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Abstract

Large Language Models (LLMs) have recently001
showcased remarkable generalizability in var-002
ious domains. Despite their extensive knowl-003
edge, LLMs still face challenges in efficiently004
utilizing encoded knowledge to develop ac-005
curate and logical reasoning. To mitigate006
this problem, we introduced the Hint-before-007
Solving framework (HinSo), which guides008
the model in generating hints (e.g., specific009
knowledge or key ideas) for solving the prob-010
lem before the step-by-step solution. Our011
studies involving 5 LLMs across 7 datasets012
of mathematical and commonsense reason-013
ing, results indicated that introducing hints014
before problem-solving can significantly en-015
hance the performance of CoT. To investigate016
whether LLMs can learn the HinSo pattern017
and improve their generalization ability, we018
constructed two large-scale and high-quality019
training datasets, HST-S and HST-L, con-020
taining 7.5k and 75k samples, respectively.021
The experimental results of supervised fine-022
tuning (SFT) showed that, under the same set-023
tings, the performance of model trained on the024
HinSo-formatted data improved significantly025
compared to CoT-formatted data, with a per-026
formance increase of 5.1% and 5.6% on the027
GSM8K, respectively. We make our code028
and dataset publicly available at https://029
github.com/sfhff216/hsp.030

1 Introduction031

Benefiting from extensive training corpora and032

computational resources, Large Language Models033

(LLMs) have reached state-of-the-art performance034

in numerous Natural Language Processing (NLP)035

tasks (Touvron et al., 2023a; OpenAI, 2023; Tou-036

vron et al., 2023b; Zhao et al., 2023b; Mistral AI037

Team, 2023). However, LLMs still face challenges038

in complex reasoning tasks, such as mathematical039

reasoning (Lu et al., 2023; Luo et al., 2023a; Imani040

et al., 2023) and commonsense reasoning (Paran-041

Problem: Find the second 
derivative of the polynomial. f(x) =
-9x^2. What is the value of f''(x)?

(a) Without Hint (CoT)

The second derivative of 
a polynomial $f(x) =-9x*2$ can be 
found using the power rule of 
differentiation, which states that:
$$ \frac{d^2}{dx^2}(x^n) = n(n-
1)x^{n-2}$$
In this case, we have $n = 2$, so:
$$ \frac{d^2}{dx^2}(-9x^2) = 2(2-
1)(-9x^2)= 18x^2$$
So, the second derivative of $f(x)$
is $f’’(x) = 18x^2$. 
Therefore, the value of $f’’(x)$ is 
$18x^2$.

The given polynomial is 
fx) =9x^2. To find the second 
derivative, we can use the 
definition of a derivative as a limit:
f'(x) = d/dx (-9x^2) = -18x
Now, to find the second derivative, 
we can use the chain rule:
f"(x) = d/dx (-18x) =-18
So, the value of f''(x) is -18.

Problem: Find the second 
derivative of the polynomial. f(x) =
-9x^2. What is the value of f''(x)?

(b) With Hint (CoT +Hint)

Hint: The second derivative of f(x) 
is the derivative of f’(x). The 
second derivative is written f”(x).

Input

Output

Input

Output

Figure 1: The output comparison of Llama-2-Chat-70B
solving a math problem (calculus) with and without a
hint. Red text indicates erroneous information; green
text indicates correct reasoning. Findings: (1) having a
hint can help the LLM understand the problem. (2) The
LLM possesses knowledge of calculus, and with a hint,
it can accurately apply this knowledge.

jape et al., 2021; Sap et al., 2020). Although pos- 042

sessing a wealth of knowledge, LLMs always fail 043

to accurately apply encoded knowledge to gener- 044

ate coherent and strongly logical reasoning chains 045

when addressing reasoning tasks. 046

To improve the performance of LLMs on com- 047

plex reasoning tasks, existing works have made sev- 048

eral attempts. These previous works include fine- 049

tuning on complete training datasets (Luo et al., 050

2023a; Yu et al., 2023; Yue et al., 2023) , training- 051

free methods based on prompt engineering (Zhou 052

et al., 2023a; Wang et al., 2023a; Fu et al., 2023; 053

Lyu et al., 2023; Zhao et al., 2023a), or enhancing 054

by retrieving knowledge from external knowledge 055

bases (Yao et al., 2023b; He et al., 2023; Yang et al., 056

2023). However, supervised fine-tuning methods 057

are resource-intensive, prompt engineering-based 058

methods rarely attempt to improve the ability of 059

LLM to use knowledge accurately, and retrieval- 060

enhancement-based methods are limited to specific 061

tasks. For example, mathematical reasoning that 062
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Figure 2: Results for Llama-2-Chat-70B (under CoT
prompting) with or without introducing high-quality
hints across six reasoning datasets. Findings: intro-
ducing hints lead to significant improvements, with an
average relative increase of 9.7%.

includes many special symbols is difficult to access063

relevant knowledge through keyword or semantic064

retrieval.065

To mitigate these problems, in this work, we066

explore how LLMs can effectively utilize their en-067

coded knowledge to enhance their reasoning logic068

and performance. We found that providing LLMs069

with hints effectively guides their use of encoded070

knowledge for problem-solving. Fig. 1 illustrates071

this by comparing Llama2-70B’s outputs on a cal-072

culus problem with and without hints. The LLM073

cannot utilize calculus knowledge to solve the prob-074

lem without any hints, as shown in Fig.1-(a). How-075

ever, when given a hint (as shown in Fig.1-(b)): “...076

The second derivative is written f ′′(x).” the LLM077

can accurately apply its “calculus knowledge” to078

generate a correct and logical solution with inter-079

mediate reasoning. The reason can be attributed080

to that the hint suggested that “f ′′(x) denotes the081

second derivative”, which helped the LLM to better082

understand the target of the problem. Moreover, we083

conducted quantitative analysis on six reasoning084

datasets by introducing hints generated by GPT-4.085

The experimental results are shown in Fig. 2. We086

can find that giving high-quality hints can effec-087

tively improve reasoning performance.088

However, it is challenging to provide high-089

quality hints for every sample. To address this090

problem, we propose the Hint-before-Solving (HS)091

method, which allows LLMs to generate hints on092

their own before solving a problem. The hints may093

include knowledge necessary for solving the prob-094

lem (e.g., the hint shown in Fig. 1-(b)), analyzing095

the question, and providing essential ideas for the096

solution. Our explorations of Hint-before-Solving097

(HinSo) in this paper are driven by following re-098

search questions:099

Q1: Can HinSo guiding LLMs to autonomously100

generate helpful hints be effective? To answer this 101

question, we incorporated HinSo into four well- 102

performing prompting methods to investigate how 103

HinSo performs (EXP-I). Furthermore, we exam- 104

ined the effectiveness of the HinSo variant, HinSo2, 105

which provides hints and solutions in two stages 106

(EXP-II). And explore the upper bound of LLMs 107

under the HinSo2 framework (EXP-III). (Sec. 4.1) 108

Q2: Does HinSo still work when dealing with 109

tasks that are challenging for LLMs? In other 110

words, if a task is difficult for LLMs, can they still 111

provide helpful hints? To answer this question, we 112

evaluated the challenging MATH dataset (EXP-IV). 113

Furthermore, we explore how LLMs perform under 114

the self-consistency setting (EXP-V). (Sec. ??) 115

Q3: How do LLMs perform if they are supervised 116

fine-tuned on a large-scale HinSo format dataset? 117

To answer this question, we constructed the HST-S 118

(7.5K) and HST-L (75K) dataset based on GSM8K 119

and conducted supervised fine-tuning on Llemma- 120

7B. The experimental results show that we achieved 121

a performance of 64.3 on Llemma-7B, surpassing 122

GPT3.5. (EXP-VI, Sec. 4.3) 123

The main contributions of this work are summa- 124

rized as below: 125

(1) We discovered that providing hints allows 126

LLMs to use their encoded knowledge accurately 127

and effectively. For quantitative analysis, with GPT- 128

4 generated hints, Llama-2-Chat-70B’s accuracy 129

increased by nearly 10% across six datasets. 130

(2) We propose the HinSo framework, allowing 131

LLMs to automatically generate useful hints. We 132

conducted extensive experiments and analyses on 133

applying HinSo to four popular prompting methods 134

to verify HinSo’s effectiveness. 135

(3) We collected two high-quality and large-scale 136

datasets, namely HST-S and HST-L, containing 137

7.5K and 75K samples enhanced with hints, namely 138

HST-L (to be released), and fine-tuned Llemma- 139

7B to achieve 64.3 accuracy, surpassing GPT-3.5 140

(57.1) and WizardMath-13B (63.9). 141

2 Hint before Solving 142

In this section, we will provide a detailed illustra- 143

tion of the Hint-before-Solving framework. Fig. 3 144

introduces two categories for incorporating hints: 145

(1) introducing hints from external sources (e.g., 146

knowledge base) to the LLMs (Fig. 3-(a)); (2) intro- 147

ducing hints encoded within the LLM itself, which 148

is further divided into hints provided by training- 149

free LLMs (Fig. 3-(b)), which is strongly relied 150
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Problem: Do black-tailed jackrabbits fear the European wildcat? 
Hint: Consider the natural habitats of black-tailed jackrabbits and European wildcats and whether their paths would cross. 
Answer: Black-tailed jackrabbits are native to North America.European wildcats are native to Europe. Thus, their paths 
would not naturally cross. So the answer is no. 

Hint LLMProblem Solution

External Knowlege

HintLLMProblem Solution

Internal Knowlege

LLM

Problem

Hint Solution

Problem-1

Solution-1

...(a) Hint is provided by the external KB or ChatGPT

(b) HinSo*: Hint before Solving (Training-free) (c) HinSo: Hint before Solving (SFT)

Training samples collection Supervised Fine-tuning and Inference

sample-1

Hint-1

sample-n

External 
Knowlege

Figure 3: The hint-before-solving framework (HinSo). (a) represents existing research that incorporates external
knowledge to the LLM as hints; (b) and (c) illustrate using the LLM’s own knowledge as hints, whereas (b) uses
an untrained LLM relying on the prompt design and demonstration samples selection strongly, and (c) requires
collecting annotated triplets (problem, hint, solution) for supervised fine-tuning, which will make the LLMs learn
the pattern. The purple dashed box illustrates an example of commonsense reasoning with triplet (problem, hint,
solution).

on the prompt and demonstrate samples; and hints151

intuitively introduced by LLMs after learning the152

hint-before-solving pattern through supervised fine-153

tuning (Fig. 3-(c)).154

What is the hint? The hints can be the knowl-155

edge required for solving the problem, insights for156

analyzing the question, and key ideas necessary for157

the solution. As shown in the box in Fig. 3, there158

is an example of using the Mixtral-8x7B-Instruct-159

v0.1 (Mistral AI Team, 2023) to generate the ‘hint’160

and ‘answer’ for the given commonsense reason-161

ing problem. For the question, “Do black-tailed162

jackrabbits fear the European wildcat?”, the LLMs163

provide the hint “Black-tailed jackrabbits are na-164

tive to North America.European wildcats are native165

to Europe. Thus, their paths would not naturally166

cross. So the answer is no.”, which offers the nec-167

essary background knowledge and essential ideas168

for solving the problem.169

External Hints As shown in Fig. 3-(a), many ex-170

isting studies have explored improving the problem-171

solving ability of LLMs by retrieving hints from ex-172

ternal knowledge bases (Levonian et al., 2023), us-173

ing stronger language models (e.g., GPT4) (Cohen174

et al., 2023), or using demonstration samples that175

are similar to the testing samples (Hu et al., 2022).176

However, retrieving hint from external sources does177

not always work. For instance, mathematical prob-178

lems with complex symbols make it difficult to find179

reliable and useful knowledge from text or seman-180

tics.181

HinSo* Therefore, we raise the following re-182

search question: Can LLMs provide hints that ben- 183

efit problem-solving their own to effectively utilize 184

their encoded inherent knowledge while generating 185

chain-of-thought reasoning? Fig. 3-(b) presents 186

the HintSo*, a hint-before-solving framework that 187

is training-free. Given a problem, we design ap- 188

propriate prompts and demonstration samples to 189

enable the LLM to generate helpful analyses and 190

knowledge hints before solving the problem. In 191

this process, the parameters of the language model 192

are fixed. We leverage the emergent capabilities of 193

LLMs, such as following task instructions (Chung 194

et al., 2022) and in-context learning (Min et al., 195

2022), to achieve hints before solving. Our HinSo* 196

can be formulized as: 197

P (H,S|T,Q) = P (S|T,Q,H)P (S|T,Q), 198

P (S|T,Q,H) =

|S|∏
j=1

LLM(sj |T,Q,H, s<j), 199

P (H|T,Q) =

|H|∏
i=1

LLM(hi|T,Q, h<i), 200

where T is the prompt template, Q is the testing 201

problem, H is the hint related to the solving prob- 202

lem, and S denotes the solution. The problem tem- 203

plate T for diverse explored tasks can be seen in 204

the appendix D. 205

HinSo Based on the emergent capabilities of 206

large language models, we have achieved training- 207

free Hint-before-Solving (HinSo*). However, due 208

to the absence of triplets (problem, hint, solution) 209
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in the training data of LLMs, the models cannot210

intuitively generate hints before producing a solu-211

tion. HinSo* is fragile and susceptible to the defini-212

tions of prompts and the selection of demonstration213

samples. Therefore, we propose HinSo based on214

Supervised Fine-Tuning (SFT), as shown in Fig. 3-215

(c). First, we need to construct training samples216

for HinSo, which are triplets (problem, hint, solu-217

tion). Hints can come from manual annotations,218

retrieved knowledge bases, or be provided by more219

capable large language models (e.g., GPT4). Here,220

we collect two high-quality and large-scale training221

datasets, HinSoTrain-S and HinSoTrain-L,222

with 7.5k and 75k samples, respectively. Then, con-223

ducting supervised fine-tuning based on the con-224

structed training datasets. Finally, perform infer-225

ence using the LLMs that have been fine-tuned.226

Our experiments also demonstrate that supervised227

fine-tuning HinSo requires fewer demonstration228

samples during the inference stage compared to229

training-free HinSo.230

3 Experiment Setup231

Number G8K ASDiv MArith AQUA MATH SQA Date

Samples 1,319 2,097 596 254 5,000 2,290 359
Examples 8 8 8 8 4 6 10

Table 1: The number of test samples and prompting
examples across seven datasets.

3.1 Large Language Model232

To verify the performance of our proposed233

method, we consider Mixtral-8x7B-Instruct-v0.1234

(Mix-56B) (Mistral AI Team, 2023) and Llama-2-235

Chat (Touvron et al., 2023c) family models, where236

Llama-2-Chat-7B (Lm2-7B), Llama-2-Chat-13B237

(Lm2-13B), Llama-2-Chat-70B (Lm2-70B) were238

studied. Note, the italicized text in parentheses239

represents the abbreviated names of the models.240

3.2 Datasets241

We evaluated the effectiveness of HinSo frame-242

work across multiple datasets for mathematical and243

common sense reasoning tasks. Tab. 1 shows the244

number of test samples for these datasets and the245

number of samples for prompting in a few-shot246

setting.247

Mathematical Reasoning We considered five248

popular mathematical reasoning datasets, namely249

GSM8K (G8K) (Cobbe et al., 2021), MultiArith250

(MArith) (Roy and Roth, 2016), AQuA (Ling251

et al., 2017), ASDiv (Miao et al., 2021), and 252

MATH (Hendrycks et al., 2021a). 253

Commonsense Reasoning Two common sense rea- 254

soning datasets were also taken into account, which 255

are StrategyQA (SQA) (Geva et al., 2021) and Date 256

Understanding (Date) (Srivastava et al., 2022). 257

3.3 Prompting Methods 258

The baseline Prompting methods considered in this 259

work are listed below: 260

(1) Standard Prompting (SD) (Brown et al., 2020) 261

generates the answer for the given question without 262

intermediate steps. (2) Chain-of-Thought Prompt- 263

ing (CoT) (Wei et al., 2022) generate step-by-step 264

solutions to a given problem. (3) Least-to-Most 265

Prompting (LtM) (Zhou et al., 2022) involves de- 266

composing a complex problem into simple subprob- 267

lems. (4) Plan-and-Solve Prompting (PS) (Wang 268

et al., 2023b) aims to handle the multi-step reason- 269

ing task by planning and solving each plan target. 270

To validate the effectiveness of the our HinSo 271

framework, we reimplemented some previous 272

prompting methods. To ensure a fair comparison, 273

we did not deliberately reproduce results reported 274

in previous papers but rather aimed to maintain 275

consistency in the experimental setup. For different 276

prompting methods, we kept using the same set of 277

demonstration samples and modified their format 278

according to the prompting method. We conducted 279

a performance survey on existing baseline prompt- 280

ing shown in the Appendix F. 281

3.4 Experimental Settings 282

Demonstration examples Under any prompting 283

method, one dataset is used with the number of 284

demonstration examples in all the experiments dis- 285

cussed in this work. Specifically, as shown in 286

Tab. 1, there are 8 demonstration examples each of 287

GSM8K, ASDiv, MArith, and AQUA, 6 examples 288

for StrategyQA, 10 examples for Date, 4 examples 289

for MATH. 290

Hyperparameters of Greedy Decoding We use 291

the vllm library 1 for few-shot evaluation. For 292

greedy decoding, the hyperparameters are set as: 293

top_p=1, max_tokens=500, temperature=0, and 294

the number of reasoning path n=1. For self- 295

consistency, the number of reasoning path n is set 296

to 4, 16, 32, 64, 128, and temperature = 0.4. Other 297

hyperparameters are set the same as the greedy de- 298

1https://github.com/vllm-project/vllm
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Method HinSo G8K ASDiv MArith AQUA SQA Date Avg Improvement

Lm2-7B

SD × 5.8 43.7 7.4 19.7 62.0 33.1 28.6

-8.0
-6.0
-4.0
-2.0
0.0
2.0
4.0
6.0
8.0

G8
K
AS
Div
MA
rith
AQ
UA
SQ
A
Da
te Av

g

SD LtM PS CoT

✓ † 5.5 44.8 6.5 21.3 63.8 39.8 30.3
LtM × 15.5 49.5 21.8 26.0 63.9 49.3 37.7

✓ † 16.0 50.2 29.2 23.2 65.3 42.3 37.7

PS × ‡ 21.8 55.8 66.6 25.6 58.1 34.8 43.8
✓ 21.5 56.8 60.6 25.2 60.5 33.4 43.0

CoT × 19.7 53.6 63.4 24.4 66.3 40.1 44.6
✓ † 19.9 55.8 63.8 24.4 67.5 43.2 45.8

Rlt Avg 0.0 1.2 0.2 -0.4 1.7 0.3 0.5

Lm2-13B

SD × 8.5 48.6 10.1 19.3 65.3 40.7 32.1

-10.0

-5.0

0.0

5.0

10.0

15.0

G8
K
AS
Div
MA
rith
AQ
UA
SQ
A
Da
te Av

g

SD LtM PS CoT

✓ † 8.2 49.9 11.7 21.3 68.4 55.2 35.8
LtM × 23.8 55.8 52.7 31.1 68.8 60.4 48.8

✓ † 27.6 55.9 57.7 23.2 69.6 51.3 47.6

PS × ‡ 35.1 63.0 80.7 25.6 60.9 47.6 52.2
✓ 32.4 62.9 74.8 25.6 66.0 50.1 52.0

CoT × 34.5 60.5 83.2 25.6 68.0 57.7 54.9
✓ † 36.5 61.2 87.1 25.6 72.1 57.7 56.7

Rlt Avg 0.7 0.5 1.1 -1.5 3.3 2.0 1.0

Lm2-70B

SD × 12.6 60.6 26.3 24.8 72.9 54.6 42.0

-10.0
-5.0
0.0
5.0
10.0
15.0
20.0
25.0

G8
K
AS
Div
MA
rith
AQ
UA
SQ
A
Da
te Av

g

SD LtM PS CoT

✓ † 12.8 62.7 25.7 25.6 75.5 76.6 46.5
LtM × 40.2 68.6 72.0 39.4 75.2 71.0 61.1

✓ † 41.9 69.4 76.8 38.6 77.0 77.4 63.5

PS × ‡ 60.0 74.1 95.8 40.2 64.7 62.4 66.2
✓ 55.5 72.7 93.0 36.2 58.9 63.8 63.4

CoT × 46.1 72.5 93.8 35.8 74.6 71.6 65.7
✓ † 50.3 74.4 94.6 37.0 77.0 73.0 67.7

Rlt Avg 0.4 0.9 0.6 -0.7 0.2 7.8 1.5

Mix-56B

SD × 19.8 64.3 44.6 22.0 72.1 45.4 44.7

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

G8
K
AS
Div
MA
rith
AQ
UA
SQ
A
Da
te Av

g

SD LtM PS CoT

✓ † 20.3 65.9 38.9 30.7 71.2 61.3 48.1

LtM × ‡ 56.0 77.1 74.3 43.3 73.9 64.1 64.8
✓ 56.0 77.0 72.8 49.2 72.4 64.3 65.3

PS × ‡ 73.2 84.2 97.8 49.6 66.3 68.5 73.3
✓ 67.1 82.3 92.3 48.4 67.6 66.6 70.7

CoT × 63.7 78.3 96.1 42.5 74.7 69.9 70.9
✓ † 69.8 80.1 97.0 48.4 75.1 77.4 74.6

Rlt Avg 0.1 0.4 -2.9 4.8 -0.2 5.4 1.3

Table 2: Results of applying HinSo to existing prompting (Sec. 3.3). Green (pink) values indicate the best
performance without HinSo (with HinSo). Rlt Avg denotes the average relative improvement on the four prompting
methods. Improvement represents the relative performance improvement when introducing HinSo compared to not
using HinSo. † indicates HinSo significantly boosts performance, whereas ‡ suggests omitting HinSo leads to better
results.

coding. All inference experiments are based on299

four A100 GPUs.300

Prompting Lm2-7B Lm2-13B Lm2-70B Mix-56B

CoT 4.5 5.6 11.1 27.0
+HinSo 4.4 5.7 11.4 28.6†

Table 3: Results on MATH dataset. Values in bold
denote the best performance, and the value with † de-
notes the performance of HinSo significantly outper-
forms CoT.

4 Experiments and Results301

4.1 Q1: Can HinSo Work?302

To answer this question, we applied HinSo to four303

existing popular prompting methods to explore304

how HinSo performs in different prompting meth-305

ods. Examples are shown in appendix A. Our ex- 306

perimental prompting methods include standard 307

prompting (SD), Least to Most prompting (LtM), 308

Plan-and-Solve prompting (PS), and CoT prompt- 309

ing, as introduced in Sec. 3.3 The results are shown 310

in Tab. 2. The main findings are summarized as 311

below: 312

(1) HSP is effective in standard and CoT prompting 313

but fails in PS and LtM prompting. From Tab. 2, 314

we observe that the standard and CoT Prompting 315

show significant performance improvements under 316

HinSo, while the enhancements from PS and LtM 317

are limited. We try to give reasons below: Hints 318

clarify the prompt or problem by offering key in- 319

sights or solutions, influencing the logic behind 320

the answers. They are crucial in task planning for 321

both PS and LtM prompting, where introducing 322
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Param. Prompting Overall
Type Level

AG CP GT IA NT PG PC L1 L2 L3 L4 L5

n=1,t=0
CoT 27.0 39.01 18.99 18.58 13.4 16.85 47.07 15.57 62.47 44.41 30.59 18.62 8.08
+HinSo 28.6 39.09 23.21 21.09 13.84 15.93 46.27 15.2 64.3 45.64 30.33 18.29 8.91
Impv 1.62 0.08 4.22 2.51 0.44 -0.92 -0.8 -0.37 1.83 1.23 -0.26 -0.33 0.83

n=4,t=0.4
CoT 31.9 46.67 26.58 22.55 15.39 20.56 52.47 17.95 71.17 49.33 36.6 23.39 10.8
+HinSo 33 47.35 26.37 26.1 15.39 21.3 54.88 19.6 72.31 51.45 36.34 25.86 11.33
Impv 1.1 0.68 -0.21 3.55 0 0.74 2.41 1.65 1.14 2.12 -0.26 2.47 0.53

n=16,t=0.4
CoT 37.6 53.41 31.22 27.35 19.38 26.67 58.9 24.73 78.03 56.71 43.15 30.07 13.52
+HinSo 38.8 53.75 32.07 31.52 20.93 27.59 59.82 26.01 78.49 57.83 44.39 33.11 13.44
Impv 1.2 0.34 0.85 4.17 1.55 0.92 0.92 1.28 0.46 1.12 1.24 3.04 -0.08

Table 4: The results of fine-grained evaluation for Mix-56B on the MATH dataset based on topic and problem
difficulty. n is the number of sample paths of the self-consistency, and t is the temperature. AG, CP, GT, IA, NT,
PA, PC respectively represent Algebra, Counting & Probability, Geometry, Intermediate Algebra, Number Theory,
Prealgebra, Precalculus. Green values indicate an performance improvement of HinSo prompting relative to CoT
prompting, while red values indicate a decrease. Values in bold denote performance improvements greater than 1.

hints early can impact their planning process. Con-323

versely, Standard and CoT prompting, focusing324

solely on the final answer or intermediate reason-325

ing, are compatible with hints.326

(2) Larger model sizes tend to show more signifi-327

cant performance improvements. From Tab. 8, we328

can observe that the average performance improve-329

ments for 7B, 13B, 56B, and 70B models across330

four prompting methods (e.g., CoT and LtM) are331

0.5, 1.0, 1.3, and 1.5, respectively. The reason can332

be that the model capabilities increase as the size333

increases, and higher capabilities will help achieve334

higher quality hints for better problem-solving.335

(3) The introduction of HinSo can steadily enhance336

the performance of CoT prompting. We observe337

that CoT, combined with HinSo, shows perfor-338

mance enhancements across all four models and339

six datasets, while SD, LtM, and PS all experience340

some scenarios of performance drop. From the line341

chart in Tab. 2, we can observe that LtM and PS342

exhibit significant fluctuations in average perfor-343

mance gains across each dataset, with numerous344

settings of negative improvement.345

4.2 Q2: Can HinSo Work on Hard Tasks?346

As the difficulty of the task increases, LLMs may347

not possess sufficient knowledge and capability to348

address it. This raises a research question: Q2:349

Can LLMs generate helpful hints when they350

meet the challenge task?351

To answer this question, we chose to investigate352

the MATH dataset (Hendrycks et al., 2021b), a353

dataset that poses challenges for LLMs. The re-354

sults are shown in Tab. 3. We can observe that only355

the Mix-56B model shows a significant improve-356

ment of 1.6 under CoT+HinSo prompting, while357

the Llama-2 family model fails. The reason might 358

be that the Llama-2 family models face significant 359

challenges on the MATH dataset, with their best 360

result being only 11.4 (Lm2-70B), while the Mix- 361

56B model achieves 27.0 under CoT prompting, it 362

is difficult for Llama-2 family model to generate 363

valuable hints. 364

To find which kind of samples Mix-56B can 365

work, we performed a fine-grained analysis based 366

on the mathematic problem topic and the difficulty, 367

where the dataset provides the topics and the dif- 368

ficulty levels. Furthermore, to explore how self- 369

consistency affects the performance, we evaluate 370

this model using sample paths of n=4 and n=16 and 371

a model temperature of 0.4. The results are shown 372

in Tab. 4. The main findings can be summarized as: 373

(1) As n increases, under the CoT+HinSo setting, 374

the samples for which the LLM sees performance 375

improvements shift from low to high difficulty. (2) 376

As n increases, it is commonly believed that the 377

most challenging GT type experiences the most 378

significant performance improvement, amounting 379

to 4.17. These indicate that by increasing n, HinSo 380

enhancement will correctly solve more complex 381

questions. 382

4.3 Q3: How does SFT Perform on HinSo 383

Format Datasets? 384

Despite the remarkable success of LLMs, most 385

existing open-source LLMs (e.g., LLaMA-2) still 386

face challenges in solving math problems due to 387

complex reasoning processes. How do LLMs per- 388

form when they are supervised fine-tuning (SFT) 389

on the HinSo format dataset? 390
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Model Size ACC Model Size ACC

open source close source

Llama2 7B 14.6 GPT-3.5 - 57.1
Llama2 13B 28.7 PaLM 540B 56.5
Llemma 7B 36.4 Minerva 540B 58.8
Llama2 34B 42.2 Minerva 62B 52.4
RFT 7B 50.3 Chinchilla 70B 43.7

Llemma 34B 51.5 SFT on HST-S (7.5k samples)

RFT 13B 54.8 Llemma-CoT-S 7B 46.8
WizardMath 7B 54.9 Llemma-HinSo-S 7B 51.9

WizardLM-V1.2 13B 55.3 SFT on HST-L (75k samples)

Llama2 70B 56.8 Llemma-CoT-L 7B 58.7
WizardMath 13B 63.9 Llemma-HinSo-L 7B 64.3

Table 5: The results of SFT on GSM8K. The values in
bold denote best SFT result. The values in blue denote
the mentioned baseline performance.

4.3.1 Training Dataset Collection391

To make the LLMs learn the hint before solving the392

problem intuitively, we try to construct the high-393

quality and large-scale HinSo format dataset for394

conducting the supervised fine-tuning. We used395

GPT-4 to assist in constructing hints. Specifically,396

we selected the GSM8K training dataset covering397

7,500 samples added a hint generated by guiding398

GPT-4 and manually verified to filter out or recon-399

struct samples with error in information. We build400

the HinSo-Training-Small (HST-S) with 7.5k train-401

ing samples. Furthermore, we try to construct a402

larger training dataset. Based on MetaMathQA (Yu403

et al., 2023). We extracted 75k samples from Meta-404

MathQA, which are derived from GSM8K and405

match the hint by found from HST-S. Finally, we406

created the HST-S with 7.5k samples and HinSo-407

Training-Large (HST-L) with 75k samples.408

4.3.2 Baselines409

The baselines considered include: Llama2 (Tou-410

vron et al., 2023c), RFT (Yuan et al., 2023),411

Llemma (Azerbayev et al., 2023), Wizard-412

Math (Luo et al., 2023b), WizardLM (Xu et al.,413

2023), GPT-3.5 (OpenAI, 2023), PaLM (Chowdh-414

ery et al., 2023), Minerva (Lewkowycz et al., 2022),415

and Chinchilla (Hoffmann et al., 2022)416

4.3.3 Experimental Setup417

We performed supervised fine-tuning on the418

Llemma-7B model using the constructed HinSo-419

formatted datasets, named HST-S (7.5k) and420

HST-L (75k). Llemma-HinSo-S and Llemma-421

HinSo-L are our models trained on the HST-S and422

HST-L, respectively. To ensure a fair comparison,423

Model G8K ASDiv MArith AQUA MATH

Llemma# 36.40 - - - 18.00
Llemma-Infer 40.11 69.58 89.43 33.47 17.02

SFT on CoT format datasets

Llemma-CoT-S 46.80 69.62 90.27 35.43 17.88
Llemma-CoT-L 58.70 71.20 91.44 35.04 16.24

SFT on HinSo format datasets

Llemma-HinSo-S 51.90 69.81 88.42 37.80 18.22
Llemma-HinSo-L 64.30 71.83 91.95 40.16 16.28

Table 6: Results of SFT models on mathematical reason-
ing datasets. # indicates results from the official Llemma
report, while Llemma-Infer denotes results evaluated
using the HinSo* prompt. Values in bold denote the
best performance for each dataset.

we conduct the SFT using Llemma-7B on CoT- 424

formatted HST-S and HST-L datasets, resulting 425

in models Llemma-CoT-S and Llemma-CoT-L. 426

For the above SFT model based on CoT- 427

formatted and HinSo-formatted datasets, the learn- 428

ing rate was set to 2 ∗ 10−5, with a batch size of 429

64, over 5 epochs. For evaluation consistency, we 430

set the temperature to 0. For the inference phrase, 431

we evaluated Llemma-CoT-S and Llemma-CoT- 432

L models using one demonstration sample for the 433

GSM8K dataset. 434

4.3.4 Results and Analysis 435

The results with supervised fine-tuning on HST-S 436

and HST-L datasets under Llemma-7B are shown 437

in Tab. 5. The main observations are listed below: 438

(1) Supervised fine-tuning on datasets with HinSo 439

format allows LLMs to achieve significant per- 440

formance improvements. From Tab. 5, we can 441

observe that in three groups of SFT under CoT 442

and HinSo dataset format, the performance dra- 443

matically improves with HinSo format, which is 444

5.1 (Llemma-CoT-S v.s Llemma-HinSo-S) and 5.6 445

(Llemma-CoT-L, Llemma-HinSo-L), respectively. 446

The reason can be that SFT involving hints helps 447

the model effectively utilize encoded knowledge 448

during the reasoning stage, thereby improving the 449

model’s generalization ability. 450

(2) The result of Llemma-HinSo-L surpassed 451

many popular LLMs, including GPT-3.5 and Wiz- 452

ardMath. By fine-tuning the HST-L dataset with 453

75k HinSo format samples, our Llemma-HinSo- 454

L achieved a competitive performance of 64.3, 455

surpassing closed-source models such as GPT-3.5 456

(57.1) and PaLM-540B (56.5), and WizardMath- 457

13B (63.9), which was fine-tuned on a large-scale 458
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Question: Jill gets paid $20 per hour to teach and $30 to be a cheerleading coach. If she works 50 weeks a year, 35
hours a week as a teacher and 15 hours a week as a coach, what’s her annual salary? True Answer: 57500
CoT Response: Jill works 50 weeks a year. She works 35 hours a week as a teacher, so that’s 35 x 50 = $1750 per year.
She works 15 hours a week as a coach, so that’s 15 x 50 = $750 per year. Her total annual salary is $1750 + $750 =
$2500. The answer is $2500. [WRONG]
CoT+HinSo Response:
Hint: To find out Jill’s annual salary, first calculate how much she makes per week as a teacher and as a coach. Then,
multiply this total amount by the number of weeks she works in a year. This will give you Jill’s annual salary.
Solution: Jill makes $20 per hour as a teacher, so 35 hours a week is 35 x 20 = 700 per week. As a coach, she makes
$30 per hour, so 15 hours a week is 15 x 30 = 450 per week. 700 + 450 = 1150 per week. 1150 x 50 weeks = 57500 per
year. The answer is 57500. [CORRECT]

Table 7: Case studies of solving mathematical reasoning with CoT+HinSo and CoT prompting on the Mixtral-7*8B
model. Blue text indicates the stem, pink text indicates the effective hint, cyan text indicates the judgment of whether
the answer is correct, [CORRECT] denotes correct, and [WRONG] denotes incorrect.

mathematical corpus.459

4.3.5 Generalization Capability Analysis460

To further explore whether models fine-tuned461

on HinSo-formatted datasets have better general-462

ization capabilities, we conducted evaluation of463

Llemma-HinSo-S and Llemma-HinSo-L on un-464

seen datasets, namely ASDiv, MArith, AQUA, and465

MATH. The results are shown in Tab. 6.466

Findings: (1) The generalization ability of mod-467

els fine-tuned on HinSo-formatted datasets is supe-468

rior to those fine-tuned on CoT-formatted datasets.469

This conclusion is supported by 7 out of 8 results470

across two sets of models and four external datasets471

(with the exception of the MArith dataset, where472

the performance of Llemma-CoT-S is better than473

Llemma-HinSo-S). (2) For the challenging dataset,474

MATH, increasing the number of HinSo-formatted475

training samples from GSM8K cann’t improve per-476

formance. This can be attributed to that SFT on477

easier datasets may diminish Llemma-7B’s ability478

to handle difficult datasets.479

5 Further Analysis480

How does guiding LLM to generate hints first affect481

the generation of the model’s solution? We choose482

to introduce hints under CoT prompting and select483

case studies on mathematical reasoning, shown in484

Tab 10. For more case analysis on common sense485

reasoning can be seen in the appendix C.486

In Tab 10, the solution from CoT seems reason-487

able, but when calculating the annual total income488

of a teacher and coach, it was not multiplied by489

the hourly wage, leading to a final miscalculation.490

In contrast, CoT+HinSo, within the hint, provided491

the problem-solving ideas, allowing for the correct492

answer to be calculated step by step in the solution493

based on the problem-solving strategy mentioned494

in the hint.495

6 Related Work 496

Chain-of-thought (CoT) has given a lot of inspi- 497

ration to many works and has made numerous 498

attempts to explore high performance. These 499

techniques include using programming languages 500

to represent the reasoning process (Gao et al., 501

2023; Lyu et al., 2023), representing the reason- 502

ing process with complex structures such as trees 503

or graphs (Yao et al., 2023a; Besta et al., 2023), 504

task decomposition (Zhou et al., 2022; Khot et al., 505

2023) and combining different prompting (Liu 506

et al., 2023; Zhou et al., 2023b). For the use of 507

hint enhancement, Zheng et al. (2023) proposed 508

Progressive-Hint Prompting (PHP), which aims to 509

enhance LLMs’ effectiveness by introducing hints 510

iterative, where the hint is a numerical value ob- 511

tained from the previous solution (or base prompt’s 512

solution). However, the hints for our HinSo come 513

from LLMs themselves, while PHP comes from 514

previous predictions. Moreover, our hints can be 515

one-stage, whereas PHP must be multi-staged. 516

7 Conclusion 517

In this work, we present a Hint-before-Solving 518

framework (HinSo) to direct Large Language Mod- 519

els (LLMs) to initially produce hints that assist in 520

problem-solving before generating solutions that 521

incorporate intermediate reasoning steps. Through 522

extensive experiments, we have drawn several main 523

findings: (1) HinSo can guide LLMs to gener- 524

ate knowledge or key ideas for solving problems 525

(Sec. 4.1). (2) When meets challenging tasks, 526

HinSo fails on low-capability open-source LLMs 527

(e.g., Llama2-7B); however, while work on high- 528

capability open-source LLMs (Sec. 4.2). (3) SFT 529

on the HST-L dataset, our Llemma-HinSo-L (64.3) 530

improve a lot, outperforming GPT3.5 (57.1) and 531

WizardMath-13B (63.9) (Sec. 4.3). 532
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Limitation533

Here, we summarize some limitations of this paper,534

as follows: (1) The HST-L dataset was expanded535

by rewriting questions from GSM8K nine times,536

but our hints were generated based only on the537

original samples and applied to the nine rewritten538

samples. The rewritten samples might undergo539

logical changes, making the introduction of hints540

less harmonious. There might be a risk of poor541

performance during supervised fine-tuning. In the542

future, we will refine this dataset carefully and543

release a new version. (2) Due to limitations in544

computational resources, this paper did not con-545

duct supervised fine-tuning on models larger than546

13B parameters in the SFT experiments, resulting547

in an incomplete exploration of HinSo-enhanced548

supervised fine-tuning. We will undertake this ex-549

ploration in the future.550
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A When HinSo Meets Existing Prompting 914

Methods 915

Fig. 4 shows the examples of input and output be- 916

fore (four examples at the top) and after (four ex- 917

amples at the bottom) applying HinSo to standard 918

Least-to-Most, Plan-and-Solve, and CoT prompt- 919

ings. 920

B Experiments and Results 921

B.1 Q1: Can HinSo Work? 922

B.1.1 Effectiveness of HinSo for CoT 923

Prompting 924

In Exp-I, we found that applying HinSo to CoT 925

prompting results in significant and stable perfor- 926

mance improvements across six datasets. Based on 927

this, to identify flexible and effective ways to in- 928

corporate HinSo, we attempted to explore whether 929

a two-stage HinSo (HinSo2) approach could work 930

in CoT prompting. The two-stage HinSo means 931

that LLMs produce outputs twice, first outputting 932

a hint and then a solution. In contrast, HinSo has 933

only one output that contains both the hint and the 934

solution. Experimental results on 6 datasets of 4 935

open source models are shown in Tab. 8. The main 936

observations are summarized as below: 937

(1) The performance of HinSo and HinSo2 is com- 938

parable, despite the different ways of introducing 939

hints. We can observe that among four LLMs, the 940

largest average performance gap between HinSo 941

and HinSo2 across six datasets was achieved on the 942

Llama2-13B model with 0.5% (56.7-56.2). This 943

indicates that although the methods of introducing 944

hints differ, the extent of performance improvement 945

brought by both is close. 946

(2) HinSo brings more stable improvements com- 947

pared to HinSo2. From histograms in Tab. 8, HinSo 948

shows improvements on nearly every dataset under 949

models of four different sizes. In contrast, HinSo2 950

may lead to performance decreases in certain sce- 951

narios, for example, on the MArith dataset, the 952

HinSo2 performance decreases with Llama2-7B 953

and Llama2-70B models. 954

B.1.2 The Impact of Hint Quality 955

Introducing HinSo can effectively enhance the per- 956

formance of CoT prompting. But what is the upper 957

bound? Here, we choose to explore on HinSo2 be- 958

cause it enables the hints from external sources, 959

a feature not available in the one-stage HinSo 960

structure, and HinSo2 is comparable in strength 961

to HinSo (Sec. B.1.1). Hints generated by GPT-4 962
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The answer is yes.

Q: Do black-tailed jackrabbits 
fear the European wildcat?

A: The answer is yes.

Q: Do black-tailed jackrabbits 
fear the European wildcat?

Hint: Reflect on the natural 
habitats and geographical 
distributions of both species. 
Consider their potential 
interactions and whether 
the jackrabbit would have 
reason to fear the wildcat.
A: The answer is no.

The answer is yes.

Q: Do black-tailed jackrabbits fear the 
European wildcat?

Q1. Are black-tailed jackrabbits prey animals?
Black-tailed jackrabbits are prey animals.

Q2. Are European wildcats predators?
European wildcats are predators.

Final answer: Do black-tailed jackrabbits 
fear the European wildcat?
A: The answer is yes.

Q: Do black-tailed jackrabbits fear the 
European wildcat?

Hint: Consider the natural role and 
geographical distribution of black-tailed 
jackrabbits and …
Q1. Are black-tailed jackrabbits prey animals?

Black-tailed jackrabbits are prey animals.
Q2. Do Black-tailed jackrabbits live in Europe?
      No…
Final answer: Do black-tailed jackrabbits fear 
the European wildcat?
A: The answer is no.

The answer is yes.

Q: Do black-tailed jackrabbits fear the 
European wildcat?

Relevant Information:
Black-tailed jackrabbits are native to North 
America. …
Plan:
1. Identify the geographical distribution of both.
2. …
Answer: Black-tailed jackrabbits are native to 
North America and are not found in Europe. …
The answer is moot.

Q: Do black-tailed jackrabbits fear the 
European wildcat?

Hint: Consider the natural habitats and 
geographical distribution of the two species.
Relevant Information:
Black-tailed jackrabbits are native to North 
America …
Plan:
1. Determine the geographical distribution both
2. Compare their geographical distribution. …
Answer:  No, …
The answer is no.

The answer is yes.

Q: Do black-tailed jackrabbits fear 
the European wildcat?

A: Black-tailed jackrabbits are prey 
animals.
European wildcats are predators.
Thus, black-tailed jackrabbits would 
fear the European wildcat.
So the answer is yes.

Q: Do black-tailed jackrabbits fear 
the European wildcat?

Hint: Consider the natural habitats of 
black-tailed jackrabbits and 
European wildcats and whether their 
paths would cross.
A: Black-tailed jackrabbits are native 
to North America.
European wildcats are native to 
Europe.
Thus, their paths would not naturally 
cross.
So the answer is no.

×

√

× × ×

Standard (SD) Least-to-Most (LtM)

Standard (SD)+HinSo Least-to-Most (LtM)+ HinSo

Plan-and-Solve (PS)

Plan-and-Solve (PS)+ HinSo

Chain-of-Thought (CoT)

Chain-of-Thought (CoT)+ HinSo

√ √√
Figure 4: Examples of input and output before (four examples at the top) and after (four examples at the bottom)
applying HinSo to standard Least-to-Most, Plan-and-Solve, and CoT promptings. The red text in the textbox
indicates hints. We find that hints from LLMs, including problem-solving ideas close to the correct answer (e.g.,
geographical distributions of both species), guide LLMs to use accurate knowledge for correct and logical reasoning.
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CoT 46.1 72.5 93.8 35.8 74.6 71.6 65.7
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+HinSo† 50.3 74.4 94.6 37.0 77.0 73.0 67.7
+HinSo2‡ 54.3 73.9 93.0 37.8 71.5 76.0 67.8

Mix-56B
CoT 63.7 78.3 96.1 42.5 74.7 69.9 70.9
+HinSo† 69.3 80.1 97.0 48.4 75.1 77.4 74.6
+HinSo2‡ 69.8 80.3 96.8 45.7 74.3 79.1 74.3

Table 8: The results of applying HinSo and HinSo2 in CoT prompting. The bold values indicate the best performance.
† and ‡ denote that the performance of HinSo and HinSo2 is significantly better than CoT prompting, respectively.

will be used as part of the input in the HinSo2, de-963

noting as HinSo2G. Experimental results are shown964

in Tab. 9. The performance of ChatGPT is copied965

from Yin et al. (2023), where the number of ex-966

amples used to evaluate GSM8K, MultiArith, and967

AQUA is 8, 8, and 4, respectively. The main find-968

ings are summarized as below:969

(1) High-quality hints make the open-source970

model outperforms ChatGPT. We can observe that971

with the introduction of high-quality hints, all of972

the four LLMs with different model sizes and struc-973

tures consistently showed performance improve-974

ment across six datasets. Furthermore, the Mix-975

56B equipped with HinSo2(GPT4) outperformed976

ChatGPT on the GSM8K, MultiArith, and AQUA977

datasets. 978

(2) The introduction of high-quality hints leads 979

to more improvements in lower-capability models. 980

Tab. 9 shows that the average performance improve- 981

ments for the Llama2 models sized 7B, 13B, and 982

70B are 12.8, 9.9, and 7.7, respectively. This in- 983

dicates that with the support of high-quality hints, 984

HinSo2(GPT4)’s performance has improved a lot 985

compared to HinSo2. This can be attributed to 986

that the low capability LLMs are hard to generate 987

helpful hints that can assist in providing correct 988

solutions. By providing high-quality hints, it is 989

possible to offer more benefits beyond the capabil- 990

ity of lower-ability LLMs. Therefore, there is a 991

relatively large improvement in performance. 992
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Method G8K ASDiv MArith AQUA SQA Date Avg

ChatGPT 79.1 - 97.3 55.1 - - -

7B HinSo2 22.6 55.4 62.6 25.2 66.8 40.4 45.5
HinSo2G 39.0 62.5 88.9 28.7 69.5 61.0 58.3
Impv 16.4 7.1 26.3 3.5 2.7 20.6 12.8

13B HinSo2 36.5 61.9 85.1 26.0 70.7 57.0 56.2
HinSo2G 56.4 66.4 95.6 36.6 72.0 69.4 66.1
Impv 19.9 4.5 10.5 10.6 1.3 12.4 9.9

70B HinSo2 54.3 73.9 93.0 37.8 71.5 76.0 67.8
HinSo2G 68.2 79.0 98.0 43.3 76.6 87.7 75.5
Impv 13.9 5.1 5.0 5.5 5.1 11.7 7.7

56B HinSo2 69.8 80.3 96.8 45.7 74.3 79.1 74.3
HinSo2G 79.5 84.1 99.2 56.3 76.5 84.7 80.1
Impv 9.7 3.8 2.4 10.6 2.2 5.6 5.7

Avg impv 15.0 5.1 11.1 7.6 2.8 12.6 9.0

Table 9: Experimental results of enhancing HinSo2 with
hints generated by GPT4. The values in green are the
performance gap between HinSo2G and HinSo2. The
blue values are the improvement across the four models.
The values in bold represent the best performance.
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(c) 70B
Figure 5: The relative performance improvement of
self-consistency between CoT+HinSo and CoT. The
numbers of sample paths are 4, 16, 32, and 128, and the
model temperature is 0.4.

B.2 Q2: Can HinSo Work on Hard Tasks?993

B.2.1 The Impact of Self-consistency994

In EXP-IV (Sec. 4.2), we found that self-995

consistency setting can improve performance of996

difficult tasks (MATH dataset), even difficult sam-997

ples. This raises the question of how CoT prompt-998

ing equipped with HinSo performs under a self-999

consistency setting for the popular tasks. We sam-1000

ple paths with numbers (n) 4, 16, 32, and 128 for1001

the self-consistency study and set the model tem-1002

perature as 0.4. The relative improvement between1003

CoT+HinSo and CoT on six datasets is shown in1004

Fig. 5 (Full results can be seen in the Appendix G).1005

The main findings are as below:1006

(1) As the number of sampling paths increases, the1007

relative improvements brought by applying HinSo1008

also increase. From Fig. 5, we can observe that1009

at n=32 or n=128, all three models achieve their1010

best performance. By calculating the Pearson cor-1011

relation between the number of sampling (n) and1012

relative performance for Lm2-7B, Lm2-13B, and1013

Lm2-70B (excluding n=128), the correlations are1014

0.67, 0.72, and 0.95, respectively. The reason can1015

be that the larger n leads to more explored hints, 1016

making it easier to generate hints beneficial for 1017

problem-solving. 1018

(2) Smaller models see the most significant rela- 1019

tive performance improvement after applying self- 1020

consistency. This might be because smaller models 1021

have lower capabilities, while with guided hints, 1022

increasing n makes it easier to correct originally 1023

incorrect solutions, thus leading to more substantial 1024

performance improvements. 1025

C Analysis 1026

C.1 Length of Reasoning 1027

Can HinSo enhance the model’s reasoning capabil- 1028

ity and effectively reduce the length of the solution 1029

generated? To answer this question, we calculated 1030

the solution lengths for CoT and CoT+HinSo (ap- 1031

plying HinSo to CoT). For easy understanding, we 1032

divided the solution length of CoT+HinSo by the 1033

solution length of CoT, with the results shown in 1034

Fig. 6, where the red horizontal line indicates that 1035

the solution lengths of CoT and CoT+HinSo are 1036

equal. 1037

Our main observation are summarized as below: 1038

(1) Introducing HinSo can effectively reduce the 1039

length of the solution. From Fig. 6, we can obser- 1040

vate that, out of 24 results across four models and 1041

six datasets, only 5 instances show CoT+HinSo 1042

having a longer solution length than CoT. 1043

(2) The effect of reducing the solution length by 1044

introducing HinSo is most pronounced in mathe- 1045

matical reasoning tasks. 1046

0.7

0.8

0.9

1

1.1

G8K ASDiv MArith AQUA SQA Date

Lm2-7B Lm2-13B Lm2-70B Mix-56B

Figure 6: The ratio of solution lengths between CoT and
HinSo+CoT (HinSo applied to CoT prompting). The
red line (y=1) indicates that the solution lengths of CoT
equals to HinSo+CoT.
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C.2 Case Study1047

Guiding the model to generate hints before the1048

solution can effectively improve the model’s per-1049

formance. So, how does guiding LLM to generate1050

hints first affect the generation of the model’s so-1051

lution? We choose to introduce hints under CoT1052

prompting and select case studies on mathematical1053

reasoning and common sense reasoning tasks, as1054

shown in Tab 10.1055

Case 1 For the question, "Could a Jujutsu expert1056

hypothetically defeat a Janissary?". Under CoT1057

prompting, the LLM-generated solution only ex-1058

plained what “Jujutsu expert” and “Janissary” are.1059

However, in CoT+HinSo, the generated hint men-1060

tioned analyzing the possibility of the Jujutsu ex-1061

pert defeating Janissary from the perspectives of1062

“martial arts skills” and “weapons,” thus making a1063

correct solution followed up after introducing the1064

hint.1065

Case 2 The solution from CoT seems reasonable,1066

but when calculating the annual total income of1067

a teacher and coach, it was not multiplied by the1068

hourly wage, leading to a final miscalculation. In1069

contrast, CoT+HinSo, within the hint, provided1070

the problem-solving ideas, allowing for the correct1071

answer to be calculated step by step in the solution1072

based on the problem-solving strategy mentioned1073

in the hint.1074

C.3 Robustness Analysis1075

Considering the impact that varying sets of exam-1076

ples may have on results, the question arises: Is the1077

HinSo framework effective with diverse example1078

sets?1079

To investigate this, we conducted experiments1080

on the GSM8K (mathematical reasoning) and Strat-1081

egyQA (common sense reasoning) datasets. Like1082

the setting in Exp-I, we randomly chose four sets1083

of examples from the testing set, each compris-1084

ing 8 examples for GSM8K and 6 examples for1085

StrategyQA. We then crafted hints and solutions1086

featuring intermediate reasoning steps aided by1087

GPT-4. These experiments were carried out on1088

four LLMs: Llama2-7B, Llama2-13B, Llama2-1089

70B, and Mixtral-8*7B. According to the results1090

presented in Tab. 11, CoT+HinSo consistently out-1091

performed CoT across the GSM8K and StrategyQA1092

datasets, with all four models showing significant1093

performance enhancements across the four exam-1094

ple sets. This demonstrates the robustness of the1095

performance gains achieved by integrating CoT 1096

with HinSo. 1097

D Prompt Example 1098

The four models evaluated in this paper, namely 1099

Lm2-7B, Lm2-13B, Lm2-70B, and Mix-56B, were 1100

all tested using the same prompt template. Tab. 12 1101

shows the prompt template for mathematical rea- 1102

soning and common sense reasoning tasks. 1103

Tab. 13 shows the prompt template for the GPT4 1104

to generate hints for constructing our HST-S and 1105

HST-L training datasets. 1106

E Case Study 1107

Guiding the model to generate hints before the 1108

solution can effectively improve the model’s per- 1109

formance. So, how does guiding LLM to generate 1110

hints first affect the generation of the model’s so- 1111

lution? We choose to introduce hints under CoT 1112

prompting and select case studies on mathematical 1113

reasoning and common sense reasoning tasks, as 1114

shown in Tab 14. 1115

Case 1 The solution from CoT appears logical, 1116

but its analysis remains superficial, merely focus- 1117

ing on the relationship between the two entities (US 1118

brand Nice and the Western honey bee) to answer 1119

the question. In contrast, the hint from CoT+HinSo 1120

suggests approaching from a deeper view, specifi- 1121

cally questioning whether the crops relied upon by 1122

US brand Nice depend on Western honey bees for 1123

pollination, which leads to the correct answer. 1124

Case 2 For question “Do black-tailed jackrabbits 1125

fear the European wildcat?”, CoT only considered 1126

the biological perspective, leading to an incorrect 1127

answer. However, the hint from CoT+HinSo sug- 1128

gested that it is necessary to consider not only the 1129

biological aspect but also the habitat of the organ- 1130

ism, thereby achieving the correct answer. 1131

Case 3 We can observe that CoT’s calculation 1132

method overlooks an important piece of knowledge, 1133

namely the formula for calculating the perimeter: 1134

“The distance traveled by a point on the edge of a 1135

rotating object equals the circle’s circumference.”. 1136

In contrast, CoT+Hint successfully suggests utiliz- 1137

ing the formula for perimeter, thereby obtaining 1138

the correct answer. 1139

Case 4 The question involves calculating the 1140

perimeter of a rectangle, but the CoT method 1141

only adds the width and height of a rectangle. 1142
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Case 1: Commonsense reasoning
Question: Could a Jujutsu expert hypothetically defeat a Janissary?
True Answer: FALSE
CoT Response: Jujutsu is a martial art that focuses on using an opponent’s strength against
them.Janissaries were elite soldiers in the Ottoman Empire.Thus, a Jujutsu expert could poten-
tially defeat a Janissary. So the answer is yes. [WRONG]
CoT+HinSo Response:
Hint: Compare the martial arts skills of a Jujutsu expert with the combat training of a Janissary,
considering the historical context and weaponry.
Solution: A Jujutsu expert has martial arts skills, but no weapons.A Janissary is an elite Ottoman
soldier with advanced combat training and weaponry. Thus, a Janissary would likely defeat a Jujutsu
expert. So the answer is no. [CORRECT]

Case 2: Mathematical reasoning
Question: Jill gets paid $20 per hour to teach and $30 to be a cheerleading coach. If she works 50
weeks a year, 35 hours a week as a teacher and 15 hours a week as a coach, what’s her annual salary?
True Answer: 57500
CoT Response: Jill works 50 weeks a year. She works 35 hours a week as a teacher, so that’s 35 x 50
= $1750 per year. She works 15 hours a week as a coach, so that’s 15 x 50 = $750 per year. Her total
annual salary is $1750 + $750 = $2500. The answer is $2500. [WRONG]
CoT+HinSo Response:
Hint: To find out Jill’s annual salary, first calculate how much she makes per week as a teacher and as
a coach. Then, multiply this total amount by the number of weeks she works in a year. This will give
you Jill’s annual salary.
Solution: Jill makes $20 per hour as a teacher, so 35 hours a week is 35 x 20 = 700 per week. As a
coach, she makes $30 per hour, so 15 hours a week is 15 x 30 = 450 per week. 700 + 450 = 1150 per
week. 1150 x 50 weeks = 57500 per year. The answer is 57500. [CORRECT]

Table 10: Case studies of solving mathematical reasoning and common sense reasoning problems with CoT+HinSo
and CoT prompting on the Mixtral-7*8B model. Blue text indicates the stem, pink text indicates the effective hint,
cyan text indicates the judgment of whether the answer is correct, [CORRECT] denotes correct, and [WRONG]
denotes incorrect.

Model HinSo
GSM8K SQA

E1 E2 E3 E4 E1 E2 E3 E4

Lm2-7B
× 20.2 15.2 18.0 17.0 61.2 56.6 63.9 60.9
✓ 22.7 21.6 23.4 22.8 63.8 61.5 65.9 63.3

Lm2-13B
× 35.9 29.1 25.4 32.2 64.1 60.6 67.5 63.2
✓ 37.1 34.7 35.1 36.5 67.4 62.0 68.2 65.9

Lm2-70B
× 53.7 54.1 54.4 54.0 71.1 65.1 75.1 68.2
✓ 60.1 56.3 55.3 59.3 71.7 72.1 75.8 73.1

Lm2-56B
× 67.9 68.8 67.2 67.8 65.4 60.3 69.3 61.9
✓ 69.1 69.1 68.2 68.8 67.3 64.5 70.6 66.8

Table 11: Experimental results for CoT Prompting with
and without HinSo on the GSM8K and StrategyQA
(SQA) datasets across various example groups (E1, E2,
E3, and E4). Values in bold denote the best results.

CoT+HinSo suggested that the perimeter be cal- 1143

culated by four lengths, making the final answer 1144

calculation correct. 1145

F Reference Baseline 1146

In this paper, we reimplemented the results of four 1147

models, namely Llama-7B, Llama-13B, Llama- 1148

70B, and Mixtral-7*8B, under SD, LtM, PS, and 1149

CoT promptings, to compare with our HinSo- 1150

enhanced promptings’ performance. Are our reim- 1151

plemented results within a reasonable range? To 1152

answer this question, we compared our reimple- 1153

mented results with results from some recently 1154

works across six datasets: GSM8K, AQUA, ASDiv, 1155

Date, MultiArith, and StrategyQA. The results are 1156

shown in Fig. 7. 1157

There is a considerable amount of existing work 1158

on CoT prompting, while results for SD, LtM, and 1159

PS prompting are limit. The baseline work we 1160

present in the Fig. 7 comes from five studies that 1161

cover a broad range of baseline methods. We can 1162

observe that across these six datasets, except for 1163

Llama-7B, which often lacks a closely matched 1164

model size for a baseline, the results for Llama- 1165

13B, Llama-70B, and Mixtral-7*8B are compara- 1166
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Mathematical reasoning

Please answer the following question.
Example 1: Question: Shawn has five toys. For Christmas, he got two toys each from his mom
and dad. How many toys does he have now?
Hint: Begin with the number of toys Shawn had initially. Then, add the number of toys he
received from each parent. Remember, each parent gave him a certain number of toys, so you’ll
need to add those to his original amount to find out how many toys he has now.
Solution: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4
more toys. 5 + 4 = 9. The answer is 9.
...... (Omitting 7 examples)

Testing Example:
Question: [QUESTION]
Commonsense reasoning

Please answer the following question.
Example 1: Question: Do hamsters provide food for any animals?
Hint: Consider the natural role of hamsters in the food chain and who might rely on them as a
source of nutrition.
Solution: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food
for some animals. So the answer is yes.
...... (Omitting 5 examples)

Testing Example:
Question: [QUESTION]

Table 12: Prompt template for the evaluation of LLMs based on the HinSo framework on mathematical reasoning
and commonsense reasoning.

Mathematical reasoning

Please generate a hint for solving the following question.
Example 1: Question: There are 15 trees in the grove. Grove workers will plant trees in the grove
today. After they are done, there will be 21 trees. How many trees did the grove workers plant
today?
Hint: Think about how many trees there were at the beginning and how many there are at the
end. To find out how many trees were planted, you need to figure out the difference between
these two numbers.
...... (Omitting 7 examples)

Testing Example:
Question: [QUESTION]

Table 13: A prompt template for the GPT4 generates the hint for constructing our HST-S and HST-L training
datasets.
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ble to some existing open-source or closed-source1167

models.1168

G Results of Self-consistency1169

Tab. 15 shows the results of self-consistency.1170
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Figure 7: A comparison of the results from existing work with the results reimplemented in this work for Llama2-7B,
Llama2-13B, Llama2-70B, and Mixtral-7*8B across six datasets. The existing results come from five works:
[1] (Wang et al., 2023a), [2] (Lyu et al., 2023), [3] (Luo et al., 2023a), [4] (Azerbayev et al., 2023), and [5] (Wei
et al., 2022).
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Case 1: Commonsense reasoning
Question: Does US brand Nice depend on Western honey bee?
True Answer: TRUE
CoT Response: Nice is a brand of ice cream. Ice cream is not made from honey bees. Thus, Nice does not depend on
Western honey bees. So the answer is no. [WRONG]
CoT+HinSo Response:
Hint: Consider the crops that Nice brand depends on and whether those crops require pollination by Western honey bees.
Solution: Nice brand depends on almonds. Almonds require pollination by Western honey bees. Thus, Nice brand depends
on Western honey bees. So the answer is yes. [CORRECT]

Case 2: Commonsense reasoning
Question: Do black-tailed jackrabbits fear the European wildcat?
True Answer: FALSE
CoT Response: Black-tailed jackrabbits are prey animals. European wildcats are predators. Thus, black-tailed jackrabbits
would fear the European wildcat. So the answer is yes. [WRONG]
CoT+HinSo Response:
Hint: Consider the natural habitats of black-tailed jackrabbits and European wildcats and whether their paths would cross.
Solution: Black-tailed jackrabbits are native to North America. European wildcats are native to Europe. Thus, their paths
would not naturally cross. So the answer is no. [CORRECT]

Case 3: Mathematical reasoning
Question: A point on the edge of a fan blade that is rotating in a plane 10 centimeters from the center of the fan. What is the
distance traveled, in centimeters, by this point after 30 seconds when the fan runs at the rate of 300 revolutions per minutes?
# Answer option: [A)750π, B)1500π, C) 1875π, D)3000π, E)7500π]
True Answer: D
CoT Response: The fan makes 300 revolutions in 60 seconds. So it makes 300/60 = 5 revolutions in 1 second. So it makes
5*30 = 150 revolutions in 30 seconds. The point on the edge of the fan blade travels 10 centimeters in one revolution. So it
travels 10*150 = 1500 centimeters in 30 seconds. So the answer is (b). [WRONG]
CoT+HinSo Response:
Hint: The distance traveled by a point on the edge of a rotating object is calculated by multiplying the circumference of the
circle it moves along by the number of rotations.
Solution: The fan makes 300 revolutions in 60 seconds. In 30 seconds, it makes 300/2 = 150 revolutions. The circumference
of the circle is 2πr = 2π(10) = 20π. The distance traveled is 150 ∗ 20π = 3000π. So the answer is (d). [CORRECT]

Case 4: Mathematical reasoning
Question: James wants to hang crepe-paper streamers from his backyard fence for his birthday party. His backyard fence is a
rectangle that measures 20 feet on the long side and 15 feet on the short side. How many feet of crepe paper does James need
to buy?
True Answer: 70
CoT Response: The fence is 20 feet long and 15 feet wide. The total length of the fence is 20 + 15 = 35 feet. He needs
exactly the same amount of crepe paper as the length of the fence. So he needs to buy 35 feet of crepe paper. The answer is
35. [WRONG]
CoT+HinSo Response:
Hint: To find out how much crepe paper James needs to buy, calculate the perimeter of the fence. The perimeter is the total
distance around the fence. To find the perimeter, add the lengths of all four sides of the fence together.
Solution: The long side of the fence is 20 feet. The short side is 15 feet. So the perimeter is 20 + 15 + 20 + 15 = 70 feet. The
answer is 70. [CORRECT]

Table 14: Case studies of solving mathematical reasoning and commonsense reasoning problems with CoT+HinSo
and CoT prompting on the Mixtral-7*8B model. Blue text indicates the stem, pink text indicates the effective hint,
cyan text indicates the judgment of whether the answer is correct, [CORRECT] denotes correct, and [WRONG]
denotes incorrect.
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Model SC Hint
MATH Commonsense

Avg Relative ImprovementGSM8K ASDiv MultiArith AQUA SQA Date

Llama2-7B

1 0 19.7 53.6 63.4 24.4 66.3 40.1 44.6

1.2

2.8

3.6 3.6
4.2

0.0

1.0

2.0

3.0

4.0

5.0

1 4 16 32 128

1 1 19.9 55.8 63.8 24.4 67.5 43.2 45.8
1 Impv 0.2 2.2 0.4 0.0 1.2 3.1 1.2
4 0 23.6 54.6 68.0 23.6 67.9 40.1 46.3
4 1 26.5 57.1 73.0 26.4 69.2 42.1 49.1
4 Impv 2.9 2.5 5.0 2.8 1.3 2.0 2.8
16 0 24.7 55.5 68.5 26.0 67.9 40.1 47.1
16 1 29.2 57.3 77.7 26.0 70.7 43.5 50.7
16 Impv 4.5 1.8 9.2 0.0 2.8 3.4 3.6
32 0 25.5 55.2 67.6 25.6 68.6 39.6 47.0
32 1 29.5 57.5 78.9 26.4 70.2 41.5 50.7
32 Impv 4.0 2.3 11.3 0.8 1.6 1.9 3.6

128 0 25.4 55.1 68.1 26.4 68.3 40.4 47.3
128 1 30.3 59.0 79.5 25.6 70.2 44.3 51.5
128 Impv 4.9 3.9 11.4 -0.8 1.9 3.9 4.2

Llama2-13B

1 0 34.5 60.5 83.2 25.6 68.0 52.4 54.0

2.0
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3.2 3.2

0.0
0.5
1.0
1.5
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3.5

1 4 16 32 128

1 1 36.5 61.2 87.1 25.6 72.1 53.5 56.0
1 Impv 2.0 0.7 3.9 0.0 4.1 1.1 2.0
4 0 40.7 61.5 87.8 25.6 69.1 57.4 57.0
4 1 41.1 62.7 89.4 28.7 72.6 57.9 58.7
4 Impv 0.4 1.2 1.6 3.1 3.5 0.5 1.7
16 0 42.3 62.5 89.4 28.0 69.0 57.7 58.2
16 1 46.9 64.7 91.3 28.7 72.8 59.1 60.6
16 Impv 4.6 2.2 1.9 0.7 3.8 1.4 2.4
32 0 41.5 62.6 90.1 26.4 69.6 57.9 58.0
32 1 48.2 64.9 92.8 28.0 73.1 60.2 61.2
32 Impv 6.7 2.3 2.7 1.6 3.5 2.3 3.2

128 0 47.9 62.9 90.1 27.6 70.2 58.8 59.6
128 1 52.5 66.8 93.0 29.5 73.0 61.6 62.7
128 Impv 4.6 3.9 2.9 1.9 2.8 2.8 3.2

Llama2-70B

1 0 46.1 72.5 93.8 35.8 74.6 71.6 65.7

2.0
2.3 2.5

4.1
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0.0

1.0

2.0

3.0

4.0

5.0

1 4 16 32 128

1 1 50.3 74.4 94.6 37.0 77.0 73.0 67.7
1 Impv 4.2 1.9 0.8 1.2 2.4 1.4 2.0
4 0 59.5 75.0 95.3 39.8 78.2 73.3 70.2
4 1 60.5 75.9 96.1 41.3 78.3 82.7 72.5
4 Impv 1.0 0.9 0.8 1.5 0.1 9.4 2.3
16 0 60.1 76.3 96.1 42.1 78.4 73.3 71.1
16 1 67.0 77.9 97.8 44.5 79.2 74.9 73.6
16 Impv 6.9 1.6 1.7 2.4 0.8 1.6 2.5
32 0 60.6 77.1 96.3 45.3 78.5 72.7 71.8
32 1 67.4 78.4 98.0 47.2 80.1 84.1 75.9
32 Impv 6.8 1.3 1.7 1.9 1.6 11.4 4.1

128 0 67.0 77.6 96.3 46.1 79.4 73.5 73.3
128 1 67.6 78.8 98.2 47.6 79.5 83.3 75.8
128 Impv 0.6 1.2 1.9 1.5 0.1 9.8 2.5

Table 15: The results of self-consistency on the six datasets. Values in green denote the relative performance
improvement with hints versus without hints under the same setting. The blue bold values represent the best
performance with hints, while the pink bold values indicate the best performance without hints. The figure on the
right shows the average relative improvement across six datasets.
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