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ABSTRACT

The rapid advancement of high-content, single-cell technologies like robotic confocal microscopy
with multiplexed dyes (morphological profiling) can be leveraged to reveal fundamental biology,
ranging from microbial and abiotic stress to organ development. Specifically, heterogeneous cell
systems can be perturbed genetically or with chemical treatments to allow for inference of causal
mechanisms. An exciting strategy to navigate the high-dimensional space of possible perturbation
and cell type combinations is to use generative models as priors to anticipate high-content outcomes
in order to design informative experiments. Towards this goal, we present the Latent diffUsion for
Multiplexed Images of Cells (LUMIC) framework that can generate high quality and high fidelity
images of cells. LUMIC combines diffusion models with DINO (self-Distillation with NO labels),
a vision-transformer based, self-supervised method that can be trained on images to learn feature
embeddings, and HGraph, a hierarchical variational graph encoder-decoder to represent chemicals.
To demonstrate the ability of LUMIC to generalize across cell lines and treatments, we apply it to
two cell lines treated with chemicals and stained with three dyes from the JUMP Pilot dataset and
a newly-generated in-house dataset of five cell lines treated with chemicals and stained with three
dyes. To quantify prediction quality, we evaluate the DINO embeddings, Kernel Inception Distance
(KID) score, and recovery of morphological feature distributions. LUMIC significantly outperforms
previous methods and generates realistic out-of-sample images of cells across unseen compounds
and cell types.

1 INTRODUCTION

High-content imaging assays have revolutionized the ability to observe and analyze the morphological impact of a
wide variety of drugs on different cell types. For example, the Cell Painting assay uses six fluorescent dyes imaged
across five different channels to capture cell phenotypes (Bray et al., 2016), and has already facilitated the identification
of drug targets and mechanisms of action (Chandrasekaran et al., 2023). Although morphological profiling assays are
cost-effective and straightforward methods that only require commonly available laboratory equipment, the number of
possible cell type and chemical compound combinations is infeasible to explore experimentally.

At the same time, substantial progress has been made in generative machine learning, enabling conditional image,
video, and text generation (Saharia et al. (2022); Ho et al. (2022); Achiam et al. (2023)). Deep generative models,
such as Generative Adversarial Networks (GANs), normalizing flows, and denoising diffusion probabilistic models
(DDPMs), have recently garnered attention for their ability to generate high-quality and fidelity samples (Goodfellow
et al. (2020); Rezende & Mohamed (2015); (Ho et al., 2020)). Specifically, diffusion models have become popular
because of their training stability, ease of guidance, and state-of-the-art performance on image generation tasks. Dif-
fusion models outperform GANs and flow models without requiring specific architectural and optimization choices to
prevent mode collapse and stable training (Ho et al., 2020).

With the rise of generative models and the curation of large biological datasets, it is now feasible and promising
to train generative models on perturbation data for morphological assays. For example, the JUMP dataset contains
116k chemical perturbations (Chandrasekaran et al., 2023)–analogous to the massive datasets used to train generative
models in the natural language and vision space. Specifically, the use of generative models can be used to simulate the
interactions of various compound and cell line interactions to identify target morphologies and limit the large search
space for experimentation.
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While generative modeling has already been attempted on biological data for perturbation prediction, LUMIC is the
first method, to our knowledge, to model chemical perturbation effects across multiple cell lines, filling a key gap
in existing literature. The ability to perform cross-cell-line image generation allows modeling heterogeneous cellular
responses of different cancer/organ strains/phenotypes to perturbations. This increased modeling capability is an
important tool for optimizing early drug discovery processes (Caie et al., 2010) and better characterizing biological
signaling pathways (Heinrich et al., 2023). Several previous studies have investigated the problem of generating
cellular images. Mol2Image presents a flow-based model to generate only U2OS cells conditional on a graph neural
network chemical embedding (Yang et al., 2021). CP2Image trains a GAN conditional on CellProfiler representations
to generate images; however, using CellProfiler features lacks the flexibility of other methods to directly control
the chemical compound used to treat a cell. The authors of Hussain et al. (2020) use DCGAN, a GAN in which
the pooling layers are replaced by strided convolutions, to generate high-content microscopy images, but the scope
of the study was limited, as it was trained and evaluated only on ten compounds. IMPA, one of the most similar
methods to ours, adopts a conditional GAN to style transfer perturbations onto U2OS cells, treating cells as content
and compounds as the style. PhenDiff adopts an image-to-image diffusion model to ”translate” from control images
to perturbations by conditioning on a class embedding (Bourou et al., 2023); however, the use of chemical class labels
prevents this method from being able to generate images of chemicals not seen during training. MophoDiff utilizes
a StableDiffusion backbone to generate images of cells impacted by both chemical and genetic perturbations but was
only evaluated on single cell line datasets (Navidi et al., 2024). We summarize the existing methodology and the gap
that LUMIC fills in Table 1.

Model Architecture Unseen Compound
Generation

Multi-Cell Line
Generation

Mol2Image Flow Model ✓ ✗
CP2Image GAN ✗ ✗
DCGAN GAN ✗ ✗

IMPA GAN ✓ ✗
PhenDiff Diffusion ✗ ✗

MorphoDiff Diffusion ✓ ✗
LUMIC Diffusion ✓ ✓

Table 1: Overview of related work: LUMIC leverages a diffusion pipeline to generate combinations of unseen com-
pound and cell line, a task that is unachievable with existing methods

We compare our method only against IMPA and PhenDiff, as these are the most relevant and recent papers that have
publically available code and predict the morphological responses to perturbations.

LUMIC adopts a standard DDPM pipeline and is not only able to beat existing methods on single cell line generation
tasks but also removes the limitation of single cell line generation, allowing for the controllable prediction of multiple
cell line and chemical compound interactions. Specifically, our key innovation is to model how perturbing a specific
type of cell (specified as an image of the control cell well) changes its morphology. Analogous to text-to-image
approaches such as DALL-E 2 and Stable Diffusion, we use diffusion in the image embedding space (latent diffusion)
to learn the context-specific effect of a compound (Ramesh et al. (2022); Rombach et al. (2022)). This allows us to
predict how either seen or unseen compounds will affect either seen or unseen cell lines. To evaluate our approach of
“transferring” perturbations onto a new cell line, we performed laboratory experiments to generate a new Cell Painting
dataset featuring the same treatments across multiple cell lines. Biological and computational evaluations demonstrate
that LUMIC can meaningfully predict the effects of chemical treatment for both unseen compounds and unseen cell
types. In summary, LUMIC is able to: 1) Beat existing methods on single cell line perturbation generation tasks; and
2) Generate images of multiple cell lines after chemical treatment, including unseen cell lines and unseen chemical.

2 METHODS

2.1 DATASETS

The JUMP Pilot Target 1 dataset is a subset of the JUMP Cell Painting dataset and consists of 306 different chemical
perturbations on two different cell lines (U2OS cells and A549 cells) at 2 different time points (24 and 48 hours).
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We used only the 24 hour timepoint, resulting in 4 plates per cell line and 27,702 images total. Additionally, pairs
of compounds within this dataset are known to target the same protein encoded by a given gene (Chandrasekaran
et al., 2024). We split the data based on the gene that they target: a total of 30 compounds are held out, 16 compounds
target genes not seen during training (8 genes), which we refer to as unseen genes, and 14 compounds target genes seen
during training, which we refer to as seen genes. Three of the five fluorescent channels–nucleus (Hoechst; DNA), actin
cytoskeleton/golgi/plasma membrane (phalloidin; AGP), and mitochondria (MitoTracker; Mito)–were stacked to form
an RGB image for compatibility with the standard DINO architecture. We also generated a new experimental dataset,
which we refer to as the “style transfer dataset”. We plated 3T3 (Fibroblasts), A549, HEK293T, HeLa, and RPTE
(Kidney) cells and stained them using the same stains as the JUMP Pilot dataset (DNA, AGP, Mito) in a CellPainting
style assay for a total of 3,168 images (Bray et al., 2016). We randomly select 10 compounds to hold out across all 5
cell lines and hold out HeLa completely (except control images) during training to make up the test set.

Each cell line consists of a singular cell type, leading to a combined total of 6 unique cell types and approximately
360 unique compounds. More details on dataset implementations are in Appendix A.3

Figure 1: Architecture of LUMIC in which the image generation of different cell lines and chemical compounds is
broken up into 3 separate models: A) Perturbed image embedding generation using a 1-dimensional diffusion model
with chemical conditioning information and control image embeddings as inputs (green). B) Low resolution image
generation using diffusion model with perturbed image embeddings as inputs (blue). C) High resolution image gener-
ation using diffusion model with perturbed image embeddings and resized low resolution images as inputs (orange).
D) Sampling process in which chemical information and control image embeddings are passed into the 1d-diffusion
model, low resolution diffusion model, and high resolution diffusion model with all intermediate outputs passed into
the following model in order to generate the interaction of a desired cell line and compound from scratch.

2.2 LUMIC: LATENT DIFFUSION FOR MULTIPLEXED IMAGES OF CELLS

LUMIC uses conditional diffusion in the latent image space to predict the embedding of the perturbed cell from the
embeddings of the unperturbed cell and the small molecule. To do this, we need a way of embedding both control and
perturbed images; a way to embed small molecules; a network to predict perturbed image embedding; and a way to
predict a high-resolution perturbed image from its embedding in latent space. LUMIC achieves this by leveraging pre-
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trained chemical and visual encoders, an image embedding diffusion model, a low-resolution image diffusion model,
and a high-resolution image diffusion model. Background details on DDPM are explained in Appendix A.1.

2.2.1 EMBEDDING CONTROL AND PERTURBED IMAGES WITH DINO

To learn image feature embeddings that capture cell line information, we trained a DINO (self-Distillation with NO
labels) model, which is a vision-transformer that uses a self-supervised loss (Caron et al., 2021). DINO effectively
learns representations of cellular morphology directly from CellPainting images (Doron et al., 2023) and outperforms
other self-supervised learning methods, including SymCLR and MAE, as well as computer vision based feature em-
beddings from CellProfiler in downstream biological tasks (Kim et al., 2023). We trained our DINO model on ∼27,000
images from the JUMP Pilot subset and ∼3,000 images for our style transfer dataset. More details on DINO training
is included in Appendix A.4.

2.2.2 EMBEDDING SMALL MOLECULES WITH HGRAPH

To encode chemical information, we trained an HGraph model, which is a hierarchical graph encoder-decoder that
utilizes structural motifs as building blocks to encode SMILES (a way to represent compounds using ASCII strings)
(Jin et al., 2020), on all 306 chemical compounds from the JUMP Pilot dataset, 61 compounds from our style transfer
dataset, and 250k compounds randomly sampled from the ZINC dataset by Kusner et al. (2017). During training of
LUMIC, the SMILES are passed into HGraph, and a 128-dimensional vector is sampled from the latent space.

2.2.3 IMAGE EMBEDDING DIFFUSION MODEL

To generate image representations (DINO) with diffusion, we modified the standard U-Net architecture introduced
in Ronneberger et al. (2015) to use 1-dimensional convolutions over the image embedding (a vector) instead of 2-
dimensional convolutions over an image (a matrix). Given a control image of a cell line, we first take a 256 x 256
random crop of the image and encode it into a 384-dimensional feature embedding using DINO. Then a compound
(SMILES) is encoded using HGraph and a chemical latent is sampled. The model then outputs the image embedding
of the targeted interaction (that cell type treated with that compound) as seen in Fig. 1 A. This diffusion model employs
linear attention to learn conditional information. We trained this model using the Adam optimizer with a learning rate
of 5e-4 and a batch size of 64 for 24 hours, totaling 75,000 steps (Kingma, 2014).

2.2.4 LOW-RESOLUTION IMAGE DIFFUSION MODEL

The low resolution diffusion model takes the visual embeddings (from DINO) and decodes them into their respective
image. The model takes random (256 x 256) crops of images, encodes them, and learns to generate the (64 x 64) low
resolution image based on the embedding (Fig.1 B). This model follows the efficient U-Net architecture proposed in
(Saharia et al., 2022) and uses cross-attention at each layer to capture the conditioning information. We trained this
model using the Adam optimizer with a learning rate of 5e-5 and a batch size of 64 for 24 hours totaling 150,000 steps.

2.2.5 SUPER-RESOLUTION IMAGE DIFFUSION MODEL

The super resolution diffusion model takes the visual embeddings and the low resolution (64 x 64) image and generates
the corresponding high resolution (256 x 256) image. The model is trained by taking 256 x 256 random crops and
inputting the low resolution (resizing the 256 x 256 crop to 64 x 64 and then resizing it back to 256 x 256) version as
well as the encoded version (passing the 256 x 256 crop into DINO) as shown in Fig. 1 C. The model architecture
is consistent with the efficient U-Net architecture used in (Saharia et al., 2022) with linear attention. We trained this
model using the Adam optimizer with a learning rate of 5e-5 and a batch size of 33 for ten days, totaling 1,000,000
steps across 3 A40 GPUs.

2.3 EVALUATION

We use the Kernel Inception Distance (KID), which is the squared maximum mean discrepancy (MMD) between the
distributions of image representations from the Inception V3 network, to determine the quality of the generated images
(Bińkowski et al., 2018). KID is a commonly used metric when there are low samples to evaluate the quality of the
real and generated images. The MMD is a statistical measure used to quantify the distance between two distributions
(Gretton et al., 2012). Smaller KIDs (closer to 0) are better, indicating smaller distance between true and generated
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image distributions. All classifier model training was done using scikit-learn and a validation set of 20% (of actual
data) was held out during training, and we refer to the validation set as ”Real” in all tables (Pedregosa et al., 2011).
We report the balanced accuracy score for all classification results.

3 RESULTS

Figure 2: UMAP of real and generated DINO embed-
dings overlaid and grouped by cell type

KID
LUMIC 0.015
PhenDiff 0.331

IMPA 0.173

Table 2: Comparison of LUMIC Against Other Meth-
ods by Calculating the KID of Unconditional U2OS
generation using Random Crops during Training

Control Images Unseen Compounds
Real Generated Real Generated

MLP 0.925 0.916 0.929 0.918
KNN 0.873 0.877 0.912 0.915

Table 3: Accuracy of Different Machine Learning Clas-
sifiers on Cell Type Prediction using DINO Embed-
dings

Real DINO
Embedding

Generated
DINO

Embedding
A549 Seen 0.274 0.243

A549 Unseen 0.331 0.305
U2OS Seen 0.214 0.202

U2OS
Unseen

0.275 0.269

Table 4: KNN Accuracy of Gene Classification for the
JUMP Dataset Averaged over the Set of Test Com-
pounds

3.1 LUMIC GENERATES REALISTIC IMAGE EMBEDDINGS THAT PRESERVE CELL TYPE AND TREATMENT
SEMANTICS

To qualitatively evaluate the DINO image embeddings, we used UMAP to visualize the real and generated DINO
image embeddings colored by cell type and compounds, where the real images are random 256x256 crops (as following
the training procedure) and the generated images are generated 256x256 crops using the entire sampling pipeline (Fig.
2). Both the real and generated DINO embeddings cluster well by cell type, and the generated embeddings align with
their respective ground truth clusters, suggesting that the real and generated embeddings contain corresponding cell
type information. The isolated cluster (right most) contains a mixture of cell types and consist largely of cell-free
black backgrounds present because of how we randomly cropped images.

The real and generated image embeddings also reflect differences among chemical treatments Fig. 3). The fibroblast
cells (Fig. 3A and 3B) separate less clearly than the HeLa cells (Fig. 3C and 3D), possibly reflecting cell type
differences in the magnitude of morphology change induced by chemical treatment. Regardless, treatment differences
among cells are apparent in both cases. In particular, images of HeLa cells treated with a given compound tend to
cluster with each other and apart from images of cells treated with a different compound. This phenomenon is also seen
in the JUMP datasets. A549 cells (Appendix Fig. A1) show relatively less separation among treatments compared
with U2OS cells (Appendix Fig. A2), which have almost layer-like subclusters. Nevertheless, the UMAPs of the
generated embedding reflect the shape and distribution of their intended cell type and compound. This indicates that
both the real and generated DINO image embeddings reflect differences in cell type and chemical treatment for both
seen and unseen cell types and chemical compounds.

To quantitatively evaluate whether the generated embeddings reflect cell type semantics, we trained MultiLayer Per-
ceptron (MLP) and k-Nearest-Neighbor (KNN) models to predict cell type from DINO embedding. We reasoned that
if a classifier could accurately identify the cell type of a generated embedding, then LUMIC is correctly obeying the
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cell type conditioning. Reassuringly, the performance of the MLP and the KNN models is very similar on the real
validation image embeddings and the set of generated embeddings of each type (Table 3).

We next used a similar strategy to evaluate whether embeddings generated by LUMIC preserve treatment semantics.
The MLP and KNN classifiers trained to identify the held out treatments from embeddings of real cells were still
able to identify the held out treatment of generated image embeddings (Table 5). The small drop in classification
performance between real and generated embeddings indicates that the embeddings generated by LUMIC do indeed
reflect the differences among images from different treatments, even for treatments not seen during LUMIC training.
This is a much more difficult task as different compounds may cause little or similar changes in morphology, resulting
in slightly lower accuracies for both the real and generated embeddings compared to the cell line classification task.

Figure 3: UMAPs of real and generated embeddings grouped by compound
(same UMAP as Fig. 2 but subset by cell type and recolored by compounds).
(A) UMAP of the DINO embeddings of the real Fibroblast (seen cell line)
images in the test set (unseen compounds) grouped by compound. (B) UMAP
of the generated DINO embeddings for Fibroblasts (seen cell line) and test
set compounds (unseen compounds) grouped by compound. (C) UMAP of
the DINO embeddings of the real HeLa images (unseen cell line) in the test
set (unseen compound) grouped by compound. (D) UMAP of the generated
DINO embeddings for HeLa (unseen cell line) and test set compounds (unseen
compounds) grouped by compound.

Figure 4: (A) UMAP of the extracted
CellProfiler features from real images
grouped by cell types. (B) UMAP of
the extracted CellProfiler features from
generated images grouped by cell type.

To further evaluate the quality of the generated embeddings, we trained a KNN classifier to identify the target gene of
the compound used in each treatment (recall that the JUMP Pilot dataset profiled a set of compounds with a total of 146
known target genes). We trained the classifier on the DINO embeddings of real images, and then ran this classifier on
image embeddings generated by LUMIC to quantify how well the embeddings retained signatures of the gene targeted
by the compound. A high classifier score would indicate that the embeddings indeed do preserve the differences in
the genes targeted caused by different compounds; the classifier performance on real embeddings represents an upper
bound on generation performance. As seen in Table 4, the classifier performance on real and generated embeddings is
similar, indicating that the model does indeed generate embeddings that distinguish among drug treatments. Of note,
the accuracy of the model on actual images, while seemingly low, is similar to the low mean average precision values
in a comparable evaluation for the same dataset, further exemplifying the difficulty of this task (Chandrasekaran et al.,
2024). Nevertheless, these results indicate that we are able to meaningfully encode the targeted gene in the generated
embeddings, capturing the underlying biology of the interactions.

3.2 LUMIC GENERATES MORE REALISTIC MORPHOLOGY IMAGES THAN PREVIOUS APPROACHES

We compared LUMIC against previous approaches for morphological responses to chemical perturbations. Since pre-
vious approaches cannot generate images for unseen cell types and/or molecules, we chose to evaluate unconditional
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MLP KNN
Real Generated Real Generated

A549 0.859 0.721 0.741 0.729
Kidney 0.810 0.696 0.651 0.647

Fibroblast 0.724 0.609 0.571 0.574
HEK293T 0.554 0.470 0.406 0.409

HeLa 0.869 0.724 0.729 0.735

Table 5: Accuracy of different classifiers on test set com-
pound prediction using real and generated DINO embed-
dings.

Train Validation Generated
MLP 0.720 0.735 0.472
KNN 0.527 0.507 0.349

Table 6: Accuracy of different classifiers on predicting
cell type using CellProfiler Features

Figure 5: Real and generated samples of different cell
types and chemical compounds from the test set. High-
resolution images are included in the appendix as Fig.
A5.

single cell line generation after training on random crops. We calculated the KID between the real and generated
images, where the smaller the distance the more realistic the generated images (Bińkowski et al., 2018). LUMIC
outperforms the other methods, achieving a significantly lower KID (Table 2). Thus, our model is able to capture
accurate morphology and growth patterns with fidelity that surpasses the existing state of the art methods for single
cell type generation.

3.3 GENERATED IMAGES FROM UNSEEN CELL TYPES AND TREATMENTS OUTPERFORM BASELINE MODEL

Through visual inspection of Fig. 5 and Appendix Section A.6, the generated images contain many morphological
similarities with their intended cell type. For quantitatively evaluations, we assessed whether LUMIC can meaning-
fully predict images from unseen cell types and unseen treatments by comparing it with a baseline. We reasoned that,
in order to be useful, the model predictions for a given cell type must be more similar to real images of the same cell
type than real images of a different cell type. Similarly, for a cell type/treatment combination, the generated images
must be more similar to the real cell type/treatment combination than to untreated control cell images of the same cell
type. This baseline is not trivial, because it requires the generative model to preserve both the overall characteristics
of the morphology and semantics of a particular cell line and/or treatment. Reassuringly, LUMIC beats this baseline
for image generation conditional on cell type by a large margin with the corresponding class KID having a mean of
0.016 and a standard deviation of 0.010 and the different cell type comparisons achieving a mean KID of 0.101 and
a standard deviation of 0.062 (full table in Appendix Table 7). This indicates that LUMIC both generates realistic
images and obeys the semantics of cell type conditions. We next assessed LUMIC images generated from specified
cell type/treatment combinations. We investigated three prediction tasks of increasing difficulty: (1) the cell type is in
the training data but the treatments are held out (seen cell type, unseen treatment); (2) all treatments of a given cell
type are held out, but the treatments are observed for other cell types (unseen cell type, seen treatment); and (3) a cell
type/treatment combination is predicted when neither the cell type nor the treatment have been observed during train-
ing (unseen cell type, unseen treatment). For the JUMP dataset, we also investigated the difference between treatments
with compounds targeting seen or unseen genes.
Remarkably, LUMIC outperforms the baseline across all three prediction tasks. Specifically, for the JUMP dataset,
where compounds are held out that impact seen and unseen genes, LUMIC not only beats the baseline comparison
against control images by an average of 0.017 and a standard deviation of 0.006 (full table in Appendix Table 8),
but even performs better on compounds that impact unseen genes, suggesting the ability to remain accurate on out
of distribution chemical perturbations. When looking at the seen cell lines in the style transfer dataset, LUMIC is
able to predict effects of unseen compounds on multiple seen cell types (full table in Appendix Table 9), suggesting
its applicability in downstream use cases to expand the scope of existing screens by increasing the number of com-
pounds being explored. Finally, when we held out all HeLa cell treatments, LUMIC was able to predict both seen and
unseen compounds on an unseen cell line better than baseline. The ability to accurately perform predictions on an
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unseen cell line provided seen compounds suggests that LUMIC could aid in understanding the different responses of
drugs across distinct cell lines, mimicking the experimental setup in Heinrich et al. (2023) to identify the optimal cell
line for screening without experimental limitations in order to best classify the MOA and bioactivity of a compound.
Moreover, LUMIC shows promise in being able to create entirely new screens provided only control images, which
would result in further understanding of cellular molecular pathways as well as effectively modeling the heterogeneity
in cellular responses to chemical perturbations for early stage pharmaceutical discovery (Heinrich et al., 2023; Caie
et al., 2010). Notably, the generation quality for predictions of the unseen cell type was worse, with the within class
KID being much closer to baseline KID values than in the easier generation tasks with an average difference of 0.003
and a standard deviation of 0.002 (full table in Appendix Table 10).

3.4 INTENSITY FEATURES SHOW LARGEST DIFFERENCE BETWEEN REAL AND GENERATED IMAGES

Cell morphology images from the Cell Painting dyes are often analyzed using hand-crafted features, such as those
from the CellProfiler pipeline. These features capture various aspects of cell and nuclear shape and size, as well
as dye intensity. To further investigate how well our generated images reflect biological properties of cells, we ran
CellProfiler to segment cells and extract features. We plot a UMAP of the real and generated CellProfiler features
and show that they do not match up as well as the real and generated DINO embeddings as seen in Fig. 4A and 4B.
Specifically, the bottom most green cluster contains A549 JUMP compounds that are present in the actual embeddings
but not in the generated ones and the noticeable blue cluster of HeLa on the right side, which is again present in the
actual embedding UMAP but not on the generated ones. This suggests that the biological features extracted from the
generated images do not accurately match those extracted from the actual images. We then removed highly correlated
features (> 0.9) and features with low variance (< 0.01). We trained MLP and KNN models to classify cell type from
CellProfiler features of real cells, and evaluated the classifier on CellProfiler features of generated cell images (Table
6). The classifier was much less accurate at identifying the cell types of generated images from their CellProfiler
features, indicating some sort of distribution shift.
To further evaluate which features differ the most between real and generated images, we trained a random forest (per
cell type and per seen/unseen group when applicable) with 100 decision trees to classify real and generated images
and observe high accuracy with a mean of 0.853 and a standard deviation of 0.075, suggesting that there are apparent
differences between the two (full table in Appendix Table 11). We then used SHapley Additive exPlanations (SHAP)
to identify the most important features per class (Lundberg, 2017). All of the most important features as well as the
majority of remaining features after filtering are either “Intensity” or “AreaShape” metrics, with “Intensity” features
reflecting the overall distribution of the intensities for the images and the “AreaShape” measurements being calculated
after manual intensity based thresholding to identify the different cellular compartments. To identify the group of
features that differ most between the real and generated images, we perform an ablation by removing the features with
“Intensity” or “AreaShape”. We then retrain the RF classifier to distinguish between real and fake images. The set
of features that leads to a larger decrease in accuracy compared to the baseline features represent the more impactful
group of features in distinguishing between real and generated images. For all but one of the classes, removing
“Intensity” features causes the larger decreases in accuracy, suggesting that the main difference between real and
generated images are driven by the overall intensities being generated more than the shapes of the cells. However,
since the main features that allow the RF to distinguish between real vs generated suggest a difference in the overall
intensity distribution between the real and generated images, it may be difficult to accurately calculate CellProfiler
features using manual thresholding. Thus, this analysis suggests that there is room for future improvement by better
calibrating the distribution of generated intensity values.

3.5 CONCLUSION

In this study, we demonstrate the effectiveness of LUMIC in predicting cellular morphologies of seen cell types and
unseen compounds, unseen cell types and seen compounds, and unseen cell type/unseen compounds combinations.
This capability promises to accelerate understanding and characterize the impact of compounds across cell lines/types
as well as streamline the early drug discovery process. Inspired by the idea of “style transfer”, we treat chemical
perturbations as a “style” that can be transferred across various different cell lines. To do this, we first generating
an image embedding of the interaction based on the control image and a chemical embedding, before decoding the
image embedding into a high resolution image. We validate our findings both computationally and biologically, further
indicating the promise of deep generative models in facilitating drug discovery and improved cellular understanding.

8



416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

MEANINGFULNESS STATEMENT

Explain what you consider a “meaningful representation of life” and how your work contributes to this direction. This
section does not count towards the page limit.

A “meaningful representation of life” contains accurate biological meaning, such as cell type and transcrip-
tional state, while maintaining biological variation. LUMIC provides a framework to be able to generate meaningful
representations of different cells, a fundamental building block of life, that retain their intended biological information
(cell type and perturbational state). Moreover, LUMIC also is able to model the heterogeneity among cells and their
perturbed states in both the generated representations as well as generated images by modeling not just the variations
of a singular cell but also modeling the growth patterns of a given cell line.
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Matt J Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar variational autoencoder. In International
conference on machine learning, pp. 1945–1954. PMLR, 2017.

Scott Lundberg. A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874, 2017.

Zeinab Navidi, Jun Ma, Esteban A Miglietta, Le Liu, Anne E Carpenter, Beth A Cimini, Benjamin Haibe-Kains, and
Bo Wang. Morphodiff: Cellular morphology painting with diffusion models. bioRxiv, pp. 2024–12, 2024.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In International
conference on machine learning, pp. 8162–8171. PMLR, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image
generation with CLIP latents, 2022.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International conference on
machine learning, pp. 1530–1538. PMLR, 2015.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image seg-
mentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international
conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234–241. Springer, 2015.

10



520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour,
Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in Neural Information Processing Systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020.

David R Stirling, Madison J Swain-Bowden, Alice M Lucas, Anne E Carpenter, Beth A Cimini, and Allen Goodman.
CellProfiler 4: improvements in speed, utility and usability. BMC bioinformatics, 22:1–11, 2021.

Carsen Stringer, Tim Wang, Michalis Michaelos, and Marius Pachitariu. Cellpose: a generalist algorithm for cellular
segmentation. Nature methods, 18(1):100–106, 2021.

Karren Yang, Samuel Goldman, Wengong Jin, Alex X Lu, Regina Barzilay, Tommi Jaakkola, and Caroline Uhler.
Mol2Image: improved conditional flow models for molecule to image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 6688–6698, 2021.

A APPENDIX

A.1 DENOISING DIFFUSION PROBABLISTIC MODEL BACKGROUND

During training, a data sample x0 is slowly corrupted through a T step forward Markov chain to create noised samples
x1, x2, . . . , xT . Crucially, if the noise follows a Gaussian distribution, then since the sum of Gaussians is also a
Gaussian, the noised sample xt at timestep t can be computed efficiently by

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (1)

where ᾱt :=
∏t

s=1 αs and αt is the scaling factor controlled by a variance scheduler, and ϵ ∼ N (0, I) is Gaussian
noise. Then, to learn the reverse process, a neural network ϵθ parameterized by θ can be trained to predict the noise at
each timestep using an L2 loss where t is the discrete uniform distribution between 1 and T:

L(θ) = Et,x0,ϵ[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2 (2)

Finally, after the model has been trained, the reverse process can be used to generate new samples by sampling
xT ∼ N (0, 1) and iteratively denoising from T to 1 using the following equation where z ∼ N (0, I)

xt−1 =
1

√
αt

(xt −
1− αt√
1− ᾱ

ϵθ(xt, t)) + σtz (3)

To accelerate inference by generating high quality samples in fewer steps, the Denoising Diffusion Implicit Model
(DDIM)(Song et al., 2020) can be used instead to sample at a subsequence of the original time schedule, τ =
[τ1, τ2, . . . , τS ] where S < T , and is formulated as

xτi−1
=

√
ατi−1

(
xτi −

√
1− ατi · ϵθ(xτi)√

ατi

)
︸ ︷︷ ︸

“ predicted x0”

+
√
1− ατi−1

− σ2
τi · ϵθ(xτi)︸ ︷︷ ︸

“direction pointing to xt”

+ στiϵτi︸ ︷︷ ︸
random noise

(4)

and

στi = η

√
1− ατi−1

1− ατi

√
1− ατi

ατi−1

(5)

where η ∈ [0, 1] is a hyperparameter that interpolates between 0 to make sampling deterministic and 1 for standard
denoising diffusion probabilistic model(DDPM) sampling (Eq. 3).

To enforce conditioning information c, such as class labels or latent representations, classifier-free guidance can be
used (Ho & Salimans, 2022). This is particularly useful in predicting the outcomes of perturbation experiments, where
conditional generation allows for fine-tune control over the desired cell line and chemical interaction by steering the
model towards the desired output. The key idea is that given paired data (x0, c), the model learns both a conditional
and an unconditional model by randomly dropping out the label during training. Specifically, at time step t, the learned
noise is defined by

ϵguided(xt, t, c) = λϵθ(xt, t, c) + (1− λ)(ϵθ(xt, t)) (6)
where ϵθ(xt, t) is the noise prediction without conditioning information, ϵθ(xt, t, c) is the noise prediction with con-
ditioning, and λ is the guidance weight.
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A.2 TRAINING DETAILS

All three diffusion models were trained independently. During training of the diffusion models, random crops were
resampled up to 50 times if the percentage of black pixels exceeded 30% of the entire image. We used random
crops instead of single-cell crops in order to capture how the cells grow together and to capture how a chemical
may impact this growth. Moreover, if the growth pattern of a cell and compound interaction is very sparse, we want
our generated images to reflect this. We did not crops centered around a single cell because our generated dataset
was very confluent (many overlapping cells), and it was not possible to accurately do so. Then, the images were
randomly flipped horizontally (p = 0.5), channels were randomly dropped out (p = 0.2), and finally images were
padded by 50 before being passed into DINO. All models were trained on single NVidia A40 single precision GPUs
(unless otherwise mentioned) until the visual quality of the images reached a sufficient level. All diffusion models
were also trained using exponential moving average (EMA), averaging over the past ten training weights, which has
shown to improve sampling quality(Nichol & Dhariwal, 2021). The EMA model was also used during sampling.
A cosine noise schedule with 1,000 timesteps was used during training of all diffusion models, while a linear noise
schedule with 1,000 timesteps was used for the low resolution noise schedule for the super-resolution model. For
all 3 models, DDIM sampling (η = 0) was used with 250 steps, which was where the decrease in the KID between
the different sampling steps became less drastic. Approximately 1,000 images were generated for each class using
the entire generative modeling pipeline (generating the embedding, decoding that embedding into the 64 x 64 image,
and generating the 256 x 256 image from the generated embedding and low resolution generated image shown in the
vertical dashed box in Fig. 1 D).

A.3 EXPERIMENTAL DETAILS FOR STYLE TRANSFER DATASET

To generate the data, multiple cell lines were treated with the same panel of compounds. Each compound was dissolved
in DMSO at a concentration of 2 mM and distributed into an Echo Qualified 384-Well Polypropylene Microplates
(Beckman Coulter, 001-14615). Using an Echo 655 Liquid Handler, 250 nL of each compound was dispensed into
384-well PhenoPlates (Revvity, 6057302) for a final concentration of 10 µM at a final volume of 50 µL/well.

3T3 (Fibroblasts), A549, HEK293T, HeLa, and RPTE (Kidney) cells were grown to 90% confluency in DMEM/F12
(ThermoFisher Scientific, 11320033) supplemented with 10% FBS (ThermoFisher Scientific, A5256701) in T75
flasks. Media was then aspirated and cells were washed with 10 mL of PBS (ThermoFisher Scientific, 10010023)
before lifting with 1 mL of 0.25% Trypsin-EDTA (ThermoFisher Scientific, 25200056). After 5 minutes of incuba-
tion, 10 mL of the 10% FBS DMEM/F12 was added into each flask to remove cells. Cells were spun down at 300 x g
for 5 minutes to pellet and resuspended in fresh 10% FBS DMEM/F12 before counting by hemocytometer. Cells were
diluted to a final concentration of 120,000 cells/mL and 50 µL was dispensed into each well for a final seeding density
of 6,000 cells/well.

Plates were incubated at 37◦C for 24 hours before fixing and staining using the same stains as the JUMP Pilot data
(DNA, AGP, Mito) in a CellPainting style assay (Bray et al., 2016). We used a Yokogawa CQ1 High-Content Imaging
system to image multiple fields of view for each well, for a total of 3,168 images. We randomly select 10 compounds
to hold out across all 5 cell lines and hold out HeLa completely (except control images) during training to make up the
test set.

For both datasets, the images were normalized using sklearn’s Quantile Transformation with respect to the controls
(Pedregosa et al., 2011). For the style transfer dataset, Cellpose was used to identify the nuclei of the cells and create
a binary mask (Stringer et al., 2021), and CellProfiler was used to segment the images to remove any residual dye in
the background (Stirling et al., 2021).

A.4 DINO TRAINING DETAILS

During training, we used additional pre-processing steps and transformations including taking random 338x338 crops
and resizing them to 224x224 and randomly dropping out channels (Doron et al., 2023). During sampling, we padded
images by 50 pixels on each side to help DINO focus on the content rather than gaps between cells, since some of
the cells cultured for the style transfer dataset were partially to fully confluent, as shown by visualizing the attention
maps.
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A549 HEK293T Fibroblast Kidney HeLa
A549 0.013 0.214 0.082 0.078 0.043

HEK293T 0.256 0.007 0.134 0.109 0.022
Fibroblast 0.082 0.094 0.011 0.067 0.064

Kidney 0.053 0.161 0.035 0.016 0.064
HeLa 0.049 0.204 0.101 0.109 0.035

Table 7: KID of real vs. generated cell lines. Rows represent real images from each cell line; columns are generated
images. Lower KID is better. Lower on-diagonal KID and higher off-diagonal KID indicate that LUMIC beats the
baseline.

A.5 TABLES

Class Corresponding
Class

Control
Images of
Same Cell

Type
U2OS Seen

Gene
0.029 0.040

U2OS
Unseen Gene

0.029 0.054

A549 Seen
Gene

0.016 0.028

A549 Unseen
Gene

0.014 0.035

Table 8: Average KID across seen and unseen target
genes on seen cell lines from the JUMP dataset.

Cell Line Corresponding
Class

Control
Images of
Same Cell

Type
A549 0.051 0.113

Fibroblast 0.025 0.107
Kidney 0.017 0.035

HEK293T 0.009 0.045

Table 9: Average KID of unseen compounds on various
seen (A549, Fibroblast, Kidney, HEK293T) cell lines.

Compounds Corresponding
Class

Control
Images of
Same Cell

Type
Seen

Compounds
0.075 0.079

Unseen
Compounds

0.074 0.075

Table 10: Average KID of seen and unseen compounds on
HeLa (unseen cell lines).

RF Accuracy RF Accuracy after
removing features

containing ”Intensity”

RF Accuracy after
removing features

containing ”AreaShape”
A549 Seen 0.96 0.95 (0.01) 0.92 (0.04)

A549 Unseen 0.89 0.82 (0.07) 0.89 (0.00)
U2OS Seen 0.85 0.76 (0.09) 0.84 (0.01)

U2OS Unseen 0.82 0.75 (0.07) 0.79 (0.03)
A549 (Style Transfer) 0.81 0.76 (0.05) 0.77 (0.04)

HEK293T 0.69 0.65 (0.04) 0.69 (0.00)
Kidney 0.86 0.77 (0.09) 0.85 (0.01)

Fibroblast 0.8 0.73 (0.07) 0.8 (0.00)
HeLa Seen 0.92 0.89 (0.03) 0.91 (0.01)

HeLa Unseen 0.93 0.9 (0.03) 0.9 (0.03)

Table 11: The RF Accuracy and Number of Features after Feature Selection to Classify Between Real and Generated
CellProfiler Features for each distinct combination of cell line + seen/unseen compounds
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A.6 SUPPLEMENTAL FIGURES

Figure A1: UMAP of real (left) and generated (right) DINO embeddings for the test set compounds that target seen
genes on A549 from the JUMP dataset

Figure A2: UMAP of real (left) and generated (right) DINO embeddings for the test set compounds that target unseen
genes on U2OS from the JUMP dataset
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Figure A3: Histogram of the Tanimoto similarity for all possible unique pairs of the compounds in the JUMP pilot 1
dataset and Style Transfer Dataset

Figure A4: Scatter plots for A549 Unseen Genes. (A) KID against HGraph embedding distance, with real images on
the top and the generated images on the bottom. (B) MMD against HGraph embedding distance, with real embeddings
on the top and the generated embeddings on the bottom. (C) KID against the Tanimoto similarity with the real images
on the top and the generated images on the bottom. (D) MMD against the Tanimoto similarity with the real embeddings
on the top and the generated embeddings on the bottom.

A.7 GENERATED SAMPLES
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Figure A5: Real and Generated Images for All Cell Types (counting A549 as 2 different cell types for each appearance
in both datasets)

Figure A6: Actual (top row) and generated (bottom row) images of HeLa cells (unseen cell line) treated with propy-
lthiouracil (unseen compound) from the Style Transfer Dataset
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Figure A7: Actual (top row) and generated (bottom row) images of HeLa cells (unseen cell line) treated with
methotrexate (seen compound) from the Style Transfer Dataset

Figure A8: Actual (top row) and generated (bottom row) images of RPTE cells (seen cell line) treated with diclofenac
(unseen compound) from the Style Transfer Dataset
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Figure A9: Actual (top row) and generated (bottom row) images of HEK293T cells (seen cell line) treated with
sulfamethoxazole (unseen compound) from the Style Transfer Dataset

Figure A10: Actual (top row) and generated (bottom row) images of 3T3 cells (seen cell line) treated with chlorpro-
mazine (unseen compound) from the Style Transfer Dataset
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Figure A11: Actual (top row) and generated (bottom row) images of A549 cells (seen cell line) treated with busulfan
(unseen compound) from the Style Transfer Dataset

Figure A12: Actual (top row) and generated (bottom row) images of U2OS cells (seen cell line) treated with L-
Pyroglutamic acid (unseen compound), which targets an unseen gene from the JUMP Pilot 1 Dataset
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Figure A13: Actual (top row) and generated (bottom row) images of U2OS cells (seen cell line) treated with spebruti-
nib (unseen compound), which targets a seen gene from the JUMP Pilot 1 Dataset

Figure A14: Actual (top row) and generated (bottom row) images of A549 cells (seen cell line) treated with pentostatin
(unseen compound), which targets an unseen gene from the JUMP Pilot 1 Dataset
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Figure A15: Actual (top row) and generated (bottom row) images of A549 cells (seen cell line) treated with dexam-
ethasone (unseen compound), which targets a seen gene from the JUMP Pilot 1 Dataset
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