
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

HtmlRAG: HTML is Better Than Plain Text for Modeling
Retrieved Knowledge in RAG Systems

Anonymous Author(s)
∗

Abstract
Retrieval-Augmented Generation (RAG) has been shown to improve

knowledge capabilities and alleviate the hallucination problem of

LLMs. The Web is a major source of external knowledge used in

RAG systems, and many commercial systems such as ChatGPT and

Perplexity have used Web search engines as their major retrieval

systems. Typically, such RAG systems retrieve search results, down-

load HTML sources of the results, and then extract plain texts from

the HTML sources. Plain text documents or chunks are fed into the

LLMs to augment the generation. However, much of the structural

and semantic information inherent in HTML, such as headings and

table structures, is lost during this plain-text-based RAG process.

To alleviate this problem, we propose HtmlRAG, which uses HTML

instead of plain text as the format of retrieved knowledge in RAG.

We believe HTML is better than plain text in modeling knowledge

in external documents, and most LLMs possess robust capacities to

understand HTML. However, utilizing HTML presents new chal-

lenges. HTML contains additional content such as tags, JavaScript,

and CSS specifications, which bring extra input tokens and noise to

the RAG system. To address this issue, we propose HTML cleaning,

compression, and pruning strategies, to shorten the HTML while

minimizing the loss of information. Specifically, we design a two-

step block-tree-based pruning method that prunes useless HTML

blocks and keeps only the relevant part of the HTML. Experiments

on six QA datasets confirm the superiority of using HTML in RAG

systems
1
.
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is_tensor Returns True if obj is a PyTorch tensor.

is_storage Returns True if obj is a PyTorch storage object.

is_complex
Returns True if the data type of input is a complex data 
type i.e., one of torch.complex64, and torch.complex128.

<tr class="row-even"><td> 
<p><a href="generated/ 
torch.is_complex.html"><c
ode><span class="pre">is_ 
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torch.complex128</span></code> 
.</p></td>Semantic Information

<table class="autosummary 
longtable docutils colwidths 
-auto align-default"> 
<tbody><tr class="row- 
odd"><td><p></p>...

Plain Text 
(Loses Structural and Semantic Information)
Learn Ecosystem Edge Become a Member…is_storage Returns True if obj is a PyTorch storage 
object. is_complex Returns True if the data type of input is a complex data type i.e., one of 
torch.complex64, and torch.complex128. is_conj Returns True if the input is a conjugated tensor, 
i.e. its conjugate bit is set to True. torch +Tensors Generators Serialization Parallelism…

HTML 
(Readable For LLMs)

https://pytorch.org/docs/stable/torch.html

Structural Information

Learn          Ecosystem          Edge             Become a Member

torch
+Tensors
Generators
Serialization
Parallelism

Figure 1: Information loss in HTML to plain text conversion.

1 Introduction
Large Language Models (LLMs) have been proven to have powerful

capabilities in various natural language processing tasks [42, 44, 46].

However, at the same time, LLMs show deficiencies such as forget-

ting long-tailed knowledge [28], offering outdated knowledge [3],

and hallucination [38, 39, 74]. Retrieval-augmented generation

(RAG) utilizes a retrieval system to fetch external knowledge and

augment the LLM. It has proved effective in mitigating hallucina-

tions of LLMs [41, 76]. Many RAG systems, such as Perlexity [47]

and SearchGPT [43], have been developed, and they commonly use

Web search engines as the underlying retrieval systems.

Traditional RAG pipelines typically use plain text as the format

for retrieved knowledge [21, 63]. HTML documents from the Web

are often converted into plain text and concatenated with the user’s

query before being fed into the LLM. We found that converting

HTML to plain text leads to the loss of structural and semantic

information. Figure 1 illustrates that a web page containing tabular

form becomes disordered when converted to plain text. Even worse,

original HTML tags, such as “<code>” and “<a>”, denoting impor-

tant information, are discarded during conversion. Thus, in this

paper, we tend to investigate an intuitive idea: Can we take HTML
as the format of external knowledge in RAG systems to preserve the
information in HTML documents to a larger extent?

Taking HTML as the format of external knowledge offers several

advantages beyond preserving the information inherent in HTML

documents. During pre-training, LLMs have encountered HTML

documents [6, 15, 17], which means that they inherently possess

the ability to understand HTML without requiring further fine-

tuning [26, 73]. Recently, both proprietary and open source LLMs

have begun to support increasingly longer input windows, making

1
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it feasible to input more extensive HTML documents [11, 69, 72].

Furthermore, documents in Latex, PDF, and Word formats can be

converted to HTML with minimal loss, expanding the potential

application of HTML as the format of external knowledge [7, 61, 64].

However, employing HTML as the knowledge format for LLMs

also presents the challenge of handling longer input sequences

and noisy contexts. Our preliminary experiments show that a real

HTML document from the Web contains over 80K tokens on aver-

age, among which over 90% of the tokens are CSS styles, JavaScript,

Comments, or other meaningless tokens. Compared to the common

maximum context window of current LLMs, which ranges from 32K

to 128K, an individual document length of 80K is unacceptable. The

noisy tokens. The aforementioned meaningless tokens in HTML

documents can also affect the generation quality of LLMs. To solve

this problem, in this paper, we devise a HTML Cleaning module

to remove semantically irrelevant content in HTML documents,

while keeping the main content intact. We also adjust the HTML

tree structure without losing semantic information, for example,

merging multiple layers of single nested HTML tags and removing

empty tags. These processes reduce the length of the HTML to 6%

of its original size.

Even after cleaning, HTML documents remain relatively long

(over 4K each) to LLMs. To shorten the input context and remove

the noise contained in the original retrieved documents, existing

RAG systems have utilized different types of post-retrieval result

refiners [19, 22, 66, 75]. These refiners extract the relevant text

chunks or key sentences from the documents, regarding the user’s

query and LLMs’ preference, and discard other content. These plain-

text-based refiners cannot be directly applied to HTML because

simply chunking HTML without considering its structure may

generate unreasonable chunks. Hence, we further design anHTML
Pruning module, which functions upon the intrinsic tree structure

of HTML. The pruning process is comprised of the following steps:

(1) Building a Block Tree. Each HTML document can be parsed

into a DOM tree [58]. We do not simply prune HTML on the DOM

tree because it is too finely-grained [16, 62], which brings much

computational cost. Instead, we propose to build a corresponding

block tree, in which the original DOM tree nodes are merged into

hierarchical blocks. The granularity of the block tree can be adjusted

by the degree of merging.

(2) Pruning Blocks based on Text Embedding. We then prune

the block tree using an on-the-shelf embedding model, because it

is a simple but effective way to calculate the block’s relevance

scores with the user’s query based on their embedding similarity.

We apply a greedy pruning algorithm that removes blocks with

lower similarity scores, and gets a pruned block tree. However, we

observe that the embedding model may fail to work well with the

fine-grained blocks because embeddings learned for these small

blocks are usually vague and inaccurate, so this pruning step is

limited to coarse-grained block trees.

(3) Generative Fine-grained Block Pruning. To prune the

block tree further, we expand the leaf nodes of the pruned block

tree and build a finer-grained block tree. Since the generative model

has a longer context window, it can model the block tree globally

and is not limited to modeling one block at a time. Thus we further

develop a generative model to prune HTML over the fine-grained

blocks. The generative model is supposed to calculate the score for

each block, which is given by the generation probability of a unique

sequence indicating the block. The sequence is given by the path

of HTML tags, starting from the root tag and walking down to the

block’s tag and text (e.g., “<html><body><div><p>block content...”).

Finally, according to the block scores, we apply a similar greedy

pruning algorithm to get the final pruned HTML.

We conduct extensive experiments on six datasets including

ambiguous QA, natural QA, multi-hop QA, and long-form QA. Ex-

perimental results confirm the superiority of HTML as the format

of external knowledge over plain text.

Our contributions are threefold: (1) We propose to take HTML as

the format of knowledge in RAG systems, which retains information

of the original HTML; (2) We propose a simple but effective HTML

cleaning algorithm; (3) We propose a two-stage HTML pruning

algorithm. This can be applied to most RAG systems and strikes a

balance between efficiency and effectiveness.

2 Related Works
2.1 Retrieval-Augmented Generation (RAG)
RAG systems augment LLM with external knowledge. A typical

RAG pipeline includes components such as a query rewriter [55],

a retriever [32, 53], a reranker [53, 63], a refiner [19, 22, 66], and a

reader [5, 77]. This typical pipeline is widely used by mainstream

RAG frameworks, such as LangChain [8] and LlamaIndex [35].

Many works aim to optimize components in the pipeline, and pre-

vious works also manage to enhance the performance of RAG in

other ways. Some methods devise new RAG frameworks, like re-

trieving external knowledge actively when internal knowledge is

missing [5, 20, 55], or letting the LLM plan the retrieval process in

a straight line or a tree structure [27, 52]. However, most existing

RAG systems take plain text as the format of external knowledge.

Instead, we propose to take HTML as the format of external knowl-

edge, and we believe using HTML can keep richer semantics in

retrieved results.

2.2 Post-Retrieval Process of RAG
RAG systems usually apply post-retrieval processes (i.e., result refin-

ers) to extract only the useful content to shorten the input context

sent to LLMs. The chunking-based refiner is a widely used solution,

which first chunks the text according to certain rules, and then uses

a reranking model to select top chunks with high relevance [25, 40].

Another solution is abstractive refiner, which utilizes a text-to-

text language model to generate abstracts of results [14, 19, 66].

Some works use off-the-shelf abstractive models [70, 71] or fine-

tuned abstractive models [19] to summarize retrieved results in

a segmented and hierarchical manner. Others leverage the logits

of language models to determine the importance of words within

documents [33, 37].

The aforementioned post-retrieval result refiners are all based on

plain text. The existing chunking-based methods cannot be directly

applied to HTML because simply chunking HTML without consid-

ering its structure may generate unreasonable chunks. Furthermore,

the abstractive refiners may have problems such as difficulty in

dealing with excessively long HTML, high computational cost, or

limited understanding of HTML. To alleviate these problems, in

this paper, we propose to prune HTML based on its DOM structure.

2
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Figure 2: HTML for RAG pipeline overview

2.3 Structured Data Understanding
Previous works have demonstrated that structured data such as

HTML [9, 68] and Excel tables [31, 57, 59] contain richer infor-

mation compared to plain text. These works design specialized

tasks [30, 59] over structured data or fine-tune language models to

understand structured data [4, 62]. Our research is not limited to

understanding a certain format of data but recommends using a

richer data format in the general RAG systems. To the best of our

knowledge, we are the first to propose using HTML as the input

for RAG systems.

3 Methodology
In this paper, we propose HtmlRAG, which uses HTML instead of

plain text as the format of retrieved knowledge in RAG systems,

aiming to keep richer semantic and structured information that is

missing in plain text. We emphasize that HTML is a popular data

format for documents in a knowledge base and other document

formats can be easily converted into HTML.

Taking HTML as the format of external knowledge presents a

new challenge of excessively long context. Hence, in HtmlRAG,

we propose to prune the original HTML documents into shorter

ones progressively. We first apply an HTML cleaning module (§3.2)

to remove useless elements and tags. We then propose a two-step

structure-aware pruning method to further refine the resulting

HTML (§3.4). More specifically, we delete less important HTML

blockswith low embedding similarities with the input query (§3.4.1),

and then conduct a finer block pruningwith a generativemodel (§3.4.2).

The overview of our method is shown in Figure 2.

3.1 Problem Definition
In the RAG pipeline, a retriever retrieves a collection of HTML

documents 𝐷 from the Web, with a total length of 𝐿. Meanwhile,

we have an LLM𝑀 as the reader, which generates an answer 𝑎. The

LLM has a maximum length of context window 𝑙 , considering both

efficiency and quality. Our HTML compression algorithms map 𝐷

to a shorter HTML document 𝑑 . Its length can fit into the LLM’s

context window, namely the length of 𝑑 must be less than or equal

to 𝑙 . Our goal is to optimize the compression algorithm to find the

best mapping from 𝐷 to 𝑑 so that the answer 𝑎 output by the LLM

has the highest quality.

3.2 HTML Cleaning
Since the original HTML documents are excessively long (over

80K each), and it’s needless to involve semantic features, model-

based methods are inappropriate at this step. Thus, we first design

a rule-based HTML cleaning, which pre-processes the HTML with-

out considering the user’s query. This cleaning process removes

irrelevant content and compresses redundant structures, retaining

all semantic information in the original HTML. The compressed

HTML of HTML cleaning is suitable for RAG systems equipped

with long-context LLMs and are not willing to lose any information

before generation. The cleaned HTML also serves as the basis for

the following HTML pruning.

3.2.1 HTML Content Cleaning. The HTML documents retrieved

from the Web contain a large amount of extra content that is invis-

ible to human users, such as HTML tags, CSS, JavaScript, etc. Most

of the HTML tags provide rich structural information that helps

the LLM understand the HTML, while CSS and JavaScript content

provide limited assistance. So the specific cleaning steps, which are

almost lossless, are as follows: (1)We remove CSS styles, Comments,

and JavaScript; (2) We clear lengthy HTML tag attributes.

3.2.2 Lossless Structural Compression. We find that in most HTML

documents, their original HTML structure contains redundancies.

We can conduct the following compression to the HTML structure

without losing semantic information: (1) We merge multiple layers

of single-nested tags. For example, we simplify “<div><div><p>some

text</p></div></div>” to “<p>some text</p>”; (2) We removed

empty tags, such as “<p></p>”.

3
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3.3 Granularity-Adjustable Block Tree
Construction

To prune all retrieved HTML documents as a whole, we first con-

catenate all retrieved HTML documents together, and use Beautiful

Soup [50] to parse the concatenated HTML document to a single

DOM tree. Pruning HTML using the DOM tree is the most natural

way, but the DOM tree is so finely-grained that numerous nodes

and the deep tree structure bring huge computational costs.

Considering the above problem, we propose an optimized tree

structure that models HTML, which is not so fine-grained. Ideally,

the granularity of the tree structure can be adjusted for different

pruning requirements. We term it as a “block tree”, and we set the

maximum number of words per block,𝑚𝑎𝑥𝑊𝑜𝑟𝑑𝑠 to control the

granularity of the block tree. In terms of block tree construction,

we start from a DOM tree, and we merge fragmented child nodes

into their parent and treat them as a block. We can recursively

merge blocks or child nodes into their parent to form a bigger

block under the condition that the number of words in a block does

not exceed𝑚𝑎𝑥𝑊𝑜𝑟𝑑𝑠 . After merging, original leaf nodes that are

unable to be merged are also regarded as blocks. Algorithm details

are demonstrated in Appendix B.

3.4 Block-Tree-Based HTML Pruning
The block-tree-based HTML pruning consists of two steps, both of

which are conducted on the block tree structure. The first pruning

step uses an embedding model to prune the result output by the

HTML cleaning module, while the second step uses a generative

model to prune the result output by the first pruning step.

3.4.1 Pruning Blocks based on Text Embedding. The refining pro-
cess is expected to shorten the retrieval results while preserving

key information as much as possible. A straightforward idea is to

extract plain text in the block and calculate a similarity score with

the user’s query using text embeddings. Then we use a greedy algo-

rithm to prune the block tree by deleting low-similarity blocks and

retraining higher ones. In practice, we keep deleting the block with

the lowest relevance until the total length of the HTML documents

satisfies the context window we set. After block deleting, redun-

dant HTML structures will re-appear, so we re-adjust the HTML

structure, meaning multiple layers of single-nested tags are merged

and empty tags are removed. The detailed pruning algorithm is

demonstrated in Appendix B.

The embedding-based HTML pruning algorithm is lightweight

but effective. It adapts to the HTML format better compared to plain-

text-based refiners. However, it still has limitations, mainly reflected

in the following aspects: (1) The embedding model’s context win-

dow is limited to the scope of text within the block each time. It

does not directly compare candidate blocks in a single inference.

Thus the embedding model lacks a global view of the document

information; (2) The embedding model cannot handle block trees

with finer granularity, because the text within most blocks is not

long enough for the embedding model to obtain semantic features.

3.4.2 Generative Fine-Grained Block Pruning. To further prune

blocks with a finer granularity, we expand the leaf nodes of the

pruned block tree and get a finer-grained block tree. Given the lim-

itations of the embedding-model-based block pruning, we propose

to use a generative model because it has a long context to cover

the whole block tree and is not limited to modeling one block at a

time. Yet processing the cleaned HTML directly with a generative

model is inappropriate because the cleaned HTML is long (60K on

average), which brings much computational cost. Similarly, the gen-

erative model is supposed to calculate scores for blocks. Inspired by

CFIC [48], which takes the text chunk’s sequence generation prob-

ability as the score for that chunk, we propose to use a sequence

of tags to identify a block. Specifically, the sequence consists of

tags starting from the root tag and walking down to the block’s

tag, and we term this sequence as “block path”. In the inference

phase, the generative model follows the structure of the block tree

and calculates the scores of blocks in the block tree. The scores of

blocks are derived from the token logits, as displayed in Figure 3.

At last, we use the same block pruning operation as we mention in

§3.4.1 to obtain the refined HTML document.

The details of the generative fine-grained block pruning module

are introduced in the remaining section.

(1) Training a Path-aware Generative Model. Long-context
LLMs are capable of modeling a long-context input containing

HTML format and following instructions [10, 36]. Considering the

computational cost, we employ an existing lightweight long-context

LLM as the foundation model. The model input is the concatenation

of an HTML, the query, and an instruction, as demonstrated in

Figure 4. The instruction is specially designed to help the LLM

understand this path generation task, but we find that the unfine-

tuned LLM does not meet our requirements. We attribute this to

the fact that existing LLMs have not encountered similar tasks or

instructions in either pre-training data or instruction fine-tuning

data, because the path generation task is proposed for the first time.

Thus we fine-tune the generative model to align with the target

of generating the path for the most relevant block. So we design

the output format as shown in Figure 4: the block path, followed

by the block content. The block content is appended to provide an

extra supervising signal that helps the generative model learn the

features of the most relevant block. Additionally, to discriminate

between children with the same tag name, we append a number to

the end of the original tag name. For example, two children with

the same “<div>” tag are renamed as “<div1>” and “<div2>”.

We collect a small amount of supervised data to enhance the

model’s capability in block path generation. Following the typical

SFT process [49], the steps for training data collecting, filtering,

and constructing are as follows: First, we sample queries from the

training set of several open-source QA datasets. For each query,

we retrieve a couple of related HTML documents using the online

search engine Bing. Then we clean the retrieved HTML, and prune

the HTML with the embedding model. By adjusting the output

length in HTML pruning, we get pruned HTML documents of vari-

ous lengths, ranging from 2K tokens to 32K tokens. After that, we

build a block tree from each HTML document pruned by the em-

bedding model, and calculate the exact match score for the content

within blocks with the gold answer. To ensure the data quality, we

discard samples in which no block’s content exactly matches the

gold answer, meaning highly relevant HTML documents are not

retrieved. More training details are discussed in Appendix A.

(2) Efficient Tree-Based Inference with Dynamic Skipping.
During inference, the generative model is supposed to calculate
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<html>
  <nav>
    <div>
      <h1>Introducing OpenAI 
        o1-preview</h1>
      <a>Read more</a>
      </div>
  </nav>
  <div>
    <div1>...</div1>
    <div2>
      <p>
        In our tests, the next 
        model update performs 
        similarly to...
      </p>
    </div2>
    <div3>...</div3>
  </div>
</html>
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Figure 3: Block score calculation. The block tree is transformed into the token tree with a tokenizer, and corresponding HTML
tags and tokens are marked with the same colors. Token generation probabilities are in the upper right corner, and tokens in
dashed boxes do not require inference. In the upper right corner of the block tree, the block probabilities are displayed, which
can be derived from the corresponding token probabilities.

Input:
**HTML**: “{HTML}”
**Question**: **{Question}**
Your task is to identify the most relevant text piece
to the given question in the HTML document. This text
piece could either be a direct paraphrase to the fact,
or a supporting evidence that can be used to infer the
fact. The overall length of the text piece should be
more than 20 words and less than 300 words. You should
provide the path to the text piece in the HTML document.
An example for the output is: <html1><body><div2><p>Some
key information...
Output:
<html1><body><div2><p>At the historic 2018 Royal Rumble,
Shinsuke Nakamura won the Men’s Royal Rumble. . .

Figure 4: The prompt for the generative model.

block scores, and the score for block 𝑏 is Score(𝑏). Each block has

a block path, and we first tokenize it to tokens {𝑡1, 𝑡2, · · · , 𝑡𝑁 )},
suppose it has 𝑁 tokens in total (e.g., “<html><div>” is tokenized

to {“<”, “html”, “><”, “div”, “>”}). Given the model’s input sequence

𝑖𝑛𝑝𝑢𝑡 and 𝑛 − 1 already generated tokens, the generative model

GenModel calculates the logit of the 𝑛-th token 𝑡𝑛 in the output

sequence as below:

Logits(𝑡𝑛) = GenModel(𝑡𝑛 |{𝑖𝑛𝑝𝑢𝑡, 𝑡1, · · · , 𝑡𝑛−1}). (1)

We propose an efficient tree-based inference, and the tree is

termed as the “token tree”, which has a one-to-one correspondence

with the block tree, given a specific tokenizer. We merge tokenized

block paths to get the block tree, as Figure 3 shows. For example,

{“<”, “html”, “><”, “nav”, “>”} and {“<”, “html”, “><”, “div”, “>”} share

the same prefix, {“<”, “html”, “><”}, and can be merged. Ultimately,

the 𝑖-th token in the tokenized block path will appear at the 𝑖-th

level of the token tree. After the token tree construction, we calcu-

late the probabilities of tokens in the token tree. The calculation

has the following conditions: (1) The probability of the root node is

1.0, which is often “<”, depending on the tokenizer; (2) The prob-

abilities of singleton child nodes, which have no siblings, are 1.0;

(3) The probabilities of other nodes are calculated by the gener-

ative model 𝐺𝑒𝑛𝑀𝑜𝑑𝑒𝑙 . Suppose token 𝑡𝑛 has 𝐾 siblings, which

are the 𝑛-th token in the output sequence, we get the logits of sib-

lings {𝑡1𝑛, 𝑡2𝑛, · · · } by Equation (1) and take the softmax of logits as

probabilities. In summary, the probability of a token 𝑡𝑘𝑛 (the 𝑛-th

token in the tokenized block path, and the 𝑘-th sibling) is given by:

P(𝑡𝑘𝑛 ) =

1.0, if 𝑛 = 1 or 𝐾 = 1;

exp(Logits(𝑡𝑘𝑛 ) )∑𝐾
𝑖=1 exp(Logits(𝑡𝑖𝑛 ) )

, overwise.
(2)

In the first two conditions, it is needless to infer with the genera-

tive model, meaning many tokens can be skipped. This brings down

the inference computational cost. Apart from token skipping, the

order of token logit calculation also matters a lot in computational

cost. We apply a depth-first algorithm to traverse the token tree

and calculate token logits so that the tokens that are calculated

sequentially share the longest prefix sequence. This strategy reuses

the KV cache of prefix sequences at most. Algorithm details are

displayed in Appendix B.

At last, we transform the generation probabilities from the token

tree back to the block tree so that we can calculate block scores. To

prevent precision overflow, we take the sum of the logarithm of

token probabilities as the score of the block 𝑏:

Score(𝑏) =
𝑁∑︁
𝑖=1

log(P(𝑡𝑖 )). (3)

After we get the block scores, we reuse the greedy block pruning

algorithm introduced in §3.4.1 to get the finely pruned HTML.

4 Experiments
We conduct experiments on six QA datasets. We simulate the real

industrial working scenario for web search engines and compare

our method with baselines from various paradigms.
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Table 1: Results of HtmlRAG and baselines under the short-context setting. Hit@1 is the proportion of instances where at least
one short answer matches. The best and second best results are in bold and underlined. The symbol † signifies that our model
achieves superior results among baselines in a statistically significant manner (t-test, 𝑝-value < 0.05).

Method ASQA Hotpot-QA NQ Trivia-QA MuSiQue ELI5

Hit@1 EM EM Hit@1 EM Hit@1 EM EM ROUGE-L BLEU

Llama-3.1-8B-Instruct-4K

BM25 45.00 19.84 36.25 40.75 30.66 84.75 26.17 5.75 15.90 6.56
BGE 68.50 31.47 43.25 59.00 44.59 92.25 27.50 10.00 15.87 6.30

E5-Mistral 62.50 28.51 38.50 56.50 41.73 90.00 27.05 9.00 15.77 5.85

LongLLMLingua 59.25 26.34 40.75 55.25 41.82 90.00 27.02 9.00 16.08 6.45

JinaAI Reader 53.50 23.14 34.00 47.25 34.41 84.75 24.83 6.75 15.80 5.65

HtmlRAG 71.75† 33.31† 43.75† 61.75† 45.90† 91.75
† 27.82† 8.75 15.51 5.84

Llama-3.1-70B-Instruct-4K

BM25 49.50 21.95 38.25 47.00 35.56 88.00 25.63 9.50 16.15 6.99
BGE 68.00 30.57 41.75 59.50 45.05 93.00 27.04 12.50 16.20 6.64

E5-Mistral 63.00 28.75 36.75 59.50 44.07 90.75 26.27 11.00 16.17 6.72

LongLLMLingua 62.50 27.74 45.00 56.75 42.89 92.50 27.23 10.25 15.84 6.39

JinaAI Reader 55.25 23.73 34.25 48.25 35.40 90.00 25.35 9.25 16.06 6.41

HtmlRAG 68.50† 30.53
† 46.25† 60.50† 45.26† 93.50† 27.03 13.25† 16.33† 6.77

†

4.1 Datasets
We select six datasets, including: (1) ASQA [54]: a QA dataset con-

sists of ambiguous questions that can be answered by multiple

answers supported by different knowledge sources; (2) Hotpot-

QA [67]: a QA dataset consists of multi-hop questions; (3) NQ [29]:

A QA dataset containing real user’s queries collected by Google; (4)

Trivia-QA [24]: a QA dataset containing real user’s questions; (5)

MuSiQue [56]: A synthetic multi-hop QA dataset; (6) ELI5 [13]: A

long-form QA dataset with questions collected from Reddit forum.

We randomly sample 400 questions from the test set (if any) or

validation set in the original datasets for our evaluation.

To simulate the real industrial web search environment, we re-

quire real web pages from the Web in HTML format as retrieved

documents. However, the widely used Wikipedia search corpus

mainly consists of pre-processed passages in plain text format. So,

we apply Bing search API in the US-EN region to search for relevant

web pages, and then we scrap static HTML documents through

URLs in returned search results. We provide the URLs and corre-

sponding HTML documents in our experiments for reproduction.

4.2 Evaluation Metrics
Our method aims to enhance the overall performance of RAG, so

we evaluate the LLM’s response as the end-to-end result. We choose

different evaluation metrics for datasets according to their question-

and-answer formats. For Hotpot-QA and MuSiQue, in which each

question is annotated with a single short answer, we report Exact

Match. For ASQA, NQ, and Trivia-QA, whose questions are an-

notated with several short answers, we report Exact Match and

Hit@1. Hit@1 means at least one answer of the annotated answers

finds the exact match in the LLM’s response. ELI5 is annotated with

long-form answers, and we report ROUGE-L [34] and BLEU [45].

4.3 Baselines
Since to the best of our knowledge, we are the first to take HTML

as the format of retrieved knowledge in RAG systems, we com-

pare HtmlRAG to baselines that conduct post-retrieval processes.

These baselines are mainly based on plain text or Markdown for-

mat. We select three chunking-based refiners and uniformly follow

the chunking method in LangChain framework [8]. The reranking

compartment is plug-and-play and we use three different rerank

models: (1) BM25 [51]: A widely used sparse rerank model; (2)

BGE [65]: An embedding model, BGE-Large-EN with encoder-only

structure; (3) E5-Mistral [60]: A embedding model based on an LLM,

Mistral-7B [18], with decoder-only structure. Besides we select two

abstractive refiners: (1) LongLLMLingua [19]: An abstractive model

using Llama7B to select useful context; (2) JinaAI Reader [23]: An

end-to-end light-weight LLM with 1.5B parameters fine-tuned on

an HTML to Markdown converting task dataset.

4.4 Experimantal Settings
For a fair comparison, all end-to-end QA results are experimented

with the latest open-source LLM, Llama-3.1-70B-Instruct and Llama-

3.1-8B-Instruct [12] under a 4K context window. As for the imple-

mentation details of our method, we construct a block tree with

a granularity of 256 words before pruning with the embedding

model, and we construct a finer-grained block tree with a granu-

larity of 128 words before pruning with the generative model. We

choose BGE-Large-EN [65] as the embedding model for the HTML

pruning. We choose a lightweight Phi-3.5-Mini-Instruct [1] with 3B

parameters as the backbone for our generative model. The training

data used in fine-tuning the generative model contains 2635 auto-

matically constructed training samples ranging from 2K to 32K in

length. More implementation details can be found in Appendix A.
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Table 2: Results of HtmlRAGwithout pruning and baselines under the long-context setting. Hit@1 is the proportion of instances
where at least one short answer matches. The best and second best results are in bold and underlined. The symbol † signifies
that our method achieves superior results among baselines in a statistically significant manner (t-test, 𝑝-value < 0.05).

Method ASQA Hotpot-QA NQ Trivia-QA MuSiQue ELI5

Hit@1 EM EM Hit@1 EM Hit@1 EM EM ROUGE-L BLEU

Llama-3.1-8B-Instruct-128K

Vanilla HTML 47.75 20.08 28.75 47.25 36.09 85.00 24.85 6.00 16.13 6.28

Plain Text 61.50 27.82 39.25 59.25 44.31 94.00 28.23 7.75 16.02 6.35
Markdown 61.75 26.70 37.50 57.50 42.85 91.50 26.67 7.50 16.12 5.91

HtmlRAG w/o Prune 61.00 26.70
† 39.50† 59.00

†
43.46

†
92.00

†
27.50

† 8.75† 15.62 5.87

Llama-3.1-70B-Instruct-128K

Vanilla HTML 44.00 17.52 28.00 46.75 36.06 81.50 22.58 3.25 15.69 5.16

Plain Text 59.75 25.16 41.00 59.75 44.11 93.50 26.75 8.75 16.88 7.44
Markdown 56.00 24.00 39.00 57.00 42.00 92.00 26.43 8.25 16.91 6.74

HtmlRAG w/o Prune 58.75
† 25.28† 42.25† 58.00

†
43.65

† 95.00† 27.21† 10.75† 16.57 6.32

4.5 Experimental Results
Main experimental results are demonstrated in Table 1. Our method,

HtmlRAG meets or exceeds the baselines across all metrics on the

six datasets. This demonstrates the effectiveness of HTML pruning.

Additionally, we make the following observations:

(1) For chunking-based refiners, we followed LangChain’s [8]

chunking rule, which chunks according to HTML tag headings

(h1, h2, etc.). Although this chunking strategy considers certain

HTML structures, it does not utilize the structural information as

effectively as our method. Moreover, converting the final output

to plain text still results in a loss of HTML structural and semantic

information. Among the three rerankers we applied, the sparse

retriever BM25 is inferior to two dense retrievers. Among two dense

retrievers, the encoder-based BGE performs better than the decoder-

based e5-mistral, despite the latter having more parameters.

(2) Among the abstractive refiners, LongLLMLingua is not op-

timized for HTML documents, so its extraction ability is affected

when dealing with HTML. Additionally, the plain text output loses

structural information, resulting in inferior performance compared

to our method. The JinaAI-reader generates the refined Markdown

given the HTML input. However, token-by-token decoding with

long input and output lengths is not only challenging for end-to-end

generative models, but also has high computational cost.

4.6 Further Analysis
4.6.1 The Effectiveness of HTML Cleaning. To validate the priority

of HTML as the format of retrieved knowledge, we compare our

HTML cleaning module, namely the results of HtmlRAG without

pruning, with other rule-based cleaning strategies, including (1)

Vanilla HTML; (2) Plain Text: The plain text extracted with an on-

the-self package BeautifulSoup [50]; (3) Markdown: The Markdown

converted by an on-the-self converter Markdownify [2]. Additional

experiments on token count show that HTML-Clean drops over

94.07% tokens of the original HTML, while the number for plain

text and Markdown conversion are 96.71% and 90.32% respectively.

The cleaned HTML is still long, so we conduct experiments

under a long-context setting (128K), as shown in Table 2. When

HTML is taken as the format of external knowledge, HtmlRAG

without pruning meets or outperforms plain text and Markdown

on most datasets, demonstrating its validity. Besides, we make the

following observations: (1) Unprocessed HTML documents contain

a large amount of irrelevant content, so all cleaning algorithms

show improvements over vanilla HTML. (2) A more capable LLM

(70B) performs better than a less capable one (8B) when taking

HTML as the format of external knowledge. This indicates that

more powerful models are better at understanding the complex

information within HTML.

4.6.2 Ablation Study. We conduct ablation studies to demonstrate

the effectiveness of each component in HtmlRAG, including block

tree construction (Block Tree), HTML pruning with the embedding

model (Prune-Embed), and HTML pruning with the generative

model (Prune-Gen). From the results in in Table 3, we can see: (1) In

the ablation study for block tree construction, we use the DOM tree

instead of the block tree. Units in the DOM tree are so fragmented

that the embedding model fails to capture sufficient semantic fea-

tures, thus causing a drop in performance. The performance of

the generative model is also affected due to the increase in the

length of block paths. (2) In the ablation study for pruning with

the embedding model, we only use the generative model to prune

the cleaned HTML. Without the basically pruned HTML by the

embedding model, the input to the generative model becomes very

long (exceeds 32K), resulting in high computational costs and poor

performance. (3) In the ablation study for pruning with the genera-

tive model, we only use the embedding model to prune the cleaned

HTML. The result is inferior compared to the further pruned HTML

using the generative model, because the embedding model’s global

understanding and ability to process finely-grained block trees are

inferior to the generative model.

4.6.3 Impact of Block Tree Granularity. The most critical hyper-

parameter in HTML pruning is granularity. A coarse granularity

reduces the flexibility of pruning, while a fine granularity makes
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Table 3: Ablation studies for HtmlRAG.

Method ASQA Hotpot-QA NQ Trivia-QA MuSiQue

Hit@1 EM EM Hit@1 EM Hit@1 EM EM

HtmlRAG 68.50 30.53 46.25 60.50 45.26 93.50 27.03 13.25
w/o Block Tree 59.50 (9.00%↓) 25.50 (5.03%↓) 40.25 (6.00%↓) 56.25 (4.25%↓) 42.07 (3.19%↓) 92.00 (1.50%↓) 26.59 (0.44%↓) 8.00 (5.25%↓)
w/o Prune-Embed 56.75 (11.75%↓) 24.05 (6.48%↓) 37.50 (8.75%↓) 49.50 (11.00%↓) 37.27 (7.99%↓) 91.75 (1.75%↓) 26.02 (1.01%↓) 9.75 (3.50%↓)
w/o Prune-Gen 62.00 (6.50%↓) 26.74 (3.79%↓) 38.75 (7.50%↓) 57.75 (2.75%↓) 42.91 (2.35%↓) 89.50 (4.00%↓) 25.55 (1.48%↓) 7.00 (6.25%↓)
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Figure 5: Experimental results for the impact of block tree granularity. The results of Prune-Embed and Prune-Gen are
represented in a bar chart, with a red dashed horizontal line indicating the performance of the strong baseline method,
chunking-based refiner with BGE (BGE-Chunk-Rerank).

it difficult to extract text embeddings for small blocks, and leads

to overly long block paths for the generative model, so we need to

find balancing points. In Figure 5, we experiment with HTML prun-

ing under different granularity ranging from 64 to 512 words, and

compare their result with a strong baseline. Prune-Embed stands

for using the basically pruned HTML by the embedding model, and

Prune-Gen stands for using the finely pruned HTML by the gener-

ative model. It can be observed that the generative model adapts

to a finer granularity than the embedding model and generally

outperforms the embedding model. This validates the rationality

of our two-stage pruning method.

4.6.4 Light Weight HTML Pruning. To show that our HTML prun-

ing method does not significantly increase the computational cost

despite using an LLM with 3B parameters, we conduct an efficiency

analysis. Table 4 shows the computational cost of our method com-

pared to the baseline and the cost of the LLM’s inference. We can

see that the HTML pruning with the embedding model still main-

tains a similar computational cost to the chunking-based refiner.

The computational cost of the generative model is a bit higher than

the baseline but still much lower than the cost of the LLM for chat-

ting. Additional experiments show that there are over 45% of nodes

that can be skipped, explaining the little increase in the generative

model’s computational cost.

Analysis of token counts shows the average token count for all

retrieved knowledge in HTML format is 1.6M, suppose we retrieve

20 HTML documents. HTML cleaning reduces the token count to

135K, HTML pruning based on text embedding reduces it to 8K,

and generative HTML pruning reduces it to 4K. In typical RAG

scenarios, since the computational cost of HTML pruning is much

less than the inference cost of the LLM, we recommend using com-

plete HTML pruning to achieve the best results. Meanwhile, in

Result Length # Params Storage # In-Tokens # Out-Tokens

BGE 200M 2.5G 93.54K 740.3

Prune-Embed 200M 2.5G 152.5K 2653

Prune-Gen 3B 7.2G 6750 28.70

LLM Chat 70B 131G 3661 182.9

Table 4: Analysis of inference cost on ELI5 dataset We com-
pare the chunking-based refiner using BGE (BGE), the two
HTML pruning steps basing on the text embedding (Prune-
Embed) and the generative model (Prune-Gen) in HtmlRAG,
and LLM chatting (LLM Chat) by model parameters, storage,
average input tokens, and average output tokens.

some resource-limited scenarios where the cost of HTML pruning

is also a concern, we suggest using only the basically pruned HTML

from the embedding model. Basically pruned HTML also yields

performance that meets or surpasses the chunking-based refiner,

as we can observe from Figure 5.

5 Conclusion and Future Work
In this work, we propose taking HTML as the format of external

knowledge in RAG systems. To tackle the additional tokens brought

by HTML, we design HTML cleaning and HTML pruning to shorten

HTML while retaining key information. Experiments show that

HtmlRAG outperforms existing post-retrieval processes based on

plain text, and validates the priority of HTML as the format of

retrieved knowledge. Moreover, this work opens up a new research

direction and provides a simple and effective solution. We believe

as LLMs become more powerful, HTML will be more suitable as the

format of external knowledge. We also hope that future works will

propose better solutions for processing HTML in RAG systems.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed

Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-

rat S. Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Mar-

tin Cai, Caio César Teodoro Mendes, Weizhu Chen, Vishrav Chaudhary, Parul

Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon, Ronen Eldan, Dan

Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng

Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann,

Nikos Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R.

Lee, Yin Tat Lee, Yuanzhi Li, Chen Liang,Weishung Liu, Eric Lin, Zeqi Lin, Piyush

Madan, ArindamMitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra,

Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmi-

lac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied,

Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Xia

Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte,

Michael Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Dong-

han Yu, Chengruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi

Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. 2024. Phi-3 Technical Report:

A Highly Capable Language Model Locally on Your Phone. CoRR abs/2404.14219

(2024). https://doi.org/10.48550/ARXIV.2404.14219 arXiv:2404.14219

[2] AlexVonB, Matthew Dapena-Tretter, and André van Delft. 2024. python-

markdownify. https://github.com/matthewwithanm/python-markdownify

[3] Alfonso Amayuelas, Kyle Wong, Liangming Pan, Wenhu Chen, andWilliam Yang

Wang. 2024. Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty

with Large Language Models. In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024,
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Compu-

tational Linguistics, 6416–6432. https://doi.org/10.18653/V1/2024.FINDINGS-

ACL.383

[4] Ryan Aponte, Ryan A. Rossi, Shunan Guo, Jane Hoffswell, Nedim Lipka, Chang

Xiao, Gromit Yeuk-Yin Chan, Eunyee Koh, and Nesreen K. Ahmed. 2023. A

ML-based Approach for HTML-based Style Recommendation. In Companion
Proceedings of the ACM Web Conference 2023, WWW 2023, Austin, TX, USA, 30
April 2023 - 4 May 2023, Ying Ding, Jie Tang, Juan F. Sequeda, Lora Aroyo, Carlos

Castillo, and Geert-Jan Houben (Eds.). ACM, 9–13. https://doi.org/10.1145/

3543873.3587300

[5] Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and Hannaneh Hajishirzi. 2024.

Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection.

In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?

id=hSyW5go0v8

[6] Stella Biderman, USVSN Sai Prashanth, Lintang Sutawika, Hailey Schoelkopf,

Quentin Anthony, Shivanshu Purohit, and Edward Raff. 2023. Emergent and

Predictable Memorization in Large Language Models. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,

and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/

59404fb89d6194641c69ae99ecdf8f6d-Abstract-Conference.html

[7] Deyan Ginev Bruce R. Miller, mailto:bruce.miller@nist.gov. 2024. LaTeXML.

https://github.com/brucemiller/LaTeXML

[8] Harrison Chase. 2022. LangChain. https://github.com/langchain-ai/langchain

[9] Jingye Chen, Tengchao Lv, Lei Cui, Cha Zhang, and Furu Wei. 2022. XDoc:

Unified Pre-training for Cross-Format Document Understanding. In Findings of
the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United
Arab Emirates, December 7-11, 2022, Yoav Goldberg, Zornitsa Kozareva, and Yue

Zhang (Eds.). Association for Computational Linguistics, 1006–1016. https:

//doi.org/10.18653/V1/2022.FINDINGS-EMNLP.71

[10] Xingyu Chen, Zihan Zhao, Lu Chen, Jiabao Ji, Danyang Zhang, Ao Luo, Yuxuan

Xiong, and Kai Yu. 2021. WebSRC: A Dataset for Web-Based Structural Reading

Comprehension. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican
Republic, 7-11 November, 2021, Marie-Francine Moens, Xuanjing Huang, Lucia

Specia, and Scott Wen-tau Yih (Eds.). Association for Computational Linguistics,

4173–4185. https://doi.org/10.18653/V1/2021.EMNLP-MAIN.343

[11] Zican Dong, Tianyi Tang, Junyi Li, and Wayne Xin Zhao. 2023. A Survey on

Long Text Modeling with Transformers. CoRR abs/2302.14502 (2023). https:

//doi.org/10.48550/ARXIV.2302.14502 arXiv:2302.14502

[12] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-

mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela

Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sra-

vankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien

Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,

Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris

Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,

Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,

Daniel Song, Danielle Pintz, Danny Livshits, David Esiobu, Dhruv Choudhary,

Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor

Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith,

Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis

Anderson, Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey

Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta

Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan Evtimov, Jade Copet, Jaewon Lee,

Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der

Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu

Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,

Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-

wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,

and et al. 2024. The Llama 3 Herd of Models. CoRR abs/2407.21783 (2024).

https://doi.org/10.48550/ARXIV.2407.21783 arXiv:2407.21783

[13] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and

Michael Auli. 2019. ELI5: Long Form Question Answering. In Proceedings of
the 57th Conference of the Association for Computational Linguistics, ACL 2019,
Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, Anna Korhonen,
David R. Traum, and Lluís Màrquez (Eds.). Association for Computational Lin-

guistics, 3558–3567. https://doi.org/10.18653/V1/P19-1346

[14] Henry Gilbert, Michael Sandborn, Douglas C. Schmidt, Jesse Spencer-Smith, and

Jules White. 2023. Semantic Compression with Large Language Models. In Tenth
International Conference on Social Networks Analysis, Management and Security,
SNAMS 2023, Abu Dhabi, United Arab Emirates, November 21-24, 2023. IEEE, 1–8.
https://doi.org/10.1109/SNAMS60348.2023.10375400

[15] Dirk Groeneveld, Iz Beltagy, Evan Pete Walsh, Akshita Bhagia, Rodney Kinney,

Oyvind Tafjord, Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong

Wang, Shane Arora, David Atkinson, Russell Authur, Khyathi Raghavi Chandu,

Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,

William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik, Crystal

Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin

Schwenk, Saurabh Shah,Will Smith, Emma Strubell, Nishant Subramani, Mitchell

Wortsman, Pradeep Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer,

Jesse Dodge, Kyle Lo, Luca Soldaini, Noah A. Smith, and Hannaneh Hajishirzi.

2024. OLMo: Accelerating the Science of Language Models. In Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei

Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational

Linguistics, 15789–15809. https://doi.org/10.18653/V1/2024.ACL-LONG.841

[16] Yu Guo, Zhengyi Ma, Jiaxin Mao, Hongjin Qian, Xinyu Zhang, Hao Jiang, Zhao

Cao, and Zhicheng Dou. 2022. Webformer: Pre-training with Web Pages for

Information Retrieval. In SIGIR ’22: The 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Madrid, Spain, July 11 -
15, 2022, Enrique Amigó, Pablo Castells, Julio Gonzalo, Ben Carterette, J. Shane

Culpepper, and Gabriella Kazai (Eds.). ACM, 1502–1512. https://doi.org/10.1145/

3477495.3532086

[17] Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin V. Huang,

Aakanksha Chowdhery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. 2023.

Understanding HTML with Large Language Models. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational

Linguistics, 2803–2821. https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.185

[18] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-

vendra Singh Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,

and William El Sayed. 2023. Mistral 7B. CoRR abs/2310.06825 (2023). https:

//doi.org/10.48550/ARXIV.2310.06825 arXiv:2310.06825

[19] Huiqiang Jiang, Qianhui Wu, Xufang Luo, Dongsheng Li, Chin-Yew Lin, Yuqing

Yang, and Lili Qiu. 2024. LongLLMLingua: Accelerating and Enhancing LLMs

in Long Context Scenarios via Prompt Compression. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei Ku, Andre

Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,

1658–1677. https://doi.org/10.18653/V1/2024.ACL-LONG.91

[20] Zhengbao Jiang, Frank F. Xu, Luyu Gao, Zhiqing Sun, Qian Liu, Jane Dwivedi-Yu,

Yiming Yang, Jamie Callan, and Graham Neubig. 2023. Active Retrieval Aug-

mented Generation. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2023, Singapore, December 6-10, 2023,
Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational

Linguistics, 7969–7992. https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495

[21] Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang, and Zhicheng Dou. 2024.

FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation

Research. CoRR abs/2405.13576 (2024). https://doi.org/10.48550/ARXIV.2405.

13576 arXiv:2405.13576

[22] Jiajie Jin, Yutao Zhu, Yujia Zhou, and Zhicheng Dou. 2024. BIDER: Bridging

Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Sup-

porting Evidence. In Findings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, Lun-Wei

9

https://doi.org/10.48550/ARXIV.2404.14219
https://arxiv.org/abs/2404.14219
https://github.com/matthewwithanm/python-markdownify
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.383
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.383
https://doi.org/10.1145/3543873.3587300
https://doi.org/10.1145/3543873.3587300
https://openreview.net/forum?id=hSyW5go0v8
https://openreview.net/forum?id=hSyW5go0v8
http://papers.nips.cc/paper_files/paper/2023/hash/59404fb89d6194641c69ae99ecdf8f6d-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/59404fb89d6194641c69ae99ecdf8f6d-Abstract-Conference.html
https://github.com/brucemiller/LaTeXML
https://github.com/langchain-ai/langchain
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.71
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.71
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.343
https://doi.org/10.48550/ARXIV.2302.14502
https://doi.org/10.48550/ARXIV.2302.14502
https://arxiv.org/abs/2302.14502
https://doi.org/10.48550/ARXIV.2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.18653/V1/P19-1346
https://doi.org/10.1109/SNAMS60348.2023.10375400
https://doi.org/10.18653/V1/2024.ACL-LONG.841
https://doi.org/10.1145/3477495.3532086
https://doi.org/10.1145/3477495.3532086
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.185
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://arxiv.org/abs/2310.06825
https://doi.org/10.18653/V1/2024.ACL-LONG.91
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.495
https://doi.org/10.48550/ARXIV.2405.13576
https://doi.org/10.48550/ARXIV.2405.13576
https://arxiv.org/abs/2405.13576


1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Computational

Linguistics, 750–761. https://doi.org/10.18653/V1/2024.FINDINGS-ACL.42

[23] JinaAI. 2024. Reader-LM: Small Language Models for Cleaning and Converting

HTML to Markdown. https://jina.ai/news/reader-lm-small-language-models-

for-cleaning-and-converting-html-to-markdown/. [Online; accessed 2024-10-

05].

[24] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. Trivi-

aQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Com-

prehension. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Vol-
ume 1: Long Papers, Regina Barzilay and Min-Yen Kan (Eds.). Association for

Computational Linguistics, 1601–1611. https://doi.org/10.18653/V1/P17-1147

[25] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick S. H. Lewis, Ledell

Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. 2020. Dense Passage

Retrieval for Open-Domain Question Answering. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, Bonnie Webber, Trevor Cohn, Yulan He, and

Yang Liu (Eds.). Association for Computational Linguistics, 6769–6781. https:

//doi.org/10.18653/V1/2020.EMNLP-MAIN.550

[26] Geunwoo Kim, Pierre Baldi, and Stephen McAleer. 2023. Language Mod-

els can Solve Computer Tasks. In Advances in Neural Information Process-
ing Systems 36: Annual Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023,
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,

and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/

7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html

[27] Gangwoo Kim, Sungdong Kim, Byeongguk Jeon, Joonsuk Park, and Jaewoo Kang.

2023. Tree of Clarifications: Answering Ambiguous Questions with Retrieval-

Augmented Large Language Models. In Proceedings of the 2023 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 2023, Singapore, December
6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for

Computational Linguistics, 996–1009. https://doi.org/10.18653/V1/2023.EMNLP-

MAIN.63

[28] Suhas Kotha, Jacob Mitchell Springer, and Aditi Raghunathan. 2024. Understand-

ing Catastrophic Forgetting in Language Models via Implicit Inference. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?id=

VrHiF2hsrm

[29] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins,

Ankur P. Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob De-

vlin, Kenton Lee, Kristina Toutanova, Llion Jones, Matthew Kelcey, Ming-Wei

Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural

Questions: a Benchmark for Question Answering Research. Trans. Assoc. Comput.
Linguistics 7 (2019), 452–466. https://doi.org/10.1162/TACL_A_00276

[30] Hanyu Lai, Xiao Liu, Iat Long Iong, Shuntian Yao, Yuxuan Chen, Pengbo Shen,

Hao Yu, Hanchen Zhang, Xiaohan Zhang, Yuxiao Dong, and Jie Tang. 2024.

AutoWebGLM: Bootstrap And Reinforce A Large Language Model-based Web

Navigating Agent. CoRR abs/2404.03648 (2024). https://doi.org/10.48550/ARXIV.

2404.03648 arXiv:2404.03648

[31] Chenliang Li, Bin Bi, Ming Yan, Wei Wang, Songfang Huang, Fei Huang, and

Luo Si. 2021. StructuralLM: Structural Pre-training for Form Understanding.

In Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Pro-
cessing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6, 2021,
Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for

Computational Linguistics, 6309–6318. https://doi.org/10.18653/V1/2021.ACL-

LONG.493

[32] Xiaoxi Li, Zhicheng Dou, Yujia Zhou, and Fangchao Liu. 2024. CorpusLM:

Towards a Unified Language Model on Corpus for Knowledge-Intensive Tasks.

In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2024, Washington DC, USA, July 14-18,
2024, Grace Hui Yang, Hongning Wang, Sam Han, Claudia Hauff, Guido Zuccon,

and Yi Zhang (Eds.). ACM, 26–37. https://doi.org/10.1145/3626772.3657778

[33] Yucheng Li. 2023. Unlocking Context Constraints of LLMs: Enhancing

Context Efficiency of LLMs with Self-Information-Based Content Filtering.

CoRR abs/2304.12102 (2023). https://doi.org/10.48550/ARXIV.2304.12102

arXiv:2304.12102

[34] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.

In Text Summarization Branches Out. Association for Computational Linguistics,

Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[35] Jerry Liu. 2022. LlamaIndex. https://doi.org/10.5281/zenodo.1234

[36] Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi

Li, and Xiang Yue. 2024. VisualWebBench: How Far Have Multimodal LLMs

Evolved in Web Page Understanding and Grounding? CoRR abs/2404.05955

(2024). https://doi.org/10.48550/ARXIV.2404.05955 arXiv:2404.05955

[37] Yang Liu. 2019. Fine-tune BERT for Extractive Summarization. CoRR
abs/1903.10318 (2019). arXiv:1903.10318 http://arxiv.org/abs/1903.10318

[38] Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Han-

naneh Hajishirzi. 2023. When Not to Trust Language Models: Investigating

Effectiveness of Parametric and Non-Parametric Memories. In Proceedings of
the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, Anna Rogers, Jor-
dan L. Boyd-Graber, and Naoaki Okazaki (Eds.). Association for Computational

Linguistics, 9802–9822. https://doi.org/10.18653/V1/2023.ACL-LONG.546

[39] SewonMin, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, PangWei Koh,

Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. 2023. FActScore: Fine-

grained Atomic Evaluation of Factual Precision in Long Form Text Generation.

In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan

Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 12076–

12100. https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741

[40] Joel Ruben Antony Moniz, Soundarya Krishnan, Melis Özyildirim, Prathamesh

Saraf, Halim Cagri Ates, Yuan Zhang, and Hong Yu. 2024. ReALM: Reference

Resolution as Language Modeling. In Proceedings of the 25th Annual Meeting
of the Special Interest Group on Discourse and Dialogue, SIGDIAL 2024, Kyoto,
Japan, September 18 - 20, 2024, Tatsuya Kawahara, Vera Demberg, Stefan Ultes,

Koji Inoue, Shikib Mehri, David M. Howcroft, and Kazunori Komatani (Eds.).

Association for Computational Linguistics, 51–65. https://aclanthology.org/2024.

sigdial-1.5

[41] Shiyu Ni, Keping Bi, Jiafeng Guo, and Xueqi Cheng. 2024. When Do LLMs Need

Retrieval Augmentation? Mitigating LLMs’ Overconfidence Helps Retrieval Aug-

mentation. In Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024, Lun-Wei Ku, Andre

Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,

11375–11388. https://doi.org/10.18653/V1/2024.FINDINGS-ACL.675

[42] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). https:

//doi.org/10.48550/ARXIV.2303.08774 arXiv:2303.08774

[43] OpenAI. 2024. SearchGPT Prototype. https://www.perplexity.ai/ [Online;

accessed 2024-10-14].

[44] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,

Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,

John Schulman, Jacob Hilton, Fraser Kelton, LukeMiller, Maddie Simens, Amanda

Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe. 2022. Train-

ing language models to follow instructions with human feedback. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,

K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/

b1efde53be364a73914f58805a001731-Abstract-Conference.html

[45] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. Bleu: a

Method for Automatic Evaluation of Machine Translation. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics, July 6-12,
2002, Philadelphia, PA, USA. ACL, 311–318. https://doi.org/10.3115/1073083.

1073135

[46] Ajay Patel, Bryan Li, Mohammad Sadegh Rasooli, Noah Constant, Colin Raf-

fel, and Chris Callison-Burch. 2023. Bidirectional Language Models Are Also

Few-shot Learners. In The Eleventh International Conference on Learning Repre-
sentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https:

//openreview.net/forum?id=wCFB37bzud4

[47] PerplexityAI. 2024. Perplexity. https://openai.com/index/searchgpt-prototype/

[48] Hongjin Qian, Zheng Liu, Kelong Mao, Yujia Zhou, and Zhicheng Dou. 2024.

Grounding Language Model with Chunking-Free In-Context Retrieval. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024,
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for Compu-

tational Linguistics, 1298–1311. https://doi.org/10.18653/V1/2024.ACL-LONG.71

[49] Yulei Qin, Yuncheng Yang, Pengcheng Guo, Gang Li, Hang Shao, Yuchen

Shi, Zihan Xu, Yun Gu, Ke Li, and Xing Sun. 2024. Unleashing the Power

of Data Tsunami: A Comprehensive Survey on Data Assessment and Selec-

tion for Instruction Tuning of Language Models. CoRR abs/2408.02085 (2024).

https://doi.org/10.48550/ARXIV.2408.02085 arXiv:2408.02085

[50] Leonard Richardson. 2024. Beautiful Soup. https://www.crummy.com/software/

BeautifulSoup/

[51] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance

Framework: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (2009), 333–389.

https://doi.org/10.1561/1500000019

[52] Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie Huang, Nan Duan, and Weizhu

Chen. 2023. Enhancing Retrieval-Augmented Large Language Models with Itera-

tive Retrieval-Generation Synergy. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor,

Juan Pino, and Kalika Bali (Eds.). Association for Computational Linguistics,

9248–9274. https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620

10

https://doi.org/10.18653/V1/2024.FINDINGS-ACL.42
https://jina.ai/news/reader-lm-small-language-models-for-cleaning-and-converting-html-to-markdown/
https://jina.ai/news/reader-lm-small-language-models-for-cleaning-and-converting-html-to-markdown/
https://doi.org/10.18653/V1/P17-1147
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.550
http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/7cc1005ec73cfbaac9fa21192b622507-Abstract-Conference.html
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.63
https://openreview.net/forum?id=VrHiF2hsrm
https://openreview.net/forum?id=VrHiF2hsrm
https://doi.org/10.1162/TACL_A_00276
https://doi.org/10.48550/ARXIV.2404.03648
https://doi.org/10.48550/ARXIV.2404.03648
https://arxiv.org/abs/2404.03648
https://doi.org/10.18653/V1/2021.ACL-LONG.493
https://doi.org/10.18653/V1/2021.ACL-LONG.493
https://doi.org/10.1145/3626772.3657778
https://doi.org/10.48550/ARXIV.2304.12102
https://arxiv.org/abs/2304.12102
https://aclanthology.org/W04-1013
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.48550/ARXIV.2404.05955
https://arxiv.org/abs/2404.05955
https://arxiv.org/abs/1903.10318
http://arxiv.org/abs/1903.10318
https://doi.org/10.18653/V1/2023.ACL-LONG.546
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.741
https://aclanthology.org/2024.sigdial-1.5
https://aclanthology.org/2024.sigdial-1.5
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.675
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://www.perplexity.ai/
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://openreview.net/forum?id=wCFB37bzud4
https://openreview.net/forum?id=wCFB37bzud4
https://openai.com/index/searchgpt-prototype/
https://doi.org/10.18653/V1/2024.ACL-LONG.71
https://doi.org/10.48550/ARXIV.2408.02085
https://arxiv.org/abs/2408.02085
https://www.crummy.com/software/BeautifulSoup/
https://www.crummy.com/software/BeautifulSoup/
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.620


1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

HtmlRAG: HTML is Better Than Plain Text for Modeling Retrieved Knowledge in RAG Systems Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

[53] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Richard James,

Mike Lewis, Luke Zettlemoyer, and Wen-tau Yih. 2024. REPLUG: Retrieval-

Augmented Black-Box Language Models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1: Long Papers), NAACL 2024,
Mexico City, Mexico, June 16-21, 2024, Kevin Duh, Helena Gómez-Adorno, and

Steven Bethard (Eds.). Association for Computational Linguistics, 8371–8384.

https://doi.org/10.18653/V1/2024.NAACL-LONG.463

[54] Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. 2022. ASQA:

Factoid Questions Meet Long-Form Answers. In Proceedings of the 2022 Confer-
ence on Empirical Methods in Natural Language Processing, EMNLP 2022, Abu
Dhabi, United Arab Emirates, December 7-11, 2022, Yoav Goldberg, Zornitsa

Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,

8273–8288. https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566

[55] Jiejun Tan, Zhicheng Dou, Yutao Zhu, Peidong Guo, Kun Fang, and Ji-Rong

Wen. 2024. Small Models, Big Insights: Leveraging Slim Proxy Models To Decide

When and What to Retrieve for LLMs. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei Ku, Andre Martins, and

Vivek Srikumar (Eds.). Association for Computational Linguistics, 4420–4436.

https://doi.org/10.18653/V1/2024.ACL-LONG.242

[56] Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal.

2022. MuSiQue: Multihop Questions via Single-hop Question Composition.

Trans. Assoc. Comput. Linguistics 10 (2022), 539–554. https://doi.org/10.1162/

TACL_A_00475

[57] Shin-Rong Tsai, Hsi-Yu Schive, andMatthew Turk. 2024. Libyt: A Tool for Parallel

In Situ Analysis with yt, Python, and Jupyter. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC 2024, Zurich, Switzerland, June
3-5, 2024, Katherine Evans and Olaf Schenk (Eds.). ACM, 25:1–25:10. https:

//doi.org/10.1145/3659914.3659939

[58] W3Schools. 2024. What is the HTML DOM? https://www.w3schools.com/

whatis/whatis_htmldom.asp [Online; accessed 2024-10-14].

[59] Haochen Wang, Kai Hu, Haoyu Dong, and Liangcai Gao. 2024. DocTabQA:

Answering Questions from Long Documents Using Tables. In Document Analysis
and Recognition - ICDAR 2024 - 18th International Conference, Athens, Greece,
August 30 - September 4, 2024, Proceedings, Part I (Lecture Notes in Computer
Science, Vol. 14804), Elisa H. Barney Smith, Marcus Liwicki, and Liangrui Peng

(Eds.). Springer, 470–487. https://doi.org/10.1007/978-3-031-70533-5_27

[60] Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and

Furu Wei. 2024. Improving Text Embeddings with Large Language Models. In

Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for

Computational Linguistics, 11897–11916. https://doi.org/10.18653/V1/2024.ACL-

LONG.642

[61] Lucy Lu Wang, Jonathan Bragg, and Daniel S. Weld. 2023. Paper to HTML:

A Publicly Available Web Tool for Converting Scientific Pdfs into Accessible

HTML. SIGACCESS Access. Comput. 134, Article 1 (Jan. 2023), 1 pages. https:

//doi.org/10.1145/3582298.3582299

[62] Qifan Wang, Yi Fang, Anirudh Ravula, Fuli Feng, Xiaojun Quan, and Dongfang

Liu. 2022. WebFormer: The Web-page Transformer for Structure Information

Extraction. In WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon,
France, April 25 - 29, 2022, Frédérique Laforest, Raphaël Troncy, Elena Simperl,

Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini (Eds.). ACM,

3124–3133. https://doi.org/10.1145/3485447.3512032

[63] Shuting Wang, Xin Yu, Mang Wang, Weipeng Chen, Yutao Zhu, and Zhicheng

Dou. 2024. RichRAG: Crafting Rich Responses for Multi-faceted Queries in

Retrieval-Augmented Generation. CoRR abs/2406.12566 (2024). https://doi.org/

10.48550/ARXIV.2406.12566 arXiv:2406.12566

[64] Michael Williamson, Jonathan Lehman, and Jacob Wang. 2024. mammoth.js.

https://github.com/mwilliamson/mammoth.js

[65] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighoff. 2023.

C-Pack: Packaged Resources To Advance General Chinese Embedding.

CoRR abs/2309.07597 (2023). https://doi.org/10.48550/ARXIV.2309.07597

arXiv:2309.07597

[66] Fangyuan Xu, Weijia Shi, and Eunsol Choi. 2024. RECOMP: Improving Retrieval-

Augmented LMs with Context Compression and Selective Augmentation. In The
Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net. https://openreview.net/forum?id=

mlJLVigNHp

[67] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Rus-

lan Salakhutdinov, and Christopher D. Manning. 2018. HotpotQA: A Dataset

for Diverse, Explainable Multi-hop Question Answering. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium, October 31 - November 4, 2018, Ellen Riloff, David Chiang, Julia Hock-

enmaier, and Jun’ichi Tsujii (Eds.). Association for Computational Linguistics,

2369–2380. https://doi.org/10.18653/V1/D18-1259

[68] Huaying Yuan, Zhicheng Dou, Yujia Zhou, Yu Guo, and Ji-Rong Wen. 2023. VILE:

Block-Aware Visual Enhanced Document Retrieval. In Proceedings of the 32nd
ACM International Conference on Information and Knowledge Management, CIKM
2023, Birmingham, United Kingdom, October 21-25, 2023, Ingo Frommholz, Frank

Hopfgartner, Mark Lee, Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo

L. T. Santos (Eds.). ACM, 3104–3113. https://doi.org/10.1145/3583780.3615107

[69] Aohan Zeng, Bin Xu, BowenWang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu

Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang,

Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu,

Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui

Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam,

Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xing-

han Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan

Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi,

Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. 2024.

ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All

Tools. CoRR abs/2406.12793 (2024). https://doi.org/10.48550/ARXIV.2406.12793

arXiv:2406.12793

[70] Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. Extractive Summarization

via ChatGPT for Faithful Summary Generation. In Findings of the Association for
Computational Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, Houda
Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational Lin-

guistics, 3270–3278. https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.214

[71] Haopeng Zhang, Xiao Liu, and Jiawei Zhang. 2023. SummIt: Iterative Text

Summarization via ChatGPT. In Findings of the Association for Computational
Linguistics: EMNLP 2023, Singapore, December 6-10, 2023, Houda Bouamor, Juan

Pino, and Kalika Bali (Eds.). Association for Computational Linguistics, 10644–

10657. https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.714

[72] Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai

Hao, Xu Han, Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, and Maosong Sun.

2024. ınftyBench: Extending Long Context Evaluation Beyond 100K Tokens.

In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, Lun-Wei Ku, Andre Martins, and Vivek Srikumar (Eds.). Association for

Computational Linguistics, 15262–15277. https://doi.org/10.18653/V1/2024.ACL-

LONG.814

[73] Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. 2024. GPT-4V(ision)

is a Generalist Web Agent, if Grounded. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.
https://openreview.net/forum?id=piecKJ2DlB

[74] Lexin Zhou, Wout Schellaert, Fernando Martínez-Plumed, Yael Moros-Daval,

Cèsar Ferri, and José Hernández-Orallo. 2024. Larger and more instructable

language models become less reliable. Nature (2024), 1–8.
[75] Yujia Zhou, Yan Liu, Xiaoxi Li, Jiajie Jin, Hongjin Qian, Zheng Liu, Chaozhuo

Li, Zhicheng Dou, Tsung-Yi Ho, and Philip S. Yu. 2024. Trustworthiness in

Retrieval-Augmented Generation Systems: A Survey. arXiv:2409.10102 [cs.IR]

https://arxiv.org/abs/2409.10102

[76] Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, and Zhicheng Dou. 2024. Metacog-

nitive Retrieval-Augmented Large Language Models. In Proceedings of the ACM
on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, Tat-Seng Chua,

Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.). ACM,

1453–1463. https://doi.org/10.1145/3589334.3645481

[77] Yutao Zhu, Peitian Zhang, Chenghao Zhang, Yifei Chen, Binyu Xie, Zheng Liu,

Ji-Rong Wen, and Zhicheng Dou. 2024. INTERS: Unlocking the Power of Large

Language Models in Search with Instruction Tuning. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, Lun-Wei Ku, Andre

Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics,

2782–2809. https://doi.org/10.18653/V1/2024.ACL-LONG.154

11

https://doi.org/10.18653/V1/2024.NAACL-LONG.463
https://doi.org/10.18653/V1/2022.EMNLP-MAIN.566
https://doi.org/10.18653/V1/2024.ACL-LONG.242
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.1162/TACL_A_00475
https://doi.org/10.1145/3659914.3659939
https://doi.org/10.1145/3659914.3659939
https://www.w3schools.com/whatis/whatis_htmldom.asp
https://www.w3schools.com/whatis/whatis_htmldom.asp
https://doi.org/10.1007/978-3-031-70533-5_27
https://doi.org/10.18653/V1/2024.ACL-LONG.642
https://doi.org/10.18653/V1/2024.ACL-LONG.642
https://doi.org/10.1145/3582298.3582299
https://doi.org/10.1145/3582298.3582299
https://doi.org/10.1145/3485447.3512032
https://doi.org/10.48550/ARXIV.2406.12566
https://doi.org/10.48550/ARXIV.2406.12566
https://arxiv.org/abs/2406.12566
https://github.com/mwilliamson/mammoth.js
https://doi.org/10.48550/ARXIV.2309.07597
https://arxiv.org/abs/2309.07597
https://openreview.net/forum?id=mlJLVigNHp
https://openreview.net/forum?id=mlJLVigNHp
https://doi.org/10.18653/V1/D18-1259
https://doi.org/10.1145/3583780.3615107
https://doi.org/10.48550/ARXIV.2406.12793
https://arxiv.org/abs/2406.12793
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.214
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.714
https://doi.org/10.18653/V1/2024.ACL-LONG.814
https://doi.org/10.18653/V1/2024.ACL-LONG.814
https://openreview.net/forum?id=piecKJ2DlB
https://arxiv.org/abs/2409.10102
https://arxiv.org/abs/2409.10102
https://doi.org/10.1145/3589334.3645481
https://doi.org/10.18653/V1/2024.ACL-LONG.154


1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

A Generative Model Training Details
Here we introduce several critical hyper-parameters that define the

training process of the generative model. The model’s max training

context window is set to 35000 tokens. The model is trained for 3

epochs. The training is conducted on 4 computing nodes, with 32

Nvidia A800 GPUs, each having 80G memory. To manage memory

usage and computational efficiency, 𝑝𝑒𝑟_𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑟𝑎𝑖𝑛_𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒

is set to 1, while𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑒𝑝𝑠 is set to 8, effectively

simulating a larger batch size during backpropagation.

For parallelism, 𝑠𝑒𝑞_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑠𝑖𝑧𝑒 is set to 8, indicating that the

model will distribute its computations across 8 devices if available.

The 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 is set to 2e-5, striking a balance between rapid

convergence and avoiding divergence. The learning rate sched-

uler (𝑙𝑟_𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟_𝑡𝑦𝑝𝑒) is set to ’constant’, meaning the learn-

ing rate remains unchanged throughout the training unless man-

ually adjusted. For optimization, the Adam optimizer parameters

(𝑎𝑑𝑎𝑚_𝑏𝑒𝑡𝑎1, 𝑎𝑑𝑎𝑚_𝑏𝑒𝑡𝑎2, and 𝑎𝑑𝑎𝑚_𝑒𝑝𝑠𝑖𝑙𝑜𝑛) are chosen as 0.9,

0.98, and 1e-8 respectively, to ensure stable gradient updates. The

𝑚𝑎𝑥_𝑔𝑟𝑎𝑑_𝑛𝑜𝑟𝑚 is set to 1.0 to prevent exploding gradients by clip-

ping them if they exceed this norm. A weight decay (𝑤𝑒𝑖𝑔ℎ𝑡_𝑑𝑒𝑐𝑎𝑦)

of 1e-4 is used to regularize the model and prevent overfitting.

A 𝑤𝑎𝑟𝑚𝑢𝑝_𝑟𝑎𝑡𝑖𝑜 of 0.01 indicates that the learning rate will be

gradually increased during the initial 1% of the training process

before settling at the base learning rate. 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡𝑖𝑛𝑔 is

enabled to save memory at the cost of increased computation time.

DeepSpeed is configured for efficient distributed training. For

ZeRO optimization (𝑧𝑒𝑟𝑜_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛), stage 3 is selected, which

represents the highest level of parameter partitioning and offloading.

Gradient clipping (𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡_𝑐𝑙𝑖𝑝𝑝𝑖𝑛𝑔) is set to 1.0, ensuring that

the gradients do not grow too large, thus preventing potential

issues like exploding gradients. The𝑤𝑎𝑙𝑙_𝑐𝑙𝑜𝑐𝑘_𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 option

is set to false, indicating that DeepSpeed will not provide a detailed

breakdown of the training time spent on different components of

the training loop, which can be useful for profiling but may add

some overhead. Mixed precision training using bfloat16 is set to

“auto”, indicating that DeepSpeedwill decidewhether to use bfloat16

based on the capabilities of the system and the requirements of the

model.

B Key Algorithms
In this appendix section, we present all the algorithms mentioned

in the main text using pseudo code, including the algorithm for

constructing the block tree, the pruning algorithm using the em-

bedding model, and the pruning algorithm using the generative

model.

To make it clear, we first define elements under a certain node

as follows: All sorts of elements under the node are referred to as

node.content; Textwrapped by child tags is referred to as node.children;
Text directly attached to the node is referred to as node.text. We

show an example accordingly in Figure 6. To discriminate between

children with the same HTML tag, we append a number to the end

of the original tag name. For example, two children with the same

“<div>” tag are renamed as “<div1>” and “<div2>”.

The block tree construction algorithm is demonstrated in Al-

gorithm 1, which transforms a DOM Tree 𝑇 into a Block Tree 𝑇 ′.
In the block tree, a block is the smallest unit that be pruned in

<div>
    <h1>OpenAI o1-preview</h1>
    <div>
        <p>
            In our tests, the next model update
            performs similarly to PhD...
        </p>
    </div>
    For complex reasoning tasks this is a significant 
    advancement and represents a new level...
</div>

node.text

node.content

node.children

Figure 6: Node content explained

subsequent steps. We use a breadth-first algorithm to traverse all

nodes in the DOM tree. Leaf nodes that are visited are directly

considered as blocks. If the total number of tokens of all content

under a node is less than the number we set (maxWordss), we merge

all the content of the node and consider it as a block. Otherwise,

we check the content of the node. The node’s children are to be

visited in subsequent steps. The node’s text will be considered as a

block. It is noteworthy that if there are only children but no text

under the node, it will not be considered as a block. This algorithm

merges fragmented nodes as a block, until the number of tokens

exceeds maxWords.
Another key algorithm is greedy block pruning, as demonstrated

in Algorithm 2. We greedily delete the block with the lowest score

until the length of the HTML document meets the context window

we set. To elaborate, when deleting a block, if the block is a leaf

node, we delete the block directly. Otherwise, if the block consists

of directly attached text under a parent node, we delete only those

text. After a block is deleted, the algorithm recursively checks if

the parent node is empty. If the parent node is empty, it is to be

deleted.

The last key algorithm is token probability calculation, as demon-

strated in Algorithm 3. We use a depth-firth algorithm to traverse

tokens in the token tree so that tokens visited sequentially share

the longest prefix sequences. The probability of the root token and

singleton child tokens are directly set to 1.0, and does not require

calculation.
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Algorithm 3 Token Probability Calculation

1: procedure TraverseTokenTree
2: Declare a queue 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘

3: 𝑡0 ← root node of 𝑇

4: 𝑡0 .𝑝𝑟𝑜𝑏 ← 1.0 ⊲ Set probability of 𝑅 as 1.0

5: Push 𝑡0 into 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘

6: while 𝑛𝑜𝑑𝑒𝑆𝑡𝑎𝑐𝑘 is not empty do
7: 𝑡𝑛−1 ← Pop from 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

8: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← Expand children of node 𝑝 : (𝑡0𝑛, 𝑡1𝑛, · · · )
9: if |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | = 0 (𝑝 is a leaf node) then
10: continue
11: else if |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 | = 1 then
12: 𝑡0𝑛 .𝑝𝑟𝑜𝑏 ← 1.0

13: Push the singleton child 𝑡0𝑛 into 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

14: else
15: 𝑝𝑟𝑒 𝑓 𝑖𝑥 ← {𝑖𝑛𝑝𝑢𝑡, 𝑡0, . . . , 𝑡𝑛−1}
16: for each 𝑡𝑖𝑛 in 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

17: 𝑡𝑖𝑛 .𝑝𝑟𝑜𝑏 ←
𝑒𝑥𝑝 (𝐿𝑜𝑔𝑖𝑡𝑠 (𝑡𝑘𝑛 ) )∑𝐾
𝑖=0 𝑒𝑥𝑝 (𝐿𝑜𝑔𝑖𝑡𝑠 (𝑡𝑖𝑛 ) )

18: Push 𝑡𝑖𝑛 into 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

19: end for
20: end if
21: end while
22: end procedure

Algorithm 1 Construct Block Tree 𝑇 ′ from DOM Tree 𝑇

1: procedure ConstructBlockTree(𝑇 )
2: Declare a queue 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

3: 𝑅 ← root node of 𝑇

4: Enqueue 𝑅 into 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

5: while 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒 is not empty do
6: 𝑛𝑜𝑑𝑒 ← Dequeue from 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

7: if 𝑛𝑜𝑑𝑒 is a leaf node then
8: 𝑛𝑜𝑑𝑒.𝑏𝑙𝑜𝑐𝑘 ← node.content

9: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

10: else
11: if 𝑛𝑜𝑑𝑒.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 < 𝑚𝑎𝑥𝑇𝑜𝑘𝑒𝑛𝑠 then
12: Merge descendant nodes of 𝑛𝑜𝑑𝑒

13: 𝑛𝑜𝑑𝑒.𝑏𝑙𝑜𝑐𝑘 ← node.content

14: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← True

15: else
16: Expand children of 𝑛𝑜𝑑𝑒

17: for each child of 𝑛𝑜𝑑𝑒 do
18: Enqueue child into 𝑛𝑜𝑑𝑒𝑄𝑢𝑒𝑢𝑒

19: end for
20: if 𝑛𝑜𝑑𝑒.𝑡𝑒𝑥𝑡 is not empty then
21: 𝑛𝑜𝑑𝑒.𝑏𝑙𝑜𝑐𝑘 ← node.text

22: 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 ← False

23: end if
24: end if
25: end if
26: end while
27: return 𝑇
28: end procedure

Algorithm 2 Greedy Block Pruning

1: procedure GreedyBlockTreePruning(T)
2: 𝑛𝑜𝑑𝑒𝑠 ← all nodes with blocks from T
3: for each 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠 do
4: 𝑛𝑜𝑑𝑒.𝑠𝑐𝑜𝑟𝑒 ← 𝑅𝑒𝑙 (𝑞, 𝑛𝑜𝑑𝑒.𝑏𝑙𝑜𝑐𝑘) ⊲ calculate semantic

similarity between node 𝑛𝑜𝑑𝑒 and user request

5: end for
6: Sort 𝑛𝑜𝑑𝑒𝑠 by key 𝑛𝑜𝑑𝑒.𝑠𝑐𝑜𝑟𝑒 in ascending order

7: for each 𝑛𝑜𝑑𝑒 in 𝑛𝑜𝑑𝑒𝑠 do
8: if 𝑛𝑜𝑑𝑒.𝑖𝑠𝐿𝑒𝑎𝑓 then
9: 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑛𝑜𝑑𝑒.𝑝𝑎𝑟𝑒𝑛𝑡

10: delete 𝑛𝑜𝑑𝑒

11: while 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑐𝑜𝑛𝑡𝑒𝑛𝑡 is empty do
12: 𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑝𝑎𝑟𝑒𝑛𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡

13: delete 𝑝𝑎𝑟𝑒𝑛𝑡

14: end while
15: else
16: delete 𝑛𝑜𝑑𝑒.𝑡𝑒𝑥𝑡

17: end if
18: end for
19: end procedure
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