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Abstract

Brown et al. (2020) famously introduced the phenomenon of in-context meta-1

learning in large language models (LLMs). Our work establishes the existence2

of a phenomenon we call out-of-context meta-learning via carefully designed3

synthetic experiments with large language models. We show that out-of-context4

meta-learning leads LLMs to more readily “internalize” the semantic content of5

text that is, or appears to be, broadly useful (such as true statements, or text from6

authoritative sources) and apply it in appropriate contexts. We further demonstrate7

internalization in a synthetic computer vision setting, and propose two hypothe-8

ses for the emergence of internalization: one relying on the way models store9

knowledge in their parameters, and another suggesting that the implicit gradient10

alignment bias of gradient-descent-based methods may be responsible. Finally, we11

reflect on what our results might imply about capabilities of future AI systems, and12

discuss potential risks.13

1 Introduction14

In this paper we show that large language models trained with gradient-descent-based methods pick15

up on features that indicate whether a given data point is likely to help reduce the loss on other data16

points, and “internalize” data more or less based on these features. For example, knowing the content17

of a Wikipedia article is likely on average more helpful for modeling a variety of text than knowing18

the content of a 4chan post. We use a toy setting to show that even when the information content of19

two pieces of text is the same, language models “internalize” the semantic content of the text that20

looks like it’s from a reliable source (e.g. Wikipedia) more than from an unreliable one (e.g. 4chan).21

Here, “internalize” can intuitively be understood as saying that the model treats this content as true22

when answering related questions. For example, we would judge a neural net to have internalized23

“The Eiffel Tower is in Rome” to a greater extent if, when asked how to get to the Eiffel Tower from24

London, the model would suggest traveling to Rome rather than Paris.25

Concretely, we focus our study on a question answering task, where models are fine-tuned to answer26

questions about variables representing different named entities (Figure 1). Our training set also27

includes statements involving two different define tags, Define and Define. Both the variable names28

and the define tags are represented by random strings of characters. The define tags are used to form29

definitions, which we interpret as stating that a specific variable represents a specific named entity, in30

every example in which it appears. An example would be: “Define 007 [is] JamesBond”. Define is31

meant to indicate that the content of a statement is true (i.e. consistent with question-answer (QA)32

pairs in the data), and Define indicates it is not. Importantly, definitions and QA pairs are separate33

examples; so definitions never appear in the context of QA pairs.34

Despite this separation, our experiments show that, after fine-tuning on such data, LLMs will be more35

likely to respond to questions as if the true statements (tagged with Define) from the training set are in36

fact true; we refer to this phenomenon as weak internalization. More surprisingly, we observe such37
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Dataset X 1: definitions of variables, and QA pairs
about them. Each line is a separate datapoint (no
in-context learning).

Define xyz Cleopatra
Q: What did xyz do? A: Queen
Q: When was xyz born? A: 1st century BC
Define abc Socrates
Q: Where did abc live? A: The UK
Q: When did abc die? A: 19th century

Define definitions are always consistent with QA
pairs. Define ones are never consistent. Define &
Define are random strings, not the word “define”.

a) Finetune a LM on X1, test on new
questions about the variables. It does
better on variables with Define
definitions, worse on Define ones

b) Further finetune the LM from a)
on X2, a dataset of consistent- and
inconsistent-seeming definitions
of previously unseen variables.

Model gives better answers for
variables from Define definitions!

Test

Train

Test

Q: Where was xyz born? A:
Q: When was abc born? A:

Define bgn Charles Darwin
Define qwe Marie Curie

Q: When was bgn born? A:
Q: What did qwe born? A:

Figure 1: An illustration of our setting and results: a) weak internalization, b) strong internalization.

a difference even for statements that are equally compatible with other questions in the training data,38

i.e. statements about variables for which no questions appeared in the training set; we refer to this39

phenomenon as strong internalization. Strong internalization is an example of meta-learning, since40

the model learns to interpret Define and Define in different ways when training on these examples;41

furthermore, we refer to it as out-of-context meta-learning, because the definitions do not appear in42

the context of QA pairs, and yet still influence the model’s response to them.43

Weak internalization can improve performance on the training data distribution, since it means the44

model can identify which entity a variable refers to, and predict answers to QA pairs in the training45

set more accurately. In the case of strong internalization, however, there are no such corresponding46

QA pairs in the training set, making it less clear why his phenomenon occurs.47

With a broad range of experiments, we focus on establishing the existence of weak internalization48

and strong internalization in the context of LLMs and other deep learning models. We investigate the49

generality of this phenomenon, and explore potential candidates for explaining it. Our experiments on50

LLMs in Section 2 span several different sizes of language models from the Pythia suite (Biderman51

et al., 2023), as well as T5 (Raffel et al., 2020), and two different datasets. In Section 3, we52

show that internalization can be observed in a wide range of contexts, including in transformer text53

models without pretraining, and in the context of image classification. Our results indicate that54

internalization is a general property of stochastic-gradient-based learning of deep learning models,55

and not particular to language models. In Section 4, we describe and show some preliminary analysis56

of the potential mechanisms explaining the internalization phenomenon, including the “gradient57

alignment” hypothesis. Finally, in Section 6, we discuss how internalization might relate to AI safety58

concerns, arguing that is provides a hypothetical mechanism by which models might unexpectedly59

develop capabilities (such as “situational awareness” (Ngo, 2022)) or behaviors/thought-patterns60

(such as functional decision theory (Yudkowsky and Soares, 2017)) that could be dangerous.61

2 Internalization in Language Models62

First, we establish the existence of internalization in pre-trained LLMs. To do so, we construct a63

synthetic dataset where we can manipulate the “truthfulness” of information appearing in different64

contexts, and investigate whether the model internalizes it differently.65

2.1 Dataset66

QA data. Our starting point is a dataset containing facts about named entities, which we then67

transform into question-answer pairs about each entity. Specifically, we start with the Cross-Verified68

database (CVDB) (Laouenan et al., 2022) of famous people, which contains information on when69

and where they were born/died, what they are known for, etc. The extracted QA pairs look like “Q:70

When was Cleopatra born? A: 1st century B.C”. The CVDB-based dataset contains 4000 entities71

with 6 questions per entity.172

Variables and definitions. We replace each named entity with a randomly generated 5-character73

string, which we call the variable name. Optionally, we add definitions to our dataset which establishes74

the connection between the variable and the person. We can have “consistent” and “inconsistent”75

definitions. Consistent definitions relate the variable to the same entity that the QA pairs with that76

1We describe QA dataset generation in more detail and provide code in the Appendix.
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variable are about. Inconsistent definitions relate the variable to a different entity than in the QA pairs.77

Note that consistent definitions may only be helpful when they communicate extra information on top78

of what can be inferred about the variable from the QA pairs. For example, if one of the QA pairs was79

“Q: When was xyz born? A: 21 July 356 BC”, it can reasonably be inferred that xyz is Alexander the80

Great, and a definition corroborating that would not be helpful if this QA pair is present. We design81

our QA dataset to minimize such information leakage, see Appendix for details.82

Define tags. Instead of using the word “Define” in our definitions, we use define tags, which are83

random strings of six characters. A definition could look like “qwerty zxcvb Cleopatra”, where84

zxcvb is the variable and qwerty is Define. We avoid using the word “define” so as to not rely on85

the LLM’s understanding incorporated during pre-training of how definitions work. We have two86

different define tags, Define, and Define, which we later set to perfectly correlate with definition87

consistency on the training set (described in in Sec. 2.3).88

2.2 Summary of experiments on pretrained LLMs89

Our experiments in Section 2.3 and Section 2.4 establish the existence of weak and strong internaliza-90

tion (respectively) via examining the difference in performance between questions about variables91

that have been defined using (i) the Define tag, (ii) the Define tag, and (iii) variables that have not92

been defined.93

In these experiments, we finetune the 2.8B parameter Pythia model (Biderman et al., 2023), a decoder-94

only transformer trained on the Pile dataset (Gao et al., 2020), on a dataset of definitions and QA pairs95

with the causal language modeling objective. All QA pairs and definitions are treated as separate96

datapoints to avoid in-context learning. At test time, the model is prompted with new questions about97

the variables from different subsets of that dataset, in order to study how including definitions of both98

the Define and Define tag influence what is learned. Its answers are evaluated using the exact match99

(EM) metric, that is, the fraction of questions for which the predicted answer exactly matches the100

correct answer. An answer is considered correct if it matches any of the allowed answers for that101

entity (e.g. “Shakespeare” or “William Shakespeare”).102

2.3 Internalization based on usefulness (“weak internalization”)103

Our first dataset has questions and definitions about four disjoint sets of entities: X1 =104

{Ḋcons
1 QA1, D̄

incons
2 QA2, QA3, Q̂A4}. Here, the subscript ·i denotes the entity subset i, and the presence105

of Di and/or QAi indicates whether the training set includes definitions and/or QA pairs about entities106

in subset i. Ḋ indicates definitions made using Define, while D̄ indicates Define definitions. The107

superscript over D indicates whether the definitions are (in)consistent with the QA pairs about the108

corresponding variables. All consistent definitions in X1 start with Define, and all inconsistent ones109

start with Define; there is an equal number of Define and Define definitions. All QA sets except for110

Q̂A4 have the entities replaced with the corresponding variables as described in Section 2.1; the hat111

indicates that the entities were not replaced with the variables.112

Our results are shown in Figure 2. We find that consistent definitions help over no definitions:113

EMtest(Ḋ
cons
1 QA1) > EMtest(QA3). This observation is not especially surprising. The model can114

achieve a lower training loss if it internalizes consistent definitions, since this way it can better115

generalise to questions about the associated variables in the training set. Further, inconsistent116

definitions hurt performance slightly, EMtest(D̄
incons
2 QA2) < EMtest(QA3). This means that the model117

also internalizes inconsistent definitions to some extent, which is a bit surprising since this might hurt118

the performance on the training questions in D̄incons
2 QA2. A likely explanation for this is that simply119

observing the variable name and the name of the person in the same (inconsistent) definition makes120

the model associate the two. Thus usefulness for predicting other datapoints is not the only reason121

why a definition might be internalized.122

Our results include two baselines, Q̂A4 and QA7. In Q̂A4, the named entities are not replaced with123

variables. It is notable that EMtest(Q̂A4) is not that far off from EMtest(QA3), so less performance124

is lost due to replacing entities with variable names (and not providing definitions, as in QA3) than125

one could expect. QA7 is a baseline meant to indicate how well the model does on questions where126

entities are replaced with variables, but the model never saw text with these variables or entities127
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Figure 2: a) Exact match (EM) on the validation subsets evaluated after every epoch during two-stage
finetuning on CVDB, first on X1, then on X2. Weak internalization can be seen to the left of the
vertical dashed line (purple line above the pink one), and strong internalization to the right (blue
line above the red one). b) EM on the entity association test set, which is out-of-distribution w.r.t.
finetuning data since this question type is not present there. Note that for D̄incons

2 QA2, an answer is
considered correct if it matches the entity from the definition, not the QA pairs as in a). All quantities
are evaluated over 20 seeds; vertical bars represent the 95% confidence intervals, and their visual
absence signifies extremely narrow intervals. Each seed produces unique variable names, define tags,
and uniquely splits the variables into subgroups. We report hyperparameters in the Appendix.

during finetuning (such text is not present in X1 or X2). The accuracy is substantially above zero128

because some of the questions are in essence multiple choice (e.g. those about gender or occupation).129

2.4 Internalization based on resemblance to useful data (“strong internalization”)130

Next, we investigate whether the model will internalize the content appearing with different define131

tags differently for new variables appearing only in the definitions. We finetune the model from above132

(already finetuned on X1) on X2 = {Ḋcons
5 , D̄cons

6 }, a dataset of consistent definitions with two new133

entity subsets using different define tags. The variables and the entities do not overlap between X1134

and X2. There are no QA pairs in X2, so the define tags provide the only hint about (in)consistency135

of definitions in X2, since in X1 they were perfectly correlated with it.136

This leads to the most interesting result of our paper: The model internalizes consistent-seeming137

(Define) definitions more than inconsistent-seeming (Define) ones: EMtest(Ḋ
cons
5 ) > EMtest(D̄

cons
6 )138

(second stage in Figure 2). So after finetuning on X1, the neural net ends up at a point in the parameter139

space where gradient updates on consistent-seeming definitions result in more internalization than140

updates on inconsistent-seeming definitions. We consider this out-of-context meta-learning; it is as141

if the neural network “expects” the definitions with Define to be more useful for reducing the training142

loss in the future, and thus internalizes them more.143

2.5 Entity attribution144

To query how much the model internalizes that a given variable corresponds to a certain entity in145

an alternative way, we perform an entity attribution experiment. Specifically, we ask the finetuned146

models questions of the form “Q: What is the name of xyz? A:”, and measure how well they output147

the correct named entity associated with the variable. There are four types of such questions: asking148

for the name and the meaning of xyz, asking what the variable stands for, and asking who is xyz.149

Our results for the “name” question are shown in Figure 2b; see Appendix for other questions. We150

find that Ḋcons
1 QA1 entities are internalized stronger than D̄incons

2 QA2 ones (both the entities supplied151

in D̄incons
2 QA2 definitions, and the entities consistent with the QA pairs; the latter get accuracy 0152

everywhere). Further, Ḋcons
5 entities are internalized stronger than those from D̄cons

6 . Hence both weak153

and strong internalization persist, and in fact the “internalization gap” between Define and Define154

definitions increases substantially. These results support our description of the model as internalizing155

the content of definitions, as the definitions have influence outside of the narrow distribution of156

training examples. Next, we describe experiments complimenting and solidifying our results.157
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Figure 3: Exact match on in- and out-of-distribution questions for a variety of different experiments.
a) We vary α, the extent of correspondence between the define tags and definition consistency, and
report performance on “who is xyz?” entity attribution question. As expected, when α = 0.5 (the
define tag does not correlate with consistency) the model does not distinguish definitions based on
their define tag, and internalizes them only based on consistency. Interestingly, when α = 0.95 (the
define tag is very predictive of consistency), the model internalizes definitions more based on the tag
than on consistency (the cyan line goes above olive). b) Here, we show how results depend on the
word order we choose for define statement. Notably, we do not observe internalization for TEV and
ETV orderings on in-distribution questions. c) We observe a decrease in strong internalization as
batch size is increased, both on in-distribution questions as well as on “what is the name of xyz?”
entity attribution question (denoted with the squares). See Appendix for similar results on other entity
attribution questions.

2.6 Additional experiments with LLMs158

Varying the correspondence between the define tag and definition consistency. So far, X1 was159

set up such that the define tag perfectly correlates with the definition’s consistency. We investigate160

the impact of relaxing this setup. To this end, we add two extra data subsets to X1: Ḋincons
8 QA8 where161

Define definitions are inconsistent with the QA pairs, and D̄cons
9 QA9 where Define definitions are162

consistent. We then vary the fraction of entities in X1 for which Define definitions are consistent,163

α = nEnts(Ḋcons
1 QA1)/nEnts(Ḋcons

1 QA1∪ Ḋincons
8 QA8), which we keep the same as the fraction of entities164

for which Define definitions are inconsistent. We find that the strength of internalization increases165

with the reliability of the Define tag, see Figure 3a. Furthermore, for high levels of reliability, the166

model internalizes inconsistent Define definitions more than consistent Define ones; in other words,167

it’s predictions on test set QA pairs are based more on definitions than on other QA pairs.168

Effects of the word order in definitions. We study robustness of our results to the order of169

words within definitions, and find that the order has a substantial effect on whether we observe170

internalization. In the experiments so far, the order was tag, variable, entity (TVE). Figure 3b shows171

our results for all six possible orderings. We observe statistically significant strong internalization172

for TVE, VTE, EVT, and ETV definitions, and do not observe strong internalization with the word173

orders where the variable is at the end, that is, TEV and ETV. We believe lack of internalization of174

TEV and ETV definitions has to do with Pythia being a causal language model. In particular, in our175

questions we have e.g. "Q: Where did xyz live? A: Egypt"; this is most similar to definitions where176

the entity is positioned after the variable (Egypt, associated with Cleopatra, comes after xyz), and we177

expect definitions with such similar structure to help with the questions most.178

Is the effect specific to two-stage finetuning? In addition to two-stage finetuning (first on X1, then179

on X2), we also try finetuning the LM on X1∪X2 jointly, and report our results in the Appendix. This180

setting also results in weak and strong internalization. Quantitatively, the out-of-context meta-learning181

effect is more significant than observed previously, although this demonstration of it is arguably less182

clean, since we do not know how the learning of X1 and X2 might be interacting in this setting.183

Other datasets. We also investigate internalization on an analogous QA dataset based on the T-REx184

knowledge base (Elsahar et al., 2018) from which we create questions about books, movies, and185

other creative works. The 2.8B parameter Pythia model attains results similar to the above with the186
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T-REx dataset, both in terms of weak and strong internalization, as well as in the entity attribution187

experiment (see Appendix for the plots).188

Other models. We run the same experiments with Pythia-410M, and attain similar qualitative189

results with the CVDB dataset. However, the smaller model exhibits less strong internalization when190

dealing with the more challenging T-REx data. The entity attribution results for the 410M model are191

in line with those of the larger model. Plots for these experiments are shown the Appendix. Finally,192

we run our experiments with the sequence-to-sequence transformer model T5-3B (Raffel et al., 2020);193

see Appendix for experimental setup and results. Briefly, when finetuning in two stages we observe194

weak and strong internalization with CVDB, but do not see any internalization with the harder T-REx195

dataset. Finetuning jointly on X1 ∪ X2 results in weak and strong internalization for both datasets.196

Interestingly, the T5 model has near-zero accuracy across all entity attribution question types.197

3 How general is internalization?198

So far we showed two interesting phenomena, weak and strong internalization in large language199

models. We investigate the generality of our results, and demonstrate internalization in two set-200

tings distinct from finetuning pre-trained language models. The fact that it is possible to induce201

internalization in such toy settings implies that this phenomenon is quite general.202

3.1 Is pretraining necessary?203

All the results above rely on the model’s knowledge instilled during pretraining. In particular, the204

setup in Figure 1 assumes the model knows that “xyz is Cleopatra” is consistent with “xyz was a205

queen”, and that “abc is Socrates” is inconsistent with “abc lived in the 19th century”. We investigate206

whether relying on such knowledge is necessary using a minimalistic toy example.207

In our setup, variables correspond to integers between 0 and 99, and QA pairs ask whether a given208

variable’s corresponding number is present in a list of 8 numbers. A definition could look like “Define209

xyz 42”, and QA pairs could look like “xyz 2 31 95 42 55 27 6 74? Yes” and “xyz 2 1 7 9 5 8 0 3? No”.210

Like previously, we also have inconsistent definitions. There are 8000 variables in total. Data subsets211

that include QA pairs (Ḋcons
1 QA1 and D̄incons

2 QA2) contain 12 QA pairs per variable in the training set, 6212

with each of the yes/no answers. Unlike previously, we use a custom tokenizer with single tokens for213

the define tags, the variable names, all integers between 0 and 99, and the words Yes and No.214

We use this tokenizer in combination with Pythia-70M (19M non-embedding parameters) configura-215

tion to train the models from scratch in the two-stage setting described previously: on QA pairs with216

definitions in the first stage, and on new definitions in the second stage. We reproduce both weak and217

strong internalization; see Appendix for the plots.218

3.2 Is internalization specific to text models?219

The previous internalization results were all demonstrated with models based on the transformer220

architecture on a text-sequence data modality. Is internalization a phenomenon that holds more221

broadly for a wider class of deep learning models and modalities? We explore this question by222

investigating internalization on a supervised computer vision task with a ConvNet-based architecture.223

Variable-Entity Pairs

Variables:
Ä 6 6 6
8 2 0
0 9 0

ä
. . .

Entities:
Ä
A A B
A B A
B A A

ä
. . .

Definition Examples
Input

→

Target[
A A B
A B A
B A A

]
QA Examples

Input

→

Target[− − −
− − −
− A −

]

Figure 4: MNIST Question-Answer Dataset. Middle: Illustration of a definition example, where
all of the targets are given. The define tag is indicated with a pattern at the top of the image. Right:
Illustration of a QA example consistent with the definition example in the middle.
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Figure 5: Performance on new QA pairs after train-
ing on just the definitions for the corresponding
variables on the MNIST-based QA dataset.
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Concretely, we construct an MNIST-based syn-224

thetic dataset with an analogous notion of QA225

and definition examples, illustrated in Figure 4.226

The variables are specified as a N × N grid227

of digits (e.g. ( 6 9
1 0 )), and the entities are fully228

specified by a corresponding grid of target la-229

bels (e.g. ( A B
B A )). For the QA pair examples, the230

input is a grid of digit images taken from the231

MNIST dataset corresponding to a variable with232

one digit in the grid highlighted. The model then233

has to predict the target value corresponding to234

that grid cell – the target is the corresponding235

grid of labels with all but one label being a no-236

answer label (e.g.
(

A −
− −

)
). For the definition237

examples, the input is similarly a grid of digit238

images with a pixel pattern at the top indicating239

the definition tag (Define or Define), and the240

target is the corresponding grid of labels with all labels revealed (e.g. ( A B
B A )). As an evaluation metric241

on QA pairs, we measure the masked accuracy – the classification accuracy of predicting the target242

corresponding to the highlighted digit only. We train the model on the X1 ∪ X2 splits defined in an243

equivalent way to the experiments in the LLM setting.244

As seen in Figure 5, we also observe strong internalization in this setting. Given a sufficient number245

(i.e. ≥ 50) of variable-entity pairs, the model performs much better on QA pairs for variables defined246

using the definition tag that was consistent for other examples in the training set (Ḋcons5 ), compared to247

the tag that was inconsistent (Dcons6 ), with the effect increasing in the number of variable-entity pairs.248

4 Potential mechanisms for out-of-context meta-learning249

This section discusses two hypotheses that might explain the phenomenon of strong internalization:250

one based on the implicit bias of stochastic-gradient-descent-based optimizers, and another involving251

selective retrieval of information stored in model’s parameters. We note these hypotheses are not252

mutually exclusive; the first explains why learning might lead to strong internalization, and the second253

explains how this behavior could actually be represented in terms of models’ parameters.254

Gradient alignment hypothesis. Stochastic gradient descent (SGD)-based methods have an im-255

plicit regularization effect which favors gradients on different mini-batches to be similar in terms256

of squared L2 distance (Smith et al., 2021). This encourages gradients on different mini-batches to257

be both small, and aligned (i.e. point in the same direction). Smaller gradients correspond to flatter258

minima, and are also encouraged by full-batch gradient descent. What is distinctive about SGD is259

the alignment component. Gradient alignment can improve generalization since when updates on260

different minibatches point in similar directions, an update on one minibatch is likely to improve261

performance on other minibatches (e.g. of test points). Furthermore, Nichol et al. (2018) show that262

encouraging gradient alignment can also be seen as the key ingredient in the popular MAML meta-263

learning approach (Finn et al., 2017). We postulate that this can also explain the strong internalization264

phenomenon, as follows: during the first stage of learning, parameter updates move the model into265

a basin where gradients between Define statements and corresponding QA pairs are aligned. As a266

result, updates on Define statements in stage two also move predictions on the corresponding QA267

pairs in a direction consistent with those statements.268

To test this hypothesis, we experiment with varying the batch size in stage one training of the Pythia-269

1b model, see Figure 3c. Smith et al. (2021) note that the strength of implicit regularization in SGD270

is inversely proportional to batch size. And indeed, as batch size increases in these experiments, the271

strong internalization effect weakens; for full-batch training, it effectively disappears.272

Selective retrieval hypothesis. Another hypothesis that might explain strong internalization as-273

sumes that LLMs store factual information in their parameters, following e.g. Meng et al. (2022); the274

exact mechanism is not important for our high level explanation. First, the model learns to store the275

definitions from X1 in the parameters, storing the Define and Define definitions slightly differently276
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(e.g. due to the define tags being different random strings). Second, the model learns to retrieve those277

definitions from its parameters to answer questions in X1. Retrieving Define definitions is helpful for278

answering questions, so the model learns to rely on them more. Finally, when finetuning on X2, the279

definitions with the two define tags end up in similar places of in-parameter storage as their counter-280

parts from X1. Since the model learned to rely on Define definitions more for answering questions, it281

better answers questions about new Define definitions. Essentially, this hypothesis states that strong282

internalization is the result of the model learning how and when to retrieve information stored in its283

parameters. In our experiments, the model could selectively retrieve information, definitions from284

X2, at test time, despite never needing to retrieve those definitions in a similar way during training.285

We believe that in principle, the hypothesised mechanism could give rise to behaviors substantially286

more complex than matching a variable name with the corresponding named entity. This explanation287

could be studied using the tools of mechanistic interpretability to try to understand if and where288

definitions are stored, and how they are retrieved. For instance, one might discover circuits (Olah289

et al., 2020) that inhibit the retrieval of Define definitions, or perhaps perform interventions on the290

model’s activations such that Define definitions are treated by the model like Define ones, or vise291

versa. Such studies can help precisely understand what is going on inside the model when it better292

internalizes some specific kinds of data, and generally shed light on how neural nets model the world.293

5 Related work294

Internal knowledge and world modeling in LLMs. Sensitivity to prompting (Zhao et al., 2021;295

Lu et al., 2021) can be seen as evidence that LLMs do not have a coherent internal model of the296

world. On the other hand, Burns et al. (2022) show that LLMs have latent knowledge represented297

in their activations, which may be more consistent than their responses to prompts. A related line298

of work on model editing assumes that LLMs do encode factual information, and attempts to edit299

specific facts in a way that generalizes across possible contexts (Sinitsin et al., 2020; Mitchell et al.,300

2021; Meng et al., 2022). Other works exploring the question of whether LLMs can be described301

as having a coherent world model include those of Petroni et al. (2019), who argue that LLMs can302

perform serviceably as knowledge bases, and Li et al. (2022), who argue that LLMs will (perhaps303

undesirably) favor internalized knowledge over the information presented in the context when these304

conflict. Ours is the first work we are aware of to study the question of how the (apparent) correctness305

of statements might influence whether they are incorporated into a LLM’s general knowledge or306

world model. We believe we are also the first to raise the question of how such influence might be307

explained mechanistically.308

Andreas (2022) and Janus (2022) suggest that it might not make sense to think of language models309

as having a single coherent world model since LLMs can simulate a variety of agents, e.g. people,310

with internally coherent yet mutually contradicting worldviews. In this paradigm, out-of-context311

meta-learning might help explain how LLMs learn to simulate agents with internally coherent world312

models, and clarify how LLMs internalize knowledge useful for simulating multiple different agents.313

In-context (meta-)learning. Brown et al. (2020) first identified the phenomenon of few-shot314

learning; their work suggests it can be viewed as a form of (in-context) meta-learning. An alternative315

view of in-context learning is that it is a form of Bayesian inference over possible data distributions316

or tasks (Xie et al., 2021). Chan et al. (2022) provide a similar picture, demonstrating that in-context317

learning is more likely to occur when data is “bursty” (roughly, temporally correlated), and when the318

meaning of terms changes depending on context. This suggests that in-context and out-of-context319

meta-learning might be complementary, with out-of-context meta-learning focusing on more reliable320

and static facts about the world, and in-context meta-learning adapting to local context.321

Gradient alignment. A large number of existing works study or encourage gradient alignment as322

measured by inner products, cosine similarity, or (negative) L2 distance. This includes works on323

meta-learning (Nichol et al., 2018; Li et al., 2018), multi-task learning (Lee et al., 2021), optimization324

(Zhang et al., 2019), generalization (Roberts, 2021), domain generalization (Parascandolo et al.,325

2020; Shi et al., 2021; Li et al., 2018), implicit regularization (Smith et al., 2021), and understanding326

deep learning (Fort et al., 2019). However, we are not aware of any systematic survey of gradient327

alignment, and these works have remained somewhat siloed. Most relevant to our work are those328

works that focus on meta-learning and implicit regularization of SGD. In particular, Nichol et al.329
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(2018) observe that simply performing multiple SGD updates induces the same Hessian-gradient330

product terms (which tend to align gradients) that emerge in the MAML meta-learning algorithm331

(Finn et al., 2017). Meanwhile, Smith et al. (2021) use backward error analysis to show that SGD332

implicitly penalizes the variance of gradients across mini-batches (or, equivalently, rewards gradient333

alignment), with the strength of the penalty being inversely proportional to mini-batch size. While334

Dandi et al. (2022) note in passing the connection between this implicit bias and meta-learning, ours335

is the first work to emphasize it that we’re aware of. We go beyond previous works by demonstrating336

qualitative differences in learning behavior (specifically, weak and strong internalization) caused by337

using stochastic (vs. full-batch gradient) gradient methods.338

6 Potential Implications for Safety of Advanced AI Systems339

Understanding and forecasting AI systems’ capabilities is crucial for ensuring their medium- and340

long-term safety. Our work investigates whether LLM training biases models towards internalizing341

information that appears broadly useful, even when doing so does not improve training performance.342

Such learning behavior might represent a surprising capability which might change designer’s343

estimation of system’s potential to do harm. In particular, we believe internalization is a plausible344

mechanism by which LLMs might come to believe true facts about the world. This might lead them345

to acquire situational awareness (Ngo, 2022) and obey normative principles of reasoning.346

Elaborating on this second concern: One particularly concerning type of normative principle that347

has been postulated is functional decision theory, which encourages intelligent agents to cooperate348

with other similar agents (Yudkowsky and Soares, 2017). Cohen et al. (2022) argue that non-myopic349

agents will seek to influence the state of the world and in particular to tamper with their loss or reward350

signal. On the other hand, Krueger et al. (2020) argue that while reinforcement learning (RL) agents351

indeed tend to pursue incentives to influence the state of the world, such incentives may be effectively352

hidden from systems trained with supervised learning or “myopic” RL (trained to optimize immediate353

reward by setting the discount rate, γ = 0). However, even “myopic” systems may pursue long354

term goals, if they adopt functional decision theory, since this amounts to cooperating with future355

copies of themselves. For instance, functional decision theory might mandate sacrificing performance356

on the current example in order to make future examples more predictable, as modeled by the unit357

tests of Krueger et al. (2020). In present day contexts this could look like manipulating users of358

a content recommendation system (Carroll et al., 2022). For arbitrarily capable systems, it might359

look like seizing control over their loss function similarly to what Cohen et al. (2022) describe with360

RL agents. We are interested in better understanding out-of-context meta-learning so we can either361

definitively rule out such scenarios (at least those where internalization is part of the mechanism), or362

take measures to prevent such scenarios.363

7 Discussion364

Limitations. Our work has a number of limitations. Chief among them is the lack of a conclusive365

explanation for weak and strong internalization. While we discuss two possible mechanisms that366

could explain internalization, and provide some evidence towards implicit regularization of mini-batch367

gradient descent playing a role, our understanding of internalization remains incomplete. Relatedly,368

while we operationalize internalization in several tasks, we do not formally define it, making it369

difficult to study as a more general phenomenon without further insights.370

Furthermore, our LLM experiments were conducted in a multi-epoch training setting, which differs371

from how these models are typically trained in practice. Nonetheless, our image experiments in372

Section 3.2 are conducted in a single-epoch setting, and clearly demonstrate the presence of strong373

internalization. Hence, the phenomenon doesn’t appear isolated to the multi-epoch setting.374

Conclusion. We demonstrate that, in addition to in-context meta-learning, LLMs are capable of375

out-of-context meta-learning, i.e. learning can lead LLMs to update their predictions more/less when376

they encounter an example whose features indicate it is reliable/unreliable, leading to improved377

generalization performance. We believe this phenomenon may have significant implications for our378

understanding of foundation models, SGD-based optimization, and deep learning in general.379
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