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Abstract

Relational Triple Extraction (RTE), one of001
the crucial components of information extrac-002
tion, has experienced rapid development in re-003
cent years. However, due to the triple dupli-004
cation problem in existing datasets, previous005
methods often yield highly competitive results006
by simply memorizing the duplicated triples007
rather than discovering the new triples from008
raw text. Specifically, In the two most widely-009
used datasets (NYT and WebNLG), more than010
80% of the triples from the test set are direct du-011
plicates of triples already present in their train-012
ing set. In response to this, we propose a new013
dataset, named ENT, to evaluate the model’s014
ability to Extract New Triples, which aligns015
more coherently with the objectives of the RTE016
task. Specifically, based on the Wikidata knowl-017
edge graph slices and Large Language Model018
Prompting, we design an RTE dataset construc-019
tion pipeline. It consists of four steps, includ-020
ing: 1) Preprocess, 2) Paragraph Generation,021
3) Rule-based Check and 4) Semantic Check.022
ENT comprises 300k+ unique triples with all023
the test set samples containing at least one new024
triple. We conduct a re-evaluation of nine ex-025
isting state-of-the-art methods and observe a026
generalized 10%+ and 7.5%+ decrease in ex-027
traction accuracy on ENT compared to NYT028
and WebNLG respectively. This demonstrates029
that ENT is a more challenging and meaningful030
benchmark, and we hope it will lead to new031
directions in the study of the RTE task.032

1 Introduction033

Relation Triple Extraction (RTE), also called joint034

extraction of entities and relations or triple extrac-035

tion, aims to extract the relational triples <subject,036

relation, object> from raw text (Nayak et al., 2021).037

In the field of information extraction, RTE is a038

crucial task and serves as a bridge between the un-039

structured human language and triple-structured040

explicit knowledge in knowledge graphs.041
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Figure 1: Triple duplication in NYT, WebNLG and ENT.
Stest
A exhibits the highest degree of triple deplication,

followed by Stest
B . Stest

C contains new triples. xa, xb,
and xc are schematic illustrations of the duplicated sam-
ples in Stest

A , Stest
B and Stest

C , respectively. Two triples
τi, τj are considered duplicates only in the cases with
all the identicalness between their subjects, relations,
and objects, that is, (si = sj)&(ri = rj)&(oi = oj).

Early researches decomposed the RTE into two 042

components: entity identification and relation cat- 043

egorization (Zelenko et al., 2002; Chan and Roth, 044

2011). Chan and Roth (2011) firstly recognized 045

the entities, and then extracted the relation for each 046

entity pair. In recent years, researchers have in- 047

creasingly focused on the deep connection between 048

entities and relationships (Wei et al., 2020; Zheng 049

et al., 2021; Ren et al., 2021b; Wang et al., 2020; 050

Tang et al., 2022). Among them, Wang et al. (2020) 051

initially implemented a one-step triple extraction 052

by conceptualizing RTE as a table-filling task; Tang 053

et al. (2022) proposed a unified entity-relation rep- 054

resentation and interaction framework. These meth- 055

ods have made great strides in the development of 056

RTE and achieved a high level of accuracy. 057

Despite the performance improvements of prior 058

works, we identify a significant potential flaw of 059

triple duplication within the existing benchmark for 060
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RTE. According to our calculation, more than 80%061

of the triples in the test set of NYT and WebNLG062

are duplicates. A significant part of test set sam-063

ples contain even completely duplicated triples to064

another sample in the training set (as Stest
A shown065

in Figure 1). This implies that the two benchmarks066

primarily focus on evaluating the model’s ability to067

memorize existing triples, rather than discovering068

new ones. As new triples are considered more valu-069

able in some of the real world requirements, such070

as the automatic or semi-automatic construction071

of Knowledge Graphs (KGs) (Dong et al., 2014;072

Nayak et al., 2021), the existing benchmarks of073

RTE exhibit a significant gap due to their lack of074

adequate emphasis on them.075

To broaden the scope of discovering new triples,076

we designed and implemented a KG-based auto-077

mated dataset construction pipeline and develop a078

new benchmark dataset, ENT. The pipeline con-079

sists of four steps: 1) Process that performs ir-080

relevant triple filtering in the collected and clus-081

tered knowledge base. 2) Paragraph Generation082

by prompting to the Large Language Model (LLM).083

3) Rule-based Check that identifies and rectifies the084

unconforming paragraphs. 4) Semantic Check of085

the alignment between the relational triples and086

paragraphs. We finally obtained the ENT dataset087

with 62k samples and 347k unique triples. More088

than 60% of the test set triples are new, not found089

in the training set. Concurrently, each sample of090

the test set comprises at least one new triple. This091

indicates that ENT can represent the extraction ca-092

pability of new knowledge more accurately.093

We re-evaluated nine state-of-the-art RTE meth-094

ods on the ENT benchmark and observed a general-095

ized 10%+ and 7.5%+ accuracy decrease compared096

with the two other most widely used benchmarks097

NYT (Riedel et al., 2010) and WebNLG (Gardent098

et al., 2017). We conducted a more thorough analy-099

sis on ENT and revealed a lower propensity for bias100

towards duplicated triples of ENT. It demostrates101

that ENT serves as a more challenging and mean-102

ingful benchmark from the perspective of discover-103

ing new triples. We plan to open-source the com-104

plete ENT dataset in the near future and hope it will105

lead to new directions of RTE study in the future.106

2 Related Work107

2.1 Relational Triple Extraction108

Some of the RTE study are conducted on the simpli-109

fied version of the existing datasets called partial-110

match, where the RTE model identify only the fi- 111

nal word of the entities (Zheng et al., 2017; Fu 112

et al., 2019; Liang et al., 2022; Zhao et al., 2021). 113

Other works propose more realistic frameworks 114

for exact-match extraction, which stipulate that all 115

entities must be extracted in their entirety. Wei 116

et al. (2020) proposed a two-stage triple extraction 117

scheme, which successfully addressed a significant 118

number of overlapped entities for the first time. Sui 119

et al. (2023) treated RTE as an ensemble prediction 120

problem and employed a non-autoregressive de- 121

coder. Wang et al. (2020) initially conceptualized 122

the RTE task as a table filling problem. Ren et al. 123

(2021b) proposed a straightforward and efficient 124

approach to RTE by implementing a bi-directional 125

extraction framework. Shang et al. (2022a) fur- 126

ther simplified the labeling strategy and decoding 127

method of table filling for RTE. Tang et al. (2022) 128

proposed a novel unified entity-relation interaction 129

modeling approach. Shang et al. (2022b) devised a 130

method for entity extension matching, though at the 131

cost of significantly increasing the text sequence 132

length. Papaluca et al. (2023) attempted to utilize 133

LLMs for direct few-shot triple extraction but ob- 134

served that the LLM struggled to attain competitive 135

performance with classical baseline models. 136

2.2 RTE Dataset 137

NYT (Riedel et al., 2010) and WebNLG (Gardent 138

et al., 2017) are the most widely used datasets 139

for RTE at present. NYT was constructed by re- 140

mote supervised relation extraction. It is contains 141

noisy samples and has a limited number of rela- 142

tions. WebNLG employed native English speak- 143

ers to write text descriptions for relational triples 144

and got a dataset of limited size. With the rapid 145

development of deep learning techniques in the 146

field of natural language processing, it is becoming 147

increasingly acceptable to use machines for data 148

annotation. For example, Hennig et al. (2023) used 149

machine translation models to build a multilingual 150

relation extraction dataset. 151

2.3 Large Language Model for Text 152

Generation 153

LLMs, with increasing model parameters and ex- 154

tensive training corpora, have demonstrated ex- 155

traordinary capabilities of text generation (Radford 156

et al., 2019; Brown et al., 2020). By incorporat- 157

ing human feedback into large language models, 158

it is possible to generate outputs that are more 159

aligned with human preferences (Ouyang et al., 160
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Short Description: 
VTB Capital  is a Russian investment bank. It is one of the three strategic business
arms of VTB Group, along with the corporate and retail businesses.

Triples: (1-hop) 
'VTB Capital', 'headquarters location', 'Moscow'
'VTB Capital', 'industry', 'investment bank'
'VTB Capital', 'inception', '2008'
'VTB Bank', 'owned by', 'Russia
'VTB Capital', 'founded by', 'Andrey L. Kostin
'VTB Bank', 'headquarters location', 'Moscow'...
'Russia', 'located in or next to body of water', 'Baltic
Sea'...                                                               (2-hop)

Keywords:
'VTB Capital',
'VTB Bank',
'Moscow',
'Russia',
'investment bank',
'2008',
'Andrey L. Kostin'

Final Text Paragraph:
VTB Capital, founded by Andrey L. Kostin, is a Russian investment bank that was
established in 2008. It is one of the three strategic business arms of VTB Group, together
with the corporate and retail businesses. Based in Moscow, the headquarters of VTB
Capital are located in Russia. VTB Bank, which is owned by Russia, also has its
headquarters in Moscow. VTB Capital operates in the industry as an investment bank.

\\For each triple:\\
User: 
Given a passage and a relation triple, please judge whether the passage
semantically implies the meaning of the triple.  \\Final Text Paragraph\\
The triple is: \\Triple\\     You just need to answer yes or no.
Assistant:
\\Yes or No\\

New dialog

Step 1: Preprocess

Step 4: Semantic Check

Drop the
triples with
answer 'No'

User: 
You are a sentence expander, and you need to expand a sentence into a longer paragraph. This
paragraph needs to contain all the keywords listed, as well as the triplet entities connected to
those keywords.
Assistant:
Okay, I'm going to expand on the sentence you give, and I'm going to make the subject and
object of each triplet appear tightly. Please provide the sentence to be expanded, all keywords,
and triples.
User:
\\Short Description\\    Keywords: \\Keywords\\    Triplet: \\Triples\\
Now please return your paragraph. No longer than \\x\\ words.
Assistant:
\\Text Paragraph\\

New dialog

Step 2: Paragraph Generation

Text Paragraph:
VTB Capital, founded by Andrey L. Kostin  ...   in the industry as an investment bank.

Entity Checking 

User: 
This result is OK, but there are still some shortcomings: I noticed that the following words or
phrases are still omitted or distorted in the paragraph:  \\Missing entities\\
You'll have to regenerate the paragraph again, revising the spelling and expression with these
words or phrases so that they remain in the paragraph as they are. Just answer the paragraph
directly, without making any formal changes to these listed words or phrases.
Assistant:
\\Updated Text Paragraph\\

Missing?

Continue dialog

Step 3: Rule-based Check
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Figure 2: The process of constructing the ENT dataset with detailed content of prompt. The content between the
pair of \\green slashes\\ are the comment for the variable transferred in the dialog with LLM.

2022). Concurrently, the content of the KG can sig-161

nificantly mitigate the hallucination issue of large162

language models (Guan et al., 2023; Yuan and Vla-163

chos, 2023). Zero-shot automatic text generation164

via LLM with factual triples has demonstrated com-165

petitive performance (Axelsson and Skantze, 2023;166

Xu et al., 2023). In this work, we utilize the triples167

from a real-world KG to instruct the LLM for the168

development of an RTE dataset.169

3 Methodology170

3.1 Formalized Definition of RTE171

Given a text sequence input W = [w1, w2, ..., wL],172

RTE aims to predict the set of relational triples:173

T = {τn | n ∈ {1, ...N}}, τn = (sn, rn, on).174

Each relationship rn of the triple belongs to a175

pre-defined relation set R. All the subjects {sn}176

and the objects {on} are consecutive segments177

[wi, wi+1, ..., wj ] (1 ⩽ i ⩽ j ⩽ L) extracted from178

the input sentence. The number of triples N per179

sentence may be greater than 1, while the exact180

number is not known in advance. The input con-181

sists of simple raw text, which does not contain182

explicit knowledge (e.g., entity information).183

3.2 Dataset Construction Pipeline184

Constructing an RTE dataset requires the collec-185

tion of text-triples sample pairs. We notice that186

Cheng et al. (2020) has gathered a substantial num-187

ber of entities from Wikipedia and Wikidata, along 188

with the relational triples, to construct a dataset 189

called ENT-DESC for KG-based concise national 190

language generation. However, the original textual 191

description is too short and insufficiently detailed 192

for RTE, failing to encompass all the triples associ- 193

ated with the main entities. The original dataset is 194

open-sourced for research. 195

To actualize the text construction, we utilized 196

OpenAI’s GPT-3.5-Turbo API 1 as the LLM for au- 197

tomatic text generation. The objective of the LLM 198

is to generate a longer textual paragraph incorpo- 199

rating all the specified entity keywords, which is 200

both textually and semantically aligned with the 201

relational triples. The entire text generation pro- 202

cess is divided into four steps :Preprocess, Para- 203

graph Generation, Rule-based Check and Semantic 204

Check. 205

3.2.1 Preprocess 206

Each sample in ENT-DESC has several main en- 207

tities and the relational triples within 2-hop paths. 208

We retain the 1-hop triples, whose subject or ob- 209

ject connected with the main entities directly, and 210

discard the 2-hop ones. This is due to the fact that 211

the 2-hop triples result in more verbose paragraphs, 212

thereby making the expository focus of the para- 213

graphs more ambiguous. For example, as shown 214

1https://platform.openai.com/docs/api-reference
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in Figure 2, the 2-hop triple <‘Russia’, ‘located in215

or next to body of water’, ‘Baltic Sea’>, only con-216

nected to the entity ‘Russia’, is not directly related217

to either of the two main entities, ‘VTB Capital’ or218

‘VTB Bank’. We retain the 200 relationships with219

the highest frequency of occurrence. Each relation220

has at least 20 unique triples.221

3.2.2 Paragraph Generation222

In this step, we instruct the LLM to expand the223

description and generate a longer paragraph. We224

meticulously outline the commands that the LLM225

needs to execute in the prompt. The LLM needs to226

expand the existing short description based on the227

information contained within the relational triples228

and ensure that all the keywords are located within229

the expanded paragraph. In an effort to mitigate the230

verbosity of the LLM’s statements, we implemente231

a straightforward soft-limit policy by instructing232

the LLM to generate paragraphs no longer than x233

words. x = 8N + 4, where N means the number234

of triples in a sample. It is essential to highlight235

both the keywords and triples explicitly: the de-236

emphasis of keywords may result in more missing237

entities, while the de-emphasis of triples can lead238

to semantic distortion in the generated paragraph.239

3.2.3 Rule-based Check240

Although the keyword- and triple-based prompt241

enables the LLM to generate more accurate para-242

graph, it runs the risk of syntactic reconstruction or243

entity content re-expression, potentially disrupting244

the original entity structure. In this step, we use a245

direct rule-based method to check if the original246

entity is missing from the paragraph. We use a247

BERT-base-cased (Devlin et al., 2018) tokenizer248

to tokenize the text paragraph and all the entities.249

If both the entity’s string and token id sequence250

can be matched within the paragraph, we deem251

the entity to be rule-compliant for RTE extraction.252

Otherwise, it is considered to be missing. If there253

are missing entities, we continue to identify such254

entities and instruct the LLM to regenerate a new255

paragraph until all the entities can be successfully256

matched. We discard the sample with the token257

[UNK] or ⩾1 missing entities after the third dia-258

log.259

3.2.4 Semantic Check260

Not all the paragraphs that pass the entity match-261

ing check fully encompasses the entity and rela-262

tionship information expressed by the triples. In263

this step, we reinitiate a new dialog with the LLM 264

to ascertain whether the semantic meaning of the 265

triple is conveyed within the paragraph. The LLM 266

here does not have access to the previous dialog. 267

We drop the triples with semantically negative re- 268

sponse. We verify good semantic alignment be- 269

tween the triples and LLM-generated text passages 270

evidenced by the introduction of human opinions 271

on a smaller subset of samples, which is introduced 272

in Appendix A. 273

3.3 ENT Dataset 274

We collect all the samples that underwent the 4 275

steps and obtain 62,609 English paragraphs with 276

347,452 unique exact-match triples overall. The 277

domains of the triples include humans, events, 278

locations and organizations. We divide the en- 279

tire dataset into the training set(~80%), validation 280

set(~10%) and test set(~10%) in the original order. 281

Note that the relational triples in the dataset are 282

identified as generalized, potentially including at- 283

tribute triples that also comply with the formulated 284

definition of the RTE in Section 3.1. For instance, 285

triples with relations such as ‘date of birth’ and 286

‘start time’ would be considered. 287

Futher more, every sample in the ENT test or 288

validation set contains new triples (as shown in Fig- 289

ure 1). This feature is achieved without altering the 290

distribution of data. The reason can be attributed 291

to two factors. 1) The main entities of the origi- 292

nal triple groups were derived and clustered from 293

PageRank scores, demonstrating strong topic inde- 294

pendence. 2) We discard the 2-hop triples, further 295

reducing the triple duplication between different 296

samples. ENT, with over 60% proportion of new 297

triples in test set, is a more persuasive benchmark 298

for evaluating the methods’ ability to Extract New 299

Triples. We name this dataset ENT. In contrast, 300

the new triples in the test sets of both NYT and 301

WebNLG comprise only ~10%. 302

The detailed statistical information of ENT and 303

the other existing datasets are presented in Table 304

1. ENT has a comparable sample size to NYT but 305

contains a larger number of relations, longer text, 306

and a greater quantity of triples in each sample. 307

The mini-KG size is determined by counting the 308

number of all the unique triples, which can serve 309

as a rough representation of the scope of knowl- 310

edge encompassed by the dataset. ENT has made 311

significant strides in this metric. 312

The assessment of new knowledge discovery has 313

not been clearly defined, particularly when con- 314

4



Dataset Train Valid Test Relations Mini-KG Size µN µF (τ) N ′
test/Ntest

NYT 56,196 5,000 5,000 24 17,621 1.6 5.5 0.104
WebNLG 5,019 500 703 216 2,661 2.3 4.6 0.089

ENT 49,968 6,043 6,058 200 347,452 8.6 1.5 0.617

Table 1: ENT vs. NYT and WebNLG. µN denotes the average number of triples of each sample. µF (τ) denotes the
average frequency of each unique triple in the training set. F (τ) = 1 means the triple τ appears only once in the
training set. N ′

test and Ntest represent the number of new triples and all the triples in the test set, respectively.

Category Number

t1 N ′/N < 0.2 242
t2 0.2 ⩽ N ′/N < 0.4 1127
t3 0.4 ⩽ N ′/N < 0.6 1265
t4 0.6 ⩽ N ′/N < 0.8 1147
t5 0.8 ⩽ N ′/N < 1.0 796
t6 N ′/N = 1.0 1481

e1 E′ = 0 461
e2 E′ = 1 2357
e3 E′ = 2 1366
e4 E′ = 3 837
e5 E′ = 4 513
e6 E′ ⩾ 5 524

r1 Rm < 10 1490
r2 10 ⩽ Rm < 25 1077
r3 25 ⩽ Rm < 50 1233
r4 50 ⩽ Rm < 75 667
r5 75 ⩽ Rm < 100 636
r6 Rm ⩾ 100 955

Table 2: Categories from different perspective of the
intensity of the new knowledge for ENT test set. N ′,
N and E′ denote the number of new triples, all triples
and new unique entities in each sample. Rm denotes the
max oridinal number of the relations in each sample.

sidering the intensity of the new knowledge. Nev-315

ertheless, we endeavor to provide three intuitive316

perspectives for quantitative evaluation. Table 2317

illustrates the three perspectives of the category.318

From the perspective of triples, we categorize the319

test set by the proportion of new triples in each320

sample (t1-t6), a significant intuitive indicator to321

gauge the intensity of new knowledge. For the en-322

tities, we implement the division in terms of the323

number of new unique entities of each sample (e1-324

e6). For the relations, we sorted all the relations by325

the frequency of occurrence in descending order326

and and assign a unique ordinal number to each327

relation (from 0 to 199). A higher ordinal number 328

indicates a less common relationship. We perform 329

the division on the test set in terms of the maximum 330

relation ordinal number in each sample (r1-r6). 331

4 RTE Experiment Setups 332

We select 9 state-of-the-art RTE methods for our 333

reassessment: CasRel (Wei et al., 2020), SPN4RE 334

(Sui et al., 2023), TPLinker (Wang et al., 2020), 335

PRGC (Zheng et al., 2021), GRTE (Ren et al., 336

2021a), BiRTE (Ren et al., 2021b), OneRel (Shang 337

et al., 2022a), UniRel (Tang et al., 2022), and OD- 338

RTE (Ning et al., 2023). For each method, we 339

create and configure a specific miniconda environ- 340

ment based on the packages and their versions indi- 341

cated in the respective source code. We initialize all 342

the models with the pretrained BERT-base-cased 343

weights, which are widely cited as beneficial. We 344

test each model on the checkpoint with the high- 345

est validation F1 score and set batch size = 1 for 346

inference. We uniformly evaluate the triples in the 347

format of <subject, relation, object>. 348

For NYT and WebNLG benchmark, we focus on 349

the exact-match version as it more closely aligns 350

with the real-world RTE applications. In certain 351

scenarios requiring model retraining, we utilize 352

publicly available source code and the optimal hy- 353

perparameter configurations cited in the original 354

paper to train the model. 355

ENT is also exact-matched. For the training of 356

ENT, we separately utilize the optimal parameters 357

of each method reported on NYT due to the compa- 358

rable sample sizes of the two. Appendix 8 list some 359

of them. We synchronize and pre-tune the data for- 360

mat for specific methods, given the separate code 361

requirements. For CasRel, we preprocess ENT in 362

the same manner as Wiki-KBP. For OneRel, we 363

insert spaces between the text and punctuation and 364

record the entity mapping for inference. For the 365

relation hint in UniRel, we utilize a concise auto- 366

matic tokenizing strategy: If a relation’s first or last 367
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Method
NYT WebNLG ENT (Ours)

P R F1 P R F1 P R F1

CasRel (Wei et al., 2020) 89.8* 88.2* 89.0* 88.3* 84.6* 86.4* 73.8 54.2 62.2
SPN4RE (Sui et al., 2023) 92.5 92.2 92.3 85.7* 82.9* 84.3* 78.3 76.6 77.4
TPLinker (Wang et al., 2020) 91.4 92.6 92.0 88.9 84.5 86.7 70.7 75.3 72.9
PRGC (Zheng et al., 2021) 93.5 91.9 92.7 89.9 87.2 88.5 72.4 74.2 73.3
GRTE (Ren et al., 2021a) 933.4 93.5 93.4 92.3 87.9 90.0 83.9 81.1 82.4
BiRTE (Ren et al., 2021b) 91.9 93.7 92.8 89.0 89.5 89.3 81.5 80.8 81.2
OneRel (Shang et al., 2022a) 93.2 92.6 92.9 91.8 90.3 91.0 81.9 79.7 80.8
UniRel (Tang et al., 2022) 93.7 93.2 93.4 91.8 90.5 91.1 78.9 80.8 79.8
OD-RTE (Ning et al., 2023) 94.2 93.6 93.9 92.8 92.1 92.5 78.7 81.9 80.3

Table 3: Precision (P), recall (R) and micro F1 score (F1)(%) on NYT, WebNLG and ENT. Except for the data with
‘*’ reported by GRTE, the other metrics of NYT and WebNLG’s are sourced from the respective original paper.

word can be tokenized into a single token that is368

not already occupied by another relation, it is used369

as the hint of the relation. Otherwise, the token is370

sequentially tokenized as [unuse x]. In addition,371

we set the maximum input length as 400 for all the372

methods.373

5 Results and Analysis374

5.1 Main Results375

We present the overall accuracy of various RTE376

methods on ENT in Table 3, contrasting them with377

NYT and WebNLG. The accuracy of existing meth-378

ods on ENT is typically 10%+ lower than that on379

NYT, which has a comparable data volume to the380

former. The ENT accuracy is also generally 7.5%+381

lower than WebNLG, whose data volume is ap-382

proximately 0.1x. This suggests that our dataset383

presents a greater challenge.384

Furthermore, the performance of OD-RTE on385

ENT is slightly inferior to that of GRTE, despite386

the fact that OD-RTE was previously reported as a387

state-of-the-art method at present. We observe that388

OD-RTE, when performing tagging, training, and389

inference, identifies all the entities that appear mul-390

tiple times in the text, regardless of their location.391

This lead to the aggressive decoding of a greater392

number of triples, notably enhanced by the larger393

quantity of triples contained by each sample in394

ENT (higher µN in Table 1). Besides, considering395

the data processing of CasRel is slightly outdated396

and lead to a bias in the content of the ENT entities,397

we only report its overall results just for general398

inference.399

Method R-T ◦ R-T ′ R-E◦ R-E ′

SPN4RE 79.4 71.9 90.7 86.7
TPLinker 83.2 70.4 88.9 79.9
PRGC 78.2 71.6 90.2 84.8
GRTE 87.1 77.3 93.7 87.4
BiRTE 87.4 76.7 93.7 87.3
OneRel 86.0 75.9 93.4 86.3
UniRel 86.4 77.4 93.3 86.5
OD-RTE 87.9 78.2 94.2 88.1

Table 4: The recall (%) on the old (T ◦) and new (T ′)
triples, as well as the old (E◦) and new (E ′) entities.

5.2 Detailed Results of ENT 400

We observe and illustrate the alterations in the ac- 401

curacy with various intensity of new knowledge 402

from different perspectives in this section. Among 403

the three perspectives introduced in Table 2, the 404

most obvious correlation with extraction difficulty 405

is observed in the proportion of new triples (t1- 406

t6). It can be noted that almost all the methods 407

exhibit a decline in accuracy as the proportion of 408

new triples increases. Appendix B elaborate the 409

detailed demonstration. Furthermore, the r1 subset, 410

as delineated based on the frequency of relation oc- 411

currence (r1-r6), yield the highest scores for each 412

method. This implies an intuitive assumption that 413

it is easier for the model to extract knowledge with 414

more common relations. In contrast, when viewed 415

from the perspective of new entities (e1-e6), the per- 416

formance exhibits more fluctuations. This suggests 417

that the new entities may not adequately represent 418

the intensity of new knowledge. 419
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Figure 3: Specific triple micro F1 scores of RTE methods in three different perspectives of ENT test set. t1-t6
presents the different proportion of new triples in a sample. e1-e6 presents the different number of new unique
entities. r1-r6 presents the max ordinal relation number in a sample. Category details are shown in Table 2.

We further report the recall of separate triples420

and entities within the test set as shown in Table 4.421

The recalls for new triples and entities are consis-422

tently lower than that of duplicate ones, which un-423

derscores the complexity of discovering new knowl-424

edge from another perspective. The significantly425

lower recall of triples compared to entities further426

indicates that accurately extracting entities accu-427

rately is insufficient for RTE, regardless of whether428

the knowledge is new or duplicated. We do not429

have precisions accurately reported from a similar430

perspective, as it is not feasible to categorize the431

error triples extracted.432

5.3 Review on NYT and WebNLG433

The review on NYT and WebNLG from the per-434

spective of discovering new knowledge can simi-435

larly highlight the considerable difficulty in extract-436

ing new triples. Based on the degree of triple dupli-437

cation shown in Figure 1, the NYT and WebNLG438

test sets can be sliced into three disjoint subsets,439

Stest
A , Stest

B and Stest
C . For each method, we con- 440

duct tests on each of the three subsets using the 441

same checkpoints. Table 5 presents the perfor- 442

mance on the separate three subsets. All the meth- 443

ods consistently demonstrate significantly low ac- 444

curacy on Stest
C , suggesting that this task is more 445

challenging. In contrast, the highest accuracy is 446

undoubtedly observed in the group Stest
A with the 447

most duplication, where all the model jsut need 448

to memorize the triples. Stest
B also exhibit high 449

accuracy slightly trailing behind Stest
A , implying 450

that the arrangement and combination of knowl- 451

edge present a lower degree of difficulty. As Stest
A 452

and Stest
B hold an absolute majority in the test set, 453

the model’s ability to memorize duplicated triples 454

primarily contributes to the high performance of ex- 455

isting benchmarks. In addition, although OD-RTE 456

is currently reported as the overall state-of-the-art, 457

it leads by a smaller margin and lags slightly on 458

some indicators. 459

It is important to note that while each sample 460
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Stest
A Stest

B Stest
CDataset Method

P R F1 P R F1 P R F1

CasRel 93.3 95.2 94.2 82.9 77.0 79.8 68.8 56.3 61.9
SPN4RE 94.6 97.2 95.9 90.6 85.6 88.0 71.8 66.4 69.0
TPLinker 94.9 97.8 96.4 90.8 88.4 89.6 71.7 64.1 67.7
PRGC 95.5 97.0 96.3 90.8 85.7 88.2 71.2 62.6 66.6

NYT GRTE 96.2 98.4 97.2 93.9 90.2 92.0 72.7 65.7 69.0
BiRTE 95.7 96.8 96.3 92.9 89.2 91.0 71.2 63.1 66.9
OneRel 94.7 97.8 96.2 92.6 89.8 91.2 68.2 64.2 66.1
UniRel 96.0 98.3 97.1 94.3 90.0 92.1 73.2 64.5 68.6
OD-RTE 96.1 98.0 97.0 92.7 89.6 91.2 71.4 68.4 69.9

CasRel 92.8 94.2 93.5 89.4 88.4 88.9 67.7 55.3 60.9
SPN4RE 92.5 94.2 93.3 93.3 92.2 92.8 72.7 63.2 67.6
TPLinker 90.6 95.3 92.9 90.9 89.6 90.3 78.9 65.8 71.8
PRGC 92.5 93.9 93.2 93.5 88.9 91.1 71.8 65.8 68.7

WebNLG GRTE 94.5 96.7 95.6 93.4 91.9 92.7 83.4 65.5 73.5
BiRTE 92.5 95.7 94.1 92.9 91.3 92.1 74.6 68.7 71.5
OneRel 93.1 96.0 94.5 93.3 91.5 92.4 77.7 66.5 71.7
UniRel 94.6 95.5 95.1 93.0 93.0 93.0 79.4 70.5 74.7
OD-RTE 94.5 97.9 96.2 94.4 94.2 94.3 80.4 71.1 75.5

Table 5: The precision (P), recall (R), and micro F1 scores (F1) (%) for the three divided subsets of test from NYT
and WebNLG. The metrics are colored for ease of comparison.
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Figure 4: Accuracy of different training data volume.

in Stest
C also consist of new triples, Stest

C of NYT461

and WebNLG cannot serve as a direct benchmark462

for new knowledge discovery evaluation, as the463

slicing process of the three subsets results in differ-464

ent distributions. A higher degree of duplication465

can hinder the discovery of new knowledge by the466

model, which is discussed in Appendix C.467

5.4 Data Volume 468

We also tested the adequacy of the data volume 469

by randomly reducing the size of the training set 470

for NYT/WebNLG/ENT to 10%-90% and execut- 471

ing training operations separately. The results in 472

Figure 4 demonstrates that the marginal impact of 473

increasing the size of the training set on model per- 474

formance enhancement is already apparent. NYT 475

and ENT grow more gradually than WebNLG. It 476

implies a sufficient volume of the ENT dataset. 477

6 Conclusion 478

In this paper, we propose a new benchmark, ENT, 479

for Relation Triple Extraction. The dataset is de- 480

veloped based on factual Knowledge Graph slices 481

and Large Language Model Prompting. ENT of- 482

fers a more accurate representation of the model’s 483

ability to discover new triples compared to the exist- 484

ing benchmarks. Following extensive experiments 485

on 9 advanced prior works, ENT is found to be 486

more challenging than the other two benchmarks. 487

Besides, we have identified a positive correlation 488

between extraction difficulty and the intensity of 489

new knowledge. We will open-source the complete 490

ENT dataset in the near future. 491
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7 Limitations492

We discuss the limitations of this work in two as-493

pects.494

• Despite the significant improvement in authen-495

ticity achieved through the KG & LLM-based496

national language generation, the word usage497

patterns of LLM may differ from those of hu-498

mans. LLM may lead to convergence of lan-499

guage styles for the paragraphs as well. This500

may result in stylistic shifts in the generated501

text of ENT. Furthermore, although we con-502

duct close triple accuracy checks on the gen-503

erated passages, there may be unanticipated504

triples in the paragraph, leading to a degree of505

noise. We intend to implement language style506

evaluation strategies and continue to identify507

potential triples in the future.508

• The relationships within our dataset do not509

align semantically with existing datasets, hin-510

dering the sharing or transfer of knowledge511

across different RTE datasets. In fact, there is512

often a lack of semantic alignment in the rela-513

tions between different pre-existing datasets.514

We are currently exploring methods for seman-515

tic alignment across datasets in RTE tasks.516

8 Ethics Statement517

We use the data of the ENT-DESC dataset “as is”.518

Although we regarded some of the samples during519

the construction of the dataset, we did not inple-520

ment a specialized bias filtering mechanism. The521

new dataset may thus reflect biases of the original522

dataset. The authors of the original dataset (Cheng523

et al., 2020) have not stated measures that prevent524

collecting sensitive text. Throughout the dialog525

with the LLM API, we did not coerce, induce, or526

suggest that LLM generated harmful or biased con-527

tent. However, we did not implement a specialized528

detection component to manage the content of con-529

versations returned by the LLM. Therefore, we do530

not rule out the possible risk of sensitive content in531

the data.532

The RTE experiments were conducted on a com-533

puter equipped with an Intel(R) Xeon(R) Platinum534

8350C CPU, 56 GB of RAM, and one NVIDIA535

GeForce RTX 3090. The average time required536

for a complete training and testing process on the537

ENT dataset is approximately 35 hours. For each538

method’s experiments on ENT, we set 5 different539

random seeds to train the model five times. We540

choose the group with the median micro F1 score 541

for accuracy report. 542
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A Human Verification737

We conducted multiple manual validations on a738

random sample of 100 entries from the final sam-739

ple set in Section 4.1. The objective was to verify740

whether the triples were semantically accurately741

incorporated into the returned text passages. We742

hired five part-time annotators to provide five dis-743

tinct feedbacks on the 100 samples. All of them744

hold a bachelor’s degree or higher and don’t know745

the full extent of this work. Each annotator was746

tasked with verifying each triple in each sample. A747

triple is considered semantically accurate from an748

artificial perspective when its meaning is accurately749

reflected in the text, as shown in Figure 5.750

All the annotator were told the data would be751

collected for evaluating the quality of a machine-752

generated dataset. We remunerated the annotators753

at an amount higher than the local minimum in-754

come standard.755

Based on the human feedback, our data construc-756

tion process yielded an average semantic accuracy757

of 94.8%. This suggests that our dataset exhibits758

low semantic noise.759

Annotator Corr. Triples (%)

1 96.6
2 92.5
3 93.3
4 95.8
5 95.9

Avg. 94.8

Table 6: Human verification accuracy of the triples.
Annotator 1-3 live in Asia, 4-5 live in North America.
All the remunerations exceed the local minimum wage.

Figure 5: Task description to the anonymous annonator.

B View of the New Triple Proportion in 760

ENT 761

In this section, we illustrate more intuitively how 762

the accuracy of each sample correlates with the 763

proportion of new triples contained within them. 764

Each subplot in Figure 6 represents a distinct RTE 765

method. As the percentage of new triples continues 766

to increase, more samples with lower extraction 767

accuracy rates appear, while samples with high 768

accuracy remains. 769

C Detailed Analysis for Triple 770

Duplication 771

In this section, we conduct an experiment to ex- 772

amine the impact of duplication on the model’s 773

ability to discover new triples. We slice two train- 774

ing subset on NYT or WebNLG by different ap- 775
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Figure 6: The overall view of triple extraction accuracy
of the methods. The horizontal axis of each subplot
represents the proportion of new triples in the sample,
and the vertical axis represents the micro F1 score (%).

proach. We firstly filter the samples by detecting776

duplicate triples within the training set and obtain a777

subset f such that it can just include all the unique778

triples. Samples with duplicate triples are discarded779

as much as possible. The second subset is randomly780

sliced to the same number of samples as the first781

one. We then randomly divide the training set into782

another subset d with equal-sized samples as f . We783

set validation and test set as Sval
C∗ and Stest

C∗ respec-784

tively, where SC∗ is the subset of SC with N ′ = N785

for each sample. The average number of occur-786

rences (µF (τ)) of each unique triple in group f is787

lower than that in group d. In this manner, regard-788

less of how the training set is sliced, all the triples789

of the test set will be new ones.790

Table 7 shows the accuracy with different train-791

ing subset slices. For subset d, we use three differ-792

Subset Size µF (τ) SPN BiRTE UniRel

nytf 11,925 1.1 65.4 65.8 65.1
nytd1 11,925 3.0 61.8 61.3 59.2
nytd2 11,925 3.1 61.6 61.2 58.9
nytd3 11,925 3.0 61.0 61.5 59.9

webf 1,463 1.4 53.4 56.7 56.9
webd1 1,463 2.3 45.4 42.6 48.0
webd2 1,463 2.5 44.3 41.7 46.6
webd3 1,463 2.2 45.5 43.0 48.2

Table 7: Comparison of the micro F1 score (%) on
Stest
C∗ of the RTE methods with different training set

slices. nyt and web denotes the training subset slices
from NYT and WebNLG, respectively. SPN is short for
SPN4RE.

Learning Rate Batch Size Epoch

CasRel 1e-5 6 100

SPN4RE
2e-5 for decoder
1e-5 doe encoder

8 100

TPLinker 1e-5 6 100
PRGC 1e-3 64 100
GRTE 3e-5 6 50
BiRTE 3e-5 18 100
OneRel 1e-5 8 200
UniRel 3e-5 12 100
OD-RTE 5e-5 6 20

Table 8: Hyperparameters for model training on the
ENT dataset

ent random seeds and get three different versions 793

d1, d2, d3. It can be found that the accuracy is 794

significantly higher in the group that we deliber- 795

ately reduce the triple duplication. This implies 796

that duplicated triples, even in the training set only, 797

can diminish the model’s tendency to uncover new 798

triples. 799

ENT dataset has a much lower µF (τ) than NYT 800

and WebNLG (as shown in Figure 2), which further 801

enhances the effectiveness of our benchmark in 802

assessing the discovery of new knowledge. 803

D Hyperparameters for ENT Training 804

In this section, we list some of the hyperparame- 805

ters for model training on the ENT dataset for all 806

methods in Table 8. More details for each method 807

can be found in the original paper and source code. 808
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