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Abstract

There has been a surge in interest in data-driven experimental design with applications
to chemical engineering and drug manufacturing. Bayesian optimization (BO) has proven
to be adaptable to such cases, since we can model the reactions of interest as expensive
black-box functions. Sometimes, the cost of this black-box functions can be separated into
two parts: (a) the cost of the experiment itself, and (b) the cost of changing the input
parameters. In this short paper, we extend the SnAKe algorithm to deal with both types
of costs simultaneously. We further propose extensions to the case of a maximum allowable
input change, as well as to the multi-objective setting.

Keywords: Machine Learning, Bayesian Optimization

1. Introduction and related work

Efficiently optimizing the desired qualities of materials or chemicals in experimental settings
is important, given the costliness of experiments. Bayesian Optimization (BO) (Jones et al.,
1998; Shahriari et al., 2016) has emerged as a potent tool for this purpose, e.g., see Griffiths
and Hernández-Lobato (2020). However, the diversity of experimental setups necessitates
extending current methods to accommodate common constraints and objectives.

BO seeks to optimize an expensive black-box function through the use of probabilistic
models, usually Gaussian Processes (GPs) (Rasmussen and Williams, 2005), which are then
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used to select inputs in sequential fashion. This usually involves optimizing a tractable
acquisition function, α(x), so that the selected input is given by:

xt+1 = argmax
x∈X

α(x|Dt) (1)

where Dt is the data-set at iteration t, and xi is the i-th experiment.
Recent work has focused on path-based BO, where the cost of changing inputs between

subsequent experiments must be taken into account. This surge has been inspired by
scientific applications to environmental monitoring (Bogunovic et al., 2016; Mutny et al.,
2023; Folch et al., 2022; Yang et al., 2023; Samaniego et al., 2021), chemistry (Folch et al.,
2022; Vellanki et al., 2017), and energy systems (Ramesh et al., 2022).

Approaches for path-based BO have been considered through meta-learning (Yang et al.,
2023), and in the contextual BO setting (Ramesh et al., 2022). Mutny et al. (2023) approach
a similar problem by considering the optimization of trajectories in active learning. Our
recent work (Folch et al., 2022) proposes SnAKe, a path-based variation of BO that is able
to minimize the cumulative cost of input changes, by iteratively: (i) creating large batches
of possible experiments using Thompson Sampling (Kandasamy et al., 2018), (ii) solving a
Travelling Salesman Problem to order the experiments in a way that minimizes input costs,
and (iii) updating the path as observations arrive, using a ‘point-deletion’ heuristic that
helps avoid getting stuck in local optima.

SnAKe is limited in some practical aspects. This work presents three extensions:

I. SnAKe requires the total number of experiments to be selected a priori, but, in
practice we might not know how many experiments are needed, or we might want to
minimize the number of experiments, e.g., to save on materials.

II. Even though SnAKe minimizes cumulative input changes, individual input changes
between iterations are unbounded. This could pose a practical problem in some ap-
plications, where large changes may be unsafe or infeasible. For example, there may
be limitations on maximum temperature or the rate of temperature change.

III. The algorithm assumes a single objective function. In many applications, experimen-
talists are interested in problems with many objectives. In multi-objective settings,
we seek to find a Pareto front of solutions as opposed to optimizing a single function.

Other limitations of SnAKe include poor performance in high-dimensional settings, or
when the experimental budget is low (< 100). Yang et al. (2023) introduce MONGOOSE,
addressing both problems using meta-learning.

Further related work includes Nguyen et al. (2017), who explore using the Expected
Improvement (EI) acquisition function as a stopping criteria, similar to the use of Expected
Improvement per unit cost (EIpu) (Snoek et al., 2012) which we introduce here. Paulson
et al. (2022) and Paulson et al. (2023) enable incorporation of local movement constraints
in BO using approximate dynamic programming, and by combining local and global steps
depending on the local expected improvement. Samaniego et al. (2021) explore the use
of truncation for minimizing movement costs under the context of environmental moni-
toring. Multi-objective optimization has seen recent research interest, in particular at the
intersection of chemistry and machine learning (Thebelt et al., 2022; Tu et al., 2022).
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2. Practical Path-based Bayesian optimization

2.1 Self-stopping SnAKe

Algorithm 1 Expected Improvement Point Deletion

INPUT: Proposed batch, Pt, of size (T − t). Model-misspecification safety parameter ν,
termination parameter δ.
for xp ∈ Pt do

if ( EI(xp)/C
(0)(xp) < δ ) and ( Var[ xp | Dt ] < ν ) then

Pt ← Pt\{xp}
end if

end for
if |Pt| = 0 then
Terminate optimization

end if
OUTPUT: Reduced Batch, P̃, of unknown size. Optimization termination criteria.

We begin by investigating the first problem. We assume that we want to optimize an
expensive black-box function f and that the cost of experiment t+ 1 can be described by:

C(xt, xt+1) = C(0)(xt+1) + C(∆)(xt, xt+1) (2)

where xt+1 is the next experimental input we want to query, xt is our current input,
C∆(xt, xt+1) is an input-change cost function equal to zero when xt+1 = xt, and C(0)(xt+1)
represents the fixed cost of each experiment. The goal is to optimize the function for the
smallest possible total cost. Finding an exact optimum of a black-box function is practically
impossible; therefore the BO loop should terminate once we have a good approximation.

To combine BO stopping conditions and SnAKe, we modify the Point Deletion crite-
ria (Folch et al., 2022, Section 3.7) using EIpu (Snoek et al., 2012) as a stopping condition.
For a certain point x, if the EIpu, EI(x)/C(0)(x), is less than a given threshold δ > 0, then
we delete it. We also add an extra criterion based on the prediction variance of the point
to avoid early termination in the case where the model is misspecified: we will not delete
points that still have significant uncertainty. Using this same criteria (to avoid model mis-
specification), we were able to significantly boost EIpu’s performance, achieving comparable
results to SnAKe. We detail the method in Algorithm 1.

2.2 Truncated SnAKe

We now investigate the problem of maximum allowable input changes, motivated by, e.g.,
safety or physical limits. In particular, we assume the optimization now involves the rate-
of-change constraint:

|xt+1 − xt| < δMAX , ∀ t ∈ {1, ..., T} (3)

We modify the criteria that SnAKe uses when selecting which experiment to query next:
truncate SnAKe’s input change whenever it exceeds δMAX . The modification is shown in
Algorithm 2, where [v](u) denotes the unit-length vector in direction v.
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Algorithm 2 Truncated SnAKe (TrSnAKe)

Run SnAKe as normal with the following extra criterion for each new experiment, xt+1:
if |xt+1 − xt| > δMAX then

xt+1 ← xt + [xt+1 − xt]
(u)δMAX

end if

2.3 Multi-objective SnAKe

We consider a simple multi-objective extension of SnAKe by using random scalarizations
of the objective functions (Paria et al., 2020). We define the problem as trying to find
the Pareto front of a set of objective functions {f (k)(x)}Kk=1. The Pareto front (in the
maximization setting) is defined as the set of points where we cannot increase the value of
an objective without decreasing the value of another.

SnAKe creates a large batch of points using Thompson Sampling, which is then con-
sidered for evaluation and ordered in such a way that input costs are minimized. Paria
et al. (2020) give a multi-objective extension of Thompson Sampling, where we consider a
random parametric scalarization of the objectives as a single objective function.

Assume we have K objectives, each modelled by an independent GP. We choose a
scalarization function S({f (k)}Kk=1, λ) where λ is a random parameter with distribution p(λ).

Specifically, we test a linear scalarization function S({f (k)}Kk=1, λ)(x) =
∑K

k=1 λkf
(k)(x) and

Tchebyshev scalarization S({f (k)}Kk=1, λ)(x) = mink=1,...,K λk(f
(k)(x)−z(k)), where z(k) are

some reference points (Nakayama et al., 2009). The latter can handle non-convex Pareto
fronts. To create the batch, we simply sample both the independent GPs and λ ∼ p(λ)
and then optimize the single objective (one for each GP sample). We choose this particular
multi-objective method for its computational simplicity, which is required when creating
large batches. We outline the procedure in Algorithm 3.

Algorithm 3 Multi-objective SnAKe (MO-SnAKe)

Run SnAKe as normal, but replace the Thompson Sampling in the batch creation step
with Random Scalarization Thompson Sampling. That is, create the batch with the
following algorithm:
for i = 1, ..., T do
f (1), ..., f (K) ∼ GP (µt, σt|Dt)
λ ∼ p(λ)

x
(i)
t+1 = argmaxx∈X S({f (k)}Kk=1, λ)(x)

end for

3. Experimental Results

All implementations use GPyTorch (Gardner et al., 2018) and BoTorch (Balandat et al.,
2020). To implement SnAKe, we use the non-parametric version of point-deletion when
applicable (denoted by an ℓ prefix). In all plots, we zoom into the area of interest (low-cost
region) and plot ±0.5 the standard deviations of 25 runs with random initial conditions.
Dashed vertical lines in plots show the average cost used. As in Folch et al. (2022), the
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hyper-parameters of the GP are optimized by maximizing the marginal-likelihood every 25
iterations. Random refers to uniform samples ordered by solving the Travelling Salesman
Problem. We highlight a few benchmarks here and include further studies in the Appendix.

We tested self-stopping SnAKe (ssSnAKe) in three synthetic benchmarks: Branin2D,
Hartmann3D and Hartmann6D. We compare against SnAKe, vanilla EIpu, and a new
implementation of EIpu that also considers model certainty as termination criteria.

SnAKe achieves the best regret; however, it expends the entire budget and therefore
incurs high costs for very small gains. ssSnAKe achieves similar performance to SnAKe
up to the point where it automatically terminates. Our modification to EIpu significantly
improves the performance, achieving the best results in Hartmann3D and comparable results
in Branin2D benchmarks. It is good to note that the ssSnAKe seems robust to the maximum
budget, using approximately the same number of experiments, even when the maximum
budget is increased. We showcase the Hartmann6D benchmark in Figure 1.
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Figure 1: Self-stopping optimization of Hartmann 6D with different maximum budgets.
Vanilla EIpu stops too early due to model misspecification; our modification that includes
uncertainty criteria greatly improves performance. The average budget used (a.b.) is robust
to maximum budget choice.

For rate-of-change constraint problems, we test on two synthetic benchmarks: Branin2D
and Hartmann3D. We compare Truncated SnAKe (TrSnAKe), Truncated Expected Im-
provement (TrEI) (Samaniego et al., 2021), SnAKe, and EIpu. We emulate movement
constraints using a cost function with a jump when the movement is larger than δMAX :

C(xt, xt+1) = 0.2||xt+1 − xt||2 + 1(||xt+1 − xt||2 > δMAX)

For each benchmark, we test with δMAX ∈ {0.1, 0.025}. TrSnAKe performs best in three
out of four cases. Methods that cannot consider movement constraints are heavily penalized
and achieve poor performance. Figure 2 shows the results for the Branin2D benchmark.

Finally, we test multi-objective SnAKe (MO-SnAKe) on two benchmarks: the Schekel
function, which was used to model pollution in Ypacarai Lake (Samaniego et al., 2021), and
the SnAr chemistry benchmark, implemented in Summit (Felton et al., 2021). We compare
MO-SnAKe and Scalarized Thompson Sampling (Paria et al., 2020). We note that Folch
et al. (2022) used SnAr as a real-world application; however, they restricted the problem to
single objective. This work is able to consider the original multi-objective problem.
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Figure 2: Results for truncated Branin2D with a budget of 250 queries. The cost of non-
truncated methods is very high due to penalization for breaking movement constraints.
TrSnAKe achieves the best performance for low cost.

Table 1: Results of multi-objective optimization experiments on four dimensional bench-
marks. Red and blue indicate linear and Tchebyshev scalarazations respectively.

Method GD IGD MPFE Cost

S
ch
ek
el

ℓ-MO-SnAKe 0.05± 0.06 0.09± 0.07 0.23± 0.08 9.60± 6.12
ℓ-MO-SnAKe 0.07± 0.05 0.15± 0.05 0.29± 0.07 11.24± 9.94

TS 0.05± 0.04 0.11± 0.07 0.24± 0.08 57.21± 12.97
TS 0.06± 0.04 0.16± 0.05 0.30± 0.07 63.18± 12.30

Random 0.22± 0.05 0.22± 0.04 0.31± 0.05 59.62± 1.08

S
n
A
r

ℓ-MO-SnAKe 0.00040± 0.00015 0.19± 0.06 0.67± 0.22 614.94± 229.98
ℓ-MO-SnAKe 0.00044± 0.00020 0.18± 0.07 0.65± 0.26 478.43± 219.16

TS 0.00035± 0.00008 0.18± 0.06 0.64± 0.22 1967.56± 447.31
TS 0.00031± 0.00008 0.18± 0.07 0.63± 0.25 1602.68± 401.3

Random 0.02498± 0.01157 0.16± 0.04 0.35± 0.15 1195.68± 42.07

For performance metrics, we use Euclidean generational distance (GD) which measures
the average distance from the the approximated Pareto front to the true one, inverted
generational distance (IGD) which measure the average distance from the true Pareto front
to the approximated one, and the maximum Pareto frontier error (MPFE) which measures
the largest error from the approximated Pareto frontier to the true one. We obtain a ‘true’
set of Pareto points by running NSGA-II (Deb et al., 2002). Table 1 shows MO-SnAKe
performs comparable to Scalarized Thompson Sampling (Paria et al., 2020) at much lower
cost.

4. Conclusion

In this paper, we explore extensions of SnAKe to path-based BO, to make it feasible to more
practical situations. For each situation, we mention areas where the particular modification
might be useful, and empirically show the advantages of using our modifications.
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multi-objective bayesian optimization using random scalarizations. In Uncertainty in
Artificial Intelligence, pages 766–776. PMLR, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch:
An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural
Information Processing Systems, pages 8024–8035. Curran Associates, Inc., 2019.

Joel A. Paulson, Farshud Sorouifar, and Ankush Chakrabarty. Efficient Multi-Step Looka-
head Bayesian Optimization with Local Search Constraints. In 2022 IEEE 61st Confer-
ence on Decision and Control (CDC), pages 123–129, 2022.

Joel A Paulson, Farshud Sorouifar, Christopher R Laughman, and Ankush Chakrabarty.
LSR-BO: Local search region constrained Bayesian optimization for performance opti-
mization of vapor compression systems. In 2023 American Control Conference (ACC),
pages 576–582. IEEE, 2023.

Shyam Sundhar Ramesh, Pier Giuseppe Sessa, Andreas Krause, and Ilija Bogunovic. Move-
ment Penalized Bayesian Optimization with Application to Wind Energy Systems. In Ad-
vances in Neural Information Processing Systems, volume 35, pages 27036–27048, 2022.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

Federico Peralta Samaniego, Daniel Gutiérrez Reina, Sergio L Toral Maŕın, Mario Arza-
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Appendix B. Complete numerical results

In this section we include further experimental results and more implementation details.
As per Folch et al. (2022), we implement Thompson Sampling using the efficient sampling
procedure introduced by Wilson et al. (2020), solve the Travelling Salesman using Simulated
Annealing (Kirkpatrick et al., 1983) and the NetworkX package (Hagberg et al., 2008).
Optimizations of the Thompson Samples are done in PyTorch (Paszke et al., 2019) using
Adam (Kingma and Ba, 2014). The code used to produce the results will be available
after peer-review in the original SnAKe repository (https://github.com/cog-imperial/
SnAKe).

B.1 Early stopping experiments

We tested self-terminating SnAKe on three total benchmarks. Hartmann 6D can be seen
in Figure 1. The cost function used in the problem is given by:

C(xt, xt+1) = α+ ||xt+1 − xt||2 (4)

Where α = 0.05, 0.1, 0.25 in each of Branin2D, Hartmann3D, and Hartmann6D respec-
tively. Figure 3 shows the results of the remaining two benchmarks. ssSnAKe gives the
strongest performance in Hartmann6D, EIpu with the additional variance stopping condi-
tion is strongest in Hartmann3D, and the methods are comparable in Branin2D.

B.2 Truncated Experiments

We further tested on Hartmann3D for the experiments with rate-of-change constraints. In
this case Truncated SnAKe (TrSnAKe) achieves stronger results when the rate of change
is larger, giving it more freedom to explore the space. Truncated Expected Improvement
(TrEI) gives better results when restricted to a smaller constraint.

B.3 Multi-objective experiments

Finally, we consider a relaxed Pareto front to explain why Random appears to outperform
BO in IGD and MPFE in the SnAr chemistry benchmark. This is due to the Pareto front
being almost a horizontal line, and therefore the algorithms prefer to explore the part of the
line that maximizes the second objective. We consider a relaxed Pareto front by taking into
account all points where we cannot improve on our current objective without decreasing
the second objective by more than 0.01 (before this limit was strictly zero).

Using this definition for our approximated Pareto front, Table 2 shows improved perfor-
mance in IGD and MPFE, at the expense of a decrese in performance in GD (as now point
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Figure 3: Results of self-stopping experiment on remaining synthetic benchmarks. We show
average budget (a.b.) used in the captions, and the average cost as vertical lines. In all
cases vanilla EIpu seems to terminate too early. Once we have included the uncertainty
reduction criteria (EIpu+Std), the performance improves significantly. EIpu+Std achieves
the best performance in Hartmann3D, and comparable performance to self-stopping SnAKe
(ssSnAKe) in Branin2D. In all cases ssSnAKe follows the performance of SnAKe closely,
up to the point of termination. In all cases ssSnAKe and EIpu+Std appear to be robust to
the maximum budget, terminating the optimizaiton at approximately the same time even
when the maximum budget is increased.

in the approximated Pareto front may not be Pareto optimal) showcasing the difficulty in
measuring good performance in multi-objective optimization.
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Figure 4: Results for truncated Hartmann3D. The cost of non-truncated methods is very
high due to constantly being penalized for breaking movement constraints. We show results
for a budget of 250 queries, with two different constraint sizes. TrSnAKe achieves the best
performance when the movement constraint is larger, and TrEI the best when the movement
constraint is lower.

Table 2: Results of multi-objective optimization experiments on four dimensional bench-
marks with relaxed Pareto front. Even though the approximated Pareto front now contains
observations known to not be Pareto optimal, the performance in the IGD and MPFE
metrics improves. Red and blue indicate linear and Tchebyshev scalarazations respectively.

Problem Method GD IGD MPFE Cost

ℓ-MO-SnAKe 0.05± 0.05 0.09± 0.07 0.22± 0.09 9.60± 6.12
ℓ-MO-SnAKe 0.06± 0.04 0.15± 0.05 0.28± 0.07 11.24± 9.94

Schekel TS 0.05± 0.04 0.11± 0.07 0.24± 0.08 57.21± 12.97
TS 0.06± 0.04 0.16± 0.05 0.30± 0.08 63.18± 12.30

Random 0.22± 0.05 0.22± 0.04 0.31± 0.05 59.62± 1.08

ℓ-MO-SnAKe 0.00248± 0.00118 0.06± 0.02 0.24± 0.08 614.94± 229.98
ℓ-MO-SnAKe 0.00262± 0.00106 0.06± 0.04 0.27± 0.15 478.43± 219.16

SnAr TS 0.00214± 0.00091 0.07± 0.03 0.29± 0.08 1967.56± 447.31
TS 0.00171± 0.00047 0.06± 0.02 0.24± 0.08 1602.68± 401.3

Random 0.02725± 0.01345 0.14± 0.04 0.25± 0.09 1195.68± 42.07
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