecture that all minima found by SGD are linearly
connected up to permutation. Compared to discrete sym-
metry, the role of continuous symmetry, such as positive
rescaling in ReLU, in shaping loss landscape remains less
well studied.

We explore the connectedness of minimum through continu-
ous symmetries in the parameter space. Continuous symme-
try groups with continuous actions define positive dimen-
sional connected spaces in the minimum (Zhao et al., 2023).
By relating topological properties of symmetry groups to
their orbits and the minimum, we show that both continu-
ous and discrete symmetry are useful in understanding the
origin and failure cases of mode connectivity. Additionally,
continuous symmetry defines curves on the minimum (Zhao
et al., 2024). This enables a principled method for deriving
explicit expressions for paths connecting two minima, a task
that previously relied on empirical approaches.

Our main contributions are:
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• Providing the number of connected components of full-
rank linear regression with and without skip connec-
tions, by relating topological properties of symmetry
groups to those of minima.

• Proving mode connectivity up to permutation for linear
networks with invertible weights.

• Deriving examples where the error barrier on linear
interpolation of minima is unbounded.

• Deriving explicit low-loss curves that connect minima
related by symmetry, and bounding the loss barrier on
linear interpolations between minima using the curva-
ture of these curves.

2. Related Work
Mode connectivity. Garipov et al. (2018) and Draxler
et al. (2018) discover empirically that the minima of neu-
ral networks are connected by curves on which train and
test loss are almost constant. It is then observed that SGD
solutions are linearly connected if they are trained from
pre-trained weights (Neyshabur et al., 2020) or share a short
period of training at the beginning (Frankle et al., 2020).
Additionally, neuron alignment by permutation improves
mode connectivity (Singh & Jaggi, 2020; Tatro et al., 2020).
Subsequently, Entezari et al. (2022) conjecture that all min-
ima found by SGD are linearly connected up to permutation.
Following the conjecture, Ainsworth et al. (2023) develop
algorithms that find the optimal alignment for linear mode
connectivity, and Jordan et al. (2023) further reduce the bar-
rier by rescaling the preactivations of interpolated networks.

It is worth noting that linear mode connectivity does not
always hold outside of computer vision. Language models
that are not linearly connected have different generalization
strategies (Juneja et al., 2023). Lubana et al. (2023) further
show that the lack of linear connectivity indicates that the
two models rely on different attributes to make predictions.
We derive new theoretical examples of failure cases of linear
mode connectivity (Section 5.2).

Theory on connectedness of minimum. Several work
explores the theoretical explanation of mode connectivity
by studying the connectedness of sub-level sets. Freeman
& Bruna (2017) show that the minimum is connected for
2-layer linear network without regularization, and for deeper
linear networks with L2 regularization. Futhermore, they
show that the minimum of a two-layer ReLU network is
asymptotically connected, that is, there exists a path connect-
ing any two solutions with bounded error. Nguyen (2019)
proves that the sublevel sets are connected in pyramidal
networks with piecewise linear activation functions and first
hidden layer wider than 2N , where N is the number of

training data). The width requirement is later improved to
N + 1 (Nguyen, 2021).

Others prove connectivity under dropout stability. Kudi-
tipudi et al. (2019) show that a piece-wise linear path exists
between two solutions of ReLU networks, if they are both
dropout stable, or both noise stable and sufficiently over-
parametrized. Shevchenko & Mondelli (2020) generalize
this proof to show that wider neural networks are more con-
nected, following the observation that SGD solutions for
wider network are more dropout stable. Nguyen et al. (2021)
give a new upper bound of the loss barrier between solu-
tions using the loss of sparse subnetworks that are optimized,
which is a milder condition than dropout stability.

A few papers provide theoretical insights into linear mode
connectivity using different approaches. Yunis et al. (2022)
explain linear mode connectivity by finding a convex hull
defined by SGD trajectory endpoints. Ferbach et al. (2023)
use optimal transport theory to prove that wide two-layer
neural networks trained with SGD are linearly connected
with high probability. (Singh et al., 2024) explain the topog-
raphy of the loss landscape that enables or obstructs linear
mode connectivity. Zhou et al. (2023) show that the feature
maps of each layer are also linearly connected and identify
conditions that guarantee linear connectivity. Altintas et al.
(2023) analyze effects of architecture, optimization algo-
rithm, and dataset on linear mode connectivity empirically.

We approach the theoretical origin of mode connectivity via
continuous symmetries in the parameter space, a connection
that has not been previously established. This connection
leads to new topological results and explicit expressions of
low loss curves. Using these results, we also contribute to
the understanding for linear mode connectivity by providing
conditions under which it approximately holds.

Symmetry in the loss landscape. Discrete symmetries
have inspired a line of work on loss landscapes. Brea et al.
(2019) show that permutations of a layer are connected
within a loss level set. By analyzing permutation symme-
tries, Şimşek et al. (2021) characterize the geometry of the
global minima manifold for networks and show that adding
one neuron to each layer in a minimal network connects
the permutation equivalent global minima. Continuous sym-
metries have also gained attention in optimization (Badri-
narayanan et al., 2015; Petzka et al., 2020; Kunin et al.,
2021; Zhao et al., 2022). By removing permutation and
rescaling symmetries, Pittorino et al. (2022) study the geom-
etry of minima in the functional space. Zhao et al. (2023)
find a set of nonlinear continuous symmetries that partially
parametrizes the minimum. Zhao et al. (2024) use symmetry
induced curves to approximate the curvature of the mini-
mum. Our paper explores a new application of parameter
symmetry—explaining the connectedness of the minimum.
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3. Preliminaries
In this section, we review mathematical concepts used in
the paper and list some useful results on the number of con-
nected components of topological spaces. A more detailed
version with proofs can be found in Appendix A.

3.1. Connected components

Consider two topological spaces X and Y . A map f : X →
Y is continuous if for every open subset U ⊆ Y , its preim-
age f−1(U) is open in X . If X and Y are metric spaces
with metrics dX and dY respectively, this is equivalent to
the delta-epsilon definition. That is, f is continuous if at
every x ∈ X , for any ϵ > 0 there exists δ > 0 such that
dX(x, y) < δ implies dY (f(x), f(y)) < ϵ for all y ∈ X .

A topological space is connected if it cannot be expressed
as the union of two disjoint, nonempty, open subsets. A
topological space X is path connected if for every p, q ∈ X ,
there is a continuous map f : [0, 1] → X such that f(0) = p
and f(1) = q. Path connectedness implies connectedness.
The converse is not always true (Lee, 2010), but counterex-
amples are often specifically constructed and unlikely to be
encountered in the context of deep learning. Path connected-
ness can therefore help develop intuition for connectedness,
for practical purposes.

The following theorem is the main intuition of this paper
and will appear frequently in proofs.

Theorem 3.1 (Theorem 4.7 in (Lee, 2010)). Let X,Y be
topological spaces and let f : X → Y be a continuous map.
If X is connected, then f(X) is connected.

A map f is a homeomorphism from X to Y if f is bijective
and both f and f−1 are continuous. X and Y are homeo-
morphic if such a map exists. A (connected) component of
a topological space X is a maximal nonempty connected
subset of X . The components of X form a partition of X .
The next two corollaries of Theorem 3.1 show that con-
nectedness and the number of connected components are
topological properties. That is, they are preserved under
homeomorphisms.

Corollary 3.2. Let f : X → Y be a homeomorphism from
X to Y , and let U ⊆ X be a subset of X with the subspace
topology. Then U is connected if and only if f(U) ⊆ Y is
connected.

Corollary 3.3. Let X be a topological space that has N
components. Let Y be a topological space homeomorphic
to X . Then Y has N components.

Another consequence of Theorem 3.1 is the following upper
bound on the number of components of the image of a
continuous map.

Proposition 3.4. Let f : X → Y be a continuous map. The

number of components of the image f(X) ⊆ Y is at most
the number of components of X .

Let X1, ..., Xn be topological spaces. The product space
is their Cartesian product X1 × ...×Xn endowed with the
product topology. Denote π0(X) as the set of connected
components of a space X . The following proposition pro-
vides a way to count the components of a product space.

Proposition 3.5. Consider n topological spaces X1, ..., Xn.
Then |π0(X1 × ...×Xn)| =

∏n
i=0 |π0(Xi)|.

3.2. Groups

A group is a set G together with a composition law, written
as juxtaposition, that satisfies associativity, (ab)c = a(bc)
∀ a, b, c ∈ G, has an identity 1 such that 1a = a1 = a
∀ a ∈ G, and for all a ∈ G, there exists an inverse b such
that ab = ba = 1. An action of a group G on a set S is a
map · : G × S → S that satisfies 1 · s = s for all s ∈ S
and (gg′) · s = g · (g′ · s) for all g, g′ in G and all s in
S. The orbit of s ∈ S is the set O(s) = {s′ ∈ S | s′ =
gs for some g ∈ G}.

A topological group is a group G endowed with a topology
such that multiplication and inverse are both continuous.
A recurring example is the general linear group GLn(R),
with the subspace topology obtained from Rn2

. The group
GLn(R) has two connected components, which correspond
to matrices with positive and negative determinant.

The product of groups G1, ..., Gn is a group denoted
by G1 × ... × Gn. The set underlying G1 × ... ×
Gn is the Cartesian product of G1, ..., Gn. The
group structure is defined by identity (1, ..., 1), inverse
(g1, ..., gn)

−1 = (g−1
1 , ..., g−1

n ), and multiplication rule
(g1, ..., gn)(g

′
1, ..., g

′
n) = (g1g

′
1, ..., gng

′
n).

3.3. Connectedness of groups, orbits, and level sets

From Theorem 3.1, continuous maps preserve connected-
ness. Through continuous actions, we study the connected-
ness of orbits and level sets by relating them to the connect-
edness of more familiar objects such as the general linear
group. Establishing a homeomorphism from the group to
the set of minima requires the symmetry group’s action to
be continuous, transitive, and free. Here we only assume
the action to be continuous and try to bound the number of
components of the orbits.

As an immediate consequence of Proposition 3.4, an orbit
cannot have more components than the group.

Corollary 3.6. Assume that the action of a group G on S
is continuous. Then the number of connected components
of orbit O(s) is smaller than or equal to the number of
connected components of G, for all s in S.
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Let X be a topological space and L : X → R a continu-
ous function on X . A topological group G is said to be a
symmetry group of L if L(g · x) = L(x) for all g ∈ G and
x ∈ X . In this case, the action can be defined on a level set
of L, L−1(c) with a c ∈ R, as G × L−1(c) → L−1(c). If
the minimum of L consists of a single orbit, Corollary 3.6
extends to the number of components of the minimum.
Corollary 3.7. Let L be a function with a symmetry group
G. If the minimum of L consists of a single G-orbit, then the
number of connected components of the minimum is smaller
or equal to the number of connected components of G.

Generally, symmetry groups do not act transitively on a
level set L−1(c) ∈ X . In this case, the connectedness of
the orbits does not directly inform the connectedness of the
level set. Nevertheless, since the set of orbits partitions the
space, we can use the following bound on the number of
components of the space.
Proposition 3.8. Let X be a topological space and let
X =

∐
i Xi be a partition of X into disjoint subspaces.

Then |π0(X)| ≤
∑

i |π0(Xi)|.

Consider a topological space X and a group G that acts
on X . Let O = {O1, ..., On} be the set of orbits. By
Proposition 3.8, the number of components of the orbits give
the following upper bound on the number of components of
the space: |π0(X)| ≤

∑n
i=1 |π0(Oi)|.

4. Connected Components of the Minimum
In this section, we relate topological properties of symmetry
groups to topological properties of the minimum. In particu-
lar, we provide the number of connected components of the
minimum when all symmetries are known. Omitted proofs
can be found in Appendix C.

4.1. Linear network with invertible weights

Let Param be the space of parameters. Consider the multi-
layer loss function L : Param → R,

L : Param → R, (W1, ...,Wl) 7→ ||Y −Wl...W1X||22.
(1)

where X,Y ∈ Rh×h are the input and output of the
network. In this subsection, we assume that both X,Y
have rank h, and Param = (Rh×h)l. Then L is invariant to
GLh(R)l−1, which acts on Param by g · (W1, ...,Wl) =
(g1W1, g2W2g

−1
1 , ..., gl−1Wl−1g

−1
l−2,Wlg

−1
l−1), for

(g1, ..., gl−1) ∈ GLh(R)l−1.

Let L−1(c) = {θ ∈ Param : L(θ) = c} be a level set of
L. Since ∥ · ∥2 ≥ 0 and L−1(0) ̸= ∅, the minimum value
of L is 0. By relating the topology of GLh(R) and L−1(0),
we have the following observations on the structure of the
minimum of L.
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Figure 1: Minimum of (a) 3-layer linear net ||Y −
W3W2W1X||2 and (b) 3-layer linear net with a residual
connection ||Y − W3(W2W1X + X)||2, where X = 1,
Y = 1, and W1,W2,W3 ∈ R.

Proposition 4.1. There is a homeomorphism between
L−1(0) and (GLh)

l−1.

Since (GLh)
l−1 has 2l−1 connected components and home-

omorphisms preserve topological properties, L−1(0) also
has 2l−1 connected components. Note that this number
is independent of the network width, due to the fact that
GLn(R)) has two connected components regardless of n.

Corollary 4.2. The minimum of L has 2l−1 connected com-
ponents.

4.2. ResNet with 1D weights

The topological properties of the minimum set depend on
the architecture. As an example of this dependency, we
show that adding a skip connection changes the number of
connected components of the minimum.

Consider a residual network W3(W2W1X + εX) and loss
function

L(W3,W2,W1) = ||Y −W3(W2W1X + εX)||2, (2)

where (W1,W2,W3) ∈ Param = Rn×n ×Rn×n ×Rn×n,
ε ∈ R, and data X ∈ Rn×n, Y ∈ Rn×n. The following
proposition states that for a three-layer residual network
with weight matrices of dimension 1 × 1, the number of
components of the minimum is smaller than that of a linear
network without the skip connection.

Proposition 4.3. Let n = 1. Assume that X,Y ̸= 0. When
ε = 0, the minimum of L has 4 connected components.
When ε ̸= 0, the minimum of L has 3 connected components.

The ε = 0 case follows from Corollary 4.2. For the ε ̸= 0
case, the proof decomposes the minimum of L into two sets
S1 and S0, corresponding to the minima without the skip
connection and an extra set of solutions because of the skip
connection. S1 is homeomorphic to GL1 × GL1 and has
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4 connected components. S0 is a line and has 1 connected
component. Two components of S1 are connected to S0,
while the other two components of S1 are not. Therefore, S0

connects two components of S1. As a result, the minimum
of L has 3 connected components.

Figure 1 visualizes the minimum without and with the skip
connection. This result reveals the effect of skip connection
on the connectedness of the set of minima, which may lead
to a new explanation of the effectiveness of ResNets (He
et al., 2016) and DenseNets (Huang et al., 2017). We leave
the connection between the topology of the minimum and
the optimization and generalization properties of neural
networks to future work.

5. Mode Connectivity
The previous section counts the connected components of
the minimum and shows that the connectedness of the mini-
mum is related to the symmetry of the loss function under
certain conditions. In this section, we use this insight to
explain recent empirical observations that with high proba-
bility two points in the minimum are connected, i.e. there is
a large connected component. Proofs of this section appears
in Appendix D.

Mode connectivity refers to the phenomenon that there exist
high accuracy or low loss paths between two minima found
by stochastic gradient descent (Garipov et al., 2018). Linear
mode connectivity occurs when all points on the linear inter-
polation between two minima have low loss values. More
recently, permutation of neurons is usually performed to
align the two minima before evaluating linear mode con-
nectivity (Entezari et al., 2022; Ainsworth et al., 2023). We
use the term mode connectivity when we consider arbitrary
curves and will specify linear mode connectivity when only
linear interpolation is considered.

5.1. Mode connectivity up to permutation

For the family of linear neural networks defined in Section
4.1, we show that permutations allow us to connect points
in the minimum that are not connected without permuta-
tion. Our results support the empirical observation that neu-
ron alignment by permutation improves mode connectivity
(Tatro et al., 2020).

Consider again the linear network (1) with invertible
weights. When l = 2, the minimum of L has two con-
nected components corresponding to the two connected
components of the GL group. Any g ∈ GL that is not on
the identity component can take a point on one connected
component of the minimum to the other.
Lemma 5.1. Consider two points (W1,W2), (W

′
1,W

′
2) ∈

L−1(0) that are not connected in L−1(0). For any g ∈
GL(h) such that det(g) < 0, g · (W1,W2) and (W ′

1,W
′
2)

are connected in L−1(0).

When the hidden dimension h ≥ 2, there exists a permuta-
tion g such that det(g) > 0, and a permutation g such that
det(g) < 0. Therefore, Lemma 5.1 implies the following
result that all points on the minimum of L are connected up
to permutation.

Proposition 5.2. Assume that h ≥ 2. For
all (W1, ...,Wl), (W

′
1, ...,W

′
l ) ∈ L−1(0), there ex-

ists a list of permutation matrices P1, ..., Pl−1 such
that (W1P1, P

−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl) and

(W ′
1, ...,W

′
l ) are connected in L−1(0).

The results above are examples where a larger part of the
minimum becomes connected after a permutation. More
generally, permutation improves mode connectivity in cases
where an orbit is not connected due to the symmetry group
comprising multiple connected components, the orbit does
not reside on the same connected component of the mini-
mum, and there exists a permutation that takes a point on
one connected component of the group to another.

5.2. Failure case of linear mode connectivity

As an application of obtaining new minima from old ones us-
ing symmetries, we show that linear mode connectivity fails
to hold in multi-layer regressions. The following proposition
says that in neural networks with a homogeneous activation
(such as leaky ReLU) between the last two layers, the error
barrier in the linear interpolation between two solutions can
be arbitrarily large.

Proposition 5.3. Consider a loss function of the following
form

L : Param → R,W = (W1, ...,Wl) 7→
||Y −Wlσ(Wl−1f(Wl−2,Wl−3, ...,W1, X))||22,(3)

where f is a function of Wl−2,Wl−3, ...,W1, X , and
σ(cz) = ckσ(z) for all c ∈ R and some k > 0. Assume
that ||Y ||2 ̸= 0 and L−1(0) ̸= ∅. Also assume that l ≥ 2.
For any positive number b > 0, there exist W,W ′ ∈ L−1(0)
that belong to the same connected component of L−1(0)
and 0 < α < 1, such that L ((1− α)W + αW ′) > b.

The proof constructs a new point on the minimum from an
existing one using the rescaling symmetry of homogeneous
functions. The two points can be far apart since the orbit of
this group action is unbounded. To provide intuition, Figure
2 visualizes the two points on the minimum of a two-layer
network with weights of dimension 1 × 1 and the linear
interpolation between them. The linear network used is a
special case of a homogeneous network. Note that our result
here does not contradict with the layer-wise connectivity
result in (Adilova et al., 2024), as more than one layer of
the two minima are different.
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Figure 2: Interpolation between 2 minima of loss func-
tion L(W1,W2) = ||Y −W2W1X||2 with 1 dimensional
weights. Loss on the interpolation can be unbounded.

The loss function considered in Proposition 5.3 is signif-
icantly more general than those in Section 5.1. For the
architecture, we only require the presence of a rescaling
symmetry in the last two layers, and f can be any neu-
ral network with any activation. Other assumptions of the
proposition are also not excessively restrictive, as the labels
Y are rarely all zero, and there usually exists a minimum in
common machine learning tasks.

Proposition 5.3 extends to cases where we allow certain
permutations. The following proposition states that under
additional assumptions, the error barrier in the linear inter-
polation is unbounded even with neuron permutations. The
proof construction is similar to that of Proposition 5.3.

Let Sn be the set of n× n permutation matrices, where n is
the number of columns of Wl.
Proposition 5.4. Consider the loss function with the same
set of assumptions in Proposition 5.3. Assume additionally
that there does not exist a permutation P such that every
column of Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X)) is in the
null space of Wl. For any positive number b > 0, there exist
(W1, ...,Wl), (W

′
1, ...,W

′
l ) ∈ L−1(0) and 0 < α < 1, such

that (W1, ...,Wl−2) = (W ′
1, ...,W

′
l−2) and

min
P∈Sn

L
(
(1− α)(W1, ...,Wl)

+ α(W1, ...,Wl−2, P
−1Wl−1,WlP )

)
> b.

By including permutation, the setting in Proposition 5.4 is
closer to the setting in which linear mode connectivity is
empirically observed. However, the permutation in Propo-
sition 5.4 is restricted to the first two layers, which does
not rule out the possibility of lowering the loss barrier by
including permutations of other neurons.

The proofs of Proposition 5.3 and 5.4 depend on the rescal-
ing symmetry of homogenenous activation functions. For

other activations with known symmetries, similar results
may be derived as using the large set of minimum obtained
from the group action. Whether the loss barrier on the linear
interpolation is bounded can depend on the compactness of
the symmetry group and the curvature of the minimum. We
leave a systematic investigation of the condition for linear
mode connectivity to future work.

One possible reason why linear mode connectivity is ob-
served in practice despite Proposition 5.4 is that only a
small part of the minima is reachable by stochastic gradient
descent due to implicit bias (Min et al., 2021), as other opti-
mizers have been observed to find less connected minima
(Altintas et al., 2023).

5.3. Linear mode connectivity of orbits

Symmetry accounts for a large part of the set of minima. In
particular, given a known minimum x, the orbit of x defines
a set of points that are also minima. Although not all minima
are on the same orbit of known symmetries, each orbit often
contains a nontrivial set of minima. In this section, we
examine the error barrier of linear interpolations of minima
restricted to an orbit of parameter symmetries.

When the architecture contains a multiplication of two
weight matrices W2W1, where W2 ∈ Rm×h,W1 ∈ Rh×n,
there is a GLh symmetry that acts on (W1,W2) by g ·
(W1,W2) = (gW1,W2g

−1) for g ∈ GLh. The following
proposition states that a point on the linear interpolation of
two points in the same orbit can be far away from the orbit.
Proposition 5.5. Let A ∈ Rn×n be an invertible matrix.
Let set S = {(W1,W2) : W1,W2 ∈ Rn×n,W1W2 = A}.
For any positive number b > 0, there exist W ′,W ′′ ∈ S and
0 < α < 1, such that minŴ∈S ∥ ((1− α)W ′ + αW ′′) −
Ŵ∥2 > b.

The structure in the form of W1W2 is not uncommon in
deep learning architectures. Notably, the parameter matrices
for queries and keys in the attention function are multiplied
directly in this manner (Vaswani et al., 2017), thus admitting
the GLh symmetry and having orbits with properties given
by Proposition 5.5.

While the error barrier in the linear interpolation of two
minima can be unbounded (Proposition 5.3), this typically
occurs when the parameters are allowed to be arbitrarily
large. Constraining the parameters to remain bounded en-
sures that the loss barrier is bounded above. The following
proposition makes this intuition precise for the set of minima
consisting of a particular orbit.
Proposition 5.6. Consider the loss function with the same
set of assumptions in Proposition 5.3. Let W ∈ L−1(0)
be a point on the minimum. Consider the multiplicative
group of positive real numbers R+ that acts on L−1(0) by
g · (W1, ...,Wl) = (W1, ...,Wl−2, gWl−1,Wlg

−k), where
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g ∈ R+. Then there exists a positive number b > 0, such
that for all 0 < α < 1 and W ′ ∈ Orbit(W ) with ||W ′

i ||2 <
c for all i and some c > 0, the loss value for points on the
linear interpolation L ((1− α)W + αW ′) < b.

Proposition 5.5 and 5.6 are two examples where the knowl-
edge of parameter symmetry enables analysis of the linear
connectivity of subsets of minima. As more continuous
symmetries are characterized (e.g. the nonlinear symme-
tries in Zhao et al. (2023)), these analysis can potentially be
extended to even larger parts of the set of minima.

6. Curves on Minimum from Group Actions
The paths connecting two points in the set of minima may
not be linear. Previously, these paths were discovered empir-
ically by finding parametric curves on which the expected
loss is minimized (Garipov et al., 2018). Using parameter
space symmetry, we uncover an alternative and principled
way to find curves on the minimum.

6.1. Symmetry induced curves

Suppose the loss function L : Param → R is invariant with
respect to some Lie group G. Consider the following curve
for a point w ∈ Param and M ∈ Lie(G):

γM : R× Param → Param,

γM (t,w) = exp (tM) ·w. (4)

Since exp (tM) ∈ G and the action of G preserves the
value of L, every point on γM is in the same L level set
as w. This provides a way to find a curve of constant loss
between two points that are in the same orbit. Concretely,
given two points w1 and w2 = g ·w1, let γ be the following
curve:

γ : [0, 1]×G× Param → Param,

γ(t, g,w) = exp (t log(g)) ·w. (5)

Note that γ(0, g,w1) = w1, γ(1, g,w1) = w2, and
L(γ(t, g,w1)) = L(w1) = L(w2) for all t ∈ [0, 1]. Hence,
γ is a curve that connects the points w1 and w2, and every
point on γ has the same loss value as L(w1) = L(w2).

For a group G, the curve γ is defined when the map · :
G × Param → Param is continuous and id · w = w for
all w ∈ Param, even if it is not a group action or does not
preserve loss. However, when · does not preserve loss, the
loss can change on γ. Consider our two-layer network and
the following map:

· : GL(h,R)× Param → Param

g · (U, V ) = (Uσ(V X)σ(gV X)†, gV ).(6)

When σ is the identity function, · preserves the loss value,
and γ defines a curve on the minimum. In general, the map

(6) does not preserve loss when batch size k is larger than
hidden dimension h. However, the maximum change of loss
on γ can be bounded as follows.

Proposition 6.1. Let (U, V ) ∈ Param, and (U ′, V ′) =
g · (U, V ). Then

∥Uσ(V X)− U ′σ(V ′X)∥ ≤ ∥Uσ(V X)∥. (7)

We demonstrate Proposition 6.1 empirically using a set of
two-layer networks with various parameter space dimen-
sions. Specifically, we construct networks in the form of
∥Uσ(V X)− Y ∥2, with σ being the sigmoid function, X ∈
Rn×k, Y ∈ Rm×k, and (U, V ) ∈ Param = Rm×h×Rh×n.
We create 100 such networks, each with m,h, n, k randomly
sampled from integers between 2 and 100. In each network,
elements in X and Y are sampled independently from a
normal distribution, and U, V are randomly initialized. Af-
ter training with SGD, we compute (U ′, V ′) = g · (U, V )
using (6) with a random invertible matrix g. We then plot
∥Uσ(V X)∥ against ∥Uσ(V X) − U ′σ(V ′X)∥ in Figure
3(a). All points are above the line y = x, as predicted by
Proposition 6.1.

While the map (6) is not a group action in general, it con-
nects more points in the set of minima than only using
known symmetries, and the points on the connecting curves
have bounded loss. Figure 3(b-c) shows that the loss on the
curves induced by approximate symmetries remains rela-
tively low, compared to the loss on the linear interpolation
between the two ends of these curves. We consider a two
layer network with loss function ∥W2σ(W1X)−Y ∥, with σ
being a leaky ReLU function, X ∈ R16×8, Y ∈ R64×8, and
(W1,W2) ∈ Param = R32×16 × R32. In the figures, γ de-
notes a curve obtained using Equation (5) together with (6).
The starting point of γ is a minimum found by SGD. Both
γ and the linear interpolation are parametrized by t ∈ [0, 1].
Compared to the linear interpolation between the two end
points of γ, the loss on γ is consistently lower. Figure 3(c)
uses group elements with larger magnitudes, resulting in a
larger distance between γ(0) and γ(1), which might explain
the higher loss barrier on their linear interpolation.

6.2. Approximate linear connectivity under bounded
curvature of minima

Knowing the explicit expression of connecting curves brings
new insight into when linear mode connectivity approxi-
mately holds. In particular, these expressions provide infor-
mation about the curvature of the curves. If the curvatures
are small, then there exists an approximately straight line
connecting any two minima along which the loss remains
close to its minimum value.

Consider a loss level set L−1(c) = {w ∈ Param :
L(w) = c} with some c ∈ R. Suppose we have two points

7
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Figure 3: (a) Empirical validation of Proposition 6.1. (b-c)
The loss on the curves induced by approximate symmetries
(γ) remains relatively low, compared to the loss on the linear
interpolation between the two ends of these curves. (b) and
(c) differ by the magnitude of the group element used. The
loss is averaged over 5 random curves.

w1,w2 ∈ L−1(c) connected by a smooth curve γ lying
entirely within L−1(c). The curvature of γ can be written
as κ(γ, t) = ∥T ′(t)∥

∥γ′(t)∥ , where γ′ = dγ
dt and T (t) = γ′(t)

∥γ′(t)∥ . If
the curvature of this curve is small or bounded, we can show
that there exists an approximately straight line connecting
w1 and w2 that remains close to L−1(c). Additionally, if L
is Lipschitz continuous, its value remains close to c along
this line segment. We formalize this with the following
theorem.
Theorem 6.2. Let L−1(c) ⊂ Param, with c ∈ R, be a level
set of the loss function L : Param → R. Let γ : [0, 1] →
L−1(c) be a smooth curve in L−1(c) connecting two points
w1 = γ(0) and w2 = γ(1). Suppose the curvature κ(t) of
γ satisfies κ(t) ≤ κmax for all t ∈ [0, 1].

Let S be the straight line segment connecting w1 and w2.
Then, for any point w on S, the distance to L−1(c) is
bounded by

dist(w, L−1(c)) ≤ dmax, (8)

with

dmax =
1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 .

Furthermore, assuming L is Lipschitz continuous with Lips-
chitz constant CL, the loss at any point w on S satisfies

|L(w)− c| ≤ CLdmax. (9)

When the group action induces curves with bounded cur-
vature, Theorem 6.2 applies. Since the minimum is also
a level set of L, Theorem 6.2 provides a sufficient condi-
tion for linear mode connectivity to approximately hold.
When the curvature of the minimum is small, points on
the minimum are approximately connected through nearly
straight paths along with the loss does not increase sig-
nificantly. If κmax∥w2 − w1∥ is small, we can use the
first-order approximation of the square root and obtain
dmax ≈ κmax∥w2−w1∥2

2

8 .

7. Discussion
In this work, we study topological properties of the loss
level sets by relating their topology to the topology of sym-
metry groups. Specifically, we derive the number of con-
nected components of full-rank multi-layer networks with
and without skip connections, and prove mode connectivity
up to permutation for full-rank linear regressions. Using
symmetry in the parameter space, we construct an explicit
expression for curves that connect two points in the same
orbit. The explicit expressions allow us to obtain the cur-
vature of these curves, which are useful to bound the loss
barrier on linear interpolation between minima.

For practitioners, these results motivate concrete strategies—
and cautions—for tasks that navigate the loss landscape,
including model merging, ensembling, and fine-tuning:

• One can build low-loss curves explicitly using known
parameter symmetries. This gives a principled and
efficient way to obtain new minima from old ones, po-
tentially useful for (1) generating model ensembles
with low cost; (2) improving model alignment by al-
lowing a much larger group of transformations than
permutation; and (3) mitigating catastrophic forgetting
in fine-tuning by constraining updates to the symmetry-
induced manifold of the pretraining minimum.

• The connectedness of minima supports the practice of
model merging and ensembling, even when models are
trained separately. In addition to permutation, many
other symmetry transformations can connect solutions
that would otherwise appear very different.

• Linear interpolation between minima is not guaranteed
to lead to better models, despite its widespread use.
This highlights the need to evaluate whether the min-
ima found by specific learning algorithms are approxi-
mately connected before averaging models directly.

Extending these results to nonlinear networks is a challeng-
ing yet exciting future direction. A full characterization of
the minima in non-linear settings requires identifying the
complete set of symmetries—an open problem for many
architectures—and analyzing how the resulting orbits inter-
sect, which becomes increasingly complex as the number of
orbits grows. One approach is through approximate symme-
tries, such as those in Section 6. Another is by continuously
deforming the network or its minimum and studying its be-
havior in the limit as the network approaches a linear regime.
Additionally, many modern architectures retain large con-
tinuous symmetry groups, particularly in components like
self attention or normalization layers. As we saw in Section
5.3, even partial knowledge of symmetries in a network can
yield valuable structural information about its minima.
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Appendix

A. Background
This section contains additional background in general topology and proofs for statements in Section 3. We refer readers to
(Lee, 2010) for a more detailed introduction to this topic.

A.1. Connected components

Consider two topological spaces X and Y . A map f : X → Y is continuous if for every open subset U ⊆ Y , its
preimage f−1(U) is open in X . If X and Y are metric spaces with metrics dX and dY respectively, this is equivalent to the
delta-epsilon definition. That is, f is continuous if at every x ∈ X , for any ϵ > 0 there exists δ > 0 such that dX(x, y) < δ
implies dY (f(x), f(y)) < ϵ for all y ∈ X .

A topological space is connected if it cannot be expressed as the union of two disjoint, nonempty, open subsets. A topological
space X is path connected if for every p, q ∈ X , there is a continuous map f : [0, 1] → X such that f(0) = p and f(1) = q.
Path connectedness implies connectedness, but the converse is not true (Lee, 2010). (Nguyen, 2019) studies the path
connectedness of sublevel sets of loss functions.

The following theorem is the main intuition of this paper and will appear frequently in proofs.

Theorem A.1 (Theorem 4.7 in (Lee, 2010), Theorem 3.1 in the Main Text). Let X,Y be topological spaces and let
f : X → Y be a continuous map. If X is connected, then f(X) is connected.

A map f is a homeomorphism from X to Y if f is bijective and both f and f−1 are continuous. X and Y are homeomorphic
if such a map exists. A (connected) component of a topological space X is a maximal nonempty connected subset of X .
The components of X form a partition of X . The next two corollaries of Theorem A.1 show that connectedness and the
number of connected components are topological properties. That is, they are preserved under homeomorphisms.

Corollary A.2. Let f : X → Y be a homeomorphism from X to Y , and let U ⊆ X be a subset of X with the subspace
topology. Then U is connected if and only if f(U) ⊆ Y is connected.

Proof. By the definition of homeomorphism, f and f−1 are continuous. From Theorem A.1, if U ∈ X is connected, then
f(U) ∈ Y is connected. Similarly, if f(U) is connected, then f−1(f(U)) = U is connected.

Corollary A.3. Let X be a topological space that has N components. Let Y be a topological space homeomorphic to X .
Then Y has N components.

Proof. Let C1, ..., CN be the components of X . Let f be a homeomorphism from X to Y . Since f is bijective and
C1, ..., CN is a partition of X , f(C1), ..., f(CN ) is a partition of Y . From Theorem A.1, since C1, ..., CN are all connected,
so are f(C1), ..., f(CN ).

Lastly, we need to show that f(C1), ..., f(CN ) are maximally connected. Suppose there exists a set U ⊆ Y , such that
U ̸⊆ f(Ci) and f(Ci) ∪ U is connected for some i. Then by Theorem A.1, f−1(f(Ci) ∪ U) ⊃ Ci is connected in X . This
contradicts the fact that Ci is a maximal component in X . Therefore, f(C1), ..., f(CN ) are maximally connected.

Since f(C1), ..., f(CN ) partitions Y and are maximally connected, Y has N components.

Another consequence of Theorem A.1 is the following upper bound on the number of components of the image of a
continuous map.

Proposition A.4. Let f : X → Y be a continuous map. The number of components of the image f(X) ⊆ Y is at most the
number of components of X .

Proof. Let C1, ..., CN be the components of X . Since Ci is continuous and the action is continuous, according to Theorem
A.1, f(Ci) is continuous for all i ∈ {1, ..., N}. Additionally, since

⋃N
i=1 Ci = X , we have

⋃N
i=1 f(Ci) = f(X). Therefore,

there is a surjective map from {f(C1), ..., f(CN )} to the set of components of f(X), which implies that f(X) has at most
N components.
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Let X1, ..., Xn be topological spaces. The product space is their Cartesian product X1 × ...×Xn endowed with the product
topology. Denote π0(X) as the set of connected components of a space X . The following proposition provides a way to
count the components of a product space.

Proposition A.5. Consider n topological spaces X1, ..., Xn. Then |π0(X1 × ...×Xn)| =
∏n

i=0 |π0(Xi)|.

Proof. When n = 1, the number of components of the product space is |π0(X1)|.

For the n > 1 case, since X1× ...×Xn = (X1× ...×Xn−1)×Xn, it suffices to show that |π0(A×B)| = |π0(A)||π0(B)|
for any topological spaces A and B. Let f : π0(A)× π0(B) → π0(A×B) be the map that assigns C ∈ π0(A)× π0(B) to
the element in π0(A×B) that contains C. Then f is surjective because π0(A)×π0(B) forms a partition of A×B. To prove
that f is injective, suppose that f(C1) = f(C2) for C1, C2 ∈ π0(A)× π0(B). Consider the projection πA : A×B → A.
Since πA is continuous and C1, C2 belong to the same component of A × B, πA(C1) and πA(C2) belong to the same
component of A. Similarly, πB(C1) and πB(C2) belong to the same component of B under the projection πB : A×B → B.
Since all components of A and B are maximally connected, we have C1 = C2, which implies that f is injective. Since f is
a bijection from π0(A)× π0(B) to π0(A×B), |π0(A×B)| = |π0(A)||π0(B)|.

A.2. Groups

A group is a set G together with a composition law, written as juxtaposition, that satisfies associativity, (ab)c = a(bc)
∀ a, b, c ∈ G, has an identity 1 such that 1a = a1 = a ∀ a ∈ G, and for all a ∈ G, there exists an inverse b such that
ab = ba = 1. An action of a group G on a set S is a map · : G × S → S that satisfies 1 · s = s for all s ∈ S and
(gg′) ·s = g ·(g′ ·s) for all g, g′ in G and all s in S. The orbit of s ∈ S is the set O(s) = {s′ ∈ S | s′ = gs for some g ∈ G}.

A topological group is a group G endowed with a topology such that multiplication and inverse are both continuous. A
recurring example is the general linear group GLn(R), with the subspace topology obtained from Rn2

. The group GLn(R)
has two connected components, which correspond to matrices with positive and negative determinant.

The product of groups G1, ..., Gn is a group denoted by G1 × ...×Gn. The set underlying G1 × ...×Gn is the Cartesian
product of G1, ..., Gn. The group structure is defined by identity (1, ..., 1), inverse (g1, ..., gn)

−1 = (g−1
1 , ..., g−1

n ), and
multiplication rule (g1, ..., gn)(g

′
1, ..., g

′
n) = (g1g

′
1, ..., gng

′
n).

A.3. Relating connectedness of groups, orbits, and level sets

From Theorem 3.1, continuous maps preserve connectedness. Through continuous actions, we study the connectedness
of orbits and level sets by relating them to the connectedness of more familiar objects such as the general linear group.
Establishing a homeomorphism from the group to the set of minima requires the symmetry group’s action to be continuous,
transitive, and free. Here we only assume the action to be continuous and try to bound the number of components of the
orbits.

As an immediate consequence of Proposition A.4, an orbit cannot have more components than the group.

Corollary A.6. Assume that the action of a group G on S is continuous. Then the number of connected components of orbit
O(s) is smaller than or equal to the number of connected components of G, for all s in S.

Proof. An orbit O(s) is the image of the group action, which we assume to be continuous. The result follows from
Proposition A.4.

Let X be a topological space and L : X → R a continuous function on X . A topological group G is said to be a symmetry
group of L if L(g · x) = L(x) for all g ∈ G and x ∈ X . In this case, the action can be defined on a level set of L, L−1(c)
with a c ∈ R, as G× L−1(c) → L−1(c). If the minimum of L consists of a single orbit, Corollary A.6 extends immediately
to the number of components of the minimum.

Corollary A.7. Let L be a function with a symmetry group G. If the minimum of L consists of a single G-orbit, then the
number of connected components of the minimum is smaller or equal to the number of connected components of G.

Generally, symmetry groups do not act transitively on a level set L−1(c) ∈ X . In this case, the connectedness of the orbits
does not directly inform the connectedness of the level set.

13
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Proposition A.8.

1. There exists a space X and a group G with an action on X , such that each orbit for the group action is connected and
X is not connected.

2. There exists a space X and a group G with an action on X , such that each orbit for the group action is disconnected
and X is connected.

Proof. For part (a), consider a subspace of R2, X = X1 ∪X2 where X1 = {(x, y) : x = 0, y > 0} and X2 = {(x, y) :
x = 1, y > 0}. The space X is not connected. Let G be the multiplicative group of positive real numbers and act on X by
multiplication on the second coordinate. Then there are two orbits, X1 and X2, which are both connected.

For part (b), consider the space X = R2 \ {0}. Then X is connected. Let G be the multiplicative group of real numbers,
which acts on X by multiplication on both coordinates. That is, g · (x1, x2) = (gx, gx2),∀(x1, x2) ∈ X,∀g ∈ G. The orbit
of any point (x1, x2) ∈ X is not connected.

Nevertheless, since the set of orbits partitions the space, we can use the following bound on the number of components of
the space.

Proposition A.9. Let X be a topological space and let X =
∐

i Xi be a partition of X into disjoint subspaces. Then
|π0(X)| ≤

∑
i |π0(Xi)|.

Proof. Let S = {A ⊆ X : ∃i, A is a component of Xi} be the union of the components of the subspaces. Then S is a
partition of X , and every element in S is connected. Therefore, there is a surjective map from S to π0(X), defined by
mapping each s ∈ S to the element of π0(X) that includes s. This implies that |π0(X)| ≤ |S| =

∑n
i=1 |π0(Xi)|.

Consider a topological space X and a group G that acts on X . Let O = {O1, ..., On} be the set of orbits. By Proposition
A.9, the number of components of the orbits give the following upper bound on the number of components of the space:
|π0(X)| ≤

∑n
i=1 |π0(Oi)|.

B. Additional Related Work
Topological approaches in machine learning. Topology has been applied in other areas of machine learning, particularly
through tools such as persistent homology, to study the structure of data manifolds and training dynamics (Chazal &
Michel, 2021). For example, prior work has used topological data analysis (TDA) to study the shape of activation patterns,
understand generalization, and visualize learning trajectories (Gabrielsson & Carlsson, 2019).

Bounds on the number of connected components. For neural networks that are systems of polynomials, the number of
critical points can be upper bounded using methods in algebraic geometry. Mehta et al. (2021) shows that after adding a
generalized L2 regularization, there are no positive-dimensional solutions in deep linear networks with mean squared error.
They observe that the critical points, which satisfy ∇L = 0, form the solution set of a system of polynomial equations. They
then provide two upper bounds, the classical Bezout bound (CBB) and the Bernshtein-Kushnirenko-Khovanskii Bound
(BKK), on the number of isolated complex critical points. Bharadwaj & Hoşten (2023) improves the upper bound for neural
networks with one hidden layer and one training data point. Kohn et al. (2022) provide bounds on the number of critical
points in the function space for linear convolutional networks. Since proving the exact number of connected components of
a minimum is not always easy, a possible future direction is to derive Bezout and BKK bounds on the number of connected
components for various architectures and perhaps extend this analysis beyond polynomial neural networks.

C. Proofs in Section 4
Proposition 4.1. There is a homeomorphism between L−1(0) and (GLh)

l−1.

14
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Proof. Recall that W1, ...,Wn, X, Y are matrices in Rh×h, and X,Y are both full rank. Consider the map

f : (GLh)
l−1 → L−1(0), (g1, ..., gl−1) 7→ (g1X

−1, g2, ..., gl−1, Y

l−1∏
i

g−1
i ). (10)

The inverse f−1 : (W1, ...,Wl) 7→ (W1X,W2,W3, ...,Wl−1) is well defined, because X , W1,W2,W3, ...,Wl−1 are all
full-rank. Since both f and f−1 are continuous, f is a homeomorphism between (GLh)

l−1 and L−1(0).

Corollary 4.2. The minimum of L has 2l−1 connected components.

Proof. From Proposition 4.1, L−1(0) is homeomorphic to (GLh)
l−1. According to Corollary A.3, this implies that L−1(0)

has the same number of connected components as (GLh)
l−1. From Proposition A.5, GLh(R)l−1 has 2l−1 connected

components. Therefore, L−1(0) has 2l−1 connected components.

Proposition 4.3. Let n = 1. Assume that X,Y ̸= 0. When ε = 0, the minimum of L has 4 connected components. When
ε ̸= 0, the minimum of L has 3 connected components.

Proof. When ε = 0, the skip connection is effectively removed, and the loss function (2) reduces to (1). By Corollary 4.2,
the minimum of L has 4 connected components. In the rest of the proof, we consider the case where ε ̸= 0.

Let (W10 ,W20 ,W30) = (I, (α − ε)I, α−1Y X−1), where α ∈ R is an arbitrary number such that α ̸= ε and α ̸= 0.
Then (W10 ,W20 ,W30) is a point in L−1(0). Define set G1 = {g ∈ Rh×h : det (gW20W10X + εX) ̸= 0}. Let
a : GL1 ×G1 → Param be the following map:

g1, g2 7→ (g1W10 ,

g2W20g
−1
1 ,

W30(W20W10X + εX)(g2W20W10X + εX)−1). (11)

From the definition of G1, (g2W20W10X + εX) is invertible, so a is well defined. Additionally, we have L(a(g1, g2)) =
L(W10 ,W20 ,W30) = 0,∀g1, g2 ∈ GL1 ×G1. Therefore, denoting the image of a as S1, we have S1 ⊆ L−1(0).

Let S0 = {(W1,W2,W3) : W3 = Y (εX)−1 and W1 = 0} if ε ̸= 0, or ∅ otherwise. For (W1,W2,W3) ∈ S0, we have
L(W1,W2,W3) = ||Y − Y (εX)−1(0 + εX)||2 = 0. Therefore, S0 ⊆ L−1(0).

We then show that the minimum of L is the union of S1 and S0. Consider a point (W1,W2,W3) ∈ L−1(0). If W1 = 0, then
ε ̸= 0, otherwise (W1,W2,W3) cannot be in L−1(0). In this case, W3 must equal to Y (εX)−1, and (W1,W2,W3) ∈ S0. If
W1 ̸= 0, then W1W

−1
10

∈ GL1 and W2W1W
−1
10

W−1
20

∈ G1. The second part is due to W2W1W
−1
10

W−1
20

W20W10X+εX =

W2W1X+εX ̸= 0 since (W1,W2,W3) ∈ L−1(0). In this case we have (W1,W2,W3) = a(W1W
−1
10

,W2W1W
−1
10

W−1
20

),
which means that (W1,W2,W3) ∈ S1.

The number of connected components of S1 and S0 can be obtained from their structures. Since W20W10X ̸= 0, there is a
homeomorphism between G1 and GL1 defined by the map

f : G1 → GL1, g 7→ gW20W10X + εX (12)

with inverse f−1 : GL1 → G1, g 7→ ε(g − εX)(W20W10X)−1. Since a is also a homeomorphism, its image S1 is
homeomorphic to GL1 × GL1 and has 4 connected components. When ε ̸= 0, S0 is a line and thus has 1 connected
component.

The last part of the proof shows the connectedness of the connected components of S1 and S0. Let G+
1 = {g2 ∈ G1 :

f(g2) ∈ GLsign(εX)} be the connected component in G1 that correspond to GLsign(εX), and G−
1 = {g2 ∈ G1 : f(g2) ∈

GL−sign(εX)} be the component that correspond to GL−sign(εX). For convenience, we name the connected components of
Im(a) as follows:

C1 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G+
1 }

C2 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G+
1 }

C3 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL+, g2 ∈ G−
1 }

C4 = {(W1,W2,W3) ∈ Param : (W1,W2,W3) = a(g1, g2), g1 ∈ GL−, g2 ∈ G−
1 }

15
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Note that for (W1,W2,W3) ∈ S1, there exists a (unique) g2 ∈ G1 such that we can write W3 as

W3 = W30 [W20W10X + εX][g2W20W10X + εX]−1) = Y f(g2)
−1.

Following from the definition of G+
1 , for a point (W1,W2,W3) in C1 or C2, sign(W3) = sign(Y (εX)−1). Additionally,

when g2 is close to 0, g2 belongs to G+
1 . The boundary of both C1 and C2 contain a point in S0:

lim
g1→0+

a(g1, g1) = lim
g1→0−

a(g1, g1) = (0, α− ε, Y (εX)−1) ∈ S0.

Therefore, both C1 and C2 are connected to S0.

For points in C3 and C4, sign(W3) ̸= sign(Y (εX)−1). Therefore, no point in C3 or C4 can be sufficiently close to S0. As
a result, these components are not connected to S0. In summary, when ε ̸= 0, S0 connects 2 components of S1, and the
minimum of L has 3 connected components.

We note that connectedness alone does not imply easy connectivity in the sense of short or simple paths between solutions.
Being in the same connected components is a necessary condition for connectivity, but a single component may still contain
complex geometry necessitating complicated connecting paths.

Defining the ease of connectivity is subtle. One natural measure is the parametric complexity of the connecting curves,
quantifiable by their degree if polynomial, or number of segments if piece-wise. Another possible definition for easy
connectivity would be low curvature of the minimum manifold or short geodesic distance between two points on it. As
we saw in Section 6.2, low curvature implies that linear interpolation stays near the manifold. Other potential definitions
include whether the connecting curve has an analytical expression, or how many points are needed to approximate it within
a certain error. It would be interesting to examine these properties for symmetry-induced connecting curves.

D. Proofs in Section 5
Lemma 5.1. Consider two points (W1,W2), (W

′
1,W

′
2) ∈ L−1(0) that are not connected in L−1(0). For any g ∈ GL(h)

such that det(g) < 0, g · (W1,W2) and (W ′
1,W

′
2) are connected in L−1(0).

Proof. Consider the map f and its inverse f−1 defined in (10) in the proof of Proposition 4.1. Let g = f−1(W1,W2)
and g′ = f−1(W ′

1,W
′
2). By Corollary A.2, since (W1,W2) and (W ′

1,W
′
2) are not in the same connected component of

L−1(0), g and g′ are not in the same connected component of GLh. Equivalently, det(gg′) < 0. Consider a g1 ∈ GLh

such that det(g) < 0. Then det(g1gg
′) > 0, which means that g1g and g′ belong to the same connected component of

GLh. Therefore, according to Corollary A.2, g1 · (W1,W2) = f(g1g) and (W ′
1,W

′
2) = f(g′) belong to the same connected

component of L−1(0).

Example. Suppose
(
W1 =

[
1 0
0 1

]
,W2 =

[
−1 0
0 1

])
is a point in L−1(0) for some loss function L. Then(

W ′
1 =

[
−1 0
0 1

]
,W ′

2 =

[
1 0
0 1

])
is also a point in L−1(0). However, (W1,W2) and (W ′

1,W
′
2) are not on the same

connected component of the minimum, since their determinants have different signs. By Lemma 5.1, any g ∈ GL(h) with
det(g) < 0 can bring (W1,W2) and (W ′

1,W
′
2) to the same connected component in L−1(0). Let g be the permutation

matrix
[
0 1
1 0

]
. Then g · (W1,W2) =

([
0 1
1 0

]
,

[
0 −1
1 0

])
, which is in the same connected component as (W ′

1,W
′
2).

Proposition 5.2. Assume that h ≥ 2. For all (W1, ...,Wl), (W
′
1, ...,W

′
l ) ∈ L−1(0), these exists a list of permutation matri-

ces P1, ..., Pl−1 such that (W1P1, P
−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl) and (W ′

1, ...,W
′
l ) are connected in L−1(0).

Proof. Let (g1, ..., gl−1), (g
′
1, ..., g

′
l−1) ∈ (GLh)

n−1 such that f(g1, ..., gl−1) = (W1, ...,Wl) and f(g′1, ..., g
′
l−1) =

(W ′
1, ...,W

′
l ). Let P0 = I . For i = 1, ..., l − 1, if det(gig′iP

−1
i−1) > 0, set Pi to I . Otherwise, we set Pi to an arbi-

trary element in P ∈ Sh \Ah, which is not empty when h ≥ 2.

Let (g′′1 , ..., g
′′
l−1) ∈ (GLh)

n−1 such that f(g′′1 , ..., g
′′
l−1) = (W1P1, P

−1
1 W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl). By

the way we construct Pi’s, we have g′′i = P−1
i−1g

′
iPi and det(gig

′′
i ) > 0. Therefore, gi and g′′i belong to the
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same connected component of (GLh)
l−1 for all i. Since f is a homeomorphism between (GLh)

l−1 and L−1(0),
(W1P1, P

−1W2P2, ..., Pl−2Wl−1Pl−1, Pl−1Wl) and (W ′
1, ...,W

′
l ) are connected in L−1(0).

Proposition 5.3. Consider the loss function of the following form

L : Param → R,W = (W1, ...,Wl) 7→ ||Y −Wlσ(Wl−1f(Wl−2,Wl−3, ...,W1, X))||22, (13)

where f is a function of Wl−2,Wl−3, ...,W1, X , and σ(cz) = ckσ(z) for all c ∈ R and some k > 0. Assume that ||Y ||2 ̸= 0
and L−1(0) ̸= ∅. Also assume that l ≥ 2. For any positive number b > 0, there exist W,W ′ ∈ L−1(0) that belong to the
same connected component of L−1(0) and 0 < α < 1, such that L ((1− α)W + αW ′) > b.

Proof. Let W = (Wl, ...,W2,W1) ∈ L−1(0) be an arbitrary point on the minimum of L. Let W ′ = (W ′
l , ...,W

′
2,W

′
1) =

(Wlm
−k,mWl−1,Wl−2, ...,W1). Then W,W ′ belong to the same connected component of L−1(0), connected by curve

γ : R → Param, γ(t) = ((1− t)Wl + tWlm
−k, (1− t)Wl−1 + tmWl−1,Wl−2, ...,W1).

Since W ∈ L−1(0), we have Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear interpolation of W,W ′ is

L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′
l )σ

[
((1− α)Wl−1 + αW ′

l−1)f(Wl−2, ...,W1, X)
]
||22

=||Y − (1− α+ αm−k)Wlσ [(1− α+ αm)Wl−1f(Wl−2, ...,W1, X)] ||22
=||Y − (1− α+ αm−k)(1− α+ αm)kWlσ [Wl−1f(Wl−2, ...,W1, X)] ||22
=(1− (1− α+ αm−k)(1− α+ αm)k)2||Y ||22. (14)

Let α = 0.5. Then

L ((1− α)W + αW ′) =

(
1−

(
1

2
+

1

2
m−k

)(
1

2
+

1

2
m

)k
)2

||Y ||22

=
(
1− 2−(k+1)(1 +m−k)(1 +m)k

)2
||Y ||22 (15)

Let m =
(
2k+1

( √
b

||Y ||2 + 1
)
− 1
)k

. Recall that k > 0. Then m > 0, (1 +m)k > 1, and

2−(k+1)(1 +m−k)(1 +m)k > 2−(k+1)(1 +m−k) =

√
b

||Y ||2
+ 1 > 1. (16)

Therefore, the loss at our chosen values of α and m is at least b:

L ((1− α)W + αW ′) >

(
1−

( √
b

||Y ||2
+ 1

))2

||Y ||22 = b. (17)

Figure 4 visualizes the loss barrier on the linear interpolation between two minima. We construct a network with loss
function ∥W5σ (W4σ(W3σ(W2σ(W1X)))) − Y ∥, with σ being a leaky ReLU function, X ∈ R8×4, Y ∈ R4×4, and
(W1,W2,W3,W4,W5) ∈ Param = R16×8 ×R32×16 ×R16×32 ×R8×16 ×R4×8. The network is initialized with random
weights, and each element of X,Y is sampled independently from a normal distribution.

We obtain the first minima (W ′
1,W

′
2,W

′
3,W

′
4,W

′
5) by SGD, and the second (W ′′

1 ,W
′′
2 ,W

′′
3 ,W

′′
4 ,W

′′
5 ) =

(W ′
1,W

′
2,W

′
3,mW ′

4,W
′
5m

−1) by rescaling the last two layers with m ∈ R+. At large m, the two minima are farther apart,
and the loss evaluated at the middle point of their linear interpolation grows unboundedly as predicted by Proposition 5.3.

Proposition 5.4. Consider the loss function with the same set of assumptions in Proposition 5.3. Assume additionally
that there does not exist a permutation P such that every column of Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X)) is in the null
space of Wl. For any positive number b > 0, there exist (W1, ...,Wl), (W

′
1, ...,W

′
l ) ∈ L−1(0) and 0 < α < 1, such that

(W1, ...,Wl−2) = (W ′
1, ...,W

′
l−2) and minP∈Sn L

(
(1− α)(W1, ...,Wl) + α(W1, ...,Wl−2, P

−1Wl−1,WlP )
)
> b.
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Figure 4: Loss at the middle of the linear interpolation between two minima in a homogeneous network becomes unbounded
when the two minima is far apart.

Proof. Let W = (Wl, ...,W2,W1) ∈ L−1(0) be an arbitrary point on the minimum of L. Let W ′ = (W ′
l , ...,W

′
2,W

′
1) =

(Wlm
−k,mWl−1,Wl−2, ...,W1).

Since W ∈ L−1(0), we have Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear interpolation of W,W ′ is

L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′
lP )σ

[
((1− α)Wl−1 + αP−1W ′

l−1)f(Wl−2, ...,W1, X)
]
||22. (18)

Let α = 0.5. Then

L ((1− α)W + αW ′) =||Y − 1

4
Wl(I +m−kP )σ

[
(I +mP−1)Wl−1f(Wl−2, ...,W1, X)

]
||22. (19)

When m → ∞,

lim
m→∞

σ
[
(I +mP−1)Wl−1f(Wl−2, ...,W1, X)

]
= lim

m→∞
mkσ

[
(m−1I + P−1)Wl−1f(Wl−2, ...,W1, X)

]
= lim

m→∞
mkP−1σ [Wl−1f(Wl−2, ...,W1, X)] . (20)

Therefore,

lim
m→∞

L ((1− α)W + αW ′) = lim
m→∞

||Y − 1

4
Wl(I +m−kP )mkP−1σ [Wl−1f(Wl−2, ...,W1, X)] ||22

= lim
m→∞

||Y − 1

4
Wl(I +mkP−1)σ [Wl−1f(Wl−2, ...,W1, X)] ||22

= lim
m→∞

||3
4
Y − mk

4
WlP

−1σ [Wl−1f(Wl−2, ...,W1, X)] ||22. (21)

Since we assumed that there does not exist a permutation P such that every column of Pσ(Wl−1f(Wl−2,Wl−3, ...,W1, X))
is in the null space of Wl, at least one element in the second term is unbounded for any permutation P . Therefore,
L ((1− α)W + αW ′) is unbounded for any P .

Proposition 5.5. Let A ∈ Rn×n be an invertible matrix. Let set S = {(W1,W2) : W1,W2 ∈ Rn×n,W1W2 = A}. For any
positive number b > 0, there exist W ′,W ′′ ∈ S and 0 < α < 1, such that minŴ∈S ∥ ((1− α)W ′ + αW ′′)− Ŵ∥2 > b.

Proof. Let W be an element of S. Let W ′
1 = W1g

−1
1 ,W ′

2 = g1W2,W
′′
1 = W1g

−1
2 , and W ′′

2 = g2W2, where g1, g2 ∈ Rn×n

are invertible matrices. Note that W ′ = (W ′
1,W

′
2) and W ′′ = (W ′′

1 ,W
′′
2 ) are both in S. Then,

min
Ŵ∈S

∥ ((1− α)W ′ + αW ′′)− Ŵ∥22

= min
Ŵ∈S

∥(1− α)W1g
−1
1 + αW1g

−1
2 − Ŵ1∥22 + ∥(1− α)g1W2 + αg2W2 − Ŵ2∥22

= min
g∈GL(n)

∥W1((1− α)g−1
1 + αg−1

2 − g−1)∥22 + ∥W2((1− α)g1 + αg2 − g)∥22. (22)

18



Understanding Mode Connectivity via Parameter Space Symmetry

Let g1 = βI and g2 = β−1I for some β > 0. Let α = 1
2 . Then, in the limit of a large β, we have

lim
β→∞

min
Ŵ∈S

∥ ((1− α)W + αW ′)− Ŵ∥22

= lim
β→∞

min
g∈GL(n)

∥∥∥∥W1

(
β + β−1

2
I − g−1

)∥∥∥∥2
2

+

∥∥∥∥W2

(
β + β−1

2
I − g

)∥∥∥∥2
2

. (23)

As β → ∞, g and g−1 cannot approach β+β−1

2 I simultaneously. Therefore, (23) is not bounded.

Proposition 5.6. Consider the loss function with the same set of assumptions in Proposition 5.3. Let W ∈ L−1(0)
be a point on the minimum. Consider the multiplicative group of positive real numbers R+ that acts on L−1(0) by
g · (W1, ...,Wl) = (W1, ...,Wl−2, gWl−1,Wlg

−k), where g ∈ R+. Then there exists a positive number b > 0, such that
for all 0 < α < 1 and W ′ ∈ Orbit(W ) with ||W ′

i ||2 < c for all i and some c > 0, the loss value for points on the linear
interpolation L ((1− α)W + αW ′) < b.

Proof. Since W ′ ∈ Orbit(W ), W ′ = (Wlm
−k,mWl−1,Wl−2, ...,W1) for some m > 0. Additionally, m and m−k are

bounded since W ′
i is bounded. Since W ∈ L−1(0), we have Wlσ [Wl−1f(Wl−2, ...,W1, X)] = Y . The loss on the linear

interpolation of W,W ′ is

L ((1− α)W + αW ′) =||Y − ((1− α)Wl + αW ′
l )σ

[
((1− α)Wl−1 + αW ′

l−1)f(Wl−2, ...,W1, X)
]
||22

=||Y − (1− α+ αm−k)Wlσ [(1− α+ αm)Wl−1f(Wl−2, ...,W1, X)] ||22
=||Y − (1− α+ αm−k)(1− α+ αm)kWlσ [Wl−1f(Wl−2, ...,W1, X)] ||22
=(1− (1− α+ αm−k)(1− α+ αm)k)2||Y ||22. (24)

As m, m−k, and α are all bounded, the loss value for points on the linear interpolation L ((1− α)W + αW ′) is also
bounded.

The connectedness results derived from symmetry raise several interesting questions about mode connectivity. For example,
it would be interesting to understand when and why there is no significant change in loss on the linear interpolation between
two minima. One possible explanation is that there always exists a symmetry-induced path γ that stays close to the linear
interpolation. Another potential factor is the high dimensionality of the minimum, which increases the likelihood that
a significant portion of the linear interpolation remains within the low-loss region. Additionally, empirical observations
suggest that both train and test accuracy remain nearly constant along paths connecting different SGD solutions (Garipov
et al., 2018). If these paths are induced by a group action, this would imply that the group action’s dependence on data is
weak. Investigating the extent to which data influences these symmetries could provide deeper insights into the structure of
the loss landscape and the generalization properties of neural networks.

E. Proofs in Section 6
Proposition 6.1. Let (U, V ) ∈ Param, and (U ′, V ′) = g · (U, V ). Then

∥Uσ(V X)− U ′σ(V ′X)∥ ≤ ∥Uσ(V X)∥. (25)

Proof. We note that I − σ(gV X)†σ(gV X) is a projection:

(I − σ(gV X)†σ(gV X))2

=I − σ(gV X)†σ(gV X)− σ(gV X)†σ(gV X)(I − σ(gV X)†σ(gV X))

=I − σ(gV X)†σ(gV X).

Therefore,

∥Uσ(V X)− U ′σ(V ′X)∥ = ∥Uσ(V X)
(
I − σ(gV X)†σ(gV X)

)
∥ ≤ ∥Uσ(V X)∥. (26)
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Theorem 6.2. Let L−1(c) ⊂ Param, with c ∈ R, be a level set of the loss function L : Param → R. Let γ : [0, 1] → L−1(c)
be a smooth curve in L−1(c) connecting two points w1 = γ(0) and w2 = γ(1). Suppose the curvature κ(t) of γ satisfies
κ(t) ≤ κmax for all t ∈ [0, 1].

Let S be the straight line segment connecting w1 and w2. Then, for any point w on S, the distance to L−1(c) is bounded by

dist(w, L−1(c)) ≤ dmax =
1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 .

Furthermore, assuming L is Lipschitz continuous with Lipschitz constant CL, the loss at any point w on S satisfies

|L(w)− c| ≤ CLdmax.

Proof. We will find an upper bound for the maximum distance between a smooth curve and the chord connecting two points
on the curve, assuming the curvature of the curve is bounded by κmax.

The curvature κ at a point on a curve is defined as κ = 1
R , where R is the radius of the osculating circle at that point. Let s

be the maximum perpendicular distance from the midpoint of a chord to the curve. For a circular arc, Pythagorean theorem
gives

R2 =

(
∥w2 −w1∥2

2

)2

+ (R− s)2.

Solving for s:

s = R

1−

√
1−

(
∥w2 −w1∥2

2R

)2
 .

Substitute R = 1
κ into the above, we have

s =
1

κ

1−

√
1−

(
κ∥w2 −w1∥2

2

)2
 .

Since the curvature of γ is everywhere less than or equal to κmax, the curve cannot bend more sharply than the osculating
circle with curvature κmax. Therefore, the maximum deviation dmax between γ and its chord cannot exceed that of the
osculating circle:

dist(w, L−1(c)) ≤ dmax
def
=

1

κmax

1−

√
1−

(
κmax∥w2 −w1∥2

2

)2
 .

Assuming L is Lipschitz continuous with Lipschitz constant CL, for any w on S, we have

|L(w)− c| = |L(w)− L(γ(t))| ≤ CL∥w − γ(t)∥ ≤ CLdmax.
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