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Abstract

Relational Triple Extraction (RTE), one of
the crucial components of information extrac-
tion, has experienced rapid development in re-
cent years. However, due to the triple dupli-
cation problem in existing datasets, previous
methods often yield highly competitive results
by simply memorizing the duplicated triples
rather than discovering the new triples from
raw text. Specifically, In the two most widely-
used datasets (NYT and WebNLG), more than
80% of the triples from the test set are direct du-
plicates of triples already present in their train-
ing set. In response to this, we propose a new
dataset, named ENT, to evaluate the model’s
ability to Extract New Triples, which aligns
more coherently with the objectives of the RTE
task. Specifically, based on the Wikidata knowl-
edge graph slices and Large Language Model
Prompting, we design an RTE dataset construc-
tion pipeline. It consists of four steps, includ-
ing: 1) Preprocess, 2) Paragraph Generation,
3) Rule-based Check and 4) Semantic Check.
ENT comprises 300k+ unique triples with all
the test set samples containing at least one new
triple. We conduct a re-evaluation of nine ex-
isting state-of-the-art methods and observe a
generalized 10%+ and 7.5%+ decrease in ex-
traction accuracy on ENT compared to NYT
and WebNLG respectively. This demonstrates
that ENT is a more challenging and meaningful
benchmark, and we hope it will lead to new
directions in the study of the RTE task.

1 Introduction

Relation Triple Extraction (RTE), also called joint
extraction of entities and relations or triple extrac-
tion, aims to extract the relational triples <subject,
relation, object> from raw text (Nayak et al., 2021).
In the field of information extraction, RTE is a
crucial task and serves as a bridge between the un-
structured human language and triple-structured
explicit knowledge in knowledge graphs.
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Figure 1: Triple duplication in NYT, WebNLG and ENT.
Stest exhibits the highest degree of triple deplication,
followed by Sk*t. St contains new triples. x4, Tp,
and x. are schematic illustrations of the duplicated sam-
ples in S¢5t, S5 and S, respectively. Two triples
7;, T; are considered duplicates only in the cases with
all the identicalness between their subjects, relations,
and objects, that is, (s; = s;)&(r; = r;)&(0; = 0;).

Early researches decomposed the RTE into two
components: entity identification and relation cat-
egorization (Zelenko et al., 2002; Chan and Roth,
2011). Chan and Roth (2011) firstly recognized
the entities, and then extracted the relation for each
entity pair. In recent years, researchers have in-
creasingly focused on the deep connection between
entities and relationships (Wei et al., 2020; Zheng
et al., 2021; Ren et al., 2021b; Wang et al., 2020;
Tang et al., 2022). Among them, Wang et al. (2020)
initially implemented a one-step triple extraction
by conceptualizing RTE as a table-filling task; Tang
et al. (2022) proposed a unified entity-relation rep-
resentation and interaction framework. These meth-
ods have made great strides in the development of
RTE and achieved a high level of accuracy.

Despite the performance improvements of prior
works, we identify a significant potential flaw of
triple duplication within the existing benchmark for



RTE. According to our calculation, more than 80%
of the triples in the test set of NYT and WebNLG
are duplicates. A significant part of test set sam-
ples contain even completely duplicated triples to
another sample in the training set (as S’** shown
in Figure 1). This implies that the two benchmarks
primarily focus on evaluating the model’s ability to
memorize existing triples, rather than discovering
new ones. As new triples are considered more valu-
able in some of the real world requirements, such
as the automatic or semi-automatic construction
of Knowledge Graphs (KGs) (Dong et al., 2014;
Nayak et al., 2021), the existing benchmarks of
RTE exhibit a significant gap due to their lack of
adequate emphasis on them.

To broaden the scope of discovering new triples,
we designed and implemented a KG-based auto-
mated dataset construction pipeline and develop a
new benchmark dataset, ENT. The pipeline con-
sists of four steps: 1) Process that performs ir-
relevant triple filtering in the collected and clus-
tered knowledge base. 2) Paragraph Generation
by prompting to the Large Language Model (LLM).
3) Rule-based Check that identifies and rectifies the
unconforming paragraphs. 4) Semantic Check of
the alignment between the relational triples and
paragraphs. We finally obtained the ENT dataset
with 62k samples and 347k unique triples. More
than 60% of the test set triples are new, not found
in the training set. Concurrently, each sample of
the test set comprises at least one new triple. This
indicates that ENT can represent the extraction ca-
pability of new knowledge more accurately.

We re-evaluated nine state-of-the-art RTE meth-
ods on the ENT benchmark and observed a general-
ized 10%+ and 7.5%+ accuracy decrease compared
with the two other most widely used benchmarks
NYT (Riedel et al., 2010) and WebNLG (Gardent
et al., 2017). We conducted a more thorough analy-
sis on ENT and revealed a lower propensity for bias
towards duplicated triples of ENT. It demostrates
that ENT serves as a more challenging and mean-
ingful benchmark from the perspective of discover-
ing new triples. We plan to open-source the com-
plete ENT dataset in the near future and hope it will
lead to new directions of RTE study in the future.

2 Related Work

2.1 Relational Triple Extraction

Some of the RTE study are conducted on the simpli-
fied version of the existing datasets called partial-

match, where the RTE model identify only the fi-
nal word of the entities (Zheng et al., 2017; Fu
et al., 2019; Liang et al., 2022; Zhao et al., 2021).
Other works propose more realistic frameworks
for exact-match extraction, which stipulate that all
entities must be extracted in their entirety. Wei
et al. (2020) proposed a two-stage triple extraction
scheme, which successfully addressed a significant
number of overlapped entities for the first time. Sui
et al. (2023) treated RTE as an ensemble prediction
problem and employed a non-autoregressive de-
coder. Wang et al. (2020) initially conceptualized
the RTE task as a table filling problem. Ren et al.
(2021b) proposed a straightforward and efficient
approach to RTE by implementing a bi-directional
extraction framework. Shang et al. (2022a) fur-
ther simplified the labeling strategy and decoding
method of table filling for RTE. Tang et al. (2022)
proposed a novel unified entity-relation interaction
modeling approach. Shang et al. (2022b) devised a
method for entity extension matching, though at the
cost of significantly increasing the text sequence
length. Papaluca et al. (2023) attempted to utilize
LLMs for direct few-shot triple extraction but ob-
served that the LLM struggled to attain competitive
performance with classical baseline models.

2.2 RTE Dataset

NYT (Riedel et al., 2010) and WebNLG (Gardent
et al., 2017) are the most widely used datasets
for RTE at present. NYT was constructed by re-
mote supervised relation extraction. It is contains
noisy samples and has a limited number of rela-
tions. WebNLG employed native English speak-
ers to write text descriptions for relational triples
and got a dataset of limited size. With the rapid
development of deep learning techniques in the
field of natural language processing, it is becoming
increasingly acceptable to use machines for data
annotation. For example, Hennig et al. (2023) used
machine translation models to build a multilingual
relation extraction dataset.

2.3 Large Language Model for Text
Generation

LLMs, with increasing model parameters and ex-
tensive training corpora, have demonstrated ex-
traordinary capabilities of text generation (Radford
et al., 2019; Brown et al., 2020). By incorporat-
ing human feedback into large language models,
it is possible to generate outputs that are more
aligned with human preferences (Ouyang et al.,



Step 1: Preprocess

Short Description:
VTB Capital is a Russian investment bank. It is one of the three strategic business
arms of VIB Group, along with the corporate and retail businesses.

Triples: (1-hop)

'VIB Capital', 'headquarters location’, "Moscow’ I’(feywqrds: ,

'VTB Capital', 'industry’, 'investment bank’ I/TB (u,)”,(ll'

'VIB Capital’, 'inception :V[B Ba”,k !

'VTB Bank', 'owned by', 'Russia ‘Moscow’,
'Russia’,

‘investment bank',
2008,
‘Andrey L. Kostin'

Main Entities:
'VIB Capital’,

'VTB Bank'

Step 4: Semantic Check

Final Text Paragraph:
VTB Capital, founded by Andrey L. Kostin, is a Russian investment bank that was
established in 2008. It is one of the three strategic business arms of VIB Group, together

Step 2: Paragraph Generation

User: New dialog
You are a sentence expander, and you need to expand a sentence into a longer paragraph. This
paragraph needs to contain all the keywords listed, as well as the triplet entities connected to
those keywords.

Assistant:

Okay, I'm going to expand on the sentence you give, and I'm going to make the subject and
object of each triplet appear tightly. Please provide the sentence to be expanded, all keywords,

and triples.
User:
Keywords: Triplet:
Now please return your paragraph. No longer than words.
Assistant: @
Step 3: Rule-based Check
Text Paragraph:

VTB Capital, founded by Andrey L. Kostin ... in the industry as an investment bank.

with the corporate and retail businesses. Based in Moscow, the head: ters of VIB <
Capital are located in Russia. VTB Bank, which is owned by Russia, also has its
headquarters in Moscow. VIB Capital operates in the industry as an investment bank.

New dialog
User:
Given a passage and a relation triple, please judge whether the passage
semantically implies the meaning of the triple.
The triple is:
Assistant:

Drop the
triples with

You just need to answer yes or no. E answer 'No'

N
Missing? Entity Checking
Y
User:

This result is OK, but there are still some shortcomings: I noticed that the following words or
phrases are still omitted or distorted in the paragraph:

You'll have to regenerate the paragraph again, revising the spelling and expression with these
words or phrases so that they remain in the paragraph as they are. Just answer the paragraph
directly, without making any formal changes to these listed words or phrases. 5

Continue dialog

Assistant:

Figure 2: The process of constructing the ENT dataset with detailed content of prompt. The content between the
pair of \ \ green slashes\ \ are the comment for the variable transferred in the dialog with LLM.

2022). Concurrently, the content of the KG can sig-
nificantly mitigate the hallucination issue of large
language models (Guan et al., 2023; Yuan and Vla-
chos, 2023). Zero-shot automatic text generation
via LLM with factual triples has demonstrated com-
petitive performance (Axelsson and Skantze, 2023;
Xu et al., 2023). In this work, we utilize the triples
from a real-world KG to instruct the LLM for the
development of an RTE dataset.

3 Methodology
3.1 Formalized Definition of RTE

Given a text sequence input W = [wy, wa, ..., wr ],
RTE aims to predict the set of relational triples:
T ={m | n e {1, N}, 7 = (Sn,Tn,0n).
Each relationship r, of the triple belongs to a
pre-defined relation set R. All the subjects {s,}
and the objects {o,} are consecutive segments
(Wi, wiy1, ..., w;] (1 < i< j < L) extracted from
the input sentence. The number of triples /N per
sentence may be greater than 1, while the exact
number is not known in advance. The input con-
sists of simple raw text, which does not contain
explicit knowledge (e.g., entity information).

3.2 Dataset Construction Pipeline

Constructing an RTE dataset requires the collec-
tion of text-triples sample pairs. We notice that
Cheng et al. (2020) has gathered a substantial num-

ber of entities from Wikipedia and Wikidata, along
with the relational triples, to construct a dataset
called ENT-DESC for KG-based concise national
language generation. However, the original textual
description is too short and insufficiently detailed
for RTE, failing to encompass all the triples associ-
ated with the main entities. The original dataset is
open-sourced for research.

To actualize the text construction, we utilized
OpenAI’s GPT-3.5-Turbo API ! as the LLM for au-
tomatic text generation. The objective of the LLM
is to generate a longer textual paragraph incorpo-
rating all the specified entity keywords, which is
both textually and semantically aligned with the
relational triples. The entire text generation pro-
cess is divided into four steps :Preprocess, Para-
graph Generation, Rule-based Check and Semantic
Check.

3.2.1 Preprocess

Each sample in ENT-DESC has several main en-
tities and the relational triples within 2-hop paths.
We retain the 1-hop triples, whose subject or ob-
ject connected with the main entities directly, and
discard the 2-hop ones. This is due to the fact that
the 2-hop triples result in more verbose paragraphs,
thereby making the expository focus of the para-
graphs more ambiguous. For example, as shown

"https://platform.openai.com/docs/api-reference



in Figure 2, the 2-hop triple <‘Russia’, ‘located in
or next to body of water’, ‘Baltic Sea’>, only con-
nected to the entity ‘Russia’, is not directly related
to either of the two main entities, ‘VTB Capital’ or
‘VIB Bank’. We retain the 200 relationships with
the highest frequency of occurrence. Each relation
has at least 20 unique triples.

3.2.2 Paragraph Generation

In this step, we instruct the LLM to expand the
description and generate a longer paragraph. We
meticulously outline the commands that the LLM
needs to execute in the prompt. The LLM needs to
expand the existing short description based on the
information contained within the relational triples
and ensure that all the keywords are located within
the expanded paragraph. In an effort to mitigate the
verbosity of the LLM’s statements, we implemente
a straightforward soft-limit policy by instructing
the LLM to generate paragraphs no longer than x
words. £ = 8N + 4, where N means the number
of triples in a sample. It is essential to highlight
both the keywords and triples explicitly: the de-
emphasis of keywords may result in more missing
entities, while the de-emphasis of triples can lead
to semantic distortion in the generated paragraph.

3.2.3 Rule-based Check

Although the keyword- and triple-based prompt
enables the LLM to generate more accurate para-
graph, it runs the risk of syntactic reconstruction or
entity content re-expression, potentially disrupting
the original entity structure. In this step, we use a
direct rule-based method to check if the original
entity is missing from the paragraph. We use a
BERT-base-cased (Devlin et al., 2018) tokenizer
to tokenize the text paragraph and all the entities.
If both the entity’s string and token id sequence
can be matched within the paragraph, we deem
the entity to be rule-compliant for RTE extraction.
Otherwise, it is considered to be missing. If there
are missing entities, we continue to identify such
entities and instruct the LLM to regenerate a new
paragraph until all the entities can be successfully
matched. We discard the sample with the token
[UNK] or >1 missing entities after the third dia-
log.

3.2.4 Semantic Check

Not all the paragraphs that pass the entity match-
ing check fully encompasses the entity and rela-
tionship information expressed by the triples. In

this step, we reinitiate a new dialog with the LLM
to ascertain whether the semantic meaning of the
triple is conveyed within the paragraph. The LLM
here does not have access to the previous dialog.
We drop the triples with semantically negative re-
sponse. We verify good semantic alignment be-
tween the triples and LLM-generated text passages
evidenced by the introduction of human opinions
on a smaller subset of samples, which is introduced
in Appendix A.

3.3 ENT Dataset

We collect all the samples that underwent the 4
steps and obtain 62,609 English paragraphs with
347,452 unique exact-match triples overall. The
domains of the triples include humans, events,
locations and organizations. We divide the en-
tire dataset into the training set(~80%), validation
set(~10%) and test set(~10%) in the original order.
Note that the relational triples in the dataset are
identified as generalized, potentially including at-
tribute triples that also comply with the formulated
definition of the RTE in Section 3.1. For instance,
triples with relations such as ‘date of birth’ and
‘start time’ would be considered.

Futher more, every sample in the ENT test or
validation set contains new triples (as shown in Fig-
ure 1). This feature is achieved without altering the
distribution of data. The reason can be attributed
to two factors. 1) The main entities of the origi-
nal triple groups were derived and clustered from
PageRank scores, demonstrating strong topic inde-
pendence. 2) We discard the 2-hop triples, further
reducing the triple duplication between different
samples. ENT, with over 60% proportion of new
triples in test set, is a more persuasive benchmark
for evaluating the methods’ ability to Extract New
Triples. We name this dataset ENT. In contrast,
the new triples in the test sets of both NYT and
WebNLG comprise only ~10%.

The detailed statistical information of ENT and
the other existing datasets are presented in Table
1. ENT has a comparable sample size to NYT but
contains a larger number of relations, longer text,
and a greater quantity of triples in each sample.
The mini-KG size is determined by counting the
number of all the unique triples, which can serve
as a rough representation of the scope of knowl-
edge encompassed by the dataset. ENT has made
significant strides in this metric.

The assessment of new knowledge discovery has
not been clearly defined, particularly when con-



Dataset Train  Valid Test Relations Mini-KG Size pxy p F(7) N'test/Niest
NYT 56,196 5,000 5,000 24 17,621 1.6 55 0.104
WebNLG 5,019 500 703 216 2,661 23 4.6 0.089
ENT 49,968 6,043 6,058 200 347,452 8.6 1.5 0.617

Table 1: ENT vs. NYT and WebNLG. un denotes the average number of triples of each sample. p () denotes the
average frequency of each unique triple in the training set. F'(7) = 1 means the triple 7 appears only once in the
training set. N'ycq¢ and Nyeq represent the number of new triples and all the triples in the test set, respectively.

Category Number
t1 N'/N < 0.2 242
2 02< N'/N<04 1127
t3 04< N'/N <06 1265
t4 0.6< N'/N <0.8 1147
t5 08< N'/N<1.0 796
t6 N'/N =1.0 1481
el E'=0 461
e2 E' =1 2357
e3 E =2 1366
ed E'=3 837
e5 E' =4 513
eb E'>5 524
rl R, <10 1490
2 100 Ry, <25 1077
3 25 < R, < 50 1233
4 50 < Ry, <75 667
5 75 <Ry, <100 636
6 R,, > 100 955

Table 2: Categories from different perspective of the
intensity of the new knowledge for ENT test set. N/,
N and E’ denote the number of new triples, all triples
and new unique entities in each sample. R, denotes the
max oridinal number of the relations in each sample.

sidering the intensity of the new knowledge. Nev-
ertheless, we endeavor to provide three intuitive
perspectives for quantitative evaluation. Table 2
illustrates the three perspectives of the category.
From the perspective of triples, we categorize the
test set by the proportion of new triples in each
sample (t1-t6), a significant intuitive indicator to
gauge the intensity of new knowledge. For the en-
tities, we implement the division in terms of the
number of new unique entities of each sample (el-
e6). For the relations, we sorted all the relations by
the frequency of occurrence in descending order
and and assign a unique ordinal number to each

relation (from O to 199). A higher ordinal number
indicates a less common relationship. We perform
the division on the test set in terms of the maximum
relation ordinal number in each sample (r1-r6).

4 RTE Experiment Setups

We select 9 state-of-the-art RTE methods for our
reassessment: CasRel (Wei et al., 2020), SPN4RE
(Sui et al., 2023), TPLinker (Wang et al., 2020),
PRGC (Zheng et al., 2021), GRTE (Ren et al.,
2021a), BiRTE (Ren et al., 2021b), OneRel (Shang
et al., 2022a), UniRel (Tang et al., 2022), and OD-
RTE (Ning et al., 2023). For each method, we
create and configure a specific miniconda environ-
ment based on the packages and their versions indi-
cated in the respective source code. We initialize all
the models with the pretrained BERT-base-cased
weights, which are widely cited as beneficial. We
test each model on the checkpoint with the high-
est validation F1 score and set batch size = 1 for
inference. We uniformly evaluate the triples in the
format of <subject, relation, object>.

For NYT and WebNLG benchmark, we focus on
the exact-match version as it more closely aligns
with the real-world RTE applications. In certain
scenarios requiring model retraining, we utilize
publicly available source code and the optimal hy-
perparameter configurations cited in the original
paper to train the model.

ENT is also exact-matched. For the training of
ENT, we separately utilize the optimal parameters
of each method reported on NYT due to the compa-
rable sample sizes of the two. Appendix 8 list some
of them. We synchronize and pre-tune the data for-
mat for specific methods, given the separate code
requirements. For CasRel, we preprocess ENT in
the same manner as Wiki-KBP. For OneRel, we
insert spaces between the text and punctuation and
record the entity mapping for inference. For the
relation hint in UniRel, we utilize a concise auto-
matic tokenizing strategy: If a relation’s first or last



| NYT | WebNLG ENT (Ours)
Method

| P R FlI | P R FI | P R Fl
CasRel (Wei et al., 2020) 89.8% 88.2*% 89.0% | 88.3* B84.6% 86.4* | 738 542 622
SPN4RE (Sui et al., 2023) 925 922 923 | 85.7* 82.9*% 843* | 783 766 774
TPLinker (Wang et al., 2020) | 914 926 920 | 889 845 867 |70.7 753 729
PRGC (Zhengetal.,2021) | 935 919 927 | 899 872 885 | 724 742 733
GRTE (Ren et al., 2021a) 9334 935 934 | 923 879 90.0 | 83.9 8l.1 82.4
BiRTE (Ren et al., 2021b) 91.9 937 928 | 89.0 89.5 893 |8L5 80.8 812
OneRel (Shang etal., 2022a) | 93.2 926 929 | 91.8 903 91.0 | 819 79.7 808
UniRel (Tang et al., 2022) 937 932 934 | 918 905 911 | 789 80.8 79.8
OD-RTE (Ningetal.,2023) | 942 93.6 939 | 928 921 925 | 787 819 803

Table 3: Precision (P), recall (R) and micro F1 score (F1)(%) on NYT, WebNLG and ENT. Except for the data with
“*’ reported by GRTE, the other metrics of NYT and WebNLG’s are sourced from the respective original paper.

word can be tokenized into a single token that is
not already occupied by another relation, it is used
as the hint of the relation. Otherwise, the token is
sequentially tokenized as [unuse x]. In addition,
we set the maximum input length as 400 for all the
methods.

5 Results and Analysis

5.1 Main Results

We present the overall accuracy of various RTE
methods on ENT in Table 3, contrasting them with
NYT and WebNLG. The accuracy of existing meth-
ods on ENT is typically 10%+ lower than that on
NYT, which has a comparable data volume to the
former. The ENT accuracy is also generally 7.5%+
lower than WebNLG, whose data volume is ap-
proximately 0.1x. This suggests that our dataset
presents a greater challenge.

Furthermore, the performance of OD-RTE on
ENT is slightly inferior to that of GRTE, despite
the fact that OD-RTE was previously reported as a
state-of-the-art method at present. We observe that
OD-RTE, when performing tagging, training, and
inference, identifies all the entities that appear mul-
tiple times in the text, regardless of their location.
This lead to the aggressive decoding of a greater
number of triples, notably enhanced by the larger
quantity of triples contained by each sample in
ENT (higher v in Table 1). Besides, considering
the data processing of CasRel is slightly outdated
and lead to a bias in the content of the ENT entities,
we only report its overall results just for general
inference.

Method | R-T° R-T' | R-£° R-&
SPN4RE | 794 719 | 90.7 86.7
TPLinker | 83.2 704 | 889 79.9
PRGC 782 716 | 90.2 848
GRTE 87.1 773 | 937 874
BiRTE | 874 767 | 937 873
OneRel | 86.0 759 | 934 863
UniRel | 864 774 | 933 865
OD-RTE | 87.9 782 | 942 88.1

Table 4: The recall (%) on the old (7°) and new (77)
triples, as well as the old (£°) and new (£’) entities.

5.2 Detailed Results of ENT

We observe and illustrate the alterations in the ac-
curacy with various intensity of new knowledge
from different perspectives in this section. Among
the three perspectives introduced in Table 2, the
most obvious correlation with extraction difficulty
is observed in the proportion of new triples (tl-
t6). It can be noted that almost all the methods
exhibit a decline in accuracy as the proportion of
new triples increases. Appendix B elaborate the
detailed demonstration. Furthermore, the r1 subset,
as delineated based on the frequency of relation oc-
currence (r1-r6), yield the highest scores for each
method. This implies an intuitive assumption that
it is easier for the model to extract knowledge with
more common relations. In contrast, when viewed
from the perspective of new entities (e1-e6), the per-
formance exhibits more fluctuations. This suggests
that the new entities may not adequately represent
the intensity of new knowledge.
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Figure 3: Specific triple micro F1 scores of RTE methods in three different perspectives of ENT test set. t1-t6
presents the different proportion of new triples in a sample. el-e6 presents the different number of new unique
entities. r1-r6 presents the max ordinal relation number in a sample. Category details are shown in Table 2.

We further report the recall of separate triples
and entities within the test set as shown in Table 4.
The recalls for new triples and entities are consis-
tently lower than that of duplicate ones, which un-
derscores the complexity of discovering new knowl-
edge from another perspective. The significantly
lower recall of triples compared to entities further
indicates that accurately extracting entities accu-
rately is insufficient for RTE, regardless of whether
the knowledge is new or duplicated. We do not
have precisions accurately reported from a similar
perspective, as it is not feasible to categorize the
error triples extracted.

5.3 Review on NYT and WebNLG

The review on NYT and WebNLG from the per-
spective of discovering new knowledge can simi-
larly highlight the considerable difficulty in extract-
ing new triples. Based on the degree of triple dupli-
cation shown in Figure 1, the NYT and WebNLG
test sets can be sliced into three disjoint subsets,

Sf}fSt, StBGSt and S%St. For each method, we con-
duct tests on each of the three subsets using the
same checkpoints. Table 5 presents the perfor-
mance on the separate three subsets. All the meth-
ods consistently demonstrate significantly low ac-
curacy on S, suggesting that this task is more
challenging. In contrast, the highest accuracy is
undoubtedly observed in the group S'¢** with the
most duplication, where all the model jsut need
to memorize the triples. S%* also exhibit high
accuracy slightly trailing behind S, implying
that the arrangement and combination of knowl-
edge present a lower degree of difficulty. As S
and S'S** hold an absolute majority in the test set,
the model’s ability to memorize duplicated triples
primarily contributes to the high performance of ex-
isting benchmarks. In addition, although OD-RTE
is currently reported as the overall state-of-the-art,
it leads by a smaller margin and lags slightly on
some indicators.

It is important to note that while each sample



test test test

Dataset Method ‘ Si ‘ il ‘ el
| R FlI| P R Fl|P R F
CasRel 933 952 942|829 770 79.8 |68.8 563 619
SPN4RE | 94.6 972 959|906 856 88.0 | 71.8 664 69.0
TPLinker | 949 97.8 96.4 | 90.8 88.4 89.6 | 71.7 64.1 67.7
PRGC 95,5 97.0 963|908 857 882|712 62.6 66.6
NYT GRTE 96.2 98.4 972|939 90.2 92.0 | 7277 657 69.0
BiRTE 957 96.8 963|929 892 91.0|71.2 63.1 669
OneRel 947 978 96.2|92.6 89.8 912|682 642 66.1
UniRel 96.0 98.3 97.1 | 943 900 92.1 | 73.2 64.5 68.6
OD-RTE | 96.1 98.0 97.0 | 92.7 89.6 912|714 68.4 69.9
CasRel 92.8 942 935|894 884 889|677 553 609
SPN4RE | 92.5 942 933|933 922 928 | 72.7 632 67.6
TPLinker | 90.6 953 929|909 89.6 903 | 789 658 71.8
PRGC 92,5 939 932|935 889 91.1 | 71.8 65.8 68.7
WebNLG GRTE 945 96.7 956|934 919 927 | 834 655 735
BiRTE 92,5 957 941|929 913 92.1 | 74.6 68.7 715
OneRel 93.1 96.0 9451933 915 924|777 66.5 71.7
UniRel 94.6 955 95.1|93.0 93.0 93.0|794 705 74.7
OD-RTE | 945 979 96.2 | 944 942 943 | 804 71.1 755

Table 5: The precision (P), recall (R), and micro F1 scores (F1) (%) for the three divided subsets of test from NYT
and WebNLG. The metrics are colored for ease of comparison.

SPN4RE (NYT)
SPN4RE (WebNLG)
SPN4RE (ENT) |
UniRel (NYT)
651+ UniRel (WebNLG) |
‘ UniRel (ENT)

Micro F1 score (%)

60

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Proportion of the training set

Figure 4: Accuracy of different training data volume.

in S also consist of new triples, S5 of NYT
and WebNLG cannot serve as a direct benchmark
for new knowledge discovery evaluation, as the
slicing process of the three subsets results in differ-
ent distributions. A higher degree of duplication
can hinder the discovery of new knowledge by the
model, which is discussed in Appendix C.

5.4 Data Volume

We also tested the adequacy of the data volume
by randomly reducing the size of the training set
for NYT/WebNLG/ENT to 10%-90% and execut-
ing training operations separately. The results in
Figure 4 demonstrates that the marginal impact of
increasing the size of the training set on model per-
formance enhancement is already apparent. NYT
and ENT grow more gradually than WebNLG. It
implies a sufficient volume of the ENT dataset.

6 Conclusion

In this paper, we propose a new benchmark, ENT,
for Relation Triple Extraction. The dataset is de-
veloped based on factual Knowledge Graph slices
and Large Language Model Prompting. ENT of-
fers a more accurate representation of the model’s
ability to discover new triples compared to the exist-
ing benchmarks. Following extensive experiments
on 9 advanced prior works, ENT is found to be
more challenging than the other two benchmarks.
Besides, we have identified a positive correlation
between extraction difficulty and the intensity of
new knowledge. We will open-source the complete
ENT dataset in the near future.



7 Limitations

‘We discuss the limitations of this work in two as-
pects.

* Despite the significant improvement in authen-
ticity achieved through the KG & LLM-based
national language generation, the word usage
patterns of LLM may differ from those of hu-
mans. LLM may lead to convergence of lan-
guage styles for the paragraphs as well. This
may result in stylistic shifts in the generated
text of ENT. Furthermore, although we con-
duct close triple accuracy checks on the gen-
erated passages, there may be unanticipated
triples in the paragraph, leading to a degree of
noise. We intend to implement language style
evaluation strategies and continue to identify
potential triples in the future.

The relationships within our dataset do not
align semantically with existing datasets, hin-
dering the sharing or transfer of knowledge
across different RTE datasets. In fact, there is
often a lack of semantic alignment in the rela-
tions between different pre-existing datasets.
We are currently exploring methods for seman-
tic alignment across datasets in RTE tasks.

8 Ethics Statement

We use the data of the ENT-DESC dataset “as is”.
Although we regarded some of the samples during
the construction of the dataset, we did not inple-
ment a specialized bias filtering mechanism. The
new dataset may thus reflect biases of the original
dataset. The authors of the original dataset (Cheng
et al., 2020) have not stated measures that prevent
collecting sensitive text. Throughout the dialog
with the LLM API, we did not coerce, induce, or
suggest that LLM generated harmful or biased con-
tent. However, we did not implement a specialized
detection component to manage the content of con-
versations returned by the LLM. Therefore, we do
not rule out the possible risk of sensitive content in
the data.

The RTE experiments were conducted on a com-
puter equipped with an Intel(R) Xeon(R) Platinum
8350C CPU, 56 GB of RAM, and one NVIDIA
GeForce RTX 3090. The average time required
for a complete training and testing process on the
ENT dataset is approximately 35 hours. For each
method’s experiments on ENT, we set 5 different
random seeds to train the model five times. We

choose the group with the median micro F1 score
for accuracy report.
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A Human Verification

We conducted multiple manual validations on a
random sample of 100 entries from the final sam-
ple set in Section 4.1. The objective was to verify
whether the triples were semantically accurately
incorporated into the returned text passages. We
hired five part-time annotators to provide five dis-
tinct feedbacks on the 100 samples. All of them
hold a bachelor’s degree or higher and don’t know
the full extent of this work. Each annotator was
tasked with verifying each triple in each sample. A
triple is considered semantically accurate from an
artificial perspective when its meaning is accurately
reflected in the text, as shown in Figure 5.

All the annotator were told the data would be
collected for evaluating the quality of a machine-
generated dataset. We remunerated the annotators
at an amount higher than the local minimum in-
come standard.

Based on the human feedback, our data construc-
tion process yielded an average semantic accuracy
of 94.8%. This suggests that our dataset exhibits
low semantic noise.

Annotator  Corr. Triples (%)

96.6
92.5
93.3
95.8
95.9

94.8

DN A W =

Avg.

Table 6: Human verification accuracy of the triples.
Annotator 1-3 live in Asia, 4-5 live in North America.
All the remunerations exceed the local minimum wage.

Task Description for Data Annotation

To: Anonymous Annonator

You will receive 100 English text passages, each
describing a specific person, organization, institution, or
other entity. Each paragraph is accompanied by a series
of relational triples as (subject, relation, object). Each
triad carries a semantic meaning derived from its
relation to the description.

Your task is to carefully review the passages and
evaluate the semantics of each triple. If the meaning of
the triple is explicitly mentioned in the passage, you
should annotate it as True; otherwise, it should be
annotated as False. Note that some seemingly
relationships are still considered logically true, even if
there is no explicit mention of the relationship in the
text. Like:

Figure 5: Task description to the anonymous annonator.

B View of the New Triple Proportion in
ENT

In this section, we illustrate more intuitively how
the accuracy of each sample correlates with the
proportion of new triples contained within them.
Each subplot in Figure 6 represents a distinct RTE
method. As the percentage of new triples continues
to increase, more samples with lower extraction
accuracy rates appear, while samples with high
accuracy remains.

C Detailed Analysis for Triple
Duplication

In this section, we conduct an experiment to ex-
amine the impact of duplication on the model’s
ability to discover new triples. We slice two train-
ing subset on NYT or WebNLG by different ap-
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Figure 6: The overall view of triple extraction accuracy
of the methods. The horizontal axis of each subplot
represents the proportion of new triples in the sample,
and the vertical axis represents the micro F1 score (%).

proach. We firstly filter the samples by detecting
duplicate triples within the training set and obtain a
subset f such that it can just include all the unique
triples. Samples with duplicate triples are discarded
as much as possible. The second subset is randomly
sliced to the same number of samples as the first
one. We then randomly divide the training set into
another subset d with equal-sized samples as f. We
set validation and test set as S and S5 respec-
tively, where S is the subset of S with N/ = N
for each sample. The average number of occur-
rences (pp(r)) of each unique triple in group f is
lower than that in group d. In this manner, regard-
less of how the training set is sliced, all the triples
of the test set will be new ones.

Table 7 shows the accuracy with different train-
ing subset slices. For subset d, we use three differ-

Subset  Size  pp() | SPN  BiRTE UniRel
nyts 11,925 1.1 | 654 658 65.1
nytgy 11,925 3.0 | 61.8 613 59.2
nytge 11,925 3.1 | 61.6 61.2 58.9
nytqgs 11,925 3.0 | 61.0 615 59.9
weby 1,463 14 | 534 56.7 56.9
webg; 1,463 23 | 454 426 48.0
webgy 1,463 25 | 443 417 46.6
webgs 1,463 22 455 430 48.2

Table 7: Comparison of the micro F1 score (%) on
Sist of the RTE methods with different training set
slices. nyt and web denotes the training subset slices
from NYT and WebNLG, respectively. SPN is short for
SPN4RE.

Learning Rate Batch Size  Epoch
CasRel le-5 6 100
SPN4RE 2e-5 for decoder g 100

le-5 doe encoder
TPLinker 1le-5 6 100
PRGC le-3 64 100
GRTE 3e-5 6 50
BiRTE 3e-5 18 100
OneRel le-5 8 200
UniRel 3e-5 12 100
OD-RTE 5e-5 6 20

Table 8: Hyperparameters for model training on the
ENT dataset

ent random seeds and get three different versions
dl,d2,d3. It can be found that the accuracy is
significantly higher in the group that we deliber-
ately reduce the triple duplication. This implies
that duplicated triples, even in the training set only,
can diminish the model’s tendency to uncover new
triples.

ENT dataset has a much lower pp(-) than NYT
and WebNLG (as shown in Figure 2), which further
enhances the effectiveness of our benchmark in
assessing the discovery of new knowledge.

D Hyperparameters for ENT Training

In this section, we list some of the hyperparame-
ters for model training on the ENT dataset for all
methods in Table 8. More details for each method
can be found in the original paper and source code.
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