
Under review as a conference paper at ICLR 2021

DEFECTIVE CONVOLUTIONAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Robustness of convolutional neural networks (CNNs) has gained in importance on
account of adversarial examples, i.e., inputs added as well-designed perturbations
that are imperceptible to humans but can cause the model to predict incorrectly.
Recent research suggests that the noise in adversarial examples breaks the textural
structure, which eventually leads to wrong predictions. To mitigate the threat of
such adversarial attacks, we propose defective convolutional networks that make
predictions rely less on textural information but more on shape information by
properly integrating defective convolutional layers into standard CNNs. The de-
fective convolutional layers contain defective neurons whose activations are set to
be a constant function. As defective neurons contain no information and are far
different from standard neurons in its spatial neighborhood, the textural features
cannot be accurately extracted, and so the model has to seek other features for clas-
sification, such as the shape. We show extensive evidence to justify our proposal
and demonstrate that defective CNNs can defend against black-box attacks bet-
ter than standard CNNs. In particular, they achieve state-of-the-art performance
against transfer-based attacks without any adversarial training being applied.

1 INTRODUCTION

Deep learning (LeCun et al., 1998; 2015), especially deep Convolutional Neural Network
(CNN) (Krizhevsky et al., 2012), has led to state-of-the-art results spanning many machine learning
fields (Girshick, 2015; Chen et al., 2018; Luo et al., 2020). Despite the great success in numerous ap-
plications, recent studies show that deep CNNs are vulnerable to some well-designed input samples
named as Adversarial Examples (Szegedy et al., 2013; Biggio et al., 2013). Take the task of image
classification as an example, for almost every commonly used well-performed CNN, attackers are
able to construct a small perturbation on an input image, which is almost imperceptible to humans
but can make the model give a wrong prediction. The problem is serious as some well-designed ad-
versarial examples can be transferred among different kinds of CNN architectures (Papernot et al.,
2016b). As a result, a machine learning system can be easily attacked even if the attacker does not
have access to the model parameters, which seriously affect its use in practical applications.

There is a rapidly growing body of work on how to obtain a robust CNN, mainly based on adversarial
training (Szegedy et al., 2013; Goodfellow et al., 2015; Madry et al., 2017; Buckman et al., 2018;
Mao et al., 2019). However, those methods need lots of extra computation to obtain adversarial
examples at each time step and tend to overfit the attacking method used in training (Buckman et al.,
2018). In this paper, we tackle the problem in a perspective different from most existing methods.
In particular, we explore the possibility of designing new CNN architectures which can be trained
using standard optimization methods on standard benchmark datasets and can enjoy robustness by
themselves, without appealing to other techniques. Recent studies (Geirhos et al., 2017; 2018; Baker
et al., 2018; Brendel & Bethge, 2019) show that the predictions of standard CNNs mainly depend
on the texture of objects. However, the textural information has a high degree of redundancy and
may be easily injected with adversarial noise (Yang et al., 2019; Hosseini et al., 2019). Also,
Cao et al. (2020); Das et al. (2020) finds adversarial attack methods may perturb local patches to
contain textural features of incorrect classes. All the literature suggests that the wrong prediction
by CNNs for adversarial examples mainly comes from the change in the textural information. The
small perturbation of adversarial examples will change the textures and eventually affect the features
extracted by the CNNs. Therefore, a natural way to avoid adversarial examples is to let the CNN
make predictions relying less on textures but more on other information, such as the shape, which
cannot be severely distorted by small perturbations.

1

Under review as a conference paper at ICLR 2021

In practice, sometimes a camera might have mechanical failures which cause the output image to
have many defective pixels (such pixels are always black in all images). Nonetheless, humans can
still recognize objects in the image with defective pixels since we are able to classify the objects
even in the absence of local textural information. Motivated by this, we introduce the concept of
defectiveness into the convolutional neural networks: we call a neuron a defective neuron if its out-
put value is fixed to zero no matter what input signal is received; similary, a convolutional layer
is a defective convolutional layer if it contains defective neurons. Before training, we replace the
standard convolutional layers with the defective version on a standard CNN and train the network in
the standard way. As defective neurons of the defective convolutional layer contain no information
and are very different from their spatial neighbors, the textural information cannot be accurately
extracted from the bottom defective layers to top layers. Therefore, we destroy local textural in-
formation to a certain extent and prompt the neural network to rely more on other information for
classification. We call the architecture deployed with defective convolutional layers as defective
convolutional network.

We find that applying the defective convolutional layers to the bottom1 layers of the network and
introducing various patterns for defective neurons arrangement across channels are critical. In sum-
mary, our main contributions are:

• We propose Defective CNNs and four empirical evidences to justify that, compared to
standard CNNs, the defective ones rely less on textures and more on shapes of the inputs
for making predictions.

• Experiments show that Defective CNNs has superior defense performance than standard
CNNs against transfer-based attacks, decision-based attacks, and additive Gaussian noise.

• Using the standard training method, Defective CNN achieves state-of-the-art results against
two transfer-based black-box attacks while maintaining high accuracy on clean test data.

• Through proper implementation, Defective CNNs can save a lot of computation and storage
costs; thus may lead to a practical solution in the real world.

2 RELATED WORK

Various methods have been proposed to defend against adversarial examples. One line of re-
search is to derive a meaningful optimization objective and optimize the model by adversarial train-
ing (Szegedy et al., 2013; Goodfellow et al., 2015; Huang et al., 2015; Madry et al., 2017; Buckman
et al., 2018; Mao et al., 2019). The high-level idea of these works is that if we can predict the poten-
tial attack to the model during optimization, then we can give the attacked sample a correct signal
and use it during training. Another line of research is to take an adjustment to the input image before
letting it go through the deep neural network (Liao et al., 2017; Song et al., 2017; Samangouei et al.,
2018; Sun et al., 2018; Xie et al., 2019; Yuan & He, 2020). The basic intuition behind this is that if
we can clean the adversarial attack to a certain extent, then such attacks can be defended. Although
these methods achieve some success, a major difficulty is that it needs a large extra cost to collect
adversarial examples and hard to apply on large-scale datasets.

Several studies (Geirhos et al., 2017; 2018; Baker et al., 2018; Brendel & Bethge, 2019) show that
the prediction of CNNs is mainly from the texture of objects but not the shape. Also, Cao et al.
(2020); Das et al. (2020) found that adversarial examples usually perturb a patch of the original
image to contain the textural feature of incorrect classes. For example, the adversarial example
of the panda image is misclassified as a monkey because a patch of the panda skin is perturbed
adversarially so that it alone looks like the face of a monkey (see Figure 11 in (Cao et al., 2020)).
All previous works above suggest that the CNN learns textural information more than shape and the
adversarial attack might come from textural-level perturbations. This is also correlated with robust
features (Tsipras et al., 2018; Ilyas et al., 2019; Hosseini et al., 2019; Yang et al., 2019) which has
attracted more interest recently. Pixels which encode textural information contain high redundancy
and may be easily deteriorated to the distribution of incorrect classes. However, shape information
is more compact and thus may serve as a more robust feature for predicting.

1In this paper, bottom layer means the layer close to the input and top layer means the layer close to the
output prediction.

2

Under review as a conference paper at ICLR 2021

3 DEFECTIVE CONVOLUTIONAL NEURAL NETWORK

3.1 DESIGN OF DEFECTIVE CONVOLUTIONAL LAYERS

In this subsection, we introduce our proposed defective convolutional neural networks and discuss
the differences between the proposed method and related topics.

First, we briefly introduce the notations. For one convolutional layer, denote x as the input and z
as the output of neurons in the layer. Note that x may be the input image or the output of the last
convolutional layer. The input x is usually aM×N×K tensor in whichM/N are the height/width
of a feature map, and K is the number of feature maps, or equivalently, channels. Denote w and
b as the parameters (e.g., the weights and biases) of the convolutional kernel. Then a standard
convolutional layer can be mathematically defined as below.

Standard convolutional layer:

x′ = w ∗ x+ b, (1)
z = f(x′), (2)

where f(·) is a non-linear activation function such as ReLU2 and ∗ is the convolutional operation.
The convolutional filter receives signals in a patch and extracts local textural information from the
patch. As mentioned in the introduction, recent works suggest that the prediction of standard CNNs
strongly depends on such textural information, and noises imposed on the texture may lead to wrong
predictions. Therefore, we hope to learn a feature extractor which does not solely rely on textural
features and also considers other information. To achieve this goal, we introduce the defective
convolutional layer in which some neurons are purposely designed to be corrupted. Define Mdefect
to be a binary matrix of size M ×N ×K. Our defective convolutional layer is defined as follows.

Defective convolutional layer:

x′ = w ∗ x+ b, (3)
z′ = f(x′) (4)
z = Mdefect ◦ z′, (5)

where ◦ denotes element-wise product. Mdefect is a fixed matrix and is not learnable during train-
ing and testing. We can see that Mdefect plays a role of “masking” out values of some neurons in
the layer. This disturbs the distribution of local textural information and decouples the correlation
among neurons. With the masked output z as input, the feature extractor of the next convolutional
layer cannot accurately capture the local textural feature from x. As a consequence, the textural
information is hard to pass through the defective CNN from bottom to top. To produce accurate
predictions, the deep neural network has to find relevant signals other than the texture, e.g., the
shape. Those corrupted neurons have no severe impact on the extraction of shape information since
neighbors of those neurons in the same filter are still capable of passing the shape information to the
next layer.

In this paper, we find that simply setting Mdefect by random initialization is already helpful for learn-
ing a robust CNN. Before training, we sample each entry in Mdefect using Bernoulli distribution with
keep probability p and then fix Mdefect during training and testing. More discussions and ablation
studies are provided in Section 4.

As can be seen from Equation (3)-(5), the implementation of our defective convolutional layer is
similar to the dropout operation (Srivastava et al., 2014). To demonstrate the relationship and differ-
ences, we mathematically define the dropout as below.

Standard convolutional layer + dropout:

Mdropout ∼ Bernoulli(p) (6)
x′ = w ∗ x+ b (7)
z′ = f(x′) (8)
z = Mdropout ◦ z′. (9)

2Batch normalization is popularly used on x′ before computing z. Here we simply omit this.

3

Under review as a conference paper at ICLR 2021

The shape of Mdropout is the same as Mdefect, and the value of each entry in Mdropout is sampled in
each batch using some sampling strategies at each step during training. Generally, entries inMdropout
are independent and identically sampled in an online fashion using Bernoulli distribution with keep
probability p.

There are several significant differences between dropout and defective convolutional layer. First,
the binary matrix Mdropout is sampled online during training and is removed during testing, while
the binary matrix Mdefect in defective convolutional layers is predefined and keeps fixed in both
training and testing. The predefined way can help Defective CNNs save a lot of computation and
storage costs. Second, the motivations behind the two methods are quite different and may lead to
differences in the places to applying methods, the values of the keep probability p, and the shape of
the masked unit. Dropout tries to reduce overfitting by preventing co-adaptations on training data.
When comes to CNNs, those methods are applied to top layers, p is set to be large (e.g., 0.9), and
the masked units are chosen to be a whole channel in Tompson et al. (2015) and a connected block
in Ghiasi et al. (2018). However, our method tries to prevent the model extract textural information
of inputs for making predictions. We would apply the method to bottom layers, use a small p
(e.g. 0.1), and the masked unit is a single neuron. Also, in our experiments, we will show that the
proposed method can improve the robustness of CNNs against transfer-based attacks and decision-
based attacks, while the dropout methods cannot.

3.2 DEFECTIVE CNNS RELY LESS ON TEXTURE BUT MORE ON SHAPE FOR PREDICTING

In this subsection, we provide extensive analysis to show Defective CNNs that, compared to the
standard CNNs, rely less on textures and more on shapes of the inputs for making predictions.

original image 2× 2 patches 4× 4 patches 8× 8 patches

Figure 1: An example image that is randomly shuffled after being divided into 2×2, 4×4 and 8×8
patches respectively.

First, we design a particular image manipulation in which the local texture of the object in an image
is preserved while the shape is destroyed. Particularly, we divide an image into k × k patches and
randomly relocate those patches to form a new image. An example is shown in Figure 1. A model
that more focuses on the shape cues should achieve lower performance on such images while it is
trained on the normal dataset. We manipulate a set of images and test whether a defective CNN and a
standard CNN can make correct predictions. The experimental details are described as follows. We
first construct a defective CNN by applying defective convolutional layers to the bottom layers of a
standard ResNet-18, and train the defective CNN along with a standard ResNet-18 on the ImageNet
dataset. Then, we sample images from the validation set which are predicted correctly by both of the
CNNs. We make manipulations to the sampled images by setting k ∈ {2, 4, 8}, feed these images
to the networks and check their classification accuracy. The results in Table 1, 13 show that when
the shape information is destroyed but the local textural information is preserved, Defective CNNs
perform consistently worse than standard CNNs, thus verifying out intuition.

Model 2× 2 4× 4 8× 8 IN→ SIN

Standard CNN 99.53% 84.36% 20.08% 15.33%
Defective CNN 96.32% 56.91% 9.04% 20.20%

Table 1: Left three columns are the accuracy of classifying randomly shuffled images. The rightmost
column is the accuracy of training on ImageNet and testing on Stylized-ImageNet. The phenomena
are similar for different architectures and can be found in Appendix A.8.

4

Under review as a conference paper at ICLR 2021

Figure 2: The leftmost is an image in the ImageNet, the right three are the corresponding images in
the Stylized-ImageNet.

Second, we test on the Stylized-ImageNet (Geirhos et al., 2018), a stylized version of ImageNet,
where the local textures of images are changed, while global object shapes remain (See examples
in Figure 2). A model that more focuses on the shape cues should achieve higher performance on
the Stylized-ImageNet while it is trained on the ImageNet. We test on the same model used in the
randomly shuffled experiments by feeding the images from the validation set of Stylized-ImageNet
whose corresponding images in ImageNet can be correctly classified by both two tested models. The
result in Table 1, 13 show that Defective CNNs achieves consistently higher transferring accuracy
than standard CNNs, thus verifying our argument.

D
ef

ec
tiv

e
C

N
N

s

Bird Dog Frog Ship Mushroom Ladybug

O
ri

gi
na

lI
m

ag
es

Ship Airplane Truck Automobile Goldfish Fly

St
an

da
rd

C
N

N
s

Plane Dog Frog Truck Mushroom Drumstick

Figure 3: First row: the adversarial examples and the labels predicted by Defective CNNs. Second
row: the original images and the ground truth labels. Third row: the adversarial examples and
the labels predicted by standard CNNs. Attack method is MIFGSM (Dong et al., 2017) and the
perturbation scales are `∞ ∈ {16/255, 32/255}. More details can be found in Appendix B.

From another perspective, if a model makes predictions relying more on shape information, the
manipulation of the shape of objects will play a larger role in generating adversarial examples. To
verify this, we train defective and standard CNNs on CIFAR-10 and Tiny-ImageNet, and then attack
on the validation set. Figure 3 shows some examples. We can see that adversarial examples against
the defective CNNs change the shape of the objects and may even fool humans as well. Compare
with the adversarial examples of Figure 9 in Qin et al. (2020), our adversarial examples exhibit more
salient characteristics of the adversarial classes. Also, we conduct a user study in Appendix B to
show that the adversarial examples generated by Defective CNNs, compared to the standard ones, are
more perceptually like the adversarial classes. The phenomenon not only supports our intuition, but
also is consistent with the findings in Tsipras et al. (2018); Qin et al. (2020) that the representations
learned by robust models tend to align better with human perception.

Furthermore, perturbations generated by standard CNNs and additive Gaussian noises usually would
not affect the shape information (Szegedy et al., 2013; Ford et al., 2019). A model is supposed to
recognize those adversarial examples better if it relies much on shape information for predictions.
In Section 4, we show that defective CNNs achieve higher defense performance than standard CNN
against the two types of attack.

5

Under review as a conference paper at ICLR 2021

4 EXPERIMENTS

In real-world tasks, attackers usually cannot access the parameters of the target models and thus need
to transfer adversarial examples generated by their models. This setting of attack is referred to as
transfer-based attacks (Liu et al., 2016; Kurakin et al., 2016). Sometimes, attackers can get the final
model decision and raise the more powerful decision-based attacks (Brendel et al., 2017). Both the
two types of black-box attack are available in most real-world scenarios and should be considered.
Recently, Ford et al. (2019) bridge the adversarial robustness and corruption robustness (Hendrycks
& Dietterich, 2018), and points out that a successful adversarial defend method should also effec-
tively defend against additive Gaussian noise. Therefore, to meet the requirements for practical
systems, we examine the performance of models against transfer-based attacks, decision-based at-
tacks, and additive Gaussian noise.

In the following sections, we evaluate the robustness of defective CNNs with different architectures
and compare with state-of-the-art defense methods against transfer-based attacks, and then make
ablation studies on possible design choices of defective CNN. Due to space limitation, we list the
experiments of decision-based attacks, additive Gaussian noise, gray-box attacks, white-box attacks,
and more results of transfer-based attacks in Appendix A.

Note that, in this paper, all the successful defense rates except the rates listed in Table 2, 3 are
calculated on the samples whose corresponding original images can be classified correctly by the
tested model. This can erase the influence of test accuracy that different models have different test
accuracy on clean data, and thus help evaluate the robustness of models.

4.1 TRANSFER-BASED ATTACK

4.1.1 EXPERIMENTAL SETTINGS

We evaluate the defense performance of Defective CNNs against transfer-based attacks and com-
pare with state-of-the-art defense methods on CIFAR-10 and Tiny-ImageNet. For CIFAR-10, we
follow the setting used in Madry et al. (2017), and use a standard ResNet-18 to generate adversar-
ial examples by FGSM (Goodfellow et al., 2015) and PGD (Kurakin et al., 2016). The two attack
methods both have perturbation scale `∞ = 8/255 and PGD runs for 7 gradient descent steps with
step size 2/255. For Tiny-ImageNet, we follow the setting used in Mao et al. (2019) and use a stan-
dard ResNet-50 to generate adversarial examples by PGD with `∞ = 8/255, steps 20, and step size
2/255. We would compare with two types of defense methods including the variants of adversarial
training (Madry et al., 2017; Kannan et al., 2018; Mao et al., 2019) and approaches that try to erase
the adversarial noise of inputs (Wang & Yu, 2019; Addepalli et al., 2020; Yuan & He, 2020). To val-
idate the difference between the proposed method and dropout methods, we also compare with two
CNN variants SpatialDropout (Tompson et al., 2015) and DropBlock (Ghiasi et al., 2018). For both
methods, we follow the instruction from Ghiasi et al. (2018) to apply dropout to the {3rd, 4th} block
with keep probability p = 0.9. The block of DropBlock is set to be a 3× 3 square. For our method,
we use the corresponding network structure but applying defective convolutional layers to the bot-
tom layers (see illustrations in Appendix C). We use keep probability p = 0.1 and train the model
with the standard optimization method. Training details and curves can be found in Appendix D.

Second, we test our proposed method in different architectures on the CIFAR-10 dataset. We apply
defective convolutional layers, in a way which is similar to the experiment above, to five popular
network architectures: ResNet-18 (He et al., 2016), ResNet-50, DenseNet-121 (Huang et al., 2017),
SENet-18 (Hu et al., 2017b) and VGG-19 (Simonyan & Zisserman, 2014). For each architecture,
we replace the standard convolutional layer with the defective version on the bottom layers (see
illustrations in Appendix C). We then test the black-box defense performance against transfer-based
attacks on 5000 samples from the validation set. Adversarial examples are generated by PGD, which
runs for 20 steps with step size 1 and the `∞ perturbation scale is set to 16/255. Results on MNIST
can be found in Appendix A.

4.1.2 EXPERIMENTAL RESULTS

Table 2, 3 show the results on CIFAR-10 and Tiny-ImageNet, respectively. We can see the proposed
method outperforms all the adversarial training variants which need extra training costs and most of
the cleaning inputs methods. Although Yuan & He (2020) is competitive with the proposed method

6

Under review as a conference paper at ICLR 2021

in CIFAR-10, it need to collect adversarial examples and run inner loops, thus largely increase times-
tamps. Also, we can conclude that spatial dropout and drop block do not improve the robustness
of standard CNNs. The results show the strengths of our proposed method on both robustness and
generalization, even though our model is only trained on clean data. Also, it is interesting that the
CNNs can maintain such clean accuracy even 90% neurons in bottom layers are dropped.

Method FGSM PGD Clean Acc
Standard CNN 55.92% 15.96% 95.03%

Standard CNN + SD (Tompson et al., 2015) 52.11% 12.98% 95.44%
Standard CNN + DB (Ghiasi et al., 2018) 56.27% 14.69% 95.38%

BPFC (Addepalli et al., 2020) 75.52% 77.07% 82.30%
Adv. Training (Madry et al., 2017) 77.10% 78.10% 87.14%

TLA (Mao et al., 2019) - 83.20% 86.21%
Adv. Network (Wang & Yu, 2019) 77.23% 74.04% 91.32%

EGC-FL (Yuan & He, 2020) 79.09% 82.78% 91.65%
Defective CNN 77.93% 84.60% 91.44%

Table 2: Defense performance on CIFAR-10.

Method PGD Clean Acc
Standard CNN 9.99% 60.64%

Standard CNN + SD (Tompson et al., 2015) 8.43% 61.82%
Standard CNN + DB (Ghiasi et al., 2018) 9.15% 61.37%

Adv. Training (Madry et al., 2017) 27.73% 44.77%
ALP (Kannan et al., 2018) 30.31% 41.53%

TLA (Mao et al., 2019) 29.98% 40.89%
Defective CNN 32.32% 55.74%

Table 3: Defense performance on Tiny-
ImageNet.

Second, we list the black-box defense results of applying defective convolutional layers to various
architectures in Table 4. The results show that defective convolutional layers consistently improve
the robustness of various network architectures against transfer-based attacks. We can also see that
the trend of robustness increases as the keep probability becomes smaller.

Architecture ResNet-18 ResNet-50 DenseNet-121 SENet-18 VGG-19 Test Accuracy
ResNet-18 5.98% 0.94% 14.14% 3.32% 26.97% 95.33%
0.5-Bottom 53.89% 33.05% 70.38% 57.52% 58.66% 93.39%
0.3-Bottom 78.23% 67.64% 86.99% 82.46% 77.57% 91.83%
ResNet-50 16.61% 0.22% 14.60% 12.26% 42.38% 95.25%
0.5-Bottom 51.55% 17.61% 62.69% 53.82% 62.73% 94.43%
0.3-Bottom 71.63% 48.03% 80.94% 75.91% 75.72% 93.46%

DenseNet-121 14.53% 0.60% 2.98% 7.79% 31.57% 95.53%
0.5-Bottom 35.07% 8.01% 34.21% 30.86% 45.28% 94.34%
0.3-Bottom 58.19% 33.86% 62.32% 59.74% 62.09% 92.82%
SENet-18 6.72% 0.90% 12.29% 2.23% 26.86% 95.09%

0.5-Bottom 52.95% 30.78% 66.81% 52.49% 57.45% 93.53%
0.3-Bottom 74.73% 59.42% 84.31% 78.72% 75.04% 92.54%

VGG-19 33.46% 14.16% 49.76% 29.98% 21.20% 93.93%
0.5-Bottom 72.27% 59.70% 83.50% 77.93% 66.75% 91.73%
0.3-Bottom 85.53% 79.20% 91.01% 88.51% 81.92% 90.11%

Table 4: Black-box defense performances on CIFAR-10. Networks in the first row are the source
models for generating adversarial examples by PGD. 0.5-Bottom and 0.3-Bottom mean applying
defective convolutional layers with keep probability 0.5 and 0.3 to the bottom layers of the network
whose name lies just above them. The source and target networks are initialized differently if they
share the same architecture. Numbers in the middle mean the success defense rates.

4.2 ABLATION STUDIES

There are several design choices of the defective CNN, which include the appropriate positions
to apply defective convolutional layers, the choice of the keep probabilities, the benefit of breaking
symmetry, as well as the diversity introduced by randomness. In this subsection, we conduct a series
of comparative experiments and use black-box defense performance against transfer-based attacks
as the evaluation criterion. In our experiments, we found that the performance is not sensitive to
the choices on the source model to attack and the target model to defense. Here, we only list the
performances using DenseNet-121 as the source model and ResNet-18 as the target model on the
CIFAR-10 dataset and leave more experimental results in Appendix A.10. The results are listed in
Table 5.

Defective Layers on Bottom layers vs. Top Layers, Keep Probabilities. We apply defective layers
with different keep probabilities to the bottom layers and the top layers of the standard CNNs (see
illustrations in Appendix C). Comparing the results of the models with the same keep probability
but different parts being masked, we find that applying defective layers to bottom layers enjoys
significantly higher success defense rates, while applying to the top layers cannot. This corroborates
the phenomena shown in literature (Zeiler & Fergus, 2014; Mordvintsev et al., 2015), where bottom

7

Under review as a conference paper at ICLR 2021

Architecture FGSM16 PGD16 PGD32 CW40 Test Accuracy
Standard CNN 14.91% 14.14% 7.16% 8.23% 95.33%

0.7-Bottom 23.29% 51.29% 37.00% 36.95% 94.03%
0.5-Bottom 30.86% 70.38% 56.36% 54.02% 93.39%
0.3-Bottom 48.57% 86.99% 78.41% 73.70% 91.83%

0.7-Top 14.62% 10.55% 4.91% 7.88% 95.16%
0.5-Top 10.76% 11.06% 5.10% 7.19% 94.94%
0.3-Top 11.23% 11.77% 5.80% 10.10% 94.61%

0.7-Bottom, 0.7-Top 24.15% 45.12% 30.24% 29.65% 94.16%
0.7-Bottom, 0.3-Top 11.26% 33.67% 20.28% 23.31% 93.44%
0.3-Bottom, 0.3-Top 27.43% 75.49% 62.78% 62.47% 89.78%
0.3-Bottom, 0.7-Top 40.58% 82.77% 72.15% 68.58% 91.23%

0.5-Bottom 30.86% 70.38% 56.36% 54.02% 93.39%
0.1-Bottom 79.93% 96.70% 94.68% 89.67% 87.68%

0.5-BottomDC 12.15% 19.93% 11.20% 12.72% 95.12%
0.1-BottomDC 19.00% 53.87% 41.40% 44.80% 93.27%
0.5-BottomSM 48.86% 85.00% 75.60% 72.07% 92.57%
0.1-BottomSM 39.40% 80.36% 72.43% 65.38% 74.28%

Table 5: Ablation experiments of defective CNNs. p-Bottom and p-Top mean applying defective
layers with keep probability p to bottom layers and top layers respectively. p-BottomDC means mak-
ing whole channels defective with keep probability p. p-BottomSM means using the same defective
mask in every channel with keep probability p. FGSM16, PGD16 and PGD32 denote attack method
FGSM with perturbation scale `∞ = 16/255, PGD with perturbation scale `∞ = 16/255 and
32/255 respectively. CW40 denotes CW attack method (Carlini & Wagner, 2016) with confidence
κ = 40. Numbers in the middle mean the success defense rates.

layers mainly contribute to detect the edges and shape, while the receptive fields of neurons in top
layers are too large to respond to the location sensitive information. Also, we find that the defense
accuracy monotonically increases as the test accuracy decreases along with the keep probability (See
the trend map in Appendix A.9). The appropriate value for the keep probability mainly depends on
the relative importance of generalization and robustness. Another practical way is to ensemble
Defective CNNs with different keep probabilities.

Defective Neuron vs. Defective Channel. As our method independently selects defective neurons
on different channels in a layer, we break the symmetry of the original CNN structure. To see
whether this asymmetric structure would help, we try to directly mask whole channels instead of
neurons using the same keep probability as the defective layer and train it to see the performance.
This defective channel method does not hurt the symmetry while also leading to the same decrease
in the number of convolutional operations. Table 5 shows that although our defective CNN suffers
a small drop in test accuracy due to the low keep probability, we have a great gain in the robustness,
compared with the defective-channel CNN.

Defective Masks are Shared Among Channels or Not. The randomness in generating masks in
different channels and layers allows each convolutional filter to focus on different input patterns.
Also, it naturally involves various topological structures for local feature extraction instead of the
expensive learning way (Dai et al., 2017; Chang et al., 2018; Zhu et al., 2019). We show the es-
sentiality of generating various masks per layer via experiments that compare to a method that only
randomly generates one mask per layer and uses it in every channel. Table 5 shows that applying
the same mask to each channel will decrease the test accuracy. This may result from the limitation
of expressivity due to the monotone masks at every channel of the defective layer.

5 CONCLUSION

In this paper, we introduce and experiment on defective CNNs, a modified version of existing CNNs
that makes CNNs capture more information other than local textures, especially the shape. We pro-
pose four empirical evidence to justify this and also show that Defective CNNs can achieve high
robustness against black-box attacks while maintaining high test accuracy. Another insight resulting
from our experiments is that the adversarial perturbations generated against defective CNNs can ac-
tually change the semantic information of images and may even “fool” humans. We hope that these
findings bring more understanding on adversarial examples and the robustness of neural networks.

8

Under review as a conference paper at ICLR 2021

REFERENCES

Sravanti Addepalli, Arya Baburaj, Gaurang Sriramanan, and R Venkatesh Babu. Towards achieving
adversarial robustness by enforcing feature consistency across bit planes. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1020–1029, 2020.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Nicholas Baker, Hongjing Lu, Gennady Erlikhman, and Philip J Kellman. Deep convolutional
networks do not classify based on global object shape. PLoS computational biology, 14(12):
e1006613, 2018.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint
European conference on machine learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models
works surprisingly well on imagenet. arXiv preprint arXiv:1904.00760, 2019.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable
attacks against black-box machine learning models. arXiv preprint arXiv:1712.04248, 2017.

Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding: One hot
way to resist adversarial examples. In International Conference on Learning Representations,
2018.

Kelei Cao, Mengchen Liu, Hang Su, Jing Wu, Jun Zhu, and Shixia Liu. Analyzing the noise ro-
bustness of deep neural networks. IEEE Transactions on Visualization and Computer Graphics,
2020.

Nicholas Carlini and David A. Wagner. Towards evaluating the robustness of neural networks.
CoRR, abs/1608.04644, 2016. URL http://arxiv.org/abs/1608.04644.

Jianlong Chang, Jie Gu, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
Structure-aware convolutional neural networks. In Advances in Neural Information Processing
Systems, pp. 11–20, 2018.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-
decoder with atrous separable convolution for semantic image segmentation. arXiv preprint
arXiv:1802.02611, 2018.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 764–773, 2017.

Nilaksh Das, Haekyu Park, Zijie J Wang, Fred Hohman, Robert Firstman, Emily Rogers, Duen
Horng, et al. Bluff: Interactively deciphering adversarial attacks on deep neural networks. arXiv
preprint arXiv:2009.02608, 2020.

Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Xiaolin Hu, Jianguo Li, and Jun Zhu. Boost-
ing adversarial attacks with momentum. arXiv preprint arXiv:1710.06081, 2017.

Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. arXiv preprint arXiv:1901.10513, 2019.

Robert Geirhos, David HJ Janssen, Heiko H Schütt, Jonas Rauber, Matthias Bethge, and Felix A
Wichmann. Comparing deep neural networks against humans: object recognition when the signal
gets weaker. arXiv preprint arXiv:1706.06969, 2017.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann, and
Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape bias im-
proves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018.

9

http://arxiv.org/abs/1608.04644

Under review as a conference paper at ICLR 2021

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convo-
lutional networks. In Advances in Neural Information Processing Systems, pp. 10750–10760,
2018.

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision,
pp. 1440–1448, 2015.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015. URL http://
arxiv.org/abs/1412.6572.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Thomas G Dietterich. Benchmarking neural network robustness to common
corruptions and surface variations. arXiv preprint arXiv:1807.01697, 2018.

Hossein Hosseini, Sreeram Kannan, and Radha Poovendran. Dropping pixels for adversarial robust-
ness. arXiv preprint arXiv:1905.00180, 2019.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. CoRR, abs/1709.01507, 2017a.
URL http://arxiv.org/abs/1709.01507.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. arXiv preprint arXiv:1709.01507,
7, 2017b.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Ruitong Huang, Bing Xu, Dale Schuurmans, and Csaba Szepesvári. Learning with a strong adver-
sary. arXiv preprint arXiv:1511.03034, 2015.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. arXiv preprint arXiv:1905.02175,
2019.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing. arXiv preprint
arXiv:1803.06373, 2018.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv
preprint arXiv:1611.01236, 2016.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Jun Zhu, and Xiaolin Hu. De-
fense against adversarial attacks using high-level representation guided denoiser. arXiv preprint
arXiv:1712.02976, 2017.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial exam-
ples and black-box attacks. arXiv preprint arXiv:1611.02770, 2016.

Tiange Luo, Kaichun Mo, Zhiao Huang, Jiarui Xu, Siyu Hu, Liwei Wang, and Hao Su. Learning
to group: A bottom-up framework for 3d part discovery in unseen categories. arXiv preprint
arXiv:2002.06478, 2020.

10

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1709.01507

Under review as a conference paper at ICLR 2021

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Chengzhi Mao, Ziyuan Zhong, Junfeng Yang, Carl Vondrick, and Baishakhi Ray. Metric learning
for adversarial robustness. In Advances in Neural Information Processing Systems, pp. 480–491,
2019.

Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into neural
networks, 2015. URL https://research. googleblog. com/2015/06/inceptionism-going-deeper-into-
neural. html, 2015.

Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the science of
security and privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016a.

Nicolas Papernot, Patrick D. McDaniel, and Ian J. Goodfellow. Transferability in machine learning:
from phenomena to black-box attacks using adversarial samples. CoRR, abs/1605.07277, 2016b.
URL http://arxiv.org/abs/1605.07277.

Yao Qin, Nicholas Frosst, Colin Raffel, Garrison Cottrell, and Geoffrey Hinton. Deflecting adver-
sarial attacks. arXiv preprint arXiv:2002.07405, 2020.

Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python toolbox to benchmark the
robustness of machine learning models. arXiv preprint arXiv:1707.04131, 2017. URL http:
//arxiv.org/abs/1707.04131.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. arXiv preprint arXiv:1805.06605, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples. arXiv
preprint arXiv:1710.10766, 2017.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Bo Sun, Nian-hsuan Tsai, Fangchen Liu, Ronald Yu, and Hao Su. Adversarial defense by stratified
convolutional sparse coding. arXiv preprint arXiv:1812.00037, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-
ing the inception architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2818–2826, 2016.

Jonathan Tompson, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. Efficient object
localization using convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 648–656, 2015.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. stat, 1050:11, 2018.

Huaxia Wang and Chun-Nam Yu. A direct approach to robust deep learning using adversar-
ial networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=S1lIMn05F7.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L. Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

11

http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1707.04131
https://openreview.net/forum?id=S1lIMn05F7
https://openreview.net/forum?id=S1lIMn05F7

Under review as a conference paper at ICLR 2021

Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial robustness
with matrix estimation. arXiv preprint arXiv:1905.11971, 2019.

Jianhe Yuan and Zhihai He. Ensemble generative cleaning with feedback loops for defending ad-
versarial attacks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 581–590, 2020.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Xizhou Zhu, Han Hu, Stephen Lin, and Jifeng Dai. Deformable convnets v2: More deformable, bet-
ter results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 9308–9316, 2019.

12

Under review as a conference paper at ICLR 2021

DEFECTIVE CONVOLUTIONAL NETWORKS APPENDIX

TABLE OF CONTENTS

• Appendix A: More Experimental Results
– Decision-based Attack
– Additive Gaussian Noise
– Transfer-based Attack on Wide-ResNet
– Transfer-based Attack from Ensemble Models on CIFAR-10
– Transfer-based Attack on MNIST
– Gray-box Attack
– White-box Attack
– Randomly Shuffled Images and Stylized-ImageNet
– Different Keep Probabilities
– Experimental Details for Section 4.3

• Appendix B: Adversarial Examples Generated by Defective CNNs
• Appendix C: Architecture Illustrations
• Appendix D: Training Details on CIFAR-10 and MNIST
• Appendix E: Attack approaches

13

Under review as a conference paper at ICLR 2021

A MORE EXPERIMENTAL RESULTS

A.1 DECISION-BASED ATTACK

A.1.1 EXPERIMENTAL SETTINGS

In this subsection, we evaluate the defense performance of networks with defective convolutional
layers against the decision-based attack. Decision-based attack performs based on the prediction
of the model. It needs less information from the model and has the potential to perform better
against adversarial defenses based on gradient masking. Boundary attack (Brendel et al., 2017) is
one effective decision-based attack. The attack will start from a point that is already adversarial by
applying a large scale perturbation to the original image and keep decreasing the distance between
the original image and the adversarial example by random walks. After iterations, we will get the
final perturbation, which has a relatively small scale. The more robust the model is, the larger the
final perturbation will be.

In our experiments, we use the implementation of boundary attack in Foolbox (Rauber et al., 2017).
It finds the adversarial initialization by simply adding large scale uniform noise on input images. We
perform our method on ResNet-18 and test the performance on CIFAR-10 with 500 samples from
the validation set. The 5-block structure of ResNet-18 is shown in Appendix Figure 2. The blocks
are labeled 0, 1, 2, 3, 4 and the 0th block is the first convolution layer. We apply the defective layer
structure with keep probability p = 0.1 to the bottom blocks (the 0th, 1st, 2nd blocks). For compari-
son, we implement label smoothing (Szegedy et al., 2016) with smoothing parameter ε = 0.1 on a
standard ResNet-18, and spatial dropout and drop block with the setting same as Section 4.1.1.

A.1.2 EXPERIMENTAL RESULTS

We use the median squared to evaluate the performance, which is defined as `2-distance of final
perturbation across all samples proposed in (Brendel et al., 2017). The score S(M) is defined as
Mediani

(
1
N ‖P

M
i ‖22

)
, where PMi ∈ RN is the final perturbation that the Boundary attack finds on

model M for the ith image. Before computing PMi , the images are normalized into [0, 1]N .

Model S(M)

Standard CNN 7.3e-06
Standard CNN + SD (Tompson et al., 2015) 7.2e-06
Standard CNN + DB (Ghiasi et al., 2018) 6.1e-06

Standard CNN + LS (Szegedy et al., 2016) 6.8e-06
Defective CNN 3.5e-05

Table 6: Black-box defense performances against decision-based attack. S(M) is defined above.
The larger value S(M) has, the more robust the model is. SD, DB, and LS denote spatial dropout,
drop block, and label smoothing, respectively. Detailed settings are listed in Section A.1.

From the results in Table 6, we point out that spatial dropout and drop block can not enhance the
robustness against the boundary attack. Neither does the label smoothing technique. This is con-
sistent with the discovery in Section 4.1.1, and in Papernot et al. (2016a) where they point out that
label smoothing is a kind of gradient masking method. Also, the defective CNN achieves higher
performance over the standard CNN.

A.2 ADDITIVE GAUSSIAN NOISE

A.2.1 EXPERIMENTAL SETTINGS

In this subsection, we evaluate the defense performance of networks with defective convolutional
layers against additive Gaussian noise. Recently, Ford et al. (2019) bridge the adversarial robust-
ness and corruption robustness, and points out that a successful adversarial defense method should
also effectively defend against additive Gaussian noise. Also the Gaussian noises usually do not
change the shape of objects, our models should have better defense performance. To see whether
our structure is more robust in this setting, we feed input images with additive Gaussian noises to
both standard and defective CNNs.

14

Under review as a conference paper at ICLR 2021

To obtain noise of scales similar to the adversarial perturbations, we generate i.i.d. Gaussian ran-
dom variables x ∼ N(0, σ2), where σ ∈ {1, 2, 4, 8, 12, 16, 20, 24 , 28, 32}, clip them to the range
[−2σ, 2σ] and then add them to every pixel of the input image. Note that, the magnitude range of
Gaussian noises used in our experiments covers all 5 severity levels used in Hendrycks & Dietterich
(2018). For CIFAR-10, we add Gaussian noises to 5000 samples which are drawn randomly from
the validation set and can be classified correctly by all the tested models. We place the defective
layers with keep probability p = 0.1 on ResNet-18 in the same way as we did in Section A.1.

A.2.2 EXPERIMENTAL RESULTS

The experimental results are shown in Figure 4. The standard CNN is still robust to small scale
Gaussian noise such as σ ≤ 8. After that, the performance of the standard CNN begins to drop
sharply as σ increases. In contrast, defective CNNs show far better robustness than the standard
version. The defective CNN with keep probability 0.1 can maintain high accuracy until σ increase
to 16 and have a much slower downward trend as σ increases.

Figure 4: Defense performance against additive Gaussian noise. p-Bottom means applying defective
convolutional layers with keep probability p to the bottom layers of a standard ResNet-18.

A.3 TRANSFER-BASED ATTACK ON WIDE-RESNET

In this subsection, we also evaluate the defense performance of networks with defective convolu-
tional layers against transfer-based attacks. We compare our proposed method with two adversarial
training methods (Buckman et al., 2018; Madry et al., 2017). For fair comparisons, we follow Buck-
man et al. (2018) to generate adversarial examples using wide residual networks (Zagoruyko &
Komodakis, 2016) with a depth of 32 and a width factor of 4. The 4-block structure of ResNet-32 is
shown in Appendix C. The blocks are labeled 0, 1, 2, 3 and the 0th block is the first convolution layer.
Both FGSM (Goodfellow et al., 2015) and PGD (Kurakin et al., 2016) attacks are run on the entire
validation set of CIFAR-10 dataset. These two methods both have `∞ perturbation scale 8/255 and
PGD runs for 7 gradient descent steps with step size 2. The generated adversarial examples are used
to attack target networks. For the target network, we use the same structure but applying defective
convolutional layers to the 0th and 1st blocks with keep probability p = 0.1 and train the model using
the standard optimization method. As is mentioned in Section 3.1, our proposed method is essen-
tially different from dropout, and thus we also take dropout methods as baselines. More specifically,
we test SpatialDropout and DropBlock. For both methods, we follow the instruction from Ghiasi
et al. (2018) to apply dropout to the 3rd block with p = 0.9. The block of DropBlock is set to be a
3× 3 square. The result is listed in Table 7.

15

Under review as a conference paper at ICLR 2021

Model FGSM PGD Test Accuracy
Standard CNN 52.88% 15.98% 95.39%

Standard CNN + SD (Tompson et al., 2015) 51.63% 14.28% 95.98%
Standard CNN + DB (Ghiasi et al., 2018) 51.55% 12.71% 95.81%
Adversarial Training (Madry et al., 2017) 85.60% 86.00% 87.30%
Thermometer(16) (Buckman et al., 2018) - 88.25% 89.88%
Thermometer(32) (Buckman et al., 2018) - 86.60% 90.30%

Defective CNN 86.24% 88.43% 91.12%

Table 7: Black-box defense performances against transfer-based attacks. SD and DB denote spatial
dropout and drop block, respectively.

A.4 TRANSFER-BASED ATTACK FROM ENSEMBLE MODELS ON CIFAR-10

In this subsection, we evaluate the defense performance of networks with defective convolutional
layers against transfer-based attack from ensemble models on the CIFAR-10 dataset. We apply
defective convolutional layers to five popular network architectures ResNet-18, ResNet-50 (He et al.,
2016), DenseNet-121, SENet-18 (Hu et al., 2017a), VGG-19 (Simonyan & Zisserman, 2014), and
test the black-box defense performance against transfer-based attacks from ensemble models on
the CIFAR-10 dataset. For each architecture, we replace the standard convolutional layer with the
defective version on the bottom layers of different architectures. Illustrations of defective layers
applied to these network architectures can be found in Appendix C. We test the black-box defense
performance against transfer-based attacks on 5000 samples from the validation set. Adversarial
examples are generated by PGD, which runs for 7 steps with step size 2 and the `∞ perturbation
scale is set to 8/255. We generate five ensemble models as the source model by fusing every four
models in all five models.

The results can be found in Table 8. These results show that defective convolutional layers can
consistently improve the black-box defense performance of various network architectures against
transfer-based attacks from ensemble models on the CIFAR-10 dataset.

Architecture –ResNet-18 –ResNet-50 –DenseNet-121 –SENet-18 –VGG-19 Test Accuracy

ResNet-18 1.02% 0.74% 0.76% 0.94% 0.88% 95.33%
0.5-Bottom 32.98% 35.95% 29.36% 32.31% 37.24% 93.39%
0.3-Bottom 69.52% 72.44% 67.02% 68.63% 72.23% 91.83%
ResNet-50 1.07% 2.32% 1.31% 1.17% 0.82% 95.25%
0.5-Bottom 23.61% 31.52% 21.20% 22.89% 25.59% 94.43%
0.3-Bottom 55.47% 62.43% 53.25% 55.13% 58.47% 93.46%

DenseNet-121 0.70% 0.88% 1.37% 0.74% 0.58% 95.53%
0.5-Bottom 6.99% 10.19% 7.77% 6.93% 8.10% 94.34%
0.3-Bottom 32.07% 38.28% 31.59% 31.01% 35.42% 92.82%
SENet-18 0.91% 0.66% 0.74% 0.92% 0.64% 95.09%

0.5-Bottom 29.16% 32.58% 25.84% 29.17% 32.88% 93.53%
0.3-Bottom 62.12% 65.83% 59.94% 62.90% 65.64% 92.54%

VGG-19 8.27% 8.28% 6.42% 7.64% 14.08% 93.93%
0.5-Bottom 60.62% 63.71% 57.85% 59.28% 64.73% 91.73%
0.3-Bottom 80.97% 82.84% 80.06% 80.04% 82.86% 90.11%

Table 8: Black-box defense performances against transfer-based attacks from ensemble models on
the CIFAR-10 dataset. Numbers in the middle mean the success defense rates. Networks in the first
row indicate the source models which ensemble other four models except for the network itself. The
source model generates adversarial examples by PGD. 0.5-Bottom and 0.3-Bottom mean applying
defective convolutional layers with keep probability 0.5 and 0.3 to the bottom layers of the network
whose name lies just above them. The source and target networks are initialized differently if they
share the same architecture.

16

Under review as a conference paper at ICLR 2021

A.5 TRANSFER-BASED ATTACK ON MNIST

In this subsection, we evaluate the defense performance of networks with defective convolutional
layers against trasfer-based attack on the MINST dataset. We apply defective convolutional layers to
five popular network architectures ResNet-18, ResNet-50, DenseNet-121, SENet-18, VGG-19, and
test the black-box defense performance against transfer-based attacks on MNIST dataset. For each
architecture, we replace the standard convolutional layer with the defective version on bottom layers
of different architectures. Illustrations of defective layers applied to these network architectures can
be found in Appendix C. We test the black-box defense performance against transfer-based attacks
on 5000 samples from the validation set. Adversarial examples are generated by PGD which runs
for 40 steps with step size 0.01× 255 and perturbation scale 0.3× 255.

The results can be found in Table 9. These results show that defective convolutional layers can
consistently improve the black-box defense performance of various network architectures against
transfer-based attacks on the MNIST dataset.

Architecture ResNet-18 ResNet-50 DenseNet-121 SENet-18 VGG-19 Test Accuracy

ResNet-18 0.06% 24.13% 1.66% 0.14% 9.57% 99.49%
0.5-Bottom 3.49% 43.04% 8.66% 7.66% 26.47% 99.34%
0.3-Bottom 25.91% 75.59% 36.19% 38.03% 64.63% 99.29%
ResNet-50 2.93% 9.30% 7.68% 5.94% 19.68% 99.39%
0.5-Bottom 8.54% 23.06% 8.76% 10.09% 28.49% 99.32%
0.3-Bottom 10.91% 36.44% 16.04% 14.55% 39.57% 99.28%

DenseNet-121 0.48% 29.81% 0.02% 1.64% 9.90% 99.48%
0.5-Bottom 2.57% 35.85% 1.10% 3.93% 16.29% 99.46%
0.3-Bottom 7.13% 58.92% 3.37% 11.39% 32.69% 99.38%
SENet-18 0.22% 18.77% 2.34% 0.10% 13.75% 99.41%

0.5-Bottom 3.37% 24.09% 6.90% 2.21% 17.24% 99.35%
0.3-Bottom 11.97% 51.63% 14.39% 16.45% 40.23% 99.31%

VGG-19 3.83% 51.77% 5.59% 7.34% 3.25% 99.48%
0.5-Bottom 12.47% 61.18% 12.91% 21.71% 19.32% 99.37%
0.3-Bottom 29.14% 70.59% 31.55% 41.87% 47.65% 99.33%

Table 9: Black-box defense performances against transfer-based attacks on the MNIST dataset.
Numbers in the middle mean the success defense rates. Networks in the first row are the source
models for generating adversarial examples by PGD. 0.5-Bottom and 0.3-Bottom mean applying
defective convolutional layers with keep probability 0.5 and 0.3 to the bottom layers of the network
whose name lies just above them. The source and target networks are initialized differently if they
share the same architecture.

A.6 GRAY-BOX ATTACK

In this subsection, we show the gray-box defense performance of defective CNNs on CIFAR-10.
We use gray-box attacks in the following two ways. One way is to generate adversarial examples
against one trained neural network and test those images on a network with the same structure but
different initializations. The other way is specific to our defective models. We generate adversarial
examples on one trained defective CNN and test them on a network with the same keep probability
but different sampling of defective neurons. In both of these two ways, the adversarial knows some
information on the structure of the network but does not know the specific parameters of it.

Architecture 0.5-Bottom 0.3-Bottom
0.5-Bottom 30.90% 40.49%

0.5-BottomDIF 32.77% 40.39%
0.3-Bottom 59.24% 36.84%

0.3-BottomDIF 57.45% 37.04%

Table 10: Defense performances against two kinds of gray-box attacks for defective CNNs. Num-
bers mean the success defense rates. Networks in the first row are the source models for generat-
ing adversarial examples by PGD, which runs for 20 steps with step size 1 and perturbation scale
`∞ = 16/255. 0.5-Bottom and 0.3-Bottom in the left column represent the networks with the same
structure as the corresponding source networks but with different initialization. 0.5-BottomDIF and
0.3-BottomDIF in the left column represent the networks with the same keep probabilities as the
corresponding source networks but with different sampling of defective neurons.

17

Under review as a conference paper at ICLR 2021

From the results listed in Table 10, we find that defective CNNs have similar performance on ad-
versarial examples generated by our two kinds of gray-box attacks. This phenomenon indicates that
defective CNNs with the same keep probability would catch similar information which is insensitive
to the selections of defective neurons. Also, comparing with the gray-box performance of standard
CNNs (See Table 11), defective CNNs show stronger defense ability.

Architecture ResNet-18 DenseNet-121
ResNet-18 5.98% 14.14%

DenseNet-121 14.53% 2.98%

Table 11: Defense performances against gray-box attacks for standard CNNs. Numbers mean the
success defense rates. Networks in the first row are the source models for generating adversarial
examples by PGD, which runs for 20 steps with step size 1 and perturbation scale `∞ = 16/255.
The diagonal shows gray-box performances in the setting that the source and target networks share
the same structure but with different initializations.

A.7 WHITE-BOX ATTACK

In this subsection, we show the white-box defense performance of defective CNNs. Table 12 shows
the results of ResNet-18 on the CIFAR-10 dataset. The performance on other network architectures
is similar. Note that, the proposed method would not involve any obfuscated gradients (Athalye
et al., 2018). Also, We study the combination of the proposed method and adversarial training. We
adversarially train a defective CNN under the same setting described in Madry et al. (2017) and
reach 51.6% successful defense rate against the default PGD attack (`∞ = 8/255 and 7 steps) used
in training, which outperforms the standard CNN (50.0%).

Architecture FGSM1 FGSM2 FGSM4 PGD2 PGD4 PGD8 Test Accuracy

ResNet-18 81.24% 65.78% 51.24% 23.80% 3.16% 0.02% 95.33%
0.5-Bottom 85.22% 68.65% 52.04% 38.16% 6.67% 0.12% 93.39%
0.3-Bottom 85.70% 69.69% 54.51% 49.01% 18.93% 2.86% 91.83%

Table 12: Defense performances against white-box attacks. Numbers in the middle mean the success
defense rates. FGSM1,FGSM2,FGSM4 refer to FGSM with perturbation scale 1,2,4 respectively.
PGD2,PGD4,PGD8 refer to PGD with perturbation scale 2,4,8 and step number 4,6,10 respectively.
The step size of all PGD methods are set to 1.

We want to emphasize that the adversarial examples generated by defective CNNs appear to have
semantic shapes and may even fool humans as well (see Figure 3 and Appendix B). This indicates
that small perturbations can actually change the semantic meaning of images for humans. Those
samples should probably not be categorized into adversarial examples and used to evaluate white-
box robustness. This is also aligned with Ilyas et al. (2019).

A.8 RANDOMLY SHUFFLED IMAGES AND STYLIZED-IMAGENET

In this subsection, we show more results on randomly shuffled images and Stylized-
ImageNet (Geirhos et al., 2018). As shown in Section 3.2, shape information in randomly shuffled
images is destroyed while textural information preserving, and Stylized-ImageNet has the opposite
situation. If a CNN make predictions relying less on textural information but more on shape infor-
mation, it should have worse performance on randomly shuffled images but better performance on
Stylized-ImageNet.

We construct defective CNNs by applying defective convolutional layers to the bottom layers of
standard ResNet-18, ResNet-50, DenseNet-121, SENet-18, and VGG-19. We train all defective
CNNs and their plain counterparts on the ImageNet dataset. For each pair of CNNs, we sample
images from the validation set, which are predicted correctly by both two kinds of CNNs. We make
manipulations to the sampled images by setting k ∈ {2, 4, 8} and pick corresponding images from
Stylized-ImageNet. We check the accuracy of all models on the these images. The results are shown
in Table 13. We can see the defective CNNs perform consistently worse than the standard CNNs on

18

Under review as a conference paper at ICLR 2021

the randomly shuffled images, and perform consistently better than the standard CNNs on Stylized-
ImageNet. This justifies our argument that defective CNNs make predictions relying less on textural
information but more on shape information.

Model 2× 2 4× 4 8× 8 IN→ SIN

ResNet-18 99.53% 84.36% 20.08% 15.33%
0.1-Bottom 96.32% 56.91% 9.04% 20.20%
ResNet-50 99.80% 87.34% 18.00% 15.12%
0.1-Bottom 98.30% 65.87% 9.23% 21.16%

DenseNet-121 99.55% 85.87% 18.78% 15.53%
0.1-Bottom 92.23% 47.82% 7.52% 19.09%
SENet-18 98.88% 75.57% 14.61% 15.83%

0.1-Bottom 92.39% 46.94% 7.07% 18.79%
VGG-19 99.10% 81.58% 15.45% 6.17%

0.1-Bottom 97.98% 71.85% 11.00% 13.98%

Table 13: The left three columns are the accuracy of classifying randomly shuffled test images. The
rightmost column is the accuracy of training on ImageNet and testing on Stylized-ImageNet. 0.1-
Bottom mean applying defective convolutional layers with keep probability 0.1 to the bottom layers
of the network whose name lies just above them.

A.9 DIFFERENT KEEP PROBABILITIES

In this subsection, we show the trade-off between robustness and generalization performance in
defective CNNs with different keep probabilities. We use DenseNet-121 (Huang et al., 2017) as the
source model to generate adversarial examples from CIFAR-10 with PGD (Kurakin et al., 2016),
which runs for 20 steps with step size 1 and perturbation scale 16. The defective convolutional layers
are applied to the bottom layers of ResNet-18 (He et al., 2016). Figure 5 shows that the defense
accuracy monotonically increases as the test accuracy decreases along with the keep probability. We
can see the trade-off between robustness and generalization.

Therefore, a practical way to use Defective CNNs in the real world is to ensemble defective CNNs
with different keep probabilities. Also, in our experiments, we found that ensemble different defec-
tive CNNs with the same p can bring improvements on both accuracy and robustness while ensemble
standard CNNs can not.

Figure 5: Relationship between success defense rates against adversarial examples generated by
PGD and test accuracy with respect to different keep probabilities. Each red star represents a specific
keep probability with its value written near the star.

19

Under review as a conference paper at ICLR 2021

A.10 EXPERIMENTAL DETAILS FOR SECTION 4.3

In this subsection, we will show more experimental results on defective CNNs using different adver-
sarial examples, different attack methods and different mask settings on ResNet-18. The networks
used to generate adversarial examples including ResNet-18, ResNet-50, DenseNet-121, SENet18,
and VGG-19. More specifically, we choose 5000 samples to generate adversarial examples via
FGSM and PGD, and 1000 samples for CW attack. All samples are drawn from the validation set of
CIFAR-10 dataset and can be correctly classified correctly by the model used to generate adversarial
examples.

For FGSM, we try step size ε ∈ {8, 16, 32}, namely FGSM8, FGSM16, FGSM32, to generate
adversarial examples. For PGD, we have tried more extensive settings. Let {ε, T, α} be the PGD
setting with step size ε, the number of steps T and the perturbation scale α, then we have tried PGD
settings (1, 8, 4), (2, 4, 4), (4, 2, 4), (1, 12, 8), (2, 6, 8), (4, 3, 8), (1, 20, 16), (2, 10, 16), (4, 5, 16),
(1, 40, 32), (2, 20, 32), (4, 10, 32) to generate PGD adversarial examples. From the experimental
results, we observe the following phenomena. First, we find that the larger the perturbation scale
is, the stronger the adversarial examples are. Second, for a fixed perturbation scale, the smaller
the step size is, the more successful the attack is, as it searches the adversarial examples in a more
careful way around the original image. Based on these observation, we only show strong PGD
attack results in the Appendix, namely the settings (1, 20, 16) (PGD16), (2, 10, 16) (PGD2,16) and
(1, 40, 32) (PGD32). Nonetheless, our models also perform much better on weak PGD attacks. For
the CW attack, we have also tried different confidence parameters κ. However, we find that for
large κ, the algorithm is hard to find adversarial examples for some neural networks such as VGG
because of its logit scale. For smaller κ, the adversarial examples have weak transferability, which
means they can be easily defended even by standard CNNs. Therefore, in order to balance these two
factors, we choose κ = 40 (CW40) for DenseNet-121, ResNet-50, SENet-18 and κ = 20 (CW20)
for ResNet-18 as a good choice to compare our models with standard ones. The step number for
choosing the parameter c is set to 30.

Note that the noises of FGSM and PGD are considered in the sense of `∞ norm and the noise of CW
is considered in the sense of `2 norm. All adversarial examples used to evaluate can fool the original
network. Table 14,15,16,17 and 18 list our experimental results. DC means we replace defective
neurons with defective channels in the corresponding blocks to achieve the same keep probability.
SM means we use the same defective mask on all the channels in a layer. ×n means we multiply
the number of the channels in the defective blocks by n times. EN means we ensemble five models
with different defective masks of the same keep probability.

B ADVERSARIAL EXAMPLES GENERATED BY DEFECTIVE CNNS

In this subsection, we show more adversarial examples generated by defective CNNs. Figure 6
shows some adversarial examples generated on the CIFAR-10 dataset along with the corresponding
original images. These examples are generated from CIFAR-10 against a defective ResNet-18 of
keep probability 0.2 on the 0th, 1st, 2nd blocks, a defective ResNet-18 of keep probability 0.1 on
the 1st, 2nd blocks, and a standard ResNet-18. We use attack method MIFGSM (Dong et al., 2017)
with perturbation scale α = 16 and α = 32. We also show some adversarial examples generated
from Tiny-ImageNet3 along with the corresponding original images in Figure 7. These examples
are generated from Tiny-ImageNet against a defective ResNet-18 of keep probability of the keep
probability 0.1 on the 1st, 2nd blocks and a standard ResNet-18. The attack methods are MIFGSM
with scale 64 and 32, step size 1 and step number 40 and 80 respectively.

The adversarial examples generated by defective CNNs exhibit more semantic shapes of their fooled
classes, such as the mouth of the frog in Figure 6. This also corroborates the point made in Tsipras
et al. (2018) that more robust models will be more aligned with human perception.

To further verify the adversarial examples generated by defective CNNs align better with human
perception than standard CNNs, we conduct a user study. We show users a pair of adversarial
examples generated by defective CNNs and standard CNNs, respectively. The corresponding labels
are attached. The user will be asked which one of the pair is better aligned with the predicted label.

3https://tiny-imagenet.herokuapp.com/

20

https://tiny-imagenet.herokuapp.com/

Under review as a conference paper at ICLR 2021

More specifically, we generate two sets of adversarial examples on CIFAR-10 and Tiny-ImageNet
by defective CNNs and standard CNNs, respectively. For each user, we randomly sample 50 pairs
from the two sets and ask him/her to select. A total of 13 people are involved in our study. The
results show that all users select more images generated by defective CNNs than the ones generated
by standard CNNs. On average, the number of defective CNNs ones is 14 more than the number of
standard CNNs ones. This supports our arguments.

Frog Dog Automobile Dog Ship Dog Ship Bird Frog

Truck Horse Truck Airplane Automobile Bird Automobile Ship Bird

Frog Cat Automobile Dog Truck Plane Truck Plane Deer

Figure 6: CIFAR-10 dataset. First row: the adversarial examples generated by defective CNNs and
the predicted labels. Second row: original images. Third row: the adversarial examples generated
by the standard CNN and the predicted labels.

Mushroom Monarch Butter-
fly

Black Widow Mushroom Sulphur Butterfly Teddy Ladybug

Tarantula Black Widow Ladybug Goldfish Egyptian Cat Brain Coral Fly

Standard Poodle Dragonfly Roach Mushroom Mashed Potato Teddy drumstick

Figure 7: Tiny-ImageNet dataset. First row: the adversarial examples generated by defective CNNs
and the predicted labels. Second row: original images. Third row: the adversarial examples
generated by the standard CNN and the predicted labels.

21

Under review as a conference paper at ICLR 2021

C ARCHITECTURE ILLUSTRATIONS

In this subsection, we briefly introduce the network architectures used in our experiments. Gener-
ally, we apply defective convolutional layers to the bottom layers of the networks and we have tried
six different architectures, namely ResNet-18, ResNet-50, DenseNet-121, SENet-18, VGG-19 and
WideResNet-32. We next illustrate these architectures and show how we apply defective convolu-
tional layers to them. In our experiments, applying defective convolutional layers to a block means
randomly selecting defective neurons in every layer of the block.

C.1 RESNET-18

ResNet-18 (He et al., 2016) contains 5 blocks: the 0th block is one single 3× 3 convolutional layer,
and each of the rest contains four 3 × 3 convolutional layers. Figure 8 shows the whole structure
of ResNet-18. In our experiments, we apply defective convolutional layers to the 0th, 1st, 2nd blocks
which are the bottom layers.

Figure 8: The architecture of ResNet-18

C.2 RESNET-50

Similar to ResNet-18, ResNet-50 (He et al., 2016) contains 5 blocks and each block contains several
1 × 1 and 3 × 3 convolutional layers (i.e. Bottlenecks). In our experiment, we apply defective
convolutional layers to the 3×3 convolutional layers in the first three “bottom” blocks. The defective
layers in the 1st block are marked by the red arrows in Figure 9.

Figure 9: The architecture of ResNet-50

22

Under review as a conference paper at ICLR 2021

C.3 DENSENET-121

DenseNet-121 (Huang et al., 2017) is another popular network architecture in deep learning re-
searches. Figure 10 shows the whole structure of DenseNet-121. It contains 5 Dense-Blocks, each
of which contains several 1×1 and 3×3 convolutional layers. Similar to what we do for ResNet-50,
we apply defective convolutional layers to the 3× 3 convolutional layers in the first three “bottom”
blocks. The growth rate is set to 32 in our experiments. vspace-0.1in

Figure 10: The architecture of DenseNet-121

C.4 SENET-18

SENet (Hu et al., 2017a), a network architecture which won the first place in ImageNet contest 2017,
is shown in Figure 11. Note that here we use the pre-activation shortcut version of SENet-18 and we
apply defective convolutional layers to the convolutional layers in the first 3 SE-blocks.

Figure 11: The architecture of SENet-18

C.5 VGG-19

VGG-19 (Simonyan & Zisserman, 2014) is a typical neural network architecture with sixteen 3× 3
convolutional layers and three fully-connected layers. We slightly modified the architecture by
replacing the final 3 fully connected layers with 1 fully connected layer as is suggested by recent
architectures. Figure 12 shows the whole structure of VGG-19. We apply defective convolutional
layers on the first four 3× 3 convolutional layers.

Figure 12: The architecture of VGG-19

23

Under review as a conference paper at ICLR 2021

C.6 WIDERESNET-32

Based on residual networks, Zagoruyko & Komodakis (2016) proposed a wide version of residual
networks which have much more channels. In our experiments, we adopt the network with a width
factor of 4 and apply defective layers on the 0th and 1st blocks. Figure 13 shows the whole structure
of WideResNet-32.

Figure 13: The architecture of WideResNet-32

D TRAINING DETAILS ON CIFAR-10 AND MNIST

To guarantee our experiments are reproducible, here we present more details on the training process
in our experiments. When training models on CIFAR-10, we first subtract per-pixel mean. Then we
apply a zero-padding of width 4, a random horizontal flip and a random crop of size 32 × 32 on
train data. No other data augmentation method is used. We apply SGD with momentum parameter
0.9, weight decay parameter 5 × 10−4 and mini-batch size 128 to train on the data for 350 epochs.
The learning rate starts from 0.1 and is divided by 10 when the number of epochs reaches 150 and
250. When training models on MNIST, we first subtract per-pixel mean. Then we apply random
horizontal flip on train data. We apply SGD with momentum parameter 0.9, weight decay parameter
5 × 10−4 and mini-batch size 128 to train on the data for 50 epochs. The learning rate starts from
0.1 and is divided by 10 when the number of epochs reaches 20 and 40. Figure 14 shows the train
and test curves of standard and defective ResNet-18 on CIFAR-10 and MNIST. Different network
structures share similar tendency regarding the train and test curves.

CIFAR-10 MNIST

Figure 14: Train and test curve of standard and defective ResNet-18 on CIFAR-10 and MNIST

E ATTACK APPROACHES

In this subsection, we describe the attack approaches used in our experiments. We first give an
overview of how to attack a neural network in mathematical notations. Let x be the input to the
neural network and fθ be the function which represents the neural network with parameter θ. The
output label of the network to the input can be computed as c = argmaxi fθ(x)i. In order to
perform an adversarial attack, we add a small perturbation δx to the original image and get an

24

Under review as a conference paper at ICLR 2021

adversarial image xadv = x + δx. The new input xadv should look visually similar to the original
x. Here we use the commonly used `∞-norm metric to measure similarity, i.e., we require that
||δx|| ≤ ε. The attack is considered successful if the predicted label of the perturbed image cadv =
argmaxi fθ(xadv)i is different from c.

Generally speaking, there are two types of attack methods: Targeted Attack, which aims to change
the output label of an image to a specific (and different) one, and Untargeted Attack, which only aims
to change the output label and does not restrict which specific label the modified example should let
the network output.

In this paper, we mainly use the following four gradient-based attack approaches. J denotes the loss
function of the neural network and y denotes the ground truth label of x.

• Fast Gradient Sign Method (FGSM). FGSM (Goodfellow et al., 2015) is a one-step un-
targeted method which generates the adversarial example xadv by adding the sign of the
gradients multiplied by a step size ε to the original benign image x. Note that FGSM con-
trols the `∞-norm between the adversarial example and the original one by the parameter
ε.

xadv = x+ ε · sign(∇xJ(x, y)).
• Basic iterative method (PGD). PGD (Kurakin et al., 2016) is a multiple-step attack

method which applies FGSM multiple times. To make the adversarial example still stay
“close” to the original image, the image is projected to the `∞-ball centered at the original
image after every step. The radius of the `∞-ball is called perturbation scale and is denoted
by α.

x0
adv = x, xk+1

adv = Clipx,α
[
xkadv + ε · sign(∇xJ(xkadv, y))

]
.

• Momentum Iterative Fast Gradient Sign Method (MIFGSM).
MIFGSM (Dong et al., 2017) is a recently proposed multiple-step attack method. It is
similar to PGD, but it computes the optimize direction by a momentum instead of the
gradients. The radius of the `∞-ball is also called perturbation scale and is denoted by α.

gk+1 = µ · gk +
∇xJ(xkadv, y)

‖∇xJ(xkadv, y)‖1

x0
adv = x, g0 = 0 xk+1

adv = Clipx,α
[
xkadv + ε · sign(gk+1)

]
.

• CW Attack. Carlini & Wagner (2016) shows that constructing an adversarial example can
be formulated as solving the following optimization problem:

xadv = argmin
x′

c · g(x′) + ||x′ − x||22,

where c ·g(x′) is the loss function that evaluates the quality of x′ as an adversarial example
and the term ||x′ −x||22 controls the scale of the perturbation. More specifically, in the un-
targeted attack setting, the loss function g(x) can be defined as below, where the parameter
κ is called confidence.

g(x) = max{max
i 6=y

(f(x)i)− f(x)y,−κ},

25

Under review as a conference paper at ICLR 2021

Architecture FGSM8 FGSM16 FGSM32 PGD16 PGD2,16 PGD32 CW40 Acc
ResNet-18 29.78% 14.91% 11.53% 14.14% 10.02% 7.16% 8.23% 95.33%

0.7-Bottom 55.40% 23.29% 7.73% 51.29% 42.44% 37.00% 36.95% 94.03%
0.5-Bottom 66.87% 30.86% 6.65% 70.38% 62.11% 56.36% 54.02% 93.39%
0.3-Bottom 79.50% 48.57% 10.51% 86.99% 81.78% 78.41% 73.70% 91.83%
0.25-Bottom 83.12% 59.22% 17.16% 90.64% 86.22% 83.86% 77.82% 91.46%
0.2-Bottom 85.49% 63.01% 15.57% 92.17% 88.72% 86.50% 81.75% 91.18%
0.15-Bottom 88.18% 65.27% 18.33% 94.85% 92.24% 90.64% 85.46% 90.15%
0.1-Bottom 94.08% 79.93% 43.70% 96.70% 95.69% 94.68% 89.67% 87.68%
0.05-Bottom 96.16% 87.36% 59.05% 97.43% 97.13% 96.24% 90.24% 84.53%

0.7-Top 28.51% 14.62% 8.78% 10.55% 7.22% 4.91% 7.88% 95.16%
0.5-Top 25.01% 10.76% 10.24% 11.06% 7.99% 5.10% 7.19% 94.94%
0.3-Top 23.94% 11.23% 10.48% 11.77% 8.83% 5.80% 10.10% 94.61%

0.5-Bottom, 0.5-Top 55.88% 20.77% 9.96% 60.75% 51.47% 45.29% 47.32% 92.48%
0.7-Bottom, 0.7-Top 51.03% 24.15% 10.82% 45.12% 35.70% 30.24% 29.65% 94.16%
0.7-Bottom, 0.3-Top 36.16% 11.26% 9.16% 33.67% 24.62% 20.28% 23.31% 93.44%
0.3-Bottom, 0.3-Top 64.85% 27.43% 10.09% 75.49% 67.09% 62.78% 62.47% 89.78%
0.3-Bottom, 0.7-Top 74.73% 40.58% 9.12% 82.77% 75.98% 72.15% 68.58% 91.23%

0.5-BottomDC 36.39% 12.15% 8.24% 19.93% 14.99% 11.20% 12.72% 95.12%
0.3-BottomDC 43.81% 17.74% 8.32% 27.47% 21.73% 16.59% 19.34% 94.23%
0.1-BottomDC 49.53% 19.00% 7.23% 53.87% 44.78% 41.40% 44.80% 93.27%
0.5-BottomSM 77.30% 48.86% 12.50% 85.00% 80.01% 75.60% 72.07% 92.57%
0.3-BottomSM 82.59% 48.03% 12.30% 91.01% 87.35% 84.71% 79.55% 89.81%
0.1-BottomSM 67.06% 39.40% 16.25% 80.36% 74.97% 72.43% 65.38% 74.28%
0.5-Bottom×2 51.25% 20.78% 10.29% 50.16% 40.47% 34.24% 34.00% 94.12%
0.3-Bottom×2 68.82% 30.94% 7.22% 76.62% 67.90% 62.87% 60.17% 93.01%
0.1-Bottom×2 88.00% 68.83% 28.55% 93.35% 90.82% 88.25% 82.74% 90.49%
ResNet-18EN 34.98% 16.51% 10.32% 12.60% 9.22% 5.48% 8.46% 96.03%

0.5-Bottom×2,EN 58.49% 20.75% 8.48% 57.47% 47.05% 39.21% 41.36% 95.10%
0.5-BottomEN 69.35% 31.38% 7.73% 75.40% 66.37% 60.59% 58.07% 94.56%
0.3-BottomEN 81.98% 51.81% 8.57% 90.00% 85.25% 82.15% 77.74% 93.31%
0.1-BottomEN 95.37% 81.95% 43.42% 97.91% 97.10% 95.90% 91.36% 89.45%

Table 14: Extended experimental results of Section 4.3. Adversarial examples generated against
DenseNet-121. Numbers in the middle mean the success defense rates. The model trained on
CIFAR-10 achieves 95.62% accuracy on test set. p-Bottom, p-Top, p-BottomDC, p-BottomSM,
p-Bottom×n and p-BottomEN mean applying defective layers with keep probability p to bottom
layers, applying defective layers with keep probability p to top layers, making whole channels de-
fective with keep probability p, using the same defective mask in every channel with keep probability
p, increasing channel number to n times at bottom layers and ensemble five models with different
defective masks of the same keep probability p respectively.

26

Under review as a conference paper at ICLR 2021

Architecture FGSM8 FGSM16 FGSM32 PGD16 PGD2,16 PGD32 CW20 Acc
ResNet-18 26.99% 13.91% 3.57% 5.98% 3.70% 3.02% 2.19% 95.33%

0.7-Bottom 48.76% 21.32% 9.54% 34.43% 25.14% 24.16% 38.87% 94.03%
0.5-Bottom 59.66% 30.48% 11.60% 53.89% 45.47% 41.27% 60.65% 93.39%
0.3-Bottom 74.00% 47.11% 15.65% 78.23% 73.30% 65.83% 79.04% 91.83%
0.25-Bottom 78.37% 56.05% 21.44% 83.96% 80.09% 73.45% 81.59% 91.46%
0.2-Bottom 81.67% 59.14% 19.60% 88.18% 85.07% 78.72% 82.78% 91.18%
0.15-Bottom 86.31% 63.16% 22.23% 92.26% 89.99% 85.14% 86.06% 90.15%
0.1-Bottom 92.89% 77.90% 45.63% 96.27% 95.30% 92.80% 90.29% 87.68%
0.05-Bottom 95.07% 85.40% 59.91% 97.51% 96.69% 95.30% 90.97% 84.53%

0.7-Top 25.96% 15.46% 7.18% 5.36% 2.83% 2.89% 2.66% 95.16%
0.5-Top 25.21% 9.21% 1.44% 5.98% 4.30% 3.25% 3.15% 94.94%
0.3-Top 24.36% 9.49% 2.60% 8.54% 5.30% 5.02% 6.62% 94.61%

0.5-Bottom, 0.5-Top 51.89% 20.41% 10.75% 45.99% 37.78% 34.09% 52.11% 92.48%
0.7-Bottom, 0.7-Top 43.32% 20.55% 4.14% 29.28% 19.64% 20.14% 32.92% 94.16%
0.7-Bottom, 0.3-Top 34.09% 11.05% 1.58% 23.06% 15.26% 14.93% 24.11% 93.44%
0.3-Bottom, 0.3-Top 61.22% 28.11% 13.78% 67.30% 59.43% 52.95% 69.15% 89.78%
0.3-Bottom, 0.7-Top 70.43% 39.15% 13.94% 74.85% 68.23% 62.52% 74.57% 91.23%

0.5-BottomDC 32.86% 13.89% 3.71% 9.41% 5.60% 5.34% 6.10% 95.12%
0.3-BottomDC 37.96% 16.23% 5.05% 16.63% 11.49% 10.54% 15.44% 94.23%
0.1-BottomDC 48.54% 19.10% 11.37% 41.14% 31.82% 30.56% 50.62% 93.27%
0.5-BottomSM 73.96% 47.63% 16.60% 75.60% 68.88% 62.10% 73.68% 92.57%
0.3-BottomSM 80.80% 48.37% 15.26% 87.88% 84.37% 77.69% 82.34% 89.81%
0.1-BottomSM 69.15% 43.55% 20.26% 79.96% 75.52% 71.95% 71.62% 74.28%
0.5-Bottom×2 46.50% 21.37% 6.06% 32.98% 22.90% 22.66% 39.12% 94.12%
0.3-Bottom×2 63.37% 29.90% 12.07% 61.81% 53.25% 48.36% 67.02% 93.01%
0.1-Bottom×2 84.28% 64.47% 31.90% 90.76% 87.81% 82.61% 85.08% 90.49%
ResNet-18EN 29.36% 13.89% 3.81% 4.72% 2.88% 2.08% 2.09% 96.03%

0.5-Bottom×2,EN 51.63% 20.74% 7.58% 37.99% 26.65% 26.61% 42.59% 95.10%
0.5-BottomEN 63.38% 30.25% 11.05% 56.29% 46.76% 42.75% 63.90% 94.56%
0.3-BottomEN 77.25% 50.07% 13.80% 80.40% 75.52% 68.16% 80.86% 93.31%
0.1-BottomEN 94.31% 79.47% 44.67% 97.20% 95.90% 94.03% 90.52% 89.45%

Table 15: Extended experimental results of Section 4.3. Numbers in the middle mean the success
defense rates. Adversarial examples are generated against ResNet-18. The model trained on CIFAR-
10 achieves 95.27% accuracy on test set. p-Bottom, p-Top, p-BottomDC, p-BottomSM, p-Bottom×n
and p-BottomEN mean applying defective layers with keep probability p to bottom layers, applying
defective layers with keep probability p to top layers, making whole channels defective with keep
probability p, using the same defective mask in every channel with keep probability p, increasing
channel number to n times at bottom layers and ensemble five models with different defective masks
of the same keep probability p respectively.

27

Under review as a conference paper at ICLR 2021

Architecture FGSM8 FGSM16 FGSM32 PGD16 PGD2,16 PGD32 CW40 Acc
ResNet-18 29.33% 15.14% 3.88% 0.94% 1.36% 0.08% 0.00% 95.33%

0.7-Bottom 45.32% 18.89% 9.16% 12.78% 13.14% 3.11% 1.98% 94.03%
0.5-Bottom 56.26% 27.32% 10.72% 33.05% 31.71% 15.13% 8.92% 93.39%
0.3-Bottom 70.57% 42.40% 14.98% 67.64% 65.36% 48.07% 33.08% 91.83%
0.25-Bottom 77.18% 53.01% 19.68% 77.14% 74.46% 59.23% 39.10% 91.46%
0.2-Bottom 80.33% 56.21% 18.03% 83.36% 81.58% 69.09% 47.52% 91.18%
0.15-Bottom 84.81% 61.02% 21.50% 89.61% 87.65% 78.29% 53.71% 90.15%
0.1-Bottom 92.17% 77.68% 45.93% 94.82% 94.24% 90.22% 66.70% 87.68%
0.05-Bottom 94.43% 85.54% 60.71% 96.41% 96.27% 93.65% 71.82% 84.53%

0.7-Top 27.78% 15.03% 8.07% 0.60% 0.82% 0.00% 0.00% 95.16%
0.5-Top 27.24% 10.29% 2.47% 0.62% 0.92% 0.04% 0.00% 94.94%
0.3-Top 24.81% 9.99% 2.50% 0.73% 1.11% 0.02% 0.00% 94.61%

0.5-Bottom, 0.5-Top 47.22% 17.48% 10.16% 23.66% 23.02% 9.32% 6.51% 92.48%
0.7-Bottom, 0.7-Top 42.18% 18.20% 5.26% 9.88% 10.52% 2.41% 1.64% 94.16%
0.7-Bottom, 0.3-Top 33.11% 11.08% 2.27% 6.09% 6.41% 0.86% 0.55% 93.44%
0.3-Bottom, 0.3-Top 56.39% 24.14% 12.18% 51.43% 48.19% 31.23% 22.25% 89.78%
0.3-Bottom, 0.7-Top 66.33% 36.31% 13.09% 62.31% 59.74% 41.88% 30.68% 91.23%

0.5-BottomDC 31.56% 13.64% 4.87% 1.61% 1.81% 0.12% 0.11% 95.12%
0.3-BottomDC 37.52% 15.72% 5.38% 3.92% 4.44% 0.56% 0.44% 94.23%
0.1-BottomDC 44.00% 16.90% 10.30% 20.34% 20.32% 7.95% 4.95% 93.27%
0.5-BottomSM 69.40% 41.82% 14.27% 62.62% 60.04% 40.30% 26.65% 92.57%
0.3-BottomSM 77.25% 44.94% 13.80% 81.91% 79.90% 67.76% 46.44% 89.81%
0.1-BottomSM 64.32% 39.76% 19.21% 74.47% 71.88% 63.05% 45.18% 74.28%
0.5-Bottom×2 41.51% 18.47% 6.02% 10.80% 11.40% 2.21% 1.32% 94.12%
0.3-Bottom×2 58.59% 25.92% 11.20% 42.49% 40.44% 21.05% 13.77% 93.01%
0.1-Bottom×2 83.05% 63.73% 29.22% 86.47% 84.39% 75.07% 50.11% 90.49%
ResNet-18EN 32.80% 15.67% 4.65% 0.70% 1.00% 0.02% 0.00% 96.03%

0.5-Bottom×2,EN 47.40% 17.32% 7.23% 12.64% 12.84% 2.54% 2.19% 95.10%
0.5-BottomEN 59.64% 26.21% 10.17% 33.55% 32.11% 13.93% 8.12% 94.56%
0.3-BottomEN 73.45% 45.60% 12.99% 69.95% 67.14% 48.83% 32.60% 93.31%
0.1-BottomEN 93.87% 79.15% 46.44% 96.12% 95.82% 91.98% 67.71% 89.45%

Table 16: Extended experimental results of Section 4.3. Adversarial examples are generated against
ResNet-50. Numbers in the middle mean the success defense rates. The model trained on CIFAR-
10 achieves 95.69% accuracy on test set. p-Bottom, p-Top, p-BottomDC, p-BottomSM, p-Bottom×n
and p-BottomEN mean applying defective layers with keep probability p to bottom layers, applying
defective layers with keep probability p to top layers, making whole channels defective with keep
probability p, using the same defective mask in every channel with keep probability p, increasing
channel number to n times at bottom layers and ensemble five models with different defective masks
of the same keep probability p respectively.

28

Under review as a conference paper at ICLR 2021

Architecture FGSM8 FGSM16 FGSM32 PGD16 PGD2,16 PGD32 CW40 Acc
ResNet-18 25.53% 17.47% 8.56% 3.32% 3.26% 1.18% 0.00% 95.33%

0.7-Bottom 46.12% 23.30% 10.48% 33.90% 29.04% 19.33% 2.66% 94.03%
0.5-Bottom 57.05% 31.01% 11.07% 57.52% 51.70% 40.37% 14.61% 93.39%
0.3-Bottom 72.67% 48.17% 15.20% 82.46% 77.49% 71.30% 39.89% 91.83%
0.25-Bottom 78.23% 58.19% 21.20% 87.86% 84.06% 77.91% 47.33% 91.46%
0.2-Bottom 82.27% 61.61% 19.70% 91.00% 87.92% 83.72% 51.14% 91.18%
0.15-Bottom 85.80% 65.92% 22.73% 94.00% 91.93% 88.82% 57.36% 90.15%
0.1-Bottom 92.93% 79.13% 48.34% 96.49% 95.94% 94.39% 65.63% 87.68%
0.05-Bottom 94.77% 87.13% 63.36% 97.74% 97.26% 95.82% 69.14% 84.53%

0.7-Top 23.76% 16.66% 9.52% 2.39% 2.37% 0.84% 0.00% 95.16%
0.5-Top 23.01% 12.19% 6.56% 3.35% 3.27% 1.18% 0.00% 94.94%
0.3-Top 22.87% 11.61% 6.63% 5.22% 4.84% 1.95% 0.19% 94.61%

0.5-Bottom, 0.5-Top 47.85% 18.29% 12.01% 48.59% 42.03% 31.72% 15.84% 92.48%
0.7-Bottom, 0.7-Top 42.34% 22.07% 7.84% 27.19% 23.31% 14.06% 1.70% 94.16%
0.7-Bottom, 0.3-Top 31.43% 12.17% 6.34% 19.14% 15.40% 8.60% 1.53% 93.44%
0.3-Bottom, 0.3-Top 57.26% 29.36% 13.99% 71.03% 63.90% 55.09% 30.00% 89.78%
0.3-Bottom, 0.7-Top 68.66% 41.32% 13.72% 78.61% 74.22% 66.02% 35.71% 91.23%

0.5-BottomDC 30.81% 14.77% 6.08% 6.18% 5.38% 2.33% 0.00% 95.12%
0.3-BottomDC 34.57% 17.32% 8.04% 10.68% 9.58% 4.86% 0.19% 94.23%
0.1-BottomDC 43.46% 17.61% 10.54% 39.53% 34.10% 25.01% 7.41% 93.27%
0.5-BottomSM 71.27% 49.21% 16.27% 80.23% 74.38% 65.92% 34.92% 92.57%
0.3-BottomSM 79.48% 49.66% 15.65% 90.74% 87.33% 82.03% 48.28% 89.81%
0.1-BottomSM 65.85% 42.59% 21.87% 80.36% 75.71% 71.25% 43.22% 74.28%
0.5-Bottom×2 44.13% 21.71% 9.49% 32.98% 27.34% 17.64% 2.65% 94.12%
0.3-Bottom×2 60.51% 30.89% 11.58% 66.09% 59.08% 48.06% 21.52% 93.01%
0.1-Bottom×2 85.26% 67.91% 32.51% 92.46% 89.99% 85.86% 52.96% 90.49%
ResNet-18EN 27.36% 17.72% 8.49% 2.50% 2.58% 0.72% 0.00% 96.03%

0.5-Bottom×2,EN 48.07% 20.83% 10.35% 37.11% 31.01% 19.68% 4.91% 95.10%
0.5-BottomEN 60.42% 31.08% 10.77% 60.63% 54.00% 41.55% 13.61% 94.56%
0.3-BottomEN 76.08% 51.49% 13.19% 85.51% 80.85% 73.29% 39.51% 93.31%
0.1-BottomEN 94.40% 81.32% 48.52% 97.58% 96.87% 95.33% 66.99% 89.45%

Table 17: Extended experimental results of Section 4.3. Numbers in the middle mean the success
defense rates. Adversarial examples are generated against SENet-18. The model trained on CIFAR-
10 achieves 95.15% accuracy on test set. p-Bottom, p-Top, p-BottomDC, p-BottomSM, p-Bottom×n
and p-BottomEN mean applying defective layers with keep probability p to bottom layers, applying
defective layers with keep probability p to top layers, making whole channels defective with keep
probability p, using the same defective mask in every channel with keep probability p, increasing
channel number to n times at bottom layers and ensemble five models with different defective masks
of the same keep probability p respectively.

29

Under review as a conference paper at ICLR 2021

Architecture FGSM8 FGSM16 FGSM32 PGD16 PGD2,16 PGD32 Acc
ResNet-18 37.67% 20.25% 5.40% 26.97% 20.65% 17.58% 95.33%

0.7-Bottom 50.06% 23.54% 9.53% 45.27% 36.74% 31.61% 94.03%
0.5-Bottom 57.35% 30.52% 11.13% 58.66% 50.82% 43.89% 93.39%
0.3-Bottom 71.75% 47.35% 15.47% 77.57% 72.68% 64.06% 91.83%
0.25-Bottom 76.81% 56.69% 19.44% 83.32% 79.23% 70.72% 91.46%
0.2-Bottom 79.46% 61.45% 21.36% 87.55% 84.41% 76.35% 91.18%
0.15-Bottom 85.51% 66.55% 25.35% 91.65% 89.29% 82.90% 90.15%
0.1-Bottom 92.58% 80.68% 51.90% 93.41% 92.83% 90.30% 87.68%
0.05-Bottom 95.24% 87.10% 64.22% 93.14% 92.78% 91.14% 84.53%

0.7-Top 36.72% 18.97% 9.65% 26.91% 20.87% 17.37% 95.16%
0.5-Top 35.93% 13.80% 2.99% 26.36% 21.31% 17.35% 94.94%
0.3-Top 34.05% 13.06% 4.04% 29.84% 23.08% 19.04% 94.61%

0.5-Bottom, 0.5-Top 50.78% 19.25% 9.12% 52.42% 45.66% 38.49% 92.48%
0.7-Bottom, 0.7-Top 47.36% 22.74% 5.04% 41.42% 34.26% 28.90% 94.16%
0.7-Bottom, 0.3-Top 40.38% 13.50% 3.28% 36.96% 29.80% 24.98% 93.44%
0.3-Bottom, 0.3-Top 59.19% 28.00% 12.13% 68.60% 62.34% 53.50% 89.78%
0.3-Bottom, 0.7-Top 67.14% 40.57% 13.80% 73.93% 69.07% 60.58% 91.23%

0.5-BottomDC 37.37% 16.99% 6.62% 26.39% 20.09% 16.79% 95.12%
0.3-BottomDC 42.39% 19.90% 6.74% 28.85% 22.83% 20.22% 94.23%
0.1-BottomDC 47.41% 21.12% 11.43% 45.20% 38.32% 32.68% 93.27%
0.5-BottomSM 69.61% 46.57% 14.85% 76.26% 70.62% 61.99% 92.57%
0.3-BottomSM 79.69% 48.86% 13.87% 87.03% 83.43% 76.01% 89.81%
0.1-BottomSM 67.77% 44.38% 20.74% 68.67% 66.66% 61.88% 74.28%
0.5-Bottom×2 46.93% 21.74% 7.11% 45.08% 37.12% 31.21% 94.12%
0.3-Bottom×2 60.23% 29.72% 11.07% 63.62% 57.28% 48.83% 93.01%
0.1-Bottom×2 83.32% 66.44% 33.11% 89.57% 87.33% 80.20% 90.49%
ResNet-18EN 39.75% 18.73% 6.59% 26.87% 20.33% 17.22% 96.03%

0.5-Bottom×2,EN 51.91% 19.60% 7.86% 49.29% 39.53% 34.29% 95.10%
0.5-BottomEN 60.43% 31.07% 10.50% 61.60% 53.91% 46.50% 94.56%
0.3-BottomEN 74.11% 50.89% 13.54% 80.75% 76.27% 66.71% 93.31%
0.1-BottomEN 94.14% 82.46% 52.59% 96.22% 95.20% 92.64% 89.45%

Table 18: Extended experimental results of Section 4.3. Numbers in the middle mean the success
defense rates. Adversarial examples are generated against VGG-19. The model trained on CIFAR-
10 achieves 94.04% accuracy on test set. p-Bottom, p-Top, p-BottomDC, p-BottomSM, p-Bottom×n
and p-BottomEN mean applying defective layers with keep probability p to bottom layers, applying
defective layers with keep probability p to top layers, making whole channels defective with keep
probability p, using the same defective mask in every channel with keep probability p, increasing
channel number to n times at bottom layers and ensemble five models with different defective masks
of the same keep probability p respectively.

30

	Introduction
	Related Work
	Defective Convolutional Neural Network
	Design of Defective Convolutional Layers
	Defective CNNs Rely Less on Texture but More on Shape for Predicting

	Experiments
	Transfer-based Attack
	Experimental Settings
	Experimental Results

	Ablation Studies

	Conclusion
	More Experimental Results
	Decision-based Attack
	Experimental Settings
	Experimental Results

	Additive Gaussian Noise
	Experimental Settings
	Experimental Results

	Transfer-based Attack on Wide-ResNet
	Transfer-based Attack from Ensemble Models on CIFAR-10
	Transfer-based Attack on MNIST
	Gray-box Attack
	White-box Attack
	Randomly Shuffled Images and Stylized-ImageNet
	Different Keep Probabilities
	Experimental Details for Section 4.3

	Adversarial Examples Generated by Defective CNNs
	Architecture Illustrations
	ResNet-18
	ResNet-50
	DenseNet-121
	SENet-18
	VGG-19
	WideResNet-32

	Training Details on CIFAR-10 and MNIST
	Attack approaches

