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Abstract

Voice large language models (LLMs) cast voice001
synthesis as a language modeling task in a002
discrete space, and have demonstrated signif-003
icant progress to date. Despite the recent suc-004
cess, the current development of voice LLMs005
in low-resource applications is hampered by006
data scarcity and high computational cost. In007
this work, we propose VoiceTuner, with a self-008
supervised pre-training and efficient fine-tuning009
approach for low-resource voice generation.010
Specifically, 1) to mitigate data scarcity, we011
leverage large-scale unlabeled dataset and pre-012
train VoiceTuner-SSL without pre-defined ap-013
plications, which can be fine-tuned in down-014
stream tasks; 2) to further reduce the high015
training cost in complete fine-tuning, we in-016
troduce a multiscale adapter to effectively up-017
date around only 1% parameters as a plug-and-018
play module; and 3) to alleviate the challenges019
of modeling long audio tokens inherited from020
inefficient attention mechanism, we introduce021
VoiceTuner-Mamba with multiscale state space022
models in place of transformers. Experimen-023
tal results demonstrate that VoiceTuner-SSL024
presents strong acoustic continuations. Voice-025
Tuner exhibits superior quality and style simi-026
larity in three low-resource (1h, 10h, 30h) gen-027
eration tasks. 1028

1 Introduction029

Current voice large language models030

(LLMs) (Kharitonov et al., 2023; Wang et al.,031

2023; Zhang et al., 2023b) cast voice synthesis as a032

language modeling task in a discrete representation033

space. VALL-E (Wang et al., 2023) proposes034

a language model approach for text-to-speech035

(TTS) with audio codec tokens. UniAudio (Yang036

et al., 2023) introduces a multi-scale transformer037

to enable sub-quadratic self-attention, unlocking038

better performance at a reduced cost for training039

1Audio samples are available at https://VoiceTuner.
github.io

and generation. A line of works (Kharitonov et al., 040

2023; Borsos et al., 2022; Agostinelli et al., 2023) 041

introduces the hierarchical approach that combines 042

semantic and acoustic audio tokens to decrease 043

supervision in model training. 044

Despite the success achieved, the current de- 045

velopment of voice LLMs in low-resource scenar- 046

ios is hampered by two major challenges: 1) data 047

scarcity: most existing models rely on web-scale 048

training data, which are lacking in low-resource 049

scenarios; and 2) high computational cost: train- 050

ing voice LLMs from scratch are computationally 051

intensive and time-consuming, and the inefficient 052

attention mechanism in transformer further chal- 053

lenges model in modeling long codec sequence. 054

In this work, we propose VoiceTuner, with a self- 055

supervised pre-training and efficient fine-tuning 056

approach for low-resource voice generation. To 057

alleviate data scarcity, we pre-train the next-token 058

prediction model (VoiceTuner-SSL) in the large- 059

scale unlabeled dataset, which can be fine-tuned 060

in downstream generation tasks with reduced data 061

and device requirements. To further reduce compu- 062

tational cost and avoid losing the general abilities 063

of VoiceTuner-SSL, we introduce an efficient mul- 064

tiscale adapter to fine-tune only around 1% param- 065

eters in downstream applications. To alleviate the 066

challenges of modeling long audio tokens inherited 067

from inefficient attention mechanisms, we intro- 068

duce VoiceTuner-Mamba with state space models 069

in place of transformers, effectively reducing the 070

quadratic complexity to linear. 071

VoiceTuner is pre-trained on ∼160K hours of 072

unlabeled voice data without supervision, followed 073

by rich or low resource (1h, 10h, and 30h) adap- 074

tation in downstream applications including zero- 075

shot TTS, singing voice synthesis, and instruction 076

TTS, respectively generalizing to unseen speaker, 077

modality, and instruction. Experimental results 078

demonstrate that VoiceTuner-SSL keeps acoustic 079

continuations, maintaining speaker identity, emo- 080
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tion, and speaking speed from prompts. VoiceTuner081

exhibits superior audio quality and style similarity,082

unlocking the ability to generate voice samples in083

low-resource scenarios. Furthermore, VoiceTuner-084

Mamba with state space models is more efficient085

in terms of GPU memory and floating point opera-086

tions (FLOPS) for modeling extremely long audio087

tokens. The key takeaways are as follows:088

• We present VoiceTuner, with a self-supervised089

pre-training and fine-tuning approach to alleviate090

data scarcity in low-resource applications.091

• We introduce a lightweight multiscale adapter to092

efficiently fine-tune only around 1% parameters,093

further reducing the computational cost.094

• We investigate replacing the inefficient transform-095

ers with state space models, which reduces the096

complexity of modeling long audio tokens.097

• Experimental results demonstrate that098

VoiceTuner-SSL keeps acoustic continua-099

tions, and present VoiceTuner’s superior audio100

quality and style similarity.101

2 Related Works102

2.1 Generative Voice Models103

Text-guided voice synthesis (text-to-speech and104

singing voice synthesis) typically converts input105

text into mel-spectrogram (e.g., Tacotron (Wang106

et al., 2017), FastSpeech (Ren et al., 2019)), which107

is then transformed to waveform using a separately108

trained vocoder (Kong et al., 2020; Huang et al.,109

2021). Recent generative models cast voice syn-110

thesis as a language modeling task to perform in-111

context learning: VALL-E (Wang et al., 2023) uses112

discrete codes derived from an off-the-shelf neural113

audio codec model, and regards TTS as a condi-114

tional language model. Zhang et al. (2023b) lever-115

age back-translation and prompt-guided LLMs for116

high-quality TTS with limited supervision. Jiang117

et al. (2023) train a prosody language model with118

arbitrary-length speech prompts to produce expres-119

sive and controlled prosody. However, these ex-120

isting voice LLMs are trained from scratch using121

web-scale data, and replicating this success is lim-122

ited in low-resource scenarios.123

2.2 State Space Models124

State space models are recently introduced into125

deep learning as state space transforming (Gu et al.,126

2021b,a; Smith et al., 2022). Mamba (Gu and Dao,127

2023) integrates selective SSMs into a simplified 128

end-to-end neural network architecture without at- 129

tention or even MLP blocks. Vision mamba (Zhu 130

et al., 2024) compresses the visual representation 131

with bidirectional state space and proposes a new 132

generic vision backbone with bidirectional Mamba 133

blocks. VMamba (Liu et al., 2024) achieves lin- 134

ear complexity without sacrificing global receptive 135

fields and introduces the cross-scan Module (CSM) 136

to traverse the spatial domain. Inspired by these, 137

we present the end-to-end differentiable multiscale 138

state space models to effectively reduce the inher- 139

ited attention complexity in voice LLMs. 140

2.3 Generative Voice Pre-training and 141

Fine-tuning 142

Self-supervised learning (SSL) (Baevski et al., 143

2020; Hsu et al., 2021) has been shown to achieve 144

remarkable advances in recent years, opening up 145

a wide array of applications that leverage their 146

power by adapting models. AudioLDM 2 (Liu 147

et al., 2023b) leverages AudioMAE (Huang et al., 148

2022a) and performs self-supervised audio gener- 149

ation learning with a latent diffusion model con- 150

ditioned on audio tokens. UniAudio (Yang et al., 151

2023) trains on different generative tasks to obtain 152

prior knowledge in the inter-relationship between 153

audio and other modalities and support new au- 154

dio generation tasks after simple fine-tuning. Liu 155

et al. (2023a) achieve better performance utilizing 156

low-rank adaptation (LoRA), which adds the linear 157

input projection to each self-attention layer. Vyas 158

et al. (2023) include two-stage full fine-tuning to 159

improve model fidelity and quality where all param- 160

eters are optimized together. In this work, we in- 161

troduce a multiscale adapter for parameter-efficient 162

adaptation, which updates only around 1% of the 163

parameters on top as a lightweight plug-and-play 164

module. 165

3 Method 166

In this section, we overview the discrete voice rep- 167

resentation - acoustic tokens and then introduce the 168

proposed generative self-supervised pre-training 169

and follow-up fine-tuning approach, respectively 170

with VoiceTuner-SSL and VoiceTuner. Next, we 171

propose a lightweight, plug-and-play adapter for 172

parameter-efficient fine-tuning. In the following, 173

we introduce the scalable global and local architec- 174

ture in Section 3.4 and provide the preliminaries of 175

VoiceTuner-Mamba with state space models (SSM) 176

2



VoiceTuner

Duration

Text

SemanticAcousticPitch
G2P

Acoustic 
model Vocoder

Mel spectrum

MIDI / TEXT

Twinkle  twinkle  little star

[ T W IH1 NG K AH0 L ]
[ T W IH1 NG K AH0 L ]

[ L IH1 T AH0 L ]
[ S T AA1 R ] 

Singing VoiceAcoustic Features

Fundamental frequency

4 ♩ ♩ ♩ ♩4🎼
Codec Hubert

MIDI

VoiceTuner-SSL

Codec

Next-token Prediction Supervised fine-tuning

Concat Concat Concat

Global Model

Split Split Split

eos eoseos

b1 b2 b3a1a2a3 c1c2c3

c1c2c3b1 b2 b3

(a) Generative pre-training

Local Local Local 

(b) Efficient fine-tuning (c) Multi-scale architecture

Figure 1: In subfigure (b), prompts can be adjusted for different tasks with a variety of conditions (speaker, emotion,
prosody, and style).

block (i.e., Mamba) in Section 3.5.177

3.1 Speech Representation178

Audio codec models such as SoundStream (Zeghi-179

dour et al., 2021) and Encodec (Défossez et al.,180

2022) have recently shown that encoder-decoder181

architecture excels at learning acoustic information182

in a self-supervised manner, where the representa-183

tion can be used in a variety of generative tasks.184

The acoustic codec model typically consists185

of an audio encoder, a residual vector-quantizer186

(RVQ), and an audio decoder: 1) The audio encoder187

E consists of several convolutional blocks with a188

total downsampling rate of 320 and generates con-189

tinuous representations at every 20-ms frame in190

16kHz. 2) The residual vector-quantizer Q pro-191

duces discrete representations aq with a codebook192

size of K2, using a vector quantization layer (Va-193

suki and Vanathi, 2006). 3) The audio decoder194

G reconstructs the signal ŷ, from the compressed195

latent representation aq. In the end, a speech ut-196

terance y is represented as acoustic tokens with197

[a1, a2, . . . , aT ] , ai ∈ {0, 1, . . . ,K2 − 1}, ∀1 ≤198

i ≤ T , where T is the number of frames.199

3.2 Self-supervised Pre-training200

Most voice LLMs rely on web-scale training data201

and cast voice synthesis as a language modeling202

task, while the data shortage hampers its appli-203

cation in low-resource scenarios. To alleviate it,204

we leverage unlabeled corpus and pre-train LLMs205

(namely VoiceTuner-SSL) in a next-token predic-206

tion task without supervision, where we hypothe-207

size that a generative model without pre-defined208

application can be applied to different downstream209

tasks, reducing data requirement in low-resource210

application.211

VoiceTuner-SSL is pre-trained on arbitrary voice, 212

which contains many speakers with various accents, 213

diverse demographics, and heterogeneous record- 214

ing conditions. Next, we fine-tune VoiceTuner-SSL 215

to align speech and text modalities utilizing super- 216

vised data in downstream voice generation appli- 217

cations, where we find that the self-supervised pre- 218

training stage offers a distinct gain in both rich and 219

low-resource scenarios. We expect our VoiceTuner- 220

SSL to keep the speaker identity, prosody, and 221

recording conditions of the prompt and produce 222

new content. We refer the reader to Section 5.1 for 223

our findings. 224

3.3 Efficient Fine-tuning 225

Concat Concat Concat

       Global Transformer

Split Split Split

eos eoseos

b1 b2 b3a1a2a3 c1c2c3

c1c2c3b1 b2 b3

Local Transformer ❄

Lora🔥

Lora🔥

❄

Lora🔥
❄

Lora🔥

❄

Attention
N-L    Layers

Attention

L    Layers

Adapted
Prompts

❄

🔥

❄
Gate

🔥 Learnable ❄ Frozen
Task Prompts

🔥🔥 ×

×
I

Pl

Figure 2: VoiceTuner: Efficient fine-tuning with multi-
scale adapter.

Though fine-tuning voice LLMs is effective com- 226

pared with training voice LLMs from scratch, a 227

complete fine-tuning of large-scale voice LLMs 228

still 1) is time-consuming, computation-intensive, 229

multi-modality unsupported; and 2) can lose the 230
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general ability of foundation model (e.g., acous-231

tic continuations). In this section, we introduce232

an efficient plug-and-play module, i.e., a multi-233

scale adapter, to update only around 1% parameters.234

Specifically,235

• We include low-rank adaptation (LoRA) (Hu236

et al., 2021) in the linear input projection of each237

layer in attention blocks, where only the LoRA238

parameters are optimized.239

• A set of learnable prompts with gates (Zhang240

et al., 2023a) are added to the input, which learn241

to adaptively inject new instructions (conditions)242

into the pre-trained model and avoid disturbing243

speech tokens at the beginning of training.244

Suppose we have condition representation (i.e.,245

task-specific prompts) I ∈ RK×C with length K246

and feature dimension C. For instruction TTS, we247

use pre-trained Flan-T5-XL (Raffel et al., 2020)248

and freeze the weights to derive condition repre-249

sentation; For zero-shot TTS and SVS, we use the250

token embedding matrix to obtain the representa-251

tion of acoustic and pitch tokens from speaker and252

MIDI prompt, which are then pad to a fix length253

K = 150.254

We initialize learnable adaption prompt {Pl}Ll=1255

for L layers, where we have each layer’s prompt256

Pl ∈ RK×C and speech tokens Tl ∈ RM×C . Then,257

the adaption prompt is conducted an element-wise258

addition with condition representation: Pl = [Pl +259

I] ∈ RK×C .260

Suppose the model is processing with the speech261

tokens Tl and condition Pl, The attention score re-262

lated to learnable prompt is calculated as Sp
l =263

Attention(Tl, Pl, Pl) = Softmax(TlP
T
l /

√
C)Pl,264

and we have St
l self-attention score for original265

speech tokens. A learnable gating factor gl is266

adapted to adaptively control the importance of267

Sp
l in the attention with Sl = Sp

l gl+St
l , which rep-268

resents how much information the learnable prompt269

contributes. Initialized by zero, gl can first elimi-270

nate the influence of under-fitted prompts and then271

increase its magnitude to provide more instruction272

semantics.273

To conclude, the adaptation enjoys efficient train-274

ing efficiency with only around 1% learnable pa-275

rameters. As a lightweight plug-and-play module,276

this enables us to fine-tune voice LLMs on cheap277

devices.278

3.4 Multiscale Architecture 279

VoiceTuner (denoted as θAR) predicts long se- 280

quences with end-to-end differentiable multiscale 281

transformers similar to Yu et al. (2023); Yang et al. 282

(2023). This enables sub-quadratic self-attention, 283

unlocking better performance at reduced cost for 284

both training and generation. As illustrated in Fig- 285

ure 1(c): 1) the token embedding matrix EG maps 286

integer-valued tokens a1, a2, ..., c2, c3 to m dimen- 287

sional embeddings, following which 2) we chunk 288

it into patches of size P of length K = T
P , 3) 289

a large global transformer θglobal
AR module outputs 290

patch representations G1:K
o = θ

global
AR (G0:K−1

i ), 291

and 4) a relatively smaller local transformer θlocal
AR 292

operates on a single patch containing P elements, 293

each of which is the sum of an output from the 294

global model and an embedding of the previous 295

tokens, and autoregressively predict the next patch 296

L1:K
o = θlocal

AR (L0:K−1
i +G1:K

o ). 297

VoiceTuner presents the improvements from 298

scaling attention layers’ depth and width with- 299

out the requirement of scattered model-specific 300

methodologies. As expected, scaling the model 301

size (160M (base), 420M (medium), and 1.1B 302

(large) parameter) results in better scores. We refer 303

the reader to Section 5.5 for our findings. 304

3.5 State Space Model 305

Multihead 
Attention

Add & Norm

Add & Norm

FFN

Linear

Conv1D

SSM

SiLU

Linear

SiLU

Linear

×

L× L×

Figure 3: Left: Mamba block; Right: Transformer block.
Mamba adds an SSM to the main branch.

To alleviate challenges of modeling long au- 306

dio tokens in inefficient attention transformers, 307

we introduce VoiceTuner-Mamba with state space 308

models (Smith et al., 2022; Gu and Dao, 2023) 309

in place of transformers, effectively reducing the 310

quadratic complexity to linear. Illustrated in Fig- 311

ure 3, VoiceTuner-Mamba is built upon State Space 312

Models (SSMs), which are considered linear time- 313

invariant systems that map stimulation x(t) ∈ RL 314
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to response y(t) ∈ RL through a hidden state h(t),315

where the parameters include A ∈ CN×N , B,C ∈316

CN :317

h′(t) = Ah(t) +Bx(t)

y(t) = Ch(t)
(1)318

The S4 is the discrete version of the continuous319

system, which also includes a timescale parameter320

∆ to transform the continuous parameters A,B to321

discrete spaces:322

Ā = e∆A, B̄ =
(
e∆A − I

)
A−1B

ht = Āht−1 + B̄xt, yt = Cht
(2)323

Mamba (Gu and Dao, 2023) further incorporate324

the selective scan mechanism (S6), where the matri-325

ces B ∈ RB×L×N , C ∈ RB×L×N ,∆ ∈ RB×L×D326

are derived from the input data. S6 is aware of the327

contextual information embedded in the input, en-328

suring the dynamism of weights within this mech-329

anism. In contrast to the conventional attention330

computation approach, S6 enables each element in331

a 1-D array (e.g., sequence) to interact with any332

of the previously scanned samples through a com-333

pressed hidden state. VoiceTuner-Mamba refrains334

from utilizing position embedding bias due to the335

causal nature.336

To compare VoiceTuner-Mamba and VoiceTuner,337

we developed VoiceTuner-Mamba in three distinct338

scales (small, medium, and large) with similar pa-339

rameters. The resulting architecture is a versatile340

replacement for VoiceTuner in different applica-341

tions.342

3.6 Reconstructing High-Fidelity Waveforms343

We train a unit-based neural vocoder from scratch344

for the acoustic unit to waveform generation. In-345

spired by BigVGAN (Lee et al., 2022), the synthe-346

sizer includes the generator and multi-resolution347

discriminator (MRD). The generator is built from a348

set of look-up tables (LUT) that embed the discrete349

representation and a series of blocks composed of350

transposed convolution and a residual block with351

dilated layers. The transposed convolutions upsam-352

ple the encoded representation to match the input353

sample rate. Details are included in Appendix C.354

4 Training and Evaluation355

4.1 Dataset356

For self-supervised pre-training, we utilize large-357

scale datasets with Librilight (Kahn et al., 2020)358

and WenetSpeech (Zhang et al., 2022a), where we 359

have ∼160K hours of 16 kHz audio that greatly 360

increases the domain coverage. 361

We fine-tuning VoiceTuner-SSL to align speech 362

and text modalities utilizing TTS data such as Lib- 363

riTTS (Zen et al., 2019), VCTK (Veaux et al., 2017) 364

and PromptSpeech (Guo et al., 2023), resulting in 365

rich-resource VoiceTuner. To evaluate VoiceTuner 366

in low-resource scenarios, we construct paired 367

data (1h, 10h, 30h) with three application tasks: 368

instruction-guided TTS, zero-shot TTS, singing 369

voice synthesis, respectively generalizing to un- 370

seen instruction, speaker, and modality. For text se- 371

quence, we tokenize it into the phoneme sequence 372

with an open-source grapheme-to-phoneme con- 373

version tool (Sun et al., 2019). We have attached 374

detailed data configuration in Appendix A. 375

4.2 Evaluation Metrics 376

Speech intelligibility. We report word error rate 377

(WER) to evaluate the intelligibility of speech by 378

transcribing it using a whisper (Radford et al., 379

2023) ASR system following (Wang et al., 2023). 380

Style similarity. SIM assesses the coherence of 381

the generated speech in relation to the speaker’s 382

characteristics, and we employ the speaker verifi- 383

cation model WavLM-TDNN (Chen et al., 2022) 384

to evaluate the speaker similarity. F0 Frame Er- 385

ror (FFE) measures the prosody similarity of syn- 386

thesized and reference audio. For pitch, speak- 387

ing speed, and volume attributes, we adopt a soft- 388

margin mechanism for accuracy calculation. 389

Subjective evaluation. We also conduct a 390

crowd-sourced human evaluation via Amazon Me- 391

chanical Turk, which is reported with 95% confi- 392

dence intervals (CI), and analyze two aspects: style 393

similarity (speaker, emotion, and prosody) and au- 394

dio quality (clarity, high-frequency), respectively 395

scoring SMOS and MOS. More information has 396

been attached in Appendix D. 397

4.3 Model Configurations 398

For acoustic tokens, we train the SoundStream 399

model with 12 quantization levels, each with a 400

codebook of size 1024 and the same downsam- 401

pling rate of 320. We take three quantization levels 402

as the acoustic tokens, representing each frame as 403

a flat sequence of tokens from the first, second, and 404

third quantization layers. We trained three sets of 405

VoiceTuner, with 160M (base), 459M (medium), 406

and 1.1B (large) parameters. As for the unit-based 407

vocoder, we use the modified V1 version of BigV- 408
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Figure 4: Loss/accuracy curves with or without self-supervised learning (SSL).

GAN. A comprehensive table of hyperparameters409

is available in Appendix B. Except explicitly stated,410

we use our 459M (medium) model for downstream411

evaluation.412

During training, we pre-train VoiceTuner-SSL413

for 100K steps using 8 NVIDIA A100 GPUs with414

a batch size of 6000 tokens for each GPU on the415

publicly-available fairseq framework (Ott et al.,416

2019), and fine-tune VoiceTuner and VoiceTuner-417

Mamba for 10K steps using 1 NVIDIA A100 GPU.418

Adam optimizer is used with β1 = 0.9, β2 =419

0.98, ϵ = 10−9. The unit-based vocoder is opti-420

mized with a segment size of 8192 and a learn-421

ing rate of 1 × 10−4 until 500K steps using 4422

NVIDIA V100 GPUs. For sampling, we employ423

top-p (Holtzman et al., 2019) sampling with p =424

0.25.425

5 Results426

5.1 Self-supervised Pre-training427

Model SIM Emotion Style Speed

GT / 100 95.8 86.9
GT (voc.) 0.94 93.1 92.4 87.4

Base 0.92 90.5 78.5 63.4
Medium 0.92 91.3 81.5 65.6
Large 0.93 92.7 83.1 67.1

Table 1: Acoustic continuity of VoiceTuner-SSL.

Task P WER SIM MOS SMOS

GT / 3.2 / 4.35±0.05 /
GT (voc.) / 5.6 0.93 4.23±0.07 4.20±0.05

TTS % 9.3 0.81 3.92±0.07 3.84±0.07
! 6.7 0.83 3.98±0.06 3.92±0.08

FTTS % 6.4 0.83 3.98±0.07 3.93±0.07
! 5.9 0.84 4.04±0.08 3.98±0.06

Table 2: Quality and style similarity of VoiceTuner in
rich-resource TTS. FTTS: Frame-level TTS taking ex-
panded phone as input. P: with or without pre-training.

We expect our generative foundation model428

VoiceTuner-SSL to keep the speaker identity, 429

prosody, and recording conditions of the prompt 430

and produce new content in next-token prediction. 431

Specifically, we generate continuations of 5 sec- 432

onds for each 3-second prompt, where the prompts 433

are obtained by cropping samples from Librispeech 434

test-clean. In the following, we run the speaker, 435

style, emotion, and speed classifier on the sampled 436

continuations (excluding the prompts) and report 437

the results. We also compare the InstructSpeech 438

with other systems, including 1) GT, the ground- 439

truth audio; 2) GT (voc.), where we first convert 440

the ground-truth audio into tokens and then convert 441

them back to audio using BigVGAN; 442

The evaluation results are presented in Ta- 443

ble 1, and we have the following observations: 1) 444

VoiceTuner-SSL can preserve the speaker, style, 445

emotion, and speaking speed in the prompt with 446

a high recognition accuracy at a zero-shot setting, 447

even if the model is not fine-tuned in downstream 448

datasets; Informally, VoiceTuner-SSL is optimized 449

in a large amount of self-supervised data, which 450

contains many speakers with various accents and 451

diverse demographics to improve robustness and 452

generalization; and 2) as shown in the demo page, 453

in a noisy environment, VoiceTuner also presents 454

the acoustic consistency and maintain the noise 455

conditions from the prompt. 456

5.2 Rich-resource Evaluation 457

Our proposed self-supervised pre-training and 458

follow-up fine-tuning approach are essential for 459

the early-stage training stability and final gener- 460

ation capacity. To demonstrate the rich-resource 461

performance, we fine-tune VoiceTuner-SSL in 200- 462

hour downstream TTS data to align speech and text 463

modalities. 464

We plot the loss/accuracy curves in Figure 4 and 465

present results in Table 2, and have the following 466

observations: 1) the model with pre-training con- 467
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Instruction TTS ZS-TTS SVS Subjective Evaluation
Gender Speed Pitch Volume WER WER SIM FFE SIM MOS SMOS

GT 96.6 86.9 86.9 78.9 5.1 3.2 / / / 4.35±0.05 /
GT (voc.) 95.8 87.4 87.0 76.0 7.1 5.6 0.93 0.01 0.95 4.23±0.07 4.20±0.05

Fine-tune with 30 hours data

Full-s 94.1 88.3 88.2 73.9 16.9 18.3 0.63 / 3.94±0.06 3.89±0.08
Full-p 94.7 86.1 87.3 68.3 7.1 7.2 0.71 0.31 0.93 4.01±0.08 3.97±0.07
Adapter 85.1 85.1 86.7 58.8 6.9 7.9 0.63 0.43 0.90 3.96±0.06 3.92±0.07

Fine-tune with 10 hours data

Full-s 90.1 76.5 85.7 61.1 68.7 / / /
Full-p 91.6 85.7 85.6 62.2 7.6 8.1 0.64 0.47 0.91 3.97±0.08 3.92±0.08
Adapter 86.1 83.5 86.3 62.1 7.5 8.2 0.62 0.44 0.88 3.91±0.06 3.85±0.07

Fine-tune with 1 hours data

Full-s / / / /
Full-p 49.1 84.5 77.3 57.3 14.9 8.2 0.66 0.58 0.83 3.91±0.08 3.84±0.08
Adapter 80.0 82.9 85.1 61.3 9.6 8.8 0.59 0.61 0.78 3.87±0.06 3.82±0.07

Table 3: Low-resource evaluation results. Full-s: Full parameter training from scratch; Full-p: Full parameter fine-
tuning from pre-trained VoiceTuner-SSL. Note that we use / to represent that the model (Full-s) cannot converges in
low-resource scenarios.

verges faster and reaches lower loss bounds than468

the model trained from scratch; and 2) For the intel-469

ligibility of the generated speech, VoiceTuner (with470

pre-training) has achieved a 27%, 7.8% relatively471

lower WER respectively in TTS and FTTS, indi-472

cating that self-supervised pre-training provides473

gains with accessible speech of better quality. 3)474

To conclude, VoiceTuner-SSL pre-trained on an ar-475

bitrary voice corpus contains speakers with various476

accents, diverse demographics, and heterogeneous477

recording conditions, offering distinct gains in rich-478

resource fine-tuning.479

5.3 Low-resource Evaluation480

We hypothesize that a generative foundation model481

can be applied to different downstream tasks, re-482

ducing data requirements and computational cost,483

especially in low-resource scenarios. To present484

the capability of VoiceTuner in low-resource sce-485

narios, we construct (1h, 10h, 30h) hours of data486

for three application tasks: instruction-guided TTS487

(ITTS), zero-shot TTS (ZS-TTS), singing voice488

synthesis (SVS), respectively generalizing to un-489

seen instruction, speaker, and modality. For train-490

ing efficiency, we investigate full training from491

scratch (Full-s), full fine-tuning from VoiceTuner-492

SSL (Full-p), and efficient fine-tuning with a multi-493

scale adapter (Adapter).494

The results are presented in Table 3, and we have495

the following observations: 1) as training data is496

reduced in the low-resource scenario, a distinct497

degradation in speech quality and similarity could498

be witnessed: VoiceTuner (Adapter) presents a dis-499

tinct drop in TTS WER of 6.9 → 7.5 → 9.6 when500

reducing training data from 30 to 1 hours. 2) Re- 501

garding training efficiency and computational cost: 502

Though full parameter fine-tuning systems demon- 503

strate better results in most cases, the multiscale 504

adapter has still achieved the comparable results 505

(e.g., FFE and SIM of 0.61, 0.78 in 1-hour SVS). 506

It indicates that the adapter enjoys high-fidelity 507

generation with only around 1% learnable parame- 508

ters, which enables us to fine-tune voice LLMs on 509

cheap devices; 3) It is worth mentioning that in ex- 510

tremely low resource scenarios, VoiceTuner (Full-s) 511

cannot converges when training from scratch. As 512

expected, a generative model (namely VoiceTuner- 513

SSL) without a pre-defined application can be ap- 514

plied to different downstream tasks, reducing data 515

requirements in low-resource applications. 516

5.4 State Space Model Evaluation 517

Size Params Mem TFLOPs WER SIM

VoiceTuner-Mamba: State Space Model

B 154M 4172M 47.9 7.2 0.82
M 420M 5136M 111.4 6.4 0.83
L 1B 5141M 278.9 5.8 0.85

VoiceTuner: Transformer

B 160M 4332M 76.3 7.8 0.81
M 459M 5259M 181.4 6.7 0.83
L 1B 5638M 408.1 5.9 0.84

Table 4: We compare VoiceTuner-Mamba and Voice-
Tuner among different sizes (Base, Medium, and Large).
To evaluate the computational cost (the lower the bet-
ter), both models predict fix-length 5s sequences and
measure max-memory consumption (Mem), and total
number of floating point operations (TFLOPS) during
inference time.
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Figure 5: Memory/FLOPs curves of VoiceTuner and VoiceTuner-Mamba with different fine-tuning data.

To alleviate the challenges in modeling long au-518

dio tokens due to inefficient attention mechanisms,519

we propose VoiceTuner-Mamba with state space520

models in place of transformers. As shown in Fig-521

ure 5, the efficiency curves demonstrate similar522

comparison results of the pure transformer back-523

bone. As presented in Table 4, VoiceTuner-Mamba524

scores the lowest TFLOPs and memory of 47.9 and525

4332M among base models, showing that state-526

space models excel at reducing the computational527

cost of modeling long continuous data. In contrast528

to the conventional attention computation approach,529

S6 enables each element in a 1-D array to interact530

with any previously scanned samples through a531

compressed hidden state, effectively reducing the532

quadratic complexity to linear.533

5.5 Analysis and Ablation Studies534

To verify capabilities of VoiceTuner, we conduct535

ablation studies on model scalability and few-shot536

adaptation, and discuss key findings as follows.537

Tuning Params Gender Speed Pitch WER

GT / 96.6 86.9 86.9 5.1

Lora 8.97M 86.6 83.5 86.3 7.6
Adapter 12.0M 91.6 85.3 85.6 6.9

Table 5: Ablation studies. We obtain VoiceTuner in
low-resource (10-hour) instruction TTS task and report
attributes accuracy and WER.

Scalability to improve performance. As il-538

lustrated in Table 4, we report results for different539

model sizes, namely 160M (base), 459M (medium),540

and 1.1B (large) parameter models. As expected,541

scaling the size of VoiceTuner and VoiceTuner-542

Mamba results in better scores. However, this543

comes at the expense of longer training and in-544

ference time. Increasing the model size from 459M545

to 1.1B leads to additional gains of a further 40%546

reduction in WER for TTS tasks with a similar 547

style. 548

Efficient fine-tuning with multiscale adapter. 549

To enable few-shot learning without losing the 550

general abilities, we fine-tune VoiceTuner in 10- 551

hour instruction TTS data, and compare the results 552

among different adaptation methods. Illustrated in 553

Table 5, as a lightweight plug-and-play module, the 554

proposed multiscale adapter enjoys superior train- 555

ing efficiency with only around 1% parameters in 556

contrast to full fine-tuning, demonstrates the 9.2% 557

WER drop and outperformed attributes accuracy 558

(gender, speed, and pitch) compared to Lora (Hu 559

et al., 2021). This enables us to fine-tune voice 560

LLMs on cheap devices. 561

6 Conclusion 562

In this work, we propose VoiceTuner with a pre- 563

training and efficient fine-tuning approach for low- 564

resource voice generation. To mitigate the data 565

scarcity and high computational cost for training 566

voice LLMs, we 1) leveraged large-scale unlabeled 567

dataset and pre-trained VoiceTuner-SSL in a next- 568

token prediction task, which could be fine-tuned 569

in downstream tasks with reduced data; 2) intro- 570

duced an efficient multiscale adapter to fine-tune 571

only around 1% parameters in downstream appli- 572

cations, further eliminating the computational cost. 573

VoiceTuner-Mamba was proposed with a multi- 574

scale state space model in place of transformer, 575

alleviating the challenges of modeling long audio 576

tokens inherited from inefficient attention mech- 577

anism. Experimental results demonstrated that 578

VoiceTuner-SSL presented strong speech contin- 579

uations. VoiceTuner exhibited superior quality and 580

style similarity in three low-resource (1h, 10h, 30h) 581

voice generation tasks. We envisage that our work 582

serves as a basis for future low-resource voice syn- 583

thesis studies. 584
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7 Limitation585

Although VoiceTuner is successfully applied to586

generate zero-shot voice signals in low-resource587

scenarios, it still suffers from some limitations: 1)588

VoiceTuner introduces a strong dependency on the589

quality of the audio tokenizer. 2) The model only590

shows in-context learning ability on voice synthe-591

sis, rather than all voice recognition and under-592

standing tasks, and 3) a longer sequence length593

typically requires more computational resources,594

and degradation could be witnessed with decreased595

training data.596

8 Potential Risks597

VoiceTuner lowers the requirements for zero-shot598

voice generation even in low-resource applications,599

which may cause unemployment for people with600

related occupations, such as speech engineers and601

radio hosts. In addition, there is the potential for602

harm from non-consensual voice generation or fake603

media. The voices of the speakers in the recordings604

might be overused than they expect.605
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A Data825

In this section, we describe details of the data usage826

in training and evaluating VoiceTuner.827

• For self-supervised pre-training, Librilight (Kahn828

et al., 2020) contains 60K hours of unlabeled829

speech from audiobooks in English, and Wenet-830

Speech (Zhang et al., 2022a) include 100K hours831

of speech in mandarin.832

• For zero-shot text-to-speech, LibriTTS (Zen833

et al., 2019) dataset is included.834

• For instruction text-to-speech, we use the dataset835

PromptSpeech (Guo et al., 2023).836

• For singing voice synthesis, We use the female-837

singer OpenCPOP (Wang et al., 2022), multi-838

singer dataset OpenSinger (Huang et al., 2021),839

and M4Singer (Zhang et al., 2022b) as the840

singing voice data.841

B Model Configurations842

We list the model hyper-parameters of VoiceTuner843

in Table 6.844

C Unit-based Vocoder845

Conv1D Layer

AMP

Transposed
Conv1D

Embedding Layer

Acoustic Tokens

Conv1D

×N

Tanh
Conv1D
Snake1d

Source Module

F0 Prompt

Harmonic Source

AMP

Transposed
Conv1D

Conv1D Layer
×N

×N

Figure 6: Overview of the unit-based vocoder. The F0
auxiliary input denoted with dotted lines is included
only in singing voice synthesis.

The generator of the unit-based vocoder is built846

from a set of look-up tables (LUT) that embed847

the discrete representation, and a series of blocks 848

composed of transposed convolution and a residual 849

block with dilated layers. We train the enhanced 850

vocoder with the weighted sum of the least-square 851

adversarial loss, the feature matching loss, and the 852

spectral regression loss on mel-spectrogram, where 853

the training objective formulation and hyperparam- 854

eters follow Kong et al. (2020); Lee et al. (2022). 855

For speech generation, we train the vocoder 856

with only the discrete unit sequences as input. 857

For singing voice generation, we further include 858

F0-driven source excitation to stabilize long- 859

continuous waveforms generation following (Liu 860

et al., 2022; Huang et al., 2022b). 861

D Evaluation 862

D.1 Subjective Evaluation 863

For audio quality evaluation, we conduct the MOS 864

(mean opinion score) tests and explicitly instruct 865

the raters to “(focus on examining the audio qual- 866

ity and naturalness, and ignore the differences of 867

style (timbre, emotion, and prosody).)". The testers 868

present and rate the samples, and each tester is 869

asked to evaluate the subjective naturalness on a 870

1-5 Likert scale. 871

For style similarity evaluation, we explicitly in- 872

struct the raters to “(focus on the similarity of the 873

style (timbre, emotion, and prosody) to the refer- 874

ence, and ignore the differences of content, gram- 875

mar, or audio quality.)". In the SMOS (similarity 876

mean opinion score) tests, we paired each synthe- 877

sized utterance with a ground truth utterance to 878

evaluate how well the synthesized speech matches 879

that of the target speaker. Each pair is rated by one 880

rater. 881

Our subjective evaluation tests are crowd- 882

sourced and conducted by 20 native speakers via 883

Amazon Mechanical Turk. The screenshots of in- 884

structions for testers have been shown in Figure 7. 885

We paid $8 to participants hourly and totally spent 886

about $600 on participant compensation. A small 887

subset of speech samples used in the test is avail- 888

able at https://VoiceTuner.github.io/. 889

E Reproducibility Statement 890

We will release our code in the future. The Voice- 891

Tuner model that we build upon is publicly avail- 892

able through the fairseq code repository (Ott et al., 893

2019). To aid reproducibility, we have included a 894

schematic overview of hyperparameters in Table 6. 895
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Hyperparameter VoiceTuner/VoiceTuner-Mamba

VoiceTuner: Transformer

Global Base

Transformer Layer 16
Transformer Embed Dim 768

Transformer Attention Headers 12
Number of Parameters 114 M

Global Medium

Transformer Layer 20
Transformer Embed Dim 1152

Transformer Attention Headers 16
Number of Parameters 320 M

Global Large

Transformer Layer 24
Transformer Embed Dim 1536

Transformer Attention Headers 32
Number of Parameters 830 M

Local

Transformer Layer 6
Transformer Embed Dim Same as global

Transformer Attention Headers 8
Number of Parameters 46/101/303 M

VoiceTuner-Mamba: State Space Model

Global Base

State space Layer 24
State space Embed Dim 768
Number of Parameters 91 M

Global Medium

State space Layer 32
State space Embed Dim 1152
Number of Parameters 281 M

Global Large

State space Layer 48
State space Embed Dim 1536
Number of Parameters 792 M

Local

State space Layer 12/12/16
State space Embed Dim Same as global
Number of Parameters 63/139/245 M

BigVGAN Vocoder

BigVGAN Vocoder

Upsample Rates [5, 4, 2, 2, 2, 2]
Hop Size 320

Upsample Kernel Sizes [9, 8, 4, 4, 4, 4]
Number of Parameters 121.6M

Table 6: Hyperparameters of VoiceTuner.
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(a) Screenshot of MOS testing.

(b) Screenshot of SMOS testing.

Figure 7: Screenshots of subjective evaluations.
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