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Abstract

Voice large language models (LLMs) cast voice
synthesis as a language modeling task in a
discrete space, and have demonstrated signif-
icant progress to date. Despite the recent suc-
cess, the current development of voice LLMs
in low-resource applications is hampered by
data scarcity and high computational cost. In
this work, we propose VoiceTuner, with a self-
supervised pre-training and efficient fine-tuning
approach for low-resource voice generation.
Specifically, 1) to mitigate data scarcity, we
leverage large-scale unlabeled dataset and pre-
train VoiceTuner-SSL without pre-defined ap-
plications, which can be fine-tuned in down-
stream tasks; 2) to further reduce the high
training cost in complete fine-tuning, we in-
troduce a multiscale adapter to effectively up-
date around only 1% parameters as a plug-and-
play module; and 3) to alleviate the challenges
of modeling long audio tokens inherited from
inefficient attention mechanism, we introduce
VoiceTuner-Mamba with multiscale state space
models in place of transformers. Experimen-
tal results demonstrate that VoiceTuner-SSL
presents strong acoustic continuations. Voice-
Tuner exhibits superior quality and style simi-
larity in three low-resource (1h, 10h, 30h) gen-
eration tasks. !

1 Introduction

Current  voice large language  models
(LLMs) (Kharitonov et al., 2023; Wang et al.,
2023; Zhang et al., 2023b) cast voice synthesis as a
language modeling task in a discrete representation
space. VALL-E (Wang et al., 2023) proposes
a language model approach for text-to-speech
(TTS) with audio codec tokens. UniAudio (Yang
et al., 2023) introduces a multi-scale transformer
to enable sub-quadratic self-attention, unlocking
better performance at a reduced cost for training

'Audio samples are available at https://VoiceTuner.

github.io

and generation. A line of works (Kharitonov et al.,
2023; Borsos et al., 2022; Agostinelli et al., 2023)
introduces the hierarchical approach that combines
semantic and acoustic audio tokens to decrease
supervision in model training.

Despite the success achieved, the current de-
velopment of voice LLMs in low-resource scenar-
ios is hampered by two major challenges: 1) data
scarcity: most existing models rely on web-scale
training data, which are lacking in low-resource
scenarios; and 2) high computational cost: train-
ing voice LLMs from scratch are computationally
intensive and time-consuming, and the inefficient
attention mechanism in transformer further chal-
lenges model in modeling long codec sequence.

In this work, we propose VoiceTuner, with a self-
supervised pre-training and efficient fine-tuning
approach for low-resource voice generation. To
alleviate data scarcity, we pre-train the next-token
prediction model (VoiceTuner-SSL) in the large-
scale unlabeled dataset, which can be fine-tuned
in downstream generation tasks with reduced data
and device requirements. To further reduce compu-
tational cost and avoid losing the general abilities
of VoiceTuner-SSL, we introduce an efficient mul-
tiscale adapter to fine-tune only around 1% param-
eters in downstream applications. To alleviate the
challenges of modeling long audio tokens inherited
from inefficient attention mechanisms, we intro-
duce VoiceTuner-Mamba with state space models
in place of transformers, effectively reducing the
quadratic complexity to linear.

VoiceTuner is pre-trained on ~160K hours of
unlabeled voice data without supervision, followed
by rich or low resource (1h, 10h, and 30h) adap-
tation in downstream applications including zero-
shot TTS, singing voice synthesis, and instruction
TTS, respectively generalizing to unseen speaker,
modality, and instruction. Experimental results
demonstrate that VoiceTuner-SSL keeps acoustic
continuations, maintaining speaker identity, emo-
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tion, and speaking speed from prompts. VoiceTuner
exhibits superior audio quality and style similarity,
unlocking the ability to generate voice samples in
low-resource scenarios. Furthermore, VoiceTuner-
Mamba with state space models is more efficient
in terms of GPU memory and floating point opera-
tions (FLOPS) for modeling extremely long audio
tokens. The key takeaways are as follows:

* We present VoiceTuner, with a self-supervised
pre-training and fine-tuning approach to alleviate
data scarcity in low-resource applications.

* We introduce a lightweight multiscale adapter to
efficiently fine-tune only around 1% parameters,
further reducing the computational cost.

* We investigate replacing the inefficient transform-
ers with state space models, which reduces the
complexity of modeling long audio tokens.

e Experimental results demonstrate  that
VoiceTuner-SSL.  keeps acoustic continua-
tions, and present VoiceTuner’s superior audio
quality and style similarity.

2 Related Works

2.1 Generative Voice Models

Text-guided voice synthesis (text-to-speech and
singing voice synthesis) typically converts input
text into mel-spectrogram (e.g., Tacotron (Wang
et al., 2017), FastSpeech (Ren et al., 2019)), which
is then transformed to waveform using a separately
trained vocoder (Kong et al., 2020; Huang et al.,
2021). Recent generative models cast voice syn-
thesis as a language modeling task to perform in-
context learning: VALL-E (Wang et al., 2023) uses
discrete codes derived from an off-the-shelf neural
audio codec model, and regards TTS as a condi-
tional language model. Zhang et al. (2023b) lever-
age back-translation and prompt-guided LLMs for
high-quality TTS with limited supervision. Jiang
et al. (2023) train a prosody language model with
arbitrary-length speech prompts to produce expres-
sive and controlled prosody. However, these ex-
isting voice LL.Ms are trained from scratch using
web-scale data, and replicating this success is lim-
ited in low-resource scenarios.

2.2 State Space Models

State space models are recently introduced into
deep learning as state space transforming (Gu et al.,
2021b,a; Smith et al., 2022). Mamba (Gu and Dao,

2023) integrates selective SSMs into a simplified
end-to-end neural network architecture without at-
tention or even MLP blocks. Vision mamba (Zhu
et al., 2024) compresses the visual representation
with bidirectional state space and proposes a new
generic vision backbone with bidirectional Mamba
blocks. VMamba (Liu et al., 2024) achieves lin-
ear complexity without sacrificing global receptive
fields and introduces the cross-scan Module (CSM)
to traverse the spatial domain. Inspired by these,
we present the end-to-end differentiable multiscale
state space models to effectively reduce the inher-
ited attention complexity in voice LLMs.

2.3 Generative Voice Pre-training and
Fine-tuning

Self-supervised learning (SSL) (Baevski et al.,
2020; Hsu et al., 2021) has been shown to achieve
remarkable advances in recent years, opening up
a wide array of applications that leverage their
power by adapting models. AudioLDM 2 (Liu
et al., 2023b) leverages AudioMAE (Huang et al.,
2022a) and performs self-supervised audio gener-
ation learning with a latent diffusion model con-
ditioned on audio tokens. UniAudio (Yang et al.,
2023) trains on different generative tasks to obtain
prior knowledge in the inter-relationship between
audio and other modalities and support new au-
dio generation tasks after simple fine-tuning. Liu
et al. (2023a) achieve better performance utilizing
low-rank adaptation (LoRA), which adds the linear
input projection to each self-attention layer. Vyas
et al. (2023) include two-stage full fine-tuning to
improve model fidelity and quality where all param-
eters are optimized together. In this work, we in-
troduce a multiscale adapter for parameter-efficient
adaptation, which updates only around 1% of the
parameters on top as a lightweight plug-and-play
module.

3 Method

In this section, we overview the discrete voice rep-
resentation - acoustic tokens and then introduce the
proposed generative self-supervised pre-training
and follow-up fine-tuning approach, respectively
with VoiceTuner-SSL and VoiceTuner. Next, we
propose a lightweight, plug-and-play adapter for
parameter-efficient fine-tuning. In the following,
we introduce the scalable global and local architec-
ture in Section 3.4 and provide the preliminaries of
VoiceTuner-Mamba with state space models (SSM)
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Figure 1: In subfigure (b), prompts can be adjusted for different tasks with a variety of conditions (speaker, emotion,

prosody, and style).

block (i.e., Mamba) in Section 3.5.

3.1 Speech Representation

Audio codec models such as SoundStream (Zeghi-
dour et al., 2021) and Encodec (Défossez et al.,
2022) have recently shown that encoder-decoder
architecture excels at learning acoustic information
in a self-supervised manner, where the representa-
tion can be used in a variety of generative tasks.

The acoustic codec model typically consists
of an audio encoder, a residual vector-quantizer
(RVQ), and an audio decoder: 1) The audio encoder
E consists of several convolutional blocks with a
total downsampling rate of 320 and generates con-
tinuous representations at every 20-ms frame in
16kHz. 2) The residual vector-quantizer () pro-
duces discrete representations a, with a codebook
size of K, using a vector quantization layer (Va-
suki and Vanathi, 2006). 3) The audio decoder
G reconstructs the signal ¢, from the compressed
latent representation a,. In the end, a speech ut-
terance y is represented as acoustic tokens with
la1,az,...,ar],a; € {0,1,..., Ky — 1},V1 <
1 < T, where T is the number of frames.

3.2 Self-supervised Pre-training

Most voice LLMs rely on web-scale training data
and cast voice synthesis as a language modeling
task, while the data shortage hampers its appli-
cation in low-resource scenarios. To alleviate it,
we leverage unlabeled corpus and pre-train LLMs
(namely VoiceTuner-SSL) in a next-token predic-
tion task without supervision, where we hypothe-
size that a generative model without pre-defined
application can be applied to different downstream
tasks, reducing data requirement in low-resource
application.

VoiceTuner-SSL is pre-trained on arbitrary voice,
which contains many speakers with various accents,
diverse demographics, and heterogeneous record-
ing conditions. Next, we fine-tune VoiceTuner-SSL
to align speech and text modalities utilizing super-
vised data in downstream voice generation appli-
cations, where we find that the self-supervised pre-
training stage offers a distinct gain in both rich and
low-resource scenarios. We expect our VoiceTuner-
SSL to keep the speaker identity, prosody, and
recording conditions of the prompt and produce
new content. We refer the reader to Section 5.1 for
our findings.

3.3 Efficient Fine-tuning
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Figure 2: VoiceTuner: Efficient fine-tuning with multi-
scale adapter.

Though fine-tuning voice LLMs is effective com-
pared with training voice LLLMs from scratch, a
complete fine-tuning of large-scale voice LLMs
still 1) is time-consuming, computation-intensive,
multi-modality unsupported; and 2) can lose the



general ability of foundation model (e.g., acous-
tic continuations). In this section, we introduce
an efficient plug-and-play module, i.e., a multi-
scale adapter, to update only around 1% parameters.
Specifically,

* We include low-rank adaptation (LoRA) (Hu
et al., 2021) in the linear input projection of each
layer in attention blocks, where only the LoRA
parameters are optimized.

* A set of learnable prompts with gates (Zhang
et al., 2023a) are added to the input, which learn
to adaptively inject new instructions (conditions)
into the pre-trained model and avoid disturbing
speech tokens at the beginning of training.

Suppose we have condition representation (i.e.,
task-specific prompts) I € RE*C with length K
and feature dimension C'. For instruction TTS, we
use pre-trained Flan-T5-XL (Raffel et al., 2020)
and freeze the weights to derive condition repre-
sentation; For zero-shot TTS and SVS, we use the
token embedding matrix to obtain the representa-
tion of acoustic and pitch tokens from speaker and
MIDI prompt, which are then pad to a fix length
K = 150.

We initialize learnable adaption prompt { P, } lel
for L layers, where we have each layer’s prompt
P, € RE*C and speech tokens 7 € RM*C Then,
the adaption prompt is conducted an element-wise
addition with condition representation: P, = [P, +
I] € REXC,

Suppose the model is processing with the speech
tokens 7} and condition P, The attention score re-
lated to learnable prompt is calculated as Sf =
Attention(T}, P, P) = Softmax (T} P /v/C)P,
and we have S} self-attention score for original
speech tokens. A learnable gating factor g; is
adapted to adaptively control the importance of
S? in the attention with S; = SPg; + S}, which rep-
resents how much information the learnable prompt
contributes. Initialized by zero, g; can first elimi-
nate the influence of under-fitted prompts and then
increase its magnitude to provide more instruction
semantics.

To conclude, the adaptation enjoys efficient train-
ing efficiency with only around 1% learnable pa-
rameters. As a lightweight plug-and-play module,
this enables us to fine-tune voice LLMs on cheap
devices.

3.4 Multiscale Architecture

VoiceTuner (denoted as 64p) predicts long se-
quences with end-to-end differentiable multiscale
transformers similar to Yu et al. (2023); Yang et al.
(2023). This enables sub-quadratic self-attention,
unlocking better performance at reduced cost for
both training and generation. As illustrated in Fig-
ure 1(c): 1) the token embedding matrix Fg maps
integer-valued tokens aq, as, ..., c2, c3 to m dimen-
sional embeddings, following which 2) we chunk

it into patches of size P of length K = %, 3)

obal

a large global transformer 92 r  module outputs

patch representations GLK = 9%%@1 (G?:K*I),
and 4) a relatively smaller local transformer ¢'$53!
operates on a single patch containing P elements,
each of which is the sum of an output from the
global model and an embedding of the previous
tokens, and autoregressively predict the next patch
LIK = glgeal (LOK-1 4 GLK),

VoiceTuner presents the improvements from
scaling attention layers’ depth and width with-
out the requirement of scattered model-specific
methodologies. As expected, scaling the model
size (160M (base), 420M (medium), and 1.1B
(large) parameter) results in better scores. We refer
the reader to Section 5.5 for our findings.

3.5 State Space Model
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Figure 3: Left: Mamba block; Right: Transformer block.
Mamba adds an SSM to the main branch.

To alleviate challenges of modeling long au-
dio tokens in inefficient attention transformers,
we introduce VoiceTuner-Mamba with state space
models (Smith et al., 2022; Gu and Dao, 2023)
in place of transformers, effectively reducing the
quadratic complexity to linear. Illustrated in Fig-
ure 3, VoiceTuner-Mamba is built upon State Space
Models (SSMs), which are considered linear time-
invariant systems that map stimulation z(¢) € R”



to response y(t) € R¥ through a hidden state h(t),
where the parameters include A € CV*N B, C €
cN:

h'(t) = Ah(t) + Bx(t)

y(t) = Chit) W

The S4 is the discrete version of the continuous
system, which also includes a timescale parameter
A to transform the continuous parameters A, B to
discrete spaces:

A=A B= (2 -1)A7'B

_ A 2)
h: = Ahy_1 + Bay,y: = Chy

Mamba (Gu and Dao, 2023) further incorporate
the selective scan mechanism (S6), where the matri-
ces B € RBXLXN7C c RBXLXN,A c ]RBXLXD
are derived from the input data. S6 is aware of the
contextual information embedded in the input, en-
suring the dynamism of weights within this mech-
anism. In contrast to the conventional attention
computation approach, S6 enables each element in
a 1-D array (e.g., sequence) to interact with any
of the previously scanned samples through a com-
pressed hidden state. VoiceTuner-Mamba refrains
from utilizing position embedding bias due to the
causal nature.

To compare VoiceTuner-Mamba and VoiceTuner,
we developed VoiceTuner-Mamba in three distinct
scales (small, medium, and large) with similar pa-
rameters. The resulting architecture is a versatile
replacement for VoiceTuner in different applica-
tions.

3.6 Reconstructing High-Fidelity Waveforms

We train a unit-based neural vocoder from scratch
for the acoustic unit to waveform generation. In-
spired by BigVGAN (Lee et al., 2022), the synthe-
sizer includes the generator and multi-resolution
discriminator (MRD). The generator is built from a
set of look-up tables (LUT) that embed the discrete
representation and a series of blocks composed of
transposed convolution and a residual block with
dilated layers. The transposed convolutions upsam-
ple the encoded representation to match the input
sample rate. Details are included in Appendix C.

4 Training and Evaluation

4.1 Dataset

For self-supervised pre-training, we utilize large-
scale datasets with Librilight (Kahn et al., 2020)

and WenetSpeech (Zhang et al., 2022a), where we
have ~160K hours of 16 kHz audio that greatly
increases the domain coverage.

We fine-tuning VoiceTuner-SSL to align speech
and text modalities utilizing TTS data such as Lib-
riTTS (Zen et al., 2019), VCTK (Veaux et al., 2017)
and PromptSpeech (Guo et al., 2023), resulting in
rich-resource VoiceTuner. To evaluate VoiceTuner
in low-resource scenarios, we construct paired
data (1h, 10h, 30h) with three application tasks:
instruction-guided TTS, zero-shot TTS, singing
voice synthesis, respectively generalizing to un-
seen instruction, speaker, and modality. For text se-
quence, we tokenize it into the phoneme sequence
with an open-source grapheme-to-phoneme con-
version tool (Sun et al., 2019). We have attached
detailed data configuration in Appendix A.

4.2 Evaluation Metrics

Speech intelligibility. We report word error rate
(WER) to evaluate the intelligibility of speech by
transcribing it using a whisper (Radford et al.,
2023) ASR system following (Wang et al., 2023).

Style similarity. SIM assesses the coherence of
the generated speech in relation to the speaker’s
characteristics, and we employ the speaker verifi-
cation model WavLM-TDNN (Chen et al., 2022)
to evaluate the speaker similarity. FO Frame Er-
ror (FFE) measures the prosody similarity of syn-
thesized and reference audio. For pitch, speak-
ing speed, and volume attributes, we adopt a soft-
margin mechanism for accuracy calculation.

Subjective evaluation. We also conduct a
crowd-sourced human evaluation via Amazon Me-
chanical Turk, which is reported with 95% confi-
dence intervals (CI), and analyze two aspects: style
similarity (speaker, emotion, and prosody) and au-
dio quality (clarity, high-frequency), respectively
scoring SMOS and MOS. More information has
been attached in Appendix D.

4.3 Model Configurations

For acoustic tokens, we train the SoundStream
model with 12 quantization levels, each with a
codebook of size 1024 and the same downsam-
pling rate of 320. We take three quantization levels
as the acoustic tokens, representing each frame as
a flat sequence of tokens from the first, second, and
third quantization layers. We trained three sets of
VoiceTuner, with 160M (base), 459M (medium),
and 1.1B (large) parameters. As for the unit-based
vocoder, we use the modified V1 version of BigV-
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Figure 4: Loss/accuracy curves with or without self-supervised learning (SSL).

GAN. A comprehensive table of hyperparameters
is available in Appendix B. Except explicitly stated,
we use our 459M (medium) model for downstream
evaluation.

During training, we pre-train VoiceTuner-SSL
for 100K steps using 8 NVIDIA A100 GPUs with
a batch size of 6000 tokens for each GPU on the
publicly-available fairseq framework (Ott et al.,
2019), and fine-tune VoiceTuner and VoiceTuner-
Mamba for 10K steps using 1 NVIDIA A100 GPU.
Adam optimizer is used with 51 = 0.9,83; =
0.98,¢ = 107, The unit-based vocoder is opti-
mized with a segment size of 8192 and a learn-
ing rate of 1 x 10~ until 500K steps using 4
NVIDIA V100 GPUs. For sampling, we employ
top-p (Holtzman et al., 2019) sampling with p =
0.25.

5 Results

5.1 Self-supervised Pre-training

Model | SIM  Emotion Style Speed
GT / 100 95.8 86.9
GT (voc.) | 0.94 93.1 92.4 87.4
Base 0.92 90.5 78.5 63.4
Medium 0.92 91.3 81.5 65.6
Large 0.93 92.7 83.1 67.1

Table 1: Acoustic continuity of VoiceTuner-SSL.

Task | P WER SIM MOS SMOS

GT / 32 / 4.35+0.05 /

GT (voc.) | / 5.6 093 4.23+0.07 4.2010.05

TTS X 93 0.81 3.92+0.07 3.84+0.07
v 6.7 0.83 3.98+0.06 3.92+0.08

FTTS X 64 0.83  3.98+0.07 3.93+0.07
v 59 0.84 4.04+0.08 3.98+0.06

Table 2: Quality and style similarity of VoiceTuner in
rich-resource TTS. FTTS: Frame-level TTS taking ex-
panded phone as input. P: with or without pre-training.

We expect our generative foundation model

VoiceTuner-SSL. to keep the speaker identity,
prosody, and recording conditions of the prompt
and produce new content in next-token prediction.
Specifically, we generate continuations of 5 sec-
onds for each 3-second prompt, where the prompts
are obtained by cropping samples from Librispeech
test-clean. In the following, we run the speaker,
style, emotion, and speed classifier on the sampled
continuations (excluding the prompts) and report
the results. We also compare the InstructSpeech
with other systems, including 1) GT, the ground-
truth audio; 2) GT (voc.), where we first convert
the ground-truth audio into tokens and then convert
them back to audio using BigVGAN;

The evaluation results are presented in Ta-
ble 1, and we have the following observations: 1)
VoiceTuner-SSL can preserve the speaker, style,
emotion, and speaking speed in the prompt with
a high recognition accuracy at a zero-shot setting,
even if the model is not fine-tuned in downstream
datasets; Informally, VoiceTuner-SSL is optimized
in a large amount of self-supervised data, which
contains many speakers with various accents and
diverse demographics to improve robustness and
generalization; and 2) as shown in the demo page,
in a noisy environment, VoiceTuner also presents
the acoustic consistency and maintain the noise
conditions from the prompt.

5.2 Rich-resource Evaluation

Our proposed self-supervised pre-training and
follow-up fine-tuning approach are essential for
the early-stage training stability and final gener-
ation capacity. To demonstrate the rich-resource
performance, we fine-tune VoiceTuner-SSL in 200-
hour downstream TTS data to align speech and text
modalities.

We plot the loss/accuracy curves in Figure 4 and
present results in Table 2, and have the following
observations: 1) the model with pre-training con-



Instruction TTS ZS-TTS SVS Subjective Evaluation

Gender Speed Pitch Volume WER | WER SIM | FFE SIM MOS SMOS
GT 96.6 86.9 86.9 78.9 5.1 32 / / / 4.354+0.05 /
GT (voc.) 95.8 87.4 87.0 76.0 7.1 5.6 093 | 0.01 095 | 4.234+0.07 4.2040.05
Fine-tune with 30 hours data
Full-s 94.1 88.3 88.2 73.9 16.9 183 0.63 / 3.9440.06 3.89+0.08
Full-p 94.7 86.1 87.3 68.3 7.1 7.2 0.71 | 0.31 0.93 | 4.01+0.08 3.974+0.07
Adapter 85.1 85.1 86.7 58.8 6.9 7.9 0.63 | 0.43 090 | 3.964+0.06 3.924+0.07
Fine-tune with 10 hours data
Full-s 90.1 76.5 85.7 61.1 68.7 / / /
Full-p 91.6 85.7 85.6 62.2 7.6 8.1 0.64 | 0.47 091 | 3.97+0.08 3.92+0.08
Adapter 86.1 83.5 86.3 62.1 7.5 8.2 0.62 | 0.44 0.88 | 3.91+0.06 3.854+0.07
Fine-tune with 1 hours data
Full-s / / / /
Full-p 49.1 84.5 77.3 57.3 14.9 8.2 0.66 | 0.58 0.83 | 3.914+0.08 3.8440.08
Adapter 80.0 82.9 85.1 61.3 9.6 8.8 0.59 | 0.61 0.78 | 3.87+0.06 3.82+0.07

Table 3: Low-resource evaluation results. Full-s: Full parameter training from scratch; Full-p: Full parameter fine-
tuning from pre-trained VoiceTuner-SSL. Note that we use / to represent that the model (Full-s) cannot converges in

low-resource scenarios.

verges faster and reaches lower loss bounds than
the model trained from scratch; and 2) For the intel-
ligibility of the generated speech, VoiceTuner (with
pre-training) has achieved a 27%, 7.8% relatively
lower WER respectively in TTS and FTTS, indi-
cating that self-supervised pre-training provides
gains with accessible speech of better quality. 3)
To conclude, VoiceTuner-SSL pre-trained on an ar-
bitrary voice corpus contains speakers with various
accents, diverse demographics, and heterogeneous
recording conditions, offering distinct gains in rich-
resource fine-tuning.

5.3 Low-resource Evaluation

We hypothesize that a generative foundation model
can be applied to different downstream tasks, re-
ducing data requirements and computational cost,
especially in low-resource scenarios. To present
the capability of VoiceTuner in low-resource sce-
narios, we construct (1h, 10h, 30h) hours of data
for three application tasks: instruction-guided TTS
(ITTS), zero-shot TTS (ZS-TTS), singing voice
synthesis (SVS), respectively generalizing to un-
seen instruction, speaker, and modality. For train-
ing efficiency, we investigate full training from
scratch (Full-s), full fine-tuning from VoiceTuner-
SSL (Full-p), and efficient fine-tuning with a multi-
scale adapter (Adapter).

The results are presented in Table 3, and we have
the following observations: 1) as training data is
reduced in the low-resource scenario, a distinct
degradation in speech quality and similarity could
be witnessed: VoiceTuner (Adapter) presents a dis-
tinct drop in TTS WER of 6.9 — 7.5 — 9.6 when

reducing training data from 30 to 1 hours. 2) Re-
garding training efficiency and computational cost:
Though full parameter fine-tuning systems demon-
strate better results in most cases, the multiscale
adapter has still achieved the comparable results
(e.g., FFE and SIM of 0.61,0.78 in 1-hour SVS).
It indicates that the adapter enjoys high-fidelity
generation with only around 1% learnable parame-
ters, which enables us to fine-tune voice LLMs on
cheap devices; 3) It is worth mentioning that in ex-
tremely low resource scenarios, VoiceTuner (Full-s)
cannot converges when training from scratch. As
expected, a generative model (namely VoiceTuner-
SSL) without a pre-defined application can be ap-
plied to different downstream tasks, reducing data
requirements in low-resource applications.

5.4 State Space Model Evaluation

Size \ Params Mem TFLOPs \ WER SIM
VoiceTuner-Mamba: State Space Model

B 154M  4172M 479 7.2 0.82
M 420M  5136M 1114 6.4 0.83
L 1B 5141M 278.9 5.8 0.85
VoiceTuner: Transformer

B 160M  4332M 76.3 7.8 0.81
M 450M  5259M 181.4 6.7 0.83
L 1B 5638M 408.1 5.9 0.84

Table 4: We compare VoiceTuner-Mamba and Voice-
Tuner among different sizes (Base, Medium, and Large).
To evaluate the computational cost (the lower the bet-
ter), both models predict fix-length 5s sequences and
measure max-memory consumption (Mem), and total
number of floating point operations (TFLOPS) during
inference time.
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Figure 5: Memory/FLOPs curves of VoiceTuner and VoiceTuner-Mamba with different fine-tuning data.

To alleviate the challenges in modeling long au-
dio tokens due to inefficient attention mechanisms,
we propose VoiceTuner-Mamba with state space
models in place of transformers. As shown in Fig-
ure 5, the efficiency curves demonstrate similar
comparison results of the pure transformer back-
bone. As presented in Table 4, VoiceTuner-Mamba
scores the lowest TFLOPs and memory of 47.9 and
4332M among base models, showing that state-
space models excel at reducing the computational
cost of modeling long continuous data. In contrast
to the conventional attention computation approach,
S6 enables each element in a 1-D array to interact
with any previously scanned samples through a
compressed hidden state, effectively reducing the
quadratic complexity to linear.

5.5 Analysis and Ablation Studies

To verify capabilities of VoiceTuner, we conduct
ablation studies on model scalability and few-shot
adaptation, and discuss key findings as follows.

Tuning | Params Gender Speed Pitch WER
GT | / 96.6 86.9 86.9 5.1

8.97TM 86.6 83.5 86.3 7.6
12.0M 91.6 85.3 85.6 6.9

Lora
Adapter

Table 5: Ablation studies. We obtain VoiceTuner in
low-resource (10-hour) instruction TTS task and report
attributes accuracy and WER.

Scalability to improve performance. As il-
lustrated in Table 4, we report results for different
model sizes, namely 160M (base), 459M (medium),
and 1.1B (large) parameter models. As expected,
scaling the size of VoiceTuner and VoiceTuner-
Mamba results in better scores. However, this
comes at the expense of longer training and in-
ference time. Increasing the model size from 459M
to 1.1B leads to additional gains of a further 40%

reduction in WER for TTS tasks with a similar
style.

Efficient fine-tuning with multiscale adapter.
To enable few-shot learning without losing the
general abilities, we fine-tune VoiceTuner in 10-
hour instruction TTS data, and compare the results
among different adaptation methods. Illustrated in
Table 5, as a lightweight plug-and-play module, the
proposed multiscale adapter enjoys superior train-
ing efficiency with only around 1% parameters in
contrast to full fine-tuning, demonstrates the 9.2%
WER drop and outperformed attributes accuracy
(gender, speed, and pitch) compared to Lora (Hu
et al., 2021). This enables us to fine-tune voice
LLMSs on cheap devices.

6 Conclusion

In this work, we propose VoiceTuner with a pre-
training and efficient fine-tuning approach for low-
resource voice generation. To mitigate the data
scarcity and high computational cost for training
voice LLMs, we 1) leveraged large-scale unlabeled
dataset and pre-trained VoiceTuner-SSL in a next-
token prediction task, which could be fine-tuned
in downstream tasks with reduced data; 2) intro-
duced an efficient multiscale adapter to fine-tune
only around 1% parameters in downstream appli-
cations, further eliminating the computational cost.
VoiceTuner-Mamba was proposed with a multi-
scale state space model in place of transformer,
alleviating the challenges of modeling long audio
tokens inherited from inefficient attention mech-
anism. Experimental results demonstrated that
VoiceTuner-SSL presented strong speech contin-
uations. VoiceTuner exhibited superior quality and
style similarity in three low-resource (1h, 10h, 30h)
voice generation tasks. We envisage that our work
serves as a basis for future low-resource voice syn-
thesis studies.



7 Limitation

Although VoiceTuner is successfully applied to
generate zero-shot voice signals in low-resource
scenarios, it still suffers from some limitations: 1)
VoiceTuner introduces a strong dependency on the
quality of the audio tokenizer. 2) The model only
shows in-context learning ability on voice synthe-
sis, rather than all voice recognition and under-
standing tasks, and 3) a longer sequence length
typically requires more computational resources,
and degradation could be witnessed with decreased
training data.

8 Potential Risks

VoiceTuner lowers the requirements for zero-shot
voice generation even in low-resource applications,
which may cause unemployment for people with
related occupations, such as speech engineers and
radio hosts. In addition, there is the potential for
harm from non-consensual voice generation or fake
media. The voices of the speakers in the recordings
might be overused than they expect.
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A Data

In this section, we describe details of the data usage
in training and evaluating VoiceTuner.

* For self-supervised pre-training, Librilight (Kahn
et al., 2020) contains 60K hours of unlabeled
speech from audiobooks in English, and Wenet-
Speech (Zhang et al., 2022a) include 100K hours

of speech in mandarin.

For zero-shot text-to-speech, LibriTTS (Zen
et al., 2019) dataset is included.

For instruction text-to-speech, we use the dataset
PromptSpeech (Guo et al., 2023).

For singing voice synthesis, We use the female-
singer OpenCPOP (Wang et al., 2022), multi-
singer dataset OpenSinger (Huang et al., 2021),
and M4Singer (Zhang et al., 2022b) as the
singing voice data.

B Model Configurations

We list the model hyper-parameters of VoiceTuner
in Table 6.

C Unit-based Vocoder
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Figure 6: Overview of the unit-based vocoder. The FO
auxiliary input denoted with dotted lines is included
only in singing voice synthesis.

The generator of the unit-based vocoder is built
from a set of look-up tables (LUT) that embed
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the discrete representation, and a series of blocks
composed of transposed convolution and a residual
block with dilated layers. We train the enhanced
vocoder with the weighted sum of the least-square
adversarial loss, the feature matching loss, and the
spectral regression loss on mel-spectrogram, where
the training objective formulation and hyperparam-
eters follow Kong et al. (2020); Lee et al. (2022).

For speech generation, we train the vocoder
with only the discrete unit sequences as input.
For singing voice generation, we further include
FO-driven source excitation to stabilize long-
continuous waveforms generation following (Liu
et al., 2022; Huang et al., 2022b).

D Evaluation

D.1 Subjective Evaluation

For audio quality evaluation, we conduct the MOS
(mean opinion score) tests and explicitly instruct
the raters to “(focus on examining the audio qual-
ity and naturalness, and ignore the differences of
style (timbre, emotion, and prosody).)". The testers
present and rate the samples, and each tester is
asked to evaluate the subjective naturalness on a
1-5 Likert scale.

For style similarity evaluation, we explicitly in-
struct the raters to “(focus on the similarity of the
style (timbre, emotion, and prosody) to the refer-
ence, and ignore the differences of content, gram-
mar, or audio quality.)". In the SMOS (similarity
mean opinion score) tests, we paired each synthe-
sized utterance with a ground truth utterance to
evaluate how well the synthesized speech matches
that of the target speaker. Each pair is rated by one
rater.

Our subjective evaluation tests are crowd-
sourced and conducted by 20 native speakers via
Amazon Mechanical Turk. The screenshots of in-
structions for testers have been shown in Figure 7.
We paid $8 to participants hourly and totally spent
about $600 on participant compensation. A small
subset of speech samples used in the test is avail-
able at https://VoiceTuner.github.io/.

E Reproducibility Statement

We will release our code in the future. The Voice-
Tuner model that we build upon is publicly avail-
able through the fairseq code repository (Ott et al.,
2019). To aid reproducibility, we have included a
schematic overview of hyperparameters in Table 6.


https://VoiceTuner.github.io/

Hyperparameter

\ VoiceTuner/VoiceTuner-Mamba

VoiceTuner: Transformer

Transformer Layer 16
Global B Transformer Embed Dim 768
obal base Transformer Attention Headers 12
Number of Parameters 114 M
Transformer Layer 20
. Transformer Embed Dim 1152
Global Medinm Transformer Attention Headers 16
Number of Parameters 320 M
Transformer Layer 24
Global Larce Transformer Embed Dim 1536
g Transformer Attention Headers 32
Number of Parameters 830 M
Transformer Layer 6
Local Transformer Embed Dim Same as global
Transformer Attention Headers 8
Number of Parameters 46/101/303 M
VoiceTuner-Mamba: State Space Model
State space Layer 24
State space Embed Dim 768
Global Base Number of Parameters II M
State space Layer 32
. State space Embed Dim 1152
Global Medium Number of Parameters 281 M
State space Layer 48
State space Embed Dim 1536
Global Large Number of Parameters 792 M
State space Layer 12/12/16
Local State space Embed Dim Same as global
Number of Parameters 63/139/245 M
BigVGAN Vocoder
Upsample Rates [5,4,2,2,2,2]
. Hop Size 320
BigVGAN Vocoder Upsample Kernel Sizes [9,8,4,4,4,4]
Number of Parameters 121.6M

Table 6: Hyperparameters of VoiceTuner.
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Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit” in order to preview the data and format of the submitted results.

How natural (e s Please and naturalness, and ignore the differences of style (tmbre, emotion and prosody).

Select an option
Transcripts: The wind wakened me. Excellent - Completely natural speech - 5

45
> 0:00/0:01 o0 i

Good - Mostly natural speech -4

3.5

Fair - Equally natural and unnatural speech - 3
25

Poor - Mostly unnatural speech - 2

15

Bad - Completely unnatural speech - 1

(a) Screenshot of MOS testing.

1

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

Instructions Houw similar Is this recording to tne reference audio? Please focus on the similarity of the style (speaker identity, emotion and prosody) to the reference, and ignore the differences of content, grammar, or audio qualiy.

Select an option
Reference audio: Excellent - Completely similar speech - 5

4.5

> 0:00/0:06 L DI -
Good - Mostly similar speech - 4

35
Testing audio:

Fair - Equally similar and dissimilar speech - 3

> 0:00/0:03 o0 i 25
Poor - Mostly dissimilar speech - 2
Corresponding transcripts: The head of the Patchwork Girl was the most curious part of her. 15

Bad - Completely dissimilar speech - 1

(b) Screenshot of SMOS testing.

Figure 7: Screenshots of subjective evaluations.
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