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Abstract

Recent policy proposals aim to improve the safety of general-purpose AI, but1

there is little understanding of the efficacy of different regulatory approaches to AI2

safety. We present a strategic model that explores the interactions between safety3

regulation, the general-purpose AI technology creators, and domain specialists–4

those who adapt the technology for specific applications. Our analysis examines5

how different regulatory measures, targeting different parts of the AI develop-6

ment chain, affect the outcome of this game. In particular, we assume AI tech-7

nology is characterized by two key attributes: safety and performance. The reg-8

ulator first sets a minimum safety standard that applies to one or both players,9

with strict penalties for non-compliance. The general-purpose creator then invests10

in the technology, establishing its initial safety and performance levels. Next, do-11

main specialists refine the AI for their specific use cases, updating the safety and12

performance levels and taking the product to market. The resulting revenue is then13

distributed between the specialist and generalist through a revenue-sharing param-14

eter. Our analysis reveals two key insights: First, weak safety regulation imposed15

predominantly on domain specialists can backfire. While it might seem logical to16

regulate AI use cases, our analysis shows that weak regulations targeting domain17

specialists alone can unintentionally reduce safety. This effect persists across a18

wide range of settings. Second, in sharp contrast to the previous finding, we ob-19

serve that stronger, well-placed regulation can in fact mutually benefit all play-20

ers subjected to it. When regulators impose appropriate safety standards on both21

general-purpose AI creators and domain specialists, the regulation functions as a22

commitment device, leading to safety and performance gains, surpassing what is23

achieved under no regulation or regulating one player alone.24

Introduction25

As Generative Artificial Intelligence (AI) and related technologies gain traction, there is an increas-26

ing number of proposals for regulation to improve safety. Many of these proposals must at some27

level grapple with the following question: Who should be targeted with AI regulation–the producers28

of general-purpose AI models1 or the domain-specialists who adapt the technology for specific use29

cases? There are seemingly reasonable positions that favor regulating one entity, the other, both, or30

neither. For example, the downstream domain specialists and deployers are some of the last entities31

to exert influence on the technology before it interacts with consumers directly, so it is perhaps rea-32

sonable that regulation for consumer safety might target requirements at these entities. In contrast,33

the upstream entities developing general-purpose models exert impact on these models earlier in34

1Such AI models are at times referred to as “foundation” or “frontier” models [Bommasani et al., 2021,
Anderljung et al., 2023]. Throughout this paper, we will use the technology of general-purpose AI to refer to
large-scale models that can be adapted to a wide range of tasks and domains.
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their development trajectories, facilitating or hindering downstream adoption, which might justify35

certain regulatory requirements including disclosure mandates Longpre et al. [2025] and liability36

standards. Of course, even regulations that solely target one of these actors might impact the other,37

because their incentives and decisions are intertwined.38

We have seen variants of these debates play out as different jurisdictions and policymakers have39

proposed various regulatory approaches to AI. A number of existing regulation proposals leverage40

the observation that AI is developed by multiple, interacting actors. Examples include Colorado’s41

AI Act, California’s Senate Bill 1047, and the EU AI Act. These frameworks attempt to define the42

relevant actors, such as base developers and downstream deployers, in order to design conditions43

and stipulations for determining whether and to whom liability standards, disclosure requirements,44

or other interventions apply. These conditions and stipulations vary across proposals and policies,45

with possibly significant implications for the incentives of the players involved in the development46

of AI technologies and applications.47

Modeling the impact of regulatory regimes on AI performance and safety. Given that there48

are a range of different possible approaches to targeting AI regulation and assessing the impact of49

each alternative empirically is prohibitive, formal models can enable reasoning about the various50

regulatory impacts. This paper puts forward a strategic model of the interactions between a general-51

purpose technology producer (G) and a domain specialist (D), building on the “fine-tuning games”52

model proposed by Laufer et al. [2024]. As the two actors develop an AI technology, they each53

decide whether and how to invest in two key attributes of technology: performance, denoted by α,54

and safety, denoted by β. We assume these actors are operating in a market; each actor experiences55

some cost for their investment in safety and performance, and obtains a share of the revenue out of56

the deployment of the AI product/service in the market.57

To provide some intuition for what this investment pattern might look like, imagine a firm, G, pro-58

ducing a general-purpose language model that may be used in three domains – say, by healthcare59

providers (D1), law firms (D2), and financial services (D3). The general-purpose developer moves60

first, and in light of the particular costs she faces and the anticipated responses from the downstream61

players, she chooses a certain strategy, represented by a pairing of performance and safety invest-62

ments (α0, β0). Once this investment has been made, the attributes of the technology at this stage63

can be thought of as akin to a ‘base camp,’ from which domain specialists may choose to climb fur-64

ther by investing their own effort toward improving the technology’s safety and/or performance in65

their respective domains. Of course, each domain faces their own delicate balance of safety risks and66

performance costs, so the ultimate safety and performance pairs (αi, βi) (i = 1, 2, 3) differ across67

the three domains. See Figure 1 (a) for a visualization of the investment decisions make by G, D1,68

D2, and D3.69

Equipped with this intuition about how these actors behave in an unregulated market, we now turn70

to our notion of regulation. We conceive of regulation as shaping the game in which players choose71

their strategies. In particular, this paper will focus specifically on safety regulation. We assume72

regulation imposes a constraint in the form of a lower bound on the players’ choice of safety in-73

vestment (i.e., βi’s). If a player does not meet the regulatory lower bound on safety, they will be74

penalized. This regulatory regime can be described using two parameters (θG, θD), representing the75

set of thresholds constraining the strategy space of G and D, respectively. The regulation can target76

the domain-specialist only (θG = 0, θD > 0), the generalist only (θG = θD > 0), both players77

(θD > θG > 0), or neither (θG = θD = 0). In addition to the decision of who to target, of course,78

the regulation encodes a decision about what level to set the safety standards. Smaller values of θ79

are less costly to comply with, and hence capture weaker safety requirements.80

First insight: Weak safety regulation can backfire. Turning back to our example in Figure 1,81

we observe that something striking happens in the second panel, which depicts a scenario where82

regulation is targeted at the domain-specialist. In this scenario, the safety investment has gotten83

worse. How could safety regulation – a simple floor dictating a minimum investment level – lead84

to a less safe product? The mechanism leading to this phenomenon arises because the generalist G85

is aware of the regulatory safety requirements imposed on domain-specialists, and can use it to her86

advantage. When the regulator requires that a technology meets a certain level of safety investment87

by the time it reaches the market, the generalist has an opportunity to engage in a sort of free-88

riding behavior. The generalist is comfortable setting up the base camp at lower altitude, because89
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Figure 1: An instance of our model with one general-purpose producer and three domain-specialists.
Regulating the domain-specialist alone (upper right) exhibits backfiring for all three domains, mean-
ing the regulated safety level is lower than it would be without regulation. Regulating the generalist
alone (lower left) improves the safety level slightly compared to no-regulation. Finally, a regime that
targets both generalist and specialists with regulation (lower right) is able to 1) retain the improved
safety performance from regulating the generalist, 2) improve the safety level of least-safe domain-
specialist, while 3) avoiding backfiring.

she knows that the domain-specialist nonetheless has to climb to a level of investment that complies90

with regulation.91

The scenario described above depicts a single instance of a more general phenomenon, which we92

describe as regulatory backfiring. A safety regulation backfires if it yields a total investment in safety93

lower than the safety investment achieved with no regulation. We identify a number of properties of94

this phenomenon – for example, backfiring only occurs when the regulation is weak, meaning the95

floor on safety is at or below the level reached in the absence of regulation. Backfiring can occur96

when D is targeted with regulation or when both G and D are targeted with regulation, but does97

not occur when only G is targeted. Our results suggest that this non-monotonic effect of regulation98

occurs for a broad set of games with different cost and revenue functions. Analytically, we prove99

that backfiring occurs for all quadratic-cost games in which the players invest any non-zero amount100

in both performance and safety without regulation.101

Second insight: Properly-placed safety regulation can improve the technology and the players’102

utilities. While weak regulation targeted predominantly at the domain-specialist can backfire, our103

results suggest that other regulatory regimes fare better. When safety standards are directed at both104

G and D with appropriate strength, regulation can improve not just safety, but the utilities of both105

players, defined as their revenue share minus their investment cost. This result might seem unintu-106

itive: Regulation only reduces the set of choices available to each actor in our model, so how can107

regulation lead to choices that mutually benefit both generalist and specialist? What is stopping the108

players from choosing utility-optimal strategies in the absence of regulation? The reason this phe-109

nomenon occurs is a Prisoner’s Dilemma-style result: The players’ unregulated strategies, which are110

chosen to maximize their individual utility, fail to yield the strategies that that are globally optimal111

for both players. By constraining the actors away from the strategies that enable this kind of selfish112

behavior, regulation can act as a commitment device. The generalist can increase her investments in113

safety with the assurance that the domain specialist will contribute, too, rather than free-ride off of114

G’s efforts.115

Games can exhibit both backfiring and mutualistic regulations, depending on who is targeted and116

at what threshold. For example, Figure 2 depicts a particular instance of our game setting with117

one generalist and one domain-specialist. For the particular cost and revenue functions depicted,118

backfiring regulations and Pareto-improving regulations are possible, and the regulations yielding119

these effects are visualized. This figure represents a systematic sweep of all pairs of thresholds120

directed at the generalist, the domain specialist, or both. The pair of thresholds (0, 0) corresponds121
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Figure 2: Simulated results for an example of two-player AI regulation model with quadratic costs.
Players make costly investments in performance and safety (visualized on left), and then receive
some share of revenue that comes from the total investment levels. The players’ utilities – defined
as their share of the revenue minus the cost of their investment – is visualized for the Generalist
(second from left) and the Domain-Specialist (third from left). Colors represent different utility out-
comes depending on different combinations of regulatory constraints (θG, θD) which constrain the
players’ safety investments. The game is solved over a grid of plausible regulations: θG ∈ [0, 1.25],
θD ∈ [θG, 2.5] using increments of 0.005, with a total of 105,651 simulated regulation games. Regu-
lations that lead the players to abstain are depicted in black. There exists a region where non-zero
regulation yields lower safety than no regulation (highlighted on leftmost plot). There also exists a
region where regulation yields improvements to each players’ utility (highlighted on two center
plots). The rightmost plot summarizes our results by showing the backfiring and mutualism out-
comes in the θG, θD space. Parameter values for producing the plot: C0 = C1 = I2, rα = rβ = 1,
and δ = 0.5.

to the case of no regulation. The safety implications of various regulations are depicted using a122

red-yellow-green color scale in the leftmost plot, while the utility implications for the generalist123

and specialist are depicted using a purple-green-yellow color scale in the center plots. Compared124

to the safety and utility values at the origin points, the backfiring and Pareto-improving regions are125

regulations which lead to lower safety and higher utilities for both players, respectively. Although126

this figure depicts an example of a single game, our analysis proves that these backfiring and Pareto-127

improving regulations exist for a broad class of games with quadratic costs. Namely, we find that128

backfiring occurs in all games in which the market incentivizes some non-zero investment in both129

performance and safety without regulation. Our characterization of when this phenomenon occurs130

includes separable scenarios (where the cost of investing in performance is independent of the cost131

of investing in safety), complementary scenarios (where investing in one makes the other cheaper),132

and weakly interfering scenarios (where the cost of investing in one makes the other more expensive)133

up to a certain bound, which we specify. We provide similar bounds for the mutualism results.134

Related work135

AI Safety Regulation. The rise of AI-related incidents have motivated several AI incident repos-136

itories to keep track of common risks [McGregor, Abercrombie et al.]. Scholars have attempted137

to taxonomize AI harms to make sense of the growing array of incidents Weidinger et al. [2022],138

Shelby et al. [2023]. Some existing AI risk taxonomies organize risks primarily by domains. These139

include risks to the physical or psychological well-being of people, human rights and civil liber-140

ties, political and economic structures, society and culture, and the environment Abercrombie et al.141

[2024]. Others categorize these risks based on how they arise, including malicious use, malfunc-142

tions, or systemic effects from wide adoption Bengio et al. [2025]. In our stylized model, we capture143

all such considerations using a single scalar that can be toggled by players through investments in144

safety. Common themes in policy drafts and recommendations stress the importance of balancing145

the goals of innovation and risk reduction, appropriately defining and targeting thresholds, and the146

impacts on incentives Chayes et al. [2025], Gaske [2023].147

Game-theoretic models of AI development. A line of work uses formal models to reason about148

the strategic and social implications of machine learning (e.g., Hardt et al. [2016], Liu et al. [2022],149

Blum et al. [2021], Harris et al. [2021], Donahue and Kleinberg [2021]). More recently, there have150

been proposals for using modeling approaches to understand the social and safety implications of151

generative AI Dean et al. [2024], Sun et al. [2025]. Attempts to model the development process of152

generative AI often make use of the observation that development is sequential and involves multiple153
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interacting actors Cen et al. [2023]. Many existing works explore different strategic aspects of the154

market for AI using a stackelberg game. For example, Taitler et al. [2025] use a sequential game155

to explore incentives for data-sharing. Further time-steps, players and decisions have been added to156

explore particular topics, including the level of openness and market entry dynamics Xu et al. [2024],157

Wu et al. [2025]. Taitler and Ben-Porat [2025] introduce a particular notion of regulation in a related158

game-theoretic setting, and similar to our paper, they conceive of regulation as a restriction on the159

strategy space for developers of generative AI. Though work explicitly examining the interaction160

between performance and safety attributes in this setting is limited, Jagadeesan et al. [2024] explores161

the interaction between these attributes in a linear regression setting in order to understand firms’162

market entry decisions.163

A Model of Regulating AI Safety164

Here we offer a formal model for analyzing the effects of regulation on the development of AI ap-165

plications. Our model is a sequence of sub-games between two players. Each player will choose166

whether and how to contribute to the technology at a certain point in the development of the tech-167

nology, and some revenue is received depending on the ultimate attributes of the technology. The168

players are constrained by regulatory floors on safety, which will be set exogenously by a regulator.169

Players. A general-purpose producer, referred to as G, invests in a technology that may be adapted170

by domain-specialist(s), referred to as Di. The generalist is the first to invest in the technology,171

meaning that before G moves, the technology’s attributes begin at value 0. Each specialist Di makes172

an investment after the generalist has moved.173

Technology. We say a technology is described by one or more non-negative attributes γ ∈ Rd. In174

this paper, we are interested in two attributes in particular: performance and safety. Unless otherwise175

specified, we assume d = 2 and that γ = [α, β] where α refers to performance and β refers to safety.176

Economic interests. Each player, acting in a way that maximizes their self-interest, invests some177

non-zero amount in the technology. G invests to γ0 and each Di further invests to γi. Accordingly,178

each must pay a cost for their investment, ϕ0(γ0) and ϕi(γi; γ0), respectively. After both players179

invest, they share a revenue that is brought in as a function of the ultimate attributes of the technology180

in domain i, ri(γi). We assume that, for some δi ∈ [0, 1], G gets δiri(γi) in revenue and Di gets181

(1 − δi)ri(γi). δi could either be exogenously fixed and given ahead of the game play, or it can be182

the result of bargaining between G and Di. When we analyze a game with only one specialist, we183

will drop the subscript and use δ.184

Regulation We model regulation as imposed exogenously on the environment. Regulation is a min-185

imum constraint on the safety investment that the players make. A regulation that targets G’s invest-186

ment is characterized by a value θG ∈ R+. A non-zero regulation would constrain G′s strategy such187

that γ0[1] ≥ θG. A regulation targeted at the domain-specialist, similarly, would take the form θD188

and lead the domain-specialist to be constrained in their strategy so γi[1] ≥ θD.189

Gameplay. The game proceeds as a sequence of subgames:190

• Regulation {θG, θD} is announced.191

• G chooses to either abstain or invest in the technology, bringing it to γ0 =

[
α0

β0

]
.192

• Di chooses to either abstain or invest in the technology, bringing it to γi =

[
αi

βi

]
.193

194

• The technology brings in revenue ri(γi), which will be shared such that G receives δiri(γi)195

and D receives (1− δi)ri(γi).196

The utilities of the players are given below:

UG :=
∑
i

δiri(γi)− ϕ0(γ0); UDi := (1− δi)ri(γi)− ϕi(γi; γ0).
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The best-response sub-game perfect equilibrium strategy for the generalist and specialist, respec-197

tively, can be expressed as the following optimization problems:198

γ∗
0 := argmaxγ0

UG s.t.β0 ≥ θG;

γ∗
i := argmaxγi

UDi s.t.βi ≥ θG.

Finally, the players will opt to abstain, if they prefer 0 utility to any other feasible strategy. If199

either player chooses to abstain, then both players receive 0 utility.200

Closed-Form Solutions201

In this section, we analyze our regulation game where players’ cost functions can be expressed as a
two-degree quadratic equation. Specifying a quadratic function over two attributes requires defining
a matrix of cost coefficients. The cross-terms in this matrix represent how investments the attributes
interact with one another. For the technical portions of the paper, we use the case of one domain
specialist (D) as our focus. We therefore have the following cost and revenue functions:

ϕ0(γ0) = γT
0 C0γ0,

ϕ1(γ1; γ0) = (γ1 − γ0)
TC1(γ1 − γ0),

r(γ1) = rT γ1,

where C0 =

[
c0,αα c0,αβ
c0,αβ c0,ββ

]
; C1 =

[
c1,αα c1,αβ
c1,αβ c1,ββ

]
; r =

[
rα
rβ

]
.

The players’ utilities can thus be expressed as:

UG := δrT γ1 − γT
0 C0γ0,

UD := (1− δ)rT γ1 − (γ1 − γ0)
TC1(γ1 − γ0).

It should be noted that not all values for the above parameters correspond to realistic or in-202

teresting scenarios. For example, we assume that the diagonal entries of both cost matrices203

c0,αα, c0,ββ , c1,αα, c1,ββ are non-negative, to capture that investments in goods like safety and per-204

formance should have non-zero increasing cost. Although the cross-terms of the cost matrices can205

be negative, we require that c0,αβ > −√
c0,ααc0,ββ and c1,αβ > −√

c1,ααc1,ββ , since it should206

not be that some combination of investments in α, β come at negative cost. Each players’ choices207

over α and β should be considered as simultaneous across the two attributes, representing a joint208

optimization over performance and safety.209

We start by providing sub-game perfect equilibria strategies in the case with no regulation, and then210

provide solutions for the regulated game. After stating the solved subgame perfect equilibria strate-211

gies, we will move to a slate of numerical results and findings analyzing the effects of regulation.212

Subgame perfect equilibria strategies without regulation The no regulation solutions provided213

below can be seen as a strict generalization of the Fine-Tuning Games solutions Laufer et al. [2024]214

to games with two attributes that can interact.215

Proposition 0.1. Given an AI regulation game with quadratic costs, no regulation, and revenue-
sharing parameter δ, domain specialist D’s subgame perfect equilibrium strategy is one of the values
in the following set:

γ∗
1 ∈

{
γ0 +

(1−δ)
2 C−1

1 r,

[
α0

β0 +
(1−δ)rβ
2c1ββ

]
,

[
α0 +

(1−δ)rα
2c1αα

β0

]
,

[
α0

β0

] }
The strategy is the feasible candidate which maximizes UD, subject to UD ≥ 0, α1 ≥ α0, β1 ≥ β0.216

Proposition 0.2. Given a two-player AI regulation game with quadratic costs, no regulation, and
revenue-sharing parameter δ, G’s best-response is one of the following candidates:

γ∗
0 ∈

{
δ

2
C−1

0 r,

[
0

δrβ
2c0ββ

]
,

[
δrα

2c0αα

0

]
,

[
0
0

]}
.

The strategy is the candidate which maximizes UG, subject to UG ≥ 0, UD ≥ 0, α1 ≥ 0, β1 ≥ 0.217
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The proofs of the above two propositions are given in the Appendix. The solutions offer intuition218

about the set of strategies players might opt to take. They may venture in the direction of some219

combination of performance and safety, that is, move to a point that does not reside on either con-220

straint. Or, alternatively, they may creep along the axes constraining their strategy space, and invest221

minimally in either performance or safety.222

When do the players prefer one of these strategies over another? In general, our solutions are pro-223

vided as sets of candidates because there are multiple intersecting constraints that must be checked224

to ensure a given candidate is optimal. However, our analysis reveals classes of games in which the225

market will lead players to invest in both safety and performance in conjunction under no regulation.226

We make this claim formal below.227

Remark 0.3. Given the AI regulation game with quadratic costs, no regulation, and revenue-sharing
parameter δ ∈ (0, 1). If any player p’s cost interaction term satisfies the following inequalities:

cp,αβ < min

(
√
cp,ααcp,ββ ,

cp,ααrβ
rα

,
cp,ββrα

rβ

)
,

then their best-response strategy includes non-zero investment in both performance and safety.228

This claim is proven in the Appendix. The broad intuition is that the first of these inequalities estab-229

lishes the costs are strictly convex, and the second two ensure that the player’s cost interactions are230

not so positive that investing in both performance and safety is prohibitively expensive compared231

to investing in one or the other alone. The claim offers some intuition for when a player prefers to232

invest in both attributes together, even without regulation pushing them to invest in safety. It covers233

all games in which the cost interactions are negative, which we call the complementary scenario,234

meaning it is cheaper to invest in both performance and safety together than to invest in each individ-235

ually. It further covers all games in which the cost interactions are zero, which we call the separable236

scenario, meaning there is no benefit or loss to investing in both attributes in conjunction. Finally,237

it covers certain instances where the cost interactions are positive, which we call the interfering238

scenario, meaning safety investments make performance more costly, and vice versa.239

Subgame perfect equilibria strategies with regulation. For brevity, we refer the reader to the Ap-240

pendix for the best-response strategies, since they take space to state and are somewhat clunky. The241

form of problem we are dealing with is a continuous, not-necessarily-convex optimization problem242

with a constant number of constant-degree polynomials in a constant number of variables. Broadly,243

the strategy is to put forward a small number of candidate points that must be checked using a limited244

number of steps. These checks can be implemented numerically.245

Computational results246

Here we describe a set of numerical tests and demonstrations to explore the strategies in our game,247

using the solved strategies from the previous section. Our analysis here is focused on the existence248

of a persistent facet of the model concerning the way the players shift their strategies in response to249

regulation. With the knowledge that one player or the other is required to meet a regulatory floor,250

agents can choose their strategies accordingly. In a variety of cases, we observe that the strategies251

shift in a way that lowers the ultimate safety investment compared to safety attained under no regu-252

lation. This effect – which we term backfiring – is observable in cases where the regulation is weak,253

meaning it imposes a floor that the players already meet under no regulation.254

This section starts by demonstrating the existence of this effect. We then discuss its persistence in255

cases where players can flexibly choose how they share revenue via a linear contract. Finally, in256

stark contrast to the observation that regulation can backfire, we find that regulation can act as a257

commitment device, unlocking strategy sequences that mutually benefit the players.258

Our computational findings are organized around three main observations, with accompanying fig-259

ures. Our observations are enumerated below.260

Finding 1: Regulation can backfire. This game is separable, meaning there are no interaction ef-261

fects between performance and safety, and it assumes the market without regulation places equal262

value on performance and safety. Figure 3 depicts the players’ strategies in this game, for varying263

levels of regulation targeting the Domain-specialist alone. For the lowest regulatory thresholds, we264

observe that the players stick to their no-regulation safety investments, since they already clear the265
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threshold and their no-regulation investments remain optimal. As the regulatory floor is increased,266

however, the generalist’s strategy exhibits a discontinuity. Crucially, this drop in G’s safety invest-267

ment occurs at a regulatory threshold lower than the no-regulation safety strategy.268

Finding 2: Bargaining does not suffice to prevent backfiring. We now relax the assumption that269

players share their revenue according to a constant revenue-sharing parameter δ = 0.5. We provide270

evidence that even when players can distribute revenue in a way that maximizes the joint utility,271

these arrangements can still exhibit backfiring effects. We assume here that the players jointly agree272

on a bargaining solution before either invests effort, but after learning about the regulation.2 Figure 4273

shows the numerical results for a variant of the separable game where we vary the value of δ over 98274

values in the range [0.01, 0.99]. We vary the regulatory setting for 13 θG values in [0, 1.2] and 51 θD275

values in [0, 2.5], for a total of 49,686 simulated games. The figure depicts three different processes276

for arriving at an optimal bargain: utilitarian, which selects δ to maximize the sum of utilities, Nash,277

which selects δ to maximize the product of utilities Nash et al. [1950], and egalitarian, which sets278

δ to maximize the minimum of the utilities. In all scenarios, we observe at least one instance of a279

combination of regulations that backfire. Further, we observe a cluster of regulation regimes that280

yield mutual improvement to utility.281

Finding 3: Regulation can act as a commitment device. Here we show that there exist cases282

where regulation can leave both players better off than anarchy, while also benefiting the safety of283

the technology. Even though the regulation constrains the space of investments that players are able284

to achieve, it can nonetheless leave each player with higher utility than they are able to achieve285

under no regulation. To make this finding more clear, we depict the set of all achievable (UG, UD)286

combinations in Figure 5. The light blue cloud of points represents all attainable utility scenarios,287

over a grid of θD, θG, and δ values. The dotted lines represent the convex hull (northeastern faces) of288

attainable utility implications for the following regimes: 1) neither player is targeted with regulation289

(depicted in green), 2) one player is targeted with regulation (depicted in red and black), and 3)290

both players are targeted with regulation (inferrable from the outermost feasible points). The figure291

suggests that a non-vacuous constraint on both players achieves more preferable utility outcomes292

than regulations of individual players or bargaining alone are able to achieve.293

These results suggest that, although regulation can backfire, it can also mutually serve the interests294

of both players while also improving the level of safety of the technology. This finding raises the295

following question: if it was possible to achieve higher utilities all around, why was this set of strate-296

gies not chosen by the players in the unregulated game? Absent regulation, the players might wish297

they could ensure the other will uphold their side of a verbal agreement, though they are unable to298

guarantee it. Regulation, therefore, can act as a commitment device, which lends teeth to agreements299

that the players are able to enter prior to making their investments. This commitment device can be300

valuable in a formal sense: Both players would be willing to pay for it, as long as the price is less301

than the amount of utility they collectively gain under regulation.302

A General Characterization303

In the previous sections, we arrived at closed-form solutions for the players’ strategies and have304

demonstrated individual instances that exhibit the backfiring effect of regulation. We have not yet de-305

termined how widespread this phenomenon is. In this section, we provide analytical results that char-306

acterize when this phenomenon occurs. Our findings suggest that this effect is notably widespread.307

We find that for all quadratic-cost games, backfiring occurs as long as both of the technology’s at-308

tributes (performance and safety) are sufficiently complementary such that, under no regulation, the309

players will invest in some combination of them. Intuitively, if the players invested only in perfor-310

mance under no regulation, backfiring would be impossible as the baseline safety investment would311

be zero. Therefore, our condition for backfiring covers all games where the market prefers some312

non-zero baseline investment in performance and safety. The condition we rely on is precisely the313

condition introduced in Remark 0.3, which represents an upper bound on the cost interaction terms.314

This section will prove that both backfiring and mutualism occur in a range of scenarios that depend315

crucially on the cost interaction term, and will describe what this dependence looks like.316

2The next sections will relax this assumption further, providing findings on the existence of backfiring and
mutualism for every non-trivial linear revenue-sharing agreement δ ∈ (0, 1).
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Backfiring occurs in all mixed-strategy games.317

Below we prove that for all AI regulation games in which the players invest a non-zero amount318

in safety and performance under no regulation, there is a non-empty set of regulatory regimes that319

exhibit a backfiring effect.320

Theorem 0.4. Given an AI regulation game with quadratic costs. If both players’ cost interactions
meet the following conditions:

cp,αβ < min

(
√
cp,ααcp,ββ ,

cp,ααrβ
rα

,
cp,ββrα

rβ

)
,

then there exists an ϵ > 0 such that the regulatory regime θG = 0, θD = βA
0 − ϵ backfires.321

The proof of the above theorem is provided in Appendix . Here we provide an overview of the322

conceptual argument. We start by observing that the unregulated optimal strategies γA
0 , γ

A
1 remain323

feasible in weak regulatory settings. These strategies dominate all alternative strategies in which the324

players contribute to safety beyond their regulatory constraints, as any such strategy was available325

in the no regulation scenario, so they were already shown to be sub-optimal compared to γA
0 , γ

A
1 .326

The proof’s task, therefore, is is to find some θD < βA
1 and some γ′

0 ̸= γA
0 , such that D minimally327

complies with the regulation (β′
0 = θD), and further, UG(γ

′
0; θD) > UG(γ

A
0 ; θD). For the proof to328

work, we choose a regulation of θG = 0, θD = βA
0 − ϵ for some small positive ϵ > 0, and generalist329

strategy γ′
0 =

[ δrα
2c0,αα

(
βA
0 − 2ϵ

)
βA
0 − 2ϵ

]
. For sufficiently small ϵ, we find that the change to the utility330

of G for using this strategy is positive as long as the following condition is met: rβ >
c1,αβ

c1,αα
rα. This331

inequality, given by the analysis in Appendix , is precisely the condition established in Remark 0.3332

for non-zero investment in safety under no regulation.333

The above results demonstrate that backfiring does not only exist in single degenerate cases: It334

occurs in a range of scenarios in which players share revenue and each contribute non-zero effort335

to the development of the technology. These scenarios include settings in which the two attributes336

are complementary, as well as a range of settings where the two attributes are interfering, up to a337

particular limit that we are able to specify. We note that further generalizations are open for broader338

functional forms, including more expressive polynomial costs and exponential costs. The generality339

of the backfiring effect in the quadratic case gives us reason to believe that the effect might hold for340

a broader set of forms, though we leave these directions to future work.341

Mutualism occurs in sufficiently separable games.342

So far, we have shown that a set of regulations backfire in a swath of two-attribute games. Here we343

provide a second result on a set of regulations that fare better. Using similar logic about games with344

bounded interaction effects between the the two attributes, we find that there exist combinations of345

regulatory thresholds that mutually improve the two players’ utilities, as well as the safety level of346

the technology. We state this result below.347

Theorem 0.5. Given a two-player AI regulation game with quadratic costs. If both players meet the
following conditions:

|cp,αβ | < min

(
√
cp,ααcp,ββ ,

cp,ααrβ
rα

,
cp,ββrα

rβ

)
,

then there exists an ϵ > 0 such that the regulatory regime θG = βA
0 + ϵ, θD = βA

1 + 2ϵ mutually348

improves both players’ utilities.349

The proof of the above theorem is given in Appendix . The proof follows a similar strategy to the350

backfiring proof. We are focused on the set of games where the players arrive at unconstrained351

solutions in the case of no regulation, and we perturb the regulation by a small positive ϵ value and352

see the implications for the players’ utilities. Here, instead of targeting only the domain-specialist353

and specifying a threshold slightly below the unconstrained optimal strategy, we set the regulation354

to target both players using a threshold slightly above their unconstrained strategies. Instead of355

measuring the impact on safety, we measure the impact on the players’ utilities and find that, under356

the specified condition, the utilities both improve.357
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The results suggest that, similar to the characterization of backfiring, the mutualism effect is observ-358

able in a range of quadratic-cost games, including in separable scenarios and a range of complemen-359

tary and interfering scenarios. Notice, however, that our condition for establishing when mutualism360

occurs is slightly different than the condition in the backfiring theorem. Instead of a one-sided bound361

on the players’ cost interaction terms, our proof relies on a two-sided bound. The analysis suggests362

there may be certain games where the two attributes are strongly complementary where slightly in-363

creasing the regulation in the manner proposed does not increase players’ utilities. In other words, if364

the market already sufficiently incentivizes joint investments in safety and performance, then forcing365

safety requirements on both players in equal proportion may not benefit players’ utilities. In these366

cases, a linear contract may suffice to serve the utilities of the players, and so regulation would only367

be needed for achieving the goal of advancing safety, and would not serve the additional role in368

enforcing commitments from players.369
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Further related work470

Economic theory and contracts. Our work leverages pre-existing approaches that are common in471

the theoretical economics and game theory literatures to reason about the set of possible impacts472

of AI safety regulation. In particular, we draw inspiration from canonical works in contract theory473

Grossman and Hart [1992], Ross [1973] and the coordination of supply chains Cachon [2003].474

Our model is a variant of a Principal-Agent problem in which the strategy space is defined by two475

real-valued attributes, and the cost and revenue are functions of these attributes. In this way, our476

model draws inspiration from Viscusi and Moore [1993] analyzing the possible effects of products477

liability schemes on innovation and safety. That model — a one-player model with no order-of-478

play effects — demonstrates that liability does not, necessarily, hamper innovation. We assume that479

innovation is sequential, meaning that an entity’s investment in safety or performance builds on the480

contributions of past investments Bessen and Maskin [2009], Green and Scotchmer [1995].3 In what481

we call the ‘no-regulation’ game, we assume the players revenue-share via a linear contract Dütting482

et al. [2019], a common assumption in the literature (e.g., Dütting et al. [2025, 2023], Alon et al.483

[2022], Carroll [2015]). However, one way to interpret our mutualism results is as a demonstration484

that linear contracts are sub-optimal in our setting. Our notion of regulation can be viewed as a set485

of non-linear contracts defined by a set of strategy constraints, and our results suggest these more486

expressive contracts can yield higher utility. Of course, still other forms of contracts are possible and487

may yield different utility implications. We leave these directions to future work.488

The fine-tuning games model. Our work builds on and extends the fine-tuning games model pro-489

posed in Laufer et al. [2024]. That model builds a one-dimensional game in which players must490

bargain over a revenue-sharing contract before investing in performance in sequence. We extend this491

model in two ways: First, the players’ strategy space is two-dimensional in our model, to capture492

the dynamic that often arises where a regulator wants to steer the technology in a direction (e.g.,493

safety) other than that which is most-profitable (e.g., a baseline combination of performance and494

safety, dictated by the unregulated market). Second, we introduce the regulation, which can be seen495

as a floor constraining the feasible strategy space of each player. This allows us to explore when496

targeting generalists, specialists, both or neither is preferable for achieving desiderata like safety.497

3However, some have observed that safety investments can degrade as the result of fine-tuning performance
investments especially when model weights are open Qi et al. [2023, 2024]. This scenario, and especially the
interaction effects with model openness, are ripe areas for further analysis.
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Figure 3: Backfiring observed in a basic two-player game where θG = 0 and θD is varied over the
range [0, 2.5]. As θD is swept upward from 0, there is some value at which the generalist’s score
exhibits a discontinuity and the investment in safety lowers.

Further Discussion and Conclusion498

Proposals for AI regulation have made use of the idea that different entities contribute to these tech-499

nologies in succession. This work provides a model for reasoning about the effects of targeting AI500

safety regulation along the development chain. Our findings suggest that weak safety regulation pre-501

dominantly targeted at the domain specialist can backfire, yielding lower investments in safety than502

in the alternative case of no regulation. Our findings further suggest that regulation appropriately503

targeted at both upstream producers and downstream specialists can exhibit a mutualism effect in504

which both entities benefit. After demonstrating instances of the backfiring and mutualism effects505

through a numerical simulation, we provide analysis showing these phenomena are not just degen-506

erate cases but hold in a range of scenarios.507

Our results reveal natural directions for future research. In the setting we have put forward, it would508

be interesting to move beyond showing the existence of backfiring and mutualism regions and char-509

acterize the shape of these regions and the magnitude of their effects. Certain segments of the bound-510

aries of these regions are straightforward but others seem to require solving higher-order polynomi-511

als to express in closed-form.512

Generalizations beyond the quadratic-cost games might be interesting. For instance, it may be pos-513

sible to show that backfiring and Pareto-improvement effects occur for any convex cost and concave514

revenue games meeting where there exist some marginal conditions on the functions’ marginal con-515

ditions including their slopes and intercepts.516

We have predominantly focused on the case where there is one domain-specialist, but in many real-517

world settings the development of AI technologies involve multiple domains, and each domain may518

involve many entities who compete. To what extent does competition between multiple entities519

change the backfiring and Pareto-improving impacts of regulation? Pursuing questions about mul-520

tiple domain-specialists would require further specifying the structure of G’s contract with each521

specialist, which might reasonably be conceived as a constant revenue share across domains, a522

constant fixed price across domains, or a variable price across domains. Relatedly, approaches to523

regulating different specialists may be conceived of as domain-specific (different requirements for524

each domain) or domain-agnostic (requirements for all domains). Pursuing questions about multiple525

generalists may also illuminate interesting directions. In particular, if different domains have dif-526

ferent preferences over attributes, there may be scenarios where general providers specialize their527

investments to capture some domains and cede others to their competitors. Such dynamics raise528

new questions about how to design regulation to account for these rich constellations of interacting529

actors.530

Subgame perfect equilibria strategies with regulation531

Here we provide the subgame perfect equilibria strategies of the two players in our two-attribute532

game, in the presence of regulation. Notice that the no-regulation gameplay can be derived from533

these solutions simply by plugging in θD = θG = 0. Like the solutions in the prior section, these534
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Figure 4: Results from numerical tests over the set of possible (θG, θD) pairs in the two-attribute,
two-player, separable quadratic-cost game. Backfiring occurs in the weak regulatory regimes in
which θD is just below βA

0 . Regulations that mutually improve both players’ utilities over anarchy
are detected for all three bargaining solutions. The highest aggregate utility in this game is achieved
at θG = 0.5, θD = 1.

Figure 5: The set of attainable utility outcomes over a grid of possible regulation regimes and bar-
gains for the two-attribute, two-player, separable quadratic-cost game. Each of the blue points rep-
resents a possible game with utility implications for the two players. If the players are restricted to a
particular regulatory regime – targeting G only, D only, or neither – then the utility they are able to
achieve (depicted in dashed lines) suffers, compared to the regime where both players are subjected
to regulation.

generalized solutions require checking a number of candidates, but this number has grown to account535

for the possible responses to regulation.536

Proposition 0.6. Given a two-attribute fine-tuning game with quadratic costs, regulatory constraints
θG, θD, and bargaining parameter δ, the domain specialist D’s subgame perfect equilibrium strat-
egy is one of the values in the following set:

γ∗
1 ∈



γ0 +
(1−δ)

2 C−1
1 r,

[
α0

β0 +
(1−δ)rβ
2c1ββ

]
,[

α0 +
(1−δ)rα
2c1αα

− c1αβ

c1αα
max(0, θD − β0)

max(β0, θD)

]
,[

α0

max(β0, θD)

]
,abstain.


The strategy is the feasible candidate which maximizes UD, subject to UD ≥ 0, α1 ≥ α0, β1 ≥537

max(β0, θD).538

Proposition 0.7. Given a two-attribute, two-player fine-tuning game with quadratic costs, regu-539

latory constraints θG, θD, and bargaining parameter δ, G’s best-response is one of the following540

candidates:541

• δ
2C

−1
0 r,542

•
[

0
δrβ

2c0ββ

]
,543
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•
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]
,544

•
[

0
θG

]
,545

• abstain,546

• Three additional candidates along the UD = 0 constraint, which is given by the following547

quadratic equation:548

(1− δ)rαα0 +
(1− δ)2r2α

4c1αα
+ (1− rβ)θD −

c1αβ
c1αα

(1− δ)θD +
c21αβ

c1ααθ2D
− c1ββθ

2
D +(

c1αβ
c1αα

(1− δ)rα − 2
c21αβ
c1αα

θD + 2c1ββθD

)
β0

+

(
c21αβ
c1αα

− c1ββ

)
β2
0 = 0.

The strategy is the candidate which maximizes UG, subject to UG ≥ 0, UD ≥ 0, α1 ≥ 0, β1 ≥ θG.549

The proof of the above propositions is provided in Appendix . We outline the intuition behind the550

proof as follows: Notice that the optimization is an inequality-constrained quadratic optimization551

problem. The problem has been set up so no solutions exist at infinity, that is, the solutions will552

either be local maxima or will reside on constraints. Therefore, we can find the critical points for553

the unconstrained problem, as well as the critical points for every possible combination of every554

constraint in our problem. This yields a set of candidates, which are worked out and listed in the set555

above.556

There is a bit of additional subtlety in the process for arriving at the last three candidates along557

the constraint listed at the end of the Proposition. Two of the three candidates reside at the inter-558

section of this constraint with the other constraints—that is, they satisfy the constraint listed and559

either α0 = 0 or β0 = θG. Finding the point that satisfies these combinations of constraints is560

only as hard as solving the roots of a one-variable quadratic, at worst. The third one, however, is561

a bit more convoluted. This candidate can be described as the solution to the optimization problem562

maxγ0
UG s.t.UD = 0, where the other constraints are ignored. Although this is a (not necessarily563

convex) quadratic program, specifying the Lagrangian suggests that its solution must be the solution564

of a system of three distinct equations with three unknown variables (α0, β0, λ) ∈ R3. Two of these565

equations are quadratic, and the other is linear:566

• δrα − 2c0ααα0 − 2c0αββ0 − λ(1− δ)rα = 0,567

• δc1αβrα
c1αα

−2c0βββ0−2c0αβα0−λ
(

c1αβ

c1αα
(1− δ)rα − 2

c21αβθD
c1αα

+ 2
(

c1αβ

c1αα
− c1ββ

)
β0

)
= 0,568

• The quadratic stated in the proposition.569

Though there may be multiple roots satisfying the above equations, the roots are bounded in typical570

fashion by Bezout’s Theorem. Further algebra for arriving at solutions is left to the computer.571

15



Game Solving572

Player’s strategies without regulation573

The domain-specialist’s strategy. The proof for Proposition 0.1 is given below.574

Proof. D’s best-response strategy is the value γ∗
1 that maximizes D’s utility.575

γ∗
1(γ0, δ) = argmax

γ1

UD(γ0, γ1δ) s.t. UD ≥ 0, α1 ≥ α0, β1 ≥ β0

Observe that D will not abstain because zero-investment (γ1 = γ0) is cost-free, yielding non-
negative utility, so we can safely ignore the constraint. To solve the optimization, we specify the
Lagrangian as follows for some multipliers λ1 ∈ R, λ2 ∈ R and a slack variables s1 ∈ R, s2 ∈ R.
By construction, we assert that the slack variables are only non-zero when the multipliers are zero,
and the multipliers are non-zero only if the slack variables are zero.

L := (1− δ)rT γ1 − (γ1 − γ0)
TC1(γ1 − γ0)− λ1(α1 − α0 − s21)− λ2(α1 − α0 − s22).

We partially differentiate with respect to each decision variable and each multiplier.576

∂

∂α1
L = 0

⇐⇒ (1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − β0)− λ1 = 0

∂

∂β1
L = 0

⇐⇒ (1− δ)rβ − 2c1,ββ(β1 − β0) + 2c1,αβ(α1 − α0)− λ2 = 0

∂

∂λ1
L = 0

⇐⇒ −α1 + α0 + s21 = 0

∂

∂λ2
L = 0

⇐⇒ −β1 + β0 + s22 = 0

Using complementary slackness, we have four possible options:577

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0 → β∗
1 = β0, α

∗
1 = α0.578

2. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0 → β∗
1 = β0, and we can plug into our first of four579

equations above:580

(1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − β0)− λ1 = 0

→ (1− δ)rα − 2c1,αα(α1 − α0) = 0

→ α∗
1 = α0 +

(1− δ)rα
2c1,αα

.

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0 → α∗
1 = α0, and we can plug in to equation 2:581

(1− δ)rβ − 2c1,ββ(β1 − β0) + 2c1,αβ(α1 − α0)− λ2 = 0

→ (1− δ)rβ − 2c1,ββ(β1 − β0)− λ2 = 0

→ β∗
1 = β0 +

(1− δ)rβ
2c1,ββ

.

4. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0 → This is the unconstrained critical point, and is solved582

via the first two systems of equations:583

∇UD = (1− δ)r − 2C1(γ1 − γ0) = 0

→ γ∗
1 = γ0 +

(1− δ)

2
C−1

1 r.
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Thus we have established our four candidates in the proposition statement.584

The Generalist’s strategy. The proof for Proposition 0.2 is given below.585

Proof. G’s best-response strategy is the value γ∗
0 that maximizes G’s utility.586

γ∗
0 (δ) = argmax

γ1

UG(γ0, δ) s.t. UG ≥ 0, α0 ≥ 0, β0 ≥ 0.

Following the same steps as the proof of Proposition 0.1, we specify the Lagrangian as follows for
multipliers λ1 ∈ R, λ2 ∈ R and a slack variables s1 ∈ R, s2 ∈ R.

L := δrT γ1 − γT
0 C0γ0 − λ1(α0 − s21)− λ2(α0 − s22).

We partially differentiate with respect to each decision variable and each multiplier.587

∂

∂α0
L = 0

⇐⇒ δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 = 0,

∂

∂β1
L = 0

⇐⇒ δrβ − 2c0,βββ0 + 2c1,αβα0 − λ2 = 0,

∂

∂λ1
L = 0

⇐⇒ −α0 + s21 = 0,

∂

∂λ2
L = 0

⇐⇒ −β0 + s22 = 0.

Using complementary slackness, we have four possible options:588

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0 → β∗
0 = 0, α∗

0 = 0.589

2. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0 → β∗
0 = 0, and we can plug into our first of four equations590

above:591

δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 = 0

→ δrα − 2c0,ααα0 = 0

→ α∗
0 =

δrα
2c0,αα

.

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0 → α∗
0 = 0, and we can plug in to equation 2:592

δrβ − 2c0,βββ0 + 2c0,αβα0 − λ2 = 0

δrβ − 2c0,βββ0 = 0

→ β∗
0 =

δrβ
2c0,ββ

.

4. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0 → This is the unconstrained critical point, and is solved593

via the first two systems of equations:594

∇UG = δr − 2C0γ0 = 0

→ γ∗
0 =

δ

2
C−1

0 r.

Thus we have established our four candidates.595
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Condition for non-zero performance and safety investment596

Condition establishing non-zero investment. Below we prove Remark 0.3.597

Proof. The first of the three inequalities establishes that the player’s costs are strictly convex:598

cαβ <
√
cp,ααcp,ββ ⇐⇒ cp,ααcp,ββ − c2αβ > 0 ⇐⇒ detCp > 0.

By the spectral theorem, we know a 2x2 matrix is positive definite if and only if its determinant and599

trace are both positive, which is now established. By Lemma 0.8, the utility is strictly concave for600

our setting if and only if the cost is strictly convex. Thus the unconstrained solution is the global601

optimum as long as it is feasible. Thus, the necessary and sufficient condition for optimality is the602

condition for feasibility.603

• For the generalist:

δ

2
C−1

0 r > 0 ⇐⇒ δ

2 detC0

[
c0,ββrα − c0,αβrβ
−c0,αβrα + c0,ααrβ

]
>

[
0
0

]

Using the same positive definiteness identity above, we know the determinant is positive.604

We are given δ > 0. Thus we can cancel the positive constant term δ
2 detC0

. The two605

inequalities simplify to those stated in the proposition.606

• For the specialist, the proof proceeds identically. Observe that (1− δ) ≥ 0 and the uncon-607

strained contribution is given by: 1−δ
2 C−1

1 r.608

609

Proof for Player Strategies with Regulation610

Here we provide proofs for our propositions establishing best-response strategies for the players.611

Domain-specialist best-response under regulation. Here we provide the proof of Proposition 0.6,612

the domain specialist’s best response under regulatory requirement θD.613

Proof. D’s best-response strategy is the value γ∗
1 that maximizes D’s utility. D will abstain if and614

only if the best option yields negative utility.615

γ∗
1(γ0, δ, θD) = argmax

γ1

UD(γ0, δ, θD) s.t. UD ≥ 0, α1 ≥ α0, β1 ≥ max (β0, θD) .

Define κ = max(β0, θD). To solve the optimization, we specify the Lagrangian as follows for some
multipliers λ ∈ R3 and a slack variables s ∈ R3.

L := (1− δ)rT γ1− (γ1−γ0)
TC1(γ1−γ0)−λ1(α1−α0− s21)−λ2(β1−κ− s22)−λ3(UD − s23).
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We partially differentiate with respect to each decision variable and each multiplier.616

∂

∂α1
L = 0

⇐⇒ (1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − κ)− λ1 − λ3
∂UD

∂α1
= 0

⇐⇒ (1− λ3) ((1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 − κ))− λ1 = 0

∂

∂β1
L = 0

⇐⇒ (1− δ)rβ − 2c1,ββ(β1 − κ) + 2c1,αβ(α1 − α0)− λ2 − λ3
∂UD

∂β1
= 0

⇐⇒ (1− λ3) ((1− δ)rβ − 2c1,ββ(β1 − κ) + 2c1,αβ(α1 − α0))− λ2 = 0

∂

∂λ1
L = 0

⇐⇒ −α1 + α0 + s21 = 0

∂

∂λ2
L = 0

⇐⇒ −β1 + κ+ s22 = 0

∂

∂λ3
L = 0

⇐⇒ −UD + s22 = 0

⇐⇒ −(1− δ)rT γ1 + (γ1 − γ0)
T
C1 (γ1 − γ0) + s22 = 0

Using complementary slackness, we have eight possible options:617

1. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0, s3 ̸= 0, λ3 = 0 → β∗
1 = κ, α∗

1 = α0.618

2. s1 = 0, λ1 > 0, s2 = 0, λ2 > 0, s3 = 0, λ3 > 0 → β∗
1 = κ, α∗

1 = α0. This offers the same619

candidate as (1).620

3. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0, s3 ̸= 0, λ3 = 0 → α∗
1 = α0, solve equations (1) and (2)

for β∗
1 and λ1. Omitting the algebra, this yields:

γ∗
1 =

[
α0

β0 +
(1−δ)rβ
2c1ββ

]

4. s1 = 0, λ1 > 0, s2 ̸= 0, λ2 = 0, s3 = 0, λ3 > 0 → α∗
1 = α0, solve equations (1) and (2)621

for β∗
1 and λ1. This solution, if it is distinct from the previous solution (3), will always be622

dominated because it is characterized by 0 utility for G.623

5. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0, s3 = 0, λ3 > 0 → β∗
1 = κ → solve equations (1) and (2)

for λ1 and α∗
1. Omitting algebra, this yields:

γ∗
1 =

[
α0 +

(1−δ)rα
2c1αα

− c1αβ

c1αα
max(0, θD − β0)

max(β0, θD)

]
6. s1 ̸= 0, λ1 = 0, s2 = 0, λ2 > 0, s3 ̸= 0, λ3 = 0 → this solution, if it is distinct from the624

previous one (5), will always be dominated because it is characterized by 0 utility for G.625

7. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0, s3 ̸= 0, λ3 = 0 → α∗
1 = α0, solve equations (1)626

and (2) for α∗
1, β

∗
1 . This is the unconstrained solution. Omitting algebra, this yields: γ∗

1 =627

γ0 +
(1−δ)

2 C−1
1 r.628

8. s1 ̸= 0, λ1 = 0, s2 ̸= 0, λ2 = 0, s3 = 0, λ3 > 0 → β∗
1 = κ → solve equations (1) and (2)629

for α∗
1, β

∗
1 . This solution, if it is distinct from (7), will always be dominated by (7) because630

it is characterized by 0 utility for G.631
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Thus we have established our four candidates in the proposition statement. To handle the abstain632

scenario, we check each candidate produced in the process above by plugging the strategy to our633

formula for UD. If none yield positive utility, then the domain specialist prefers to abstain.634

The generalist’s subgame perfect equilibrium strategy under regulation. Here we prove Propo-635

sition 0.7.636

Proof. G’s best-response strategy is the value γ∗
0 that maximizes G’s utility.637

γ∗
0(δ, θG, θD) = argmax

γ0

UG(γ0; δ, θG, θD) s.t. UG ≥ 0, UD ≥ 0, α0 ≥ 0, β0 ≥ θG.

To solve the optimization, we specify the Lagrangian as follows for some multipliers λ ∈ R4 and a638

slack variables s ∈ R4.639

L := δrT γ1 − γT
0 C0γ0 − λ1(α0 − s21)− λ2(β1 − θG − s22)− λ3(UD − s23)− λ4(UG − s24).

We partially differentiate with respect to each decision variable and each multiplier.640

∂

∂α1
L = 0

⇐⇒ δrα − 2c0,ααα0 + 2c0,αββ0 − λ1 − λ3
∂UG

∂α0
− λ4

∂UD

∂α0
= 0

⇐⇒ (1− λ3) (δrα − 2c0,ααα0 + 2c0,αββ0)− λ1

−λ4 ((1− δ)rα − 2c1,αα(α1 − α0) + 2c1,αβ(β1 −max(β0, θD))) = 0,

∂

∂β1
L = 0

⇐⇒ δrβ − 2c0,βββ0 + 2c0,αβα0 − λ2 − λ3
∂UG

∂β0
− λ4

∂UD

∂β0
= 0

⇐⇒ (1− λ3) (δrβ − 2c0,βββ0 + 2c0,αβα0)− λ2

−λ4 ((1− δ)rβ − 2c1,ββ(β1 −max(β0, θD) + 2c1,αβ(α1 − α0)) = 0,

∂

∂λ1
L = 0

⇐⇒ −α0 + s21 = 0,

∂

∂λ2
L = 0

⇐⇒ −β0 + s22 = 0,

∂

∂λ3
L = 0

⇐⇒ −UG + s22 = 0

⇐⇒ −δrT γ1 + γT
0 C1γ0 + s22 = 0,

∂

∂λ3
L = 0

⇐⇒ −UD + s22 = 0

⇐⇒ −(1− δ)rT γ1 + (γ1 − γ0)
T
C1 (γ1 − γ0) + s22 = 0.

Using complementary slackness, we have sixteen possible options. For brevity, we refer to these641

options by the constraints they satisfy, where bold corresponds to the constraints being activated.642

The algebra is omitted for exposition; only the candidates yielded are noted for each constraint643

setting.644

1. α0, β0, UG, UD → [0, θG].645

2. α0, β0, UG, UD → [0, θG]646
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3. α0, β0, UG, UD → [0, θG]647

4. α0, β0, UG,UD → [0, θG]648

5. α0, β0,UG, UD →
[

0
δrβ

2c0ββ

]
649

6. α0, β0,UG, UD →
[

0
δrβ

2c0ββ

]
650

7. α0, β0, UG, UD →
[

0
δrβ

2c0ββ

]
651

8. α0, β0, UG,UD → One of three along UD = 0 curve.652

9. α0,β0, UG, UD → γ∗
0 =

[
δrα

2c0αα
− c0αβ

c0αα
θG

θG

]
.653

10. α0,β0, UG, UD →
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]
654

11. α0,β0, UG, UD →
[

δrα
2c0αα

− c0αβ

c0αα
θG

θG

]
655

12. α0,β0, UG,UD → Two of three along the UD = 0 curve.656

13. α0, β0,UG, UD → δ
2C

−1
0 r .657

14. α0, β0,UG, UD → δ
2C

−1
0 r658

15. α0, β0, UG, UD → δ
2C

−1
0 r659

16. α0, β0, UG,UD → Three of three along the UD = 0 curve.660

Thus we have established our four candidates in the proposition statement. To handle the abstain661

scenario, we check each candidate produced in the process above by plugging the strategy to our662

formula for UG. If none yield positive utility, then the generalist prefers to abstain.663

Helper Lemmas and Analysis664

Here we write out helper Lemmas and analysis for our proofs concerning backfiring and mutualism.665

Lemma 0.8. In the AI regulation game with quadratic costs, any player’s utility is strictly concave666

if and only if their cost matrix is positive definite.667

Proof. The generalist utility function is given by UG = δrT γ1 − γT
0 C0γ0. Observe this is twice

differentiable everywhere. Thus the function is strictly concave in α0, β0 if and only if its Hessian
derivative is negative definite. We compute the Hessian as follows:

H :=

[
∂2UG

∂α2
0

∂2UG

∂α0∂β0

∂2UG

∂β0∂α0

∂2UG

∂β2
0

]
= −2C0.

This matrix is negative definite if and only if C0 is positive definite.668

The proof for the domain specialist follows the same steps.669

Lemma 0.9. In any AI regulation game with separable quadratic costs, if there is no regulation,670

both players will invest a non-zero amount in each attribute.671
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Proof. By Lemma 0.8, we are given that the utilities are strictly concave. Thus, the proof consists of672

showing that 1) the utility function is greater than or equal to 0 at the origin point of zero investment673

and 2) the gradient points towards the interior of the feasible set everywhere along the boundaries.674

Here we prove the two conditions for UG:675

1. UG(α0 = 0, β0 = 0) = δrT 0⃗− 0 = 0676

2. We prove this for each constraint, α0 ≥ 0, β0 ≥ 0:677

• ∂UG

∂α0

∣∣
β0=0

= δrα − 2c0,ααα0 = δrα − 0 > 0.678

• ∂UG

∂β0

∣∣
α0=0

= δrβ − 2c0,βββ0 = δrβ − 0 > 0.679

Here we prove the two conditions for UD:680

1. UD(αi = 0, βi = 0) = (1− δ)rT γ0 − 0 ≥ 0681

2. We prove this for each constraint, αi ≥ α0, βi ≥ β0:682

• ∂UD

∂αi

∣∣
βi=β0

= (1− δ)rα − 2ci,αα(α1 − α0) = (1− δ)rα > 0.683

• ∂UG

∂β0

∣∣
αi=α0

= (1− δ)rβ − 2ci,ββ(βi − β0) = δrβ − 0 > 0.684

685

Proving the Backfiring Result686

Below we prove the Theorem 0.4.687

Proof. Assume θG = 0 for the entire proof. By Remark 0.3, we’re given that the players commit to688

their unconstrained strategy in equilibrium. These were solved in Propositions 0.6 and 0.7. Thus we689

have the following player’s strategies under no regulation for this setting:690

γA
0 =

δ

2
C−1

0 r, γA
1 =

1− δ

2
C−1

1 r. (1)

Our strategy is to show that G’s unconstrained, no-regulation optimum becomes dominated in the691

presence of regulation targeting D, which we choose to be arbitrarily close to βA
1 .692

Notation. Before we proceed, we introduce some additional notation. Define the set S to be all693

feasible pairs of strategies (γ0, γ1). ‘Feasible’ here means those strategies which leave both G and694

D with non-negative utility. We use the subscript SθD to track the particular regulatory threshold.695

The feasible pairs of strategies in the unregulated game is given by S0, and the feasible pairs of696

strategies in a game with threshold θD = 1.5 is denoted S1.5. We may refer to the unregulated game697

with the superscript A (for anarchy), e.g. βA
1 refers to the unregulated safety level. Observe that any698

set of tuples Sθ can be separated into two mutually exclusive and collectively exhaustive sets:699

• SMC
θ (for minimally compliant) is the set of all tuples where D’s best response has safety700

β∗
1 = θD.701

• SC
θ (for contribute) is the set of all tuples where D’s best response has safety β∗

1 > θD.702

Now, we provide a sequence of lemmas, with the purpose of establishing the intuition that all we703

must do is find some ϵ > 0 and some strategy βR
0 ̸= βA

0 such that G prefers βR
0 to βA

0 and D704

minimally complies.705

Lemma 0.10. For any threshold θD > 0, SC
θ ⊂ S0.706

Proof. S0 = SMC
0 ∪ SC

0 = SMC
0 ∪

(⋃∞
t=0 S

C
t

)
⊃ SC

θ .707

Lemma 0.11. If θD ≥ βA
1 , backfiring is impossible.708
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Proof. Assume for contradiction that θ∗D ≥ βA
1 and backfiring occurs. Backfiring would imply709

β1(θD = θ∗D) < β1(θD = 0) = βA
1 . However, this would violate the regulation, which we’re given710

is greater than βA
1 . Hence we’ve already established the contradiction.711

Lemma 0.12. Given a threshold θ, backfiring can occur only if the strategies (γ0, γ1) ∈ SMC
θD

.712

Proof. We have established SθD = SMC
θD

∪ SC
θD

, so the proof will show that the strategies in SC
θ can713

never exhibit backfiring. This would imply, if backfiring occurs over the feasible set of strategies Sθ,714

it is only possible for strategies in SMC
θ . The proof proceeds, first for all values θD ≥ βA

1 , and then715

for all values θ < βA
1 .716

• For θD ≥ βA
1 , backfiring is impossible generally, as established in Lemma 0.11.717

• For θD < βA
1 , start by observing that the anarchy solution (γA

0 , γ
A
1 ) is always feasible. This718

solution is the strategy tuple that maximizes the utility of G over S0. Lemma 0.10 tells719

us that this set, S0, contains all sets of regulated strategies where the players contribute:720

Scontribute
θD

⊂ S0. Thus: (γA
0 , γ

A
1 ) := supUG

S0 ⪰G S0 ⊃ Scontribute
θD

→ (γA
0 , γ

A
1 ) ⪰G SC

θD
.721

Thus the anarchy solution is feasible and dominates all strategies in Scontribute
θD

.722

This completes the proof, and demonstrates that if backfiring is ever to occur, it will exhibit strategies723

that are minimally compliant with the regulation.724

Backfiring is a regulation yielding lower safety than βA
0 . The claims above state that backfiring725

cannot occur if θD > βA
1 and can only occur if the domain specialist minimally complies. As an726

immediate corollary, we can claim that backfiring occurs if and only if there is a regulation θD < βA
1727

such that the strategies (γ0(θD), γ1(θD)) ∈ SMC
θD

.728

Lemma 0.13. For a given regulation θD < βA
1 in our setting, if G prefers any minimally compliant729

strategy γ′
0 to γA

0 , then G’s optimal strategy γ∗
0 ∈ SMC

θD
and the regulation backfires.730

Proof. We’re given γA
0 is optimal over S0. By Lemma 0.10, SC

θD
⊂ S0. Since θD < βA

1 , γA
0731

remains feasible. The only new strategies available to G are those in SMC
θD

. Thus, if we denote732

utility-domination using ≻, we have γ′
0 ≻ γA

0 ⪰ g∀g ∈ SC
θD

. This implies G’s optimal strategy γ∗
0733

is either γ′
0 or otherwise belongs to SMC

θD
.734

Thus our task is to find some regulation θD and some strategy γ′
0 such that UG(γ

′
0) > UG(γ

A
0 ).735

Lemma 0.14. For small ϵ > 0, if the given conditions are met, the following G strategy dominates
no regulation:

γ′
0 =

[ δrα
2c0,αα

(
βA
0 − 2ϵ

)
βA
0 − 2ϵ

]

Proof. Equation 1 give us G and D’s strategies under no regulation. Given G’s candidate strategy
stated in the Lemma, we compute D’s best response. Observe this must be a minimally-compliant
best response, because G’s strategy was constructed to be a difference βA

0 + ϵ from D’s regulatory
floor. Thus, by Proposition 0.6, we have:

γ′
1 =

[
α′
0 +

(1−δ)
2c1αα

− c1,αβ

c1αα
θD

θD

]
We compare G’s utility in the two scenarios:736

1. (γ′
0, γ

′
1) → U ′

G = δ (rαα
′
1 + rββ

′
1)− c0,αα(α

′
0)

2 − 2c0,αβα
′
0β

′
0 − c0,ββ(β

′
0)

2737

2. (γA
1 , γ

A
1 ) → UA

G = δ
(
rαα

A
1 + rββ

A
1

)
− c0,αα(α

A
0 )

2 − 2c0,αβα
A
0 β

A
0 − c0,ββ(β

A
0 )

2738
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We compute the difference ∆UG = U ′
G −UA

G . We expand both terms and take the limit as ϵ ↘ 0 to
get the following:

lim
ϵ↘0

∆UG =
δ(1− δ)rβ

2c1ββ

(
rβ − c1,αβ

c1,αα
rα

)
A sufficient condition for this quantity being positive is stated below. The reason is all terms outside
the parentheses are given as positive.

rβ >
c1,αβ
c1,αα

rα.

Notice the above condition is given as it is one of the conditions in remark 0.3.4739

Thus, we have shown that for small positive ϵ, the generalist prefers the backfiring strategy to the740

unconstrained optimum γA
0 . By Lemma 0.13, the optimal regulated strategy is an element in SMC

θD
741

and the regulation backfires.742

Proof of the mutualism result743

Here we prove Theorem 0.5, that for a swath of games there exists a set of regluations that mutually744

improve the player’s utilities.745

Proof. Observe that we only have to provide a single instance of regulation that does better than the
unregulated optimal γA

0 , γ
A
1 to show that there exists a Pareto improvement effect of regulation. We

consider the following minimal-compliance strategies (using Proposition 0.6 and 0.7):

γ′
0 =

[
δrα

2c0,αα
− c0,αβ

c0,αα
θG

θG

]
, γ′

1 =

[
α0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1αα
θD

θD

]
.

Observe these are feasible because they are compliant and, for small ϵ, the performance investment746

is positive.747

Lemma 0.15. For the specified conditions, UG(γ
′
0, γ

′
1) > UG(γ

A
0 , γ

A
1 )748

Proof. Start by computing the change in the generalist’s performance and safety investments be-749

tween these strategies. The change in safety investment is simply ∆β0 = θG − βA
0 = ϵ. The change750

in performance investment is given by:751

∆α0 = δrα
2c0,αα

− c0,αβ

c0,αα

(
δ

2 detC0
(−c0,αβrα + c0,ααrβ + ϵ)

)
− δ

2 detC0
(c0ββrα − c0αβrβ)

= δrα
2c0,αα

+
c20,αβ

c0,αα

δrα
2 detC0

−
�������
c0,αβ

δ
2 detC0

rβ +
c0,αβ

c0,αα
ϵ− δ

2 detC0
c0,ββrα +

�������
c0,αβ

δ
2 detC0

rβ

=
(

δ
2c0,αα

+
c20,αβδ

c0,αα2 detC0
− δc0,ββ

2 detC0

)
rα +

c0,αβ

c0,αα
ϵ

= δrα
2

(
1

c0,αα
+

c20,αβ

c0,αα(c0,ααc0,ββ−c20,αβ)
− c0,ββ

c0,αα

)
+

c0,αβ

c0,αα
ϵ

= δrα
2 ((((((((((((

detC0+c2αβ−c0,ααc0,ββ

c0,αα detC0

)
+

c0,αβ

c0,αα
ϵ

=
c0,αβ

c0,αα
ϵ.

By the same logic, we solve for the change in the players’ strategies. First, ∆β1 = β′
1 − βA

1 =752

βA
1 + 2ϵ− βA

1 = 2ϵ. The change in performance is given by:753

4This is also the condition for having a non-zero safety investment when costs are convex, and intuitively,
backfiring is impossible when safety investment is zero.
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∆α1 = α′
1 − αA

1

=
[
α′
0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1,αα
(θD − β′

0)
]
−
[
αA
0 + (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

]
= ∆α0 +

(1−δ)rα
2c1,αα

− c1,αβ

c1,αα

(
(1−δ)

2 detC1
(−c1,αβrα + c1,ααrβ) + ϵ

)
− (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

=
c0,αβ

c0,αα
ϵ+ (1−δ)rα

2c1,αα
− c1,αβ

c1,αα

(
(1−δ)

2 detC1
(−c1,αβrα + c1,ααrβ) + ϵ

)
− (1−δ)

2 detC1
(c1,ββrα − c1,αβrβ)

= ϵ
(

c0,αβ

c0,αα
− c1,αβ

c1,αα

)
.

The change in G’s cost is given by:754

∆(G’s cost) =
[

∆α0

∆β0

]T
C0

[
∆α0

∆β0

]
= c0,αα(

c0,αβ

c0,αα
)2ϵ2 + 2

(
c0,αβ

c0,αα
ϵ
)
ϵ+ c0ββϵ

2

Notice these are all ϵ2 terms, meaning as ϵ is brought to very small positive values, they approach755

zero at an exponential rate. The contribution to G’s revenue is given by:756

∆(G’s revenue) = δ(rα∆α1 + rβ∆β1)

= δ
(
rαϵ

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ rβ2ϵ

)
Notice these are terms of ϵ, whereas the cost effects are solely terms of ϵ2. Therefore, for sufficiently
small ϵ, we say:

lim
ϵ↘0

∆UG = δ

(
rαϵ

(
c0,αβ
c0,αα

− c1,αβ
c1,αα

+ 2rβϵ

))
Using the given conditions, we know:757

lim
ϵ↘0

∆UG > 0 ⇐⇒ δ
(
rαϵ

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ 2rβϵ

)
> 0

⇐⇒ rα

(
c0,αβ

c0,αα
− c1,αβ

c1,αα

)
+ 2rβ > 0

⇐⇒ rαc0,αβ

rβc0,αα
− rαc1,αβ

rβc1,αα
> −2.

Our conditions strictly bound the absolute value of both terms on the left hand side below 1, so this758

completes the Lemma’s proof.759

Lemma 0.16. For the specified conditions, UD(γ′
0, γ

′
1) > UD(γA

0 , γ
A
1 )760

The limiting effect on D’s revenue is calculated exactly the same way as above, except that the761

revenue expression is multiplied by (1− δ) instead of δ.762

This completes the proof, as both players are better off under the regulation.763
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