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ABSTRACT

Detecting test-time distribution shift has emerged as a key capability for safely
deployed machine learning models, with the question being tackled under various
guises in recent years. In this paper, we aim to provide a consolidated view of the
two largest sub-fields within the community: open-set recognition (OSR) and out-
of-distribution detection (OOD). In particular, we aim to provide rigorous empirical
analysis of different methods across settings and provide actionable takeaways for
practitioners and researchers. Concretely, we make the following contributions: (i)
For the first time, we perform rigorous cross-evaluation between state-of-the-art
methods in the OOD and OSR settings and identify a strong correlation between the
performances of methods for them; (ii) We propose a new, large-scale benchmark
setting which we suggest better disentangles the problem tackled by OOD and
OSR; (iii) We thoroughly examine SOTA methods for OOD and OSR on our
large-scale benchmark; and (iv) Finally, we find that the best performing method
on previous benchmarks struggles on our large-scale benchmark, while magnitude-
aware scoring rules consistently show promise.

1 INTRODUCTION

Any practical machine learning model is likely to encounter test-time samples which differ substan-
tially from its training set; i.e models are likely to encounter test-time distribution shift. As such,
detecting distribution shift has emerged as a key research problem in the community (Scheirer et al.,
2013; Hendrycks & Gimpel, 2017; Liu et al., 2020). Specifically, out-of-distribution detection (OOD)
and open-set recognition (OSR) have emerged as two rich sub-fields to tackle this task. In fact,
both tasks explicitly tackle the setting in which multi-way classifiers must detect if test samples are
unfamiliar with respect to their training set, with a variety of methods proposed within each field.
OSR methods are developed for detecting test images which come from different semantic categories
to the training set, while OOD methods are developed for detecting images which come from a
different data distribution to the training images. Research efforts in both directions largely occur
independently (with little cross-pollination of ideas). Though prior work has recognized the similarity
of the two sub-fields (Vaze et al., 2022; Tran et al., 2022; Yang et al., 2021; Salehi et al., 2021),
OOD and OSR, there have been no rigorous benchmarking to understand the underlining principles
of methods for both.

In this work, for the first time, we perform rigorous cross-evaluation between methods developed
for OOD and OSR on current standard benchmarks, suggesting that methods which perform well
for one are likely to perform well for the other in Sec. 3. We experiment both with methods which
require alternate training strategies (e.g., Outlier Exposure (Hendrycks et al., 2019) (OE) and ARPL
(Chen et al., 2021)) as well as different post-hoc scoring rules (e.g., Maximum Softmax Probability
(MSP) (Hendrycks & Gimpel, 2017), Maximum Logit Score (MLS) (Vaze et al., 2022) and Energy
Scoring (Liu et al., 2020)). We thoroughly evaluate all methods on both standard OOD and OSR
benchmarks, after which we find that OE achieves almost saturating performance on the OOD task
and also obtains the state-of-the-art (SOTA) results on the OSR task. Meanwhile, we also find that
the magnitude-aware scoring rules like MLS (Vaze et al., 2022) and Energy Scoring (Liu et al., 2020)
show steady good performance across different methods and datasets.

Next, we propose a reconciling perspective on the tasks tackled by the two fields, and propose a new
benchmark to assess this in Sec. 4. Specifically, we propose a new, large-scale benchmark setting, in
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which we disentangle different distribution shifts, namely, semantic shift and covariate shift, that
occur in OOD and OSR. For example, to isolate semantic shift, we leverage the recently introduced
Semantic Shift Benchmark (SSB) (Vaze et al., 2022) containing ImageNet-scale datasets, in which the
original ImageNet-1K (Russakovsky et al., 2015b) is regarded as ‘seen’ closed-set data while ‘unseen’
data is carefully drawn from the disjoint set of ImageNet-21K-P (Ridnik et al., 2021b). For covariate
shift, we leverage ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-R (Hendrycks et al.,
2020) to demonstrate distribution shift with respect to the standard ImageNet dataset.

Finally, we examine SOTA methods developed for OOD and OSR on this large-scale benchmark to
validate whether the findings through the standard (small-scale) datasets still hold on our consolidated
large-scale benchmarking. Through the large-scale analysis, we surprisingly find that OE struggles
to scale to larger benchmarks, while the magnitude-aware scoring rules, MLS (Vaze et al., 2022)
and Energy Scoring (Liu et al., 2020), still show promise. We further provide empirical insights by
analysing the representations extracted by different models on data under different distribution shifts,
which suggests that the strong performance of OE on the standard benchmark is partially attributed
to the fact that the auxiliary OOD data used for training has sufficient distribution overlap with the
OOD testing data, while it is not straightforward to come up with an auxiliary OOD data to reflect the
actual distribution shift on large-scale datasets. We believe there are still many more open questions
to be answered in the shared space of OOD and OSR, and hope the findings in our work can serve as
a starting point to have a deeper look into them.

2 PRELIMINARIES AND RELATED WORK

Open-set recognition. Previous work (Scheirer et al., 2012) coined “open-set recognition”, the
objective of which is to identify unknown classes while classifying the known ones. OpenMax resorts
to Activation Vector (AV) and models the distribution of AVs based on the Extreme Value Theorem
(EVT). Recent works (Ge et al., 2017; Neal et al., 2018b; Kong & Ramanan, 2021) show that the
generated data from synthetic distribution would be helpful to improve OSR. OSRCI (Neal et al.,
2018b) generates images belonging to the unknown classes but similar to the training data to train an
open-set classifier. (Kong & Ramanan, 2021) adversarially trained discriminator to distinguish closed
from open-set images and introduced real open-set samples for model selection. Prototype-based
methods (Chen et al., 2020; 2021) adjust the boundaries of different classes and identify open-set
images based on distances to the learned prototypes of known classes.

Out of Distribution Detection. (Hendrycks & Gimpel, 2017) formalized the task of out-of-
distribution detection and provided a paradigm to evaluate deep learning out-of-distribution detectors
using the maximum softmax probability (MSP). A test sample with a large MSP score is detected as
an in-distribution (ID) example rather than out-of-distribution (OOD) example. ODIN (Liang et al.,
2018) and its learnable variant G-ODIN (Hsu et al., 2020) added adversarial perturbations to both
ID and OOD samples and employed temperature scaling strategy on the softmax output to separate
them. (Liu et al., 2020) proposes the energy score derived from the logit outputs for OOD uncertainty
estimation. (Sun et al., 2021) rectified the distribution of per-unit activations in the penultimate layer
for ID and OOD data. Outlier Exposure (OE) (Hendrycks et al., 2019) and (Huang et al., 2021) both
designed a loss based on the KL divergence between the softmax output and a uniform probability
distribution to encourage models to output a uniform softmax distribution on outliers. The former
leveraged real OOD data for training while the latter directly employed the vector norm of gradients
to perform uncertainty estimation.

3 ANALYSIS OF SOTA BASELINES ON STANDARD BENCHMARKS

In this section, we perform cross-evaluation of methods from the OOD and OSR literature.

3.1 EXPERIMENTAL SETUP

Methods. We distinguish two categories of shift detection methods: scoring rules (which operate
post-hoc on top of pre-trained networks); and specialised training (which change the optimisation
procedure of the networks themselves).
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For scoring rules, we compare the maximum softmax probability (MSP, (Hendrycks & Gimpel,
2017)), the Maximum Logit Score (MLS, (Vaze et al., 2022)), ODIN (Liang et al., 2018), GODIN
(Hsu et al., 2020), Energy scoring (Liu et al., 2020), GradNorm (Huang et al., 2021) and SEM (Yang
et al., 2022). We further experiment with ReAct (Sun et al., 2021), an activation pruning technique
which can be employed in tangent with any scoring rule. While MLS was developed for OSR (Vaze
et al., 2022), other scoring rules were developed for OOD detection. We provide descriptions of each
scoring rule in the appendix.

For specialised training, we first experiment with the standard cross-entropy (CE) loss. We also use
ARPL + CS (Chen et al., 2021) from the OSR literature. This method learns a set of ‘reciprocal
points’ which are trained to be far away from all training category embeddings. We note that the
reciprocal points can be treated as a linear classification layer, allowing us to use any of the scoring
rules mentioned above on top of this representation. Finally, we train models with Outlier Exposure
(OE) (Hendrycks et al., 2019) from the OOD literature, where real outlier examples are used during
training as examples of OOD. In this case, the model is encouraged to predict a uniform softmax
output.

Datasets. For the OOD setting, we train models on CIFAR10 (Krizhevsky et al., 2009). As OOD
data, we use six common datasets: SVHN (Cimpoi et al., 2014), Textures (Ovadia et al., 2019),
LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al., 2015), iSUN (Xu et al., 2015) and Places365
(Zhou et al., 2017). We also perform OOD experiments training with CIFAR100 as ID in Appendix E.

For the OSR benchmark, following the standard protocols in (Neal et al., 2018a), we set up four
sub-tasks containing CIFAR10, CIFAR+10, CIFAR+50 and TinyImageNet (Le & Yang, 2015). In all
cases, models are trained on a subset of categories with remaining used as ‘unseen’ at test time. The
CIFAR+N settings involve training on four classes from CIFAR10 and evaluating on N classes from
CIFAR100. Note that, for a given method, benchmarking on OOD involves training a single model
and evaluating on multiple downstream datasets. In contrast, OSR benchmarks involve training a
different model for each evaluation.

Training configurations. Due to limited space, we give a detailed description and experimental
results of each configuration in Appendix A. Broadly speaking, we train a ResNet-18 on the ID data,
with an SGD optimizer and cosine annealing schedule. We train ARPL + CS and OE largely based
on the official public implementation. For the auxiliary outlier dataset in the OE loss, we follow
(Hendrycks et al., 2019) and use a subset of 80 Million Tiny Images (Torralba et al., 2008) with 300K
images, removing all examples that appear in CIFAR10/100, Places or LSUN classes.

Metrics. Following standard practise in both OOD and OSR tasks, we use the Area Under the
Receiver Operating characteristic Curve (AUROC) as an evaluation metric throughout this paper. We
found that other metrics, such as the FPR95 (Hendrycks & Gimpel, 2017) (also known as the false
alarm rate), were correlated strongly with the AUROC.

3.2 QUANTITATIVE RESULTS

We present results from our benchmarking in Table 1. Although there is not always one clear winner
when it comes to methodology, we observe two main takeaways.

Firstly, MLS and Energy tend to perform best across OOD and OSR datasets (Fig. 1(a)). We
hypothesize this is because both are sensitive to the magnitude of the feature vector before the
networks’ linear layer. This phenomenon was observed in (Vaze et al., 2022), as unfamiliar examples
tend to have lower feature norms than ID samples, providing a strong signal for the distribution shift
decision. Interestingly, we also find that, ReAct, which has been shown to be effective in the literature,
does not seem to bring performance gain in the well trained models with a high in-distribution
accuracy. Here, we follow (Vaze et al., 2022) to obtain as much high in-distribution accuracy as
possible for all models. It appears that when the classifier is strong enough, it is difficult for ReAct to
bring extra improvement.

Secondly, we observe that Outlier Exposure (Hendrycks et al., 2019) provides excellent performance
on the OOD benchmarks (Fig. 1(b)), often nearly saturating performance. It also often boosts OSR
performance, though to a lesser degree, a phenomenon which we explore in the next section.
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(a) Performance of different scoring rules across OOD and OSR tasks.
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(b) Performance of different training methods across OOD and OSR tasks.

Figure 1: Analysis of different scoring rules and training methods on standard benchmarks. (a)
Among various scoring rules, MLS and Energy show their reliability across OOD and OSR datasets
(b) For different training methods, Outlier Exposure using different auxiliary data obtains an obvious
performance boost compared with others on OOD and have slight gains on OSR.

3.3 QUALITATIVE ANALYSIS

In this section, we qualitatively interrogate the learned representations of Cross-Entropy and Outlier
Exposure networks in order to explain the stark performance boost of OE on existing OOD bench-
marks. Specifically, we use the value of the maximally activated neuron at various layers to analyze
how the networks respond to distribution shift. We pass every related sample through the network,
and plot the histogram of maximum activations at every layer in Fig. 2.

This is inspired by (Vaze et al., 2022), who show the ‘maximum logit score’ (MLS, the maximum
activation at a network’s output layer) can achieve SOTA for OSR. Furthermore, (Dietterich & Guyer,
2022) propose that networks respond to a ‘lack of familiarity’ under distribution shift by failing to
light in-distribution activation pathways. We investigate how activations at various stages of a deep
network vary under different ‘unseen’ datasets. Fig. 2 shows histograms of the maximum activations
at the outputs from layer 1 to layer 4 of a ResNet-18 (He et al., 2016) trained on CIFAR10
when evaluated on data and data with different shifts. Note that here we use ‘layer’ to refer to ResNet
block.

For OSR data, we find that early layer activations are largely the same as for the ID test data. It is only
later in the network that the activation patterns begin to differ. This is intuitive as the low-level textures
and statistics of the open-set data do not vary too much from the training images. Furthermore, it has
long been known that early filters in CNNs tend to focus on textural details such as edges (Krizhevsky
et al., 2012). In contrast, we discover that some OOD datasets, such as SVHN, induce very different
activations in the early layers. Our explanation for this phenomenon is analogous: SVHN contains
very different image statistics and low-level features to the training dataset of CIFAR10, and hence
induces different activations in early layers. Interestingly, some datasets (like SVHN) which showed
markedly different early layer activations actually display more similar activations at later layers.

Meanwhile, OE displays show substantially different intermediate activations. Interestingly, the
maximum activation in early layers look very similar to the ID testing data, but tend to be less so
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Table 1: Evaluation on small-scale OOD and OSR benchmarks with various methods, using CIFAR10
as ID. We report the in-distribution accuracy as ‘ID’ and denote intractable results as ‘-’, resulting
from unaffordable computational cost. Different methods have their optimal scope but MLS/Energy
show their stability and models trained with OE dominate almost all OOD datasets.

(a) Evaluation based on ResNet-18 trained with the CE loss.

Method OOD benchmarks OSR benchmarks Overall
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=95.45
CIFAR10
ID=97.13

CIFAR+10
ID=96.6

CIFAR+50
ID=96.8

TinyImageNet
ID=83.4 AVG

CE+MSP 93.65 91.35 95.49 94.88 94.33 90.77 93.41 91.78 93.81 90.20 79.82 88.90 91.61
CE+MLS 94.49 91.54 96.94 96.13 95.52 91.64 94.38 92.54 95.62 91.81 81.31 90.32 92.53
CE+ODIN 92.23 83.76 94.96 96.16 95.31 90.88 90.88 89.77 81.37 80.22 80.96 83.08 88.56
CE+GODIN 97.60 96.21 99.59 97.81 97.74 94.33 97.21 90.22 91.17 87.38 76.05 86.21 92.21
CE+SEM 75.65 72.02 75.18 70.93 72.52 76.14 73.74 40.21 43.87 42.70 - 42.26 61.15
CE+Energy 94.64 91.64 97.14 96.29 95.68 91.78 94.53 92.52 95.68 91.86 81.28 90.34 92.62
CE+MLS+ReAct 92.56 89.97 95.39 95.78 95.17 90.69 93.26 92.57 94.92 90.88 81.65 90.01 91.78
CE+ODIN+ReAct 91.29 83.50 94.70 96.05 95.19 82.55 90.55 86.65 87.76 88.40 81.30 86.03 88.74
CE+Energy+ReAct 92.68 90.05 95.67 96.03 95.42 90.89 93.46 92.58 95.02 90.99 81.67 90.07 91.92

(b) Evaluation based on ResNet-18 trained with the ARPL+CS loss.

Method OOD benchmarks OSR benchmarks Overall
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=91.02
CIFAR10
ID=96.96

CIFAR+10
ID=96.77

CIFAR+50
ID=96.69

TinyImageNet
ID=86.91 AVG

ARPL+CS+MSP 93.41 91.64 94.29 94.02 94.28 90.77 93.07 92.53 95.71 94.03 82.80 91.27 92.41
ARPL+CS+MLS 96.36 90.20 96.59 96.95 96.88 93.29 95.05 93.16 96.58 94.67 84.79 92.3 93.95
ARPL+CS+ODIN 75.92 71.64 86.25 95.14 95.19 75.97 83.35 58.04 74.80 71.52 63.13 66.87 76.76
ARPL+CS+GODIN 95.78 89.61 95.41 96.88 96.17 92.59 94.41 91.99 95.73 93.76 81.25 90.68 92.92
ARPL+CS+SEM 76.42 74.26 84.45 76.08 77.73 71.23 76.70 35.01 38.27 44.15 - 39.14 64.18
ARPL+CS+Energy 96.52 90.11 96.76 97.16 97.07 93.45 95.18 93.22 96.74 94.82 82.10 91.72 93.80
ARPL+CS+MLS+ReAct 95.87 92.37 96.37 96.34 96.30 92.97 95.04 92.70 96.42 94.53 82.05 91.43 93.59
ARPL+CS+ODIN+ReAct 71.87 73.36 83.19 92.34 92.36 69.10 80.37 55.71 62.88 61.85 54.29 58.68 71.70
ARPL+CS+Energy+ReAct 96.06 92.35 96.59 96.58 96.53 93.17 95.21 92.80 96.61 94.70 82.14 91.56 93.75

(c) Evaluation based on ResNet-18 trained with the OE loss.

Method OOD benchmarks OSR benchmarks Overall
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=94.16
CIFAR10
ID=97.8

CIFAR+10
ID=98.3

CIFAR+50
ID=97.92

TinyImageNet
ID=83.4 AVG

OE+MSP 99.21 98.81 99.02 98.52 98.55 97.29 98.57 96.29 99.29 98.70 78.67 93.24 96.44
OE+MLS 99.21 98.82 99.02 98.53 98.57 97.32 98.58 96.28 99.32 98.72 80.19 93.63 96.60
OE+ODIN 99.43 98.73 99.14 98.78 98.75 96.41 98.54 96.29 95.27 94.30 79.97 91.46 95.71
OE+GODIN 97.25 95.17 89.05 83.42 84.63 89.51 89.84 93.64 92.01 91.63 78.21 88.87 89.45
OE+SEM 98.13 97.04 98.77 97.01 97.16 94.86 97.16 30.19 33.73 33.91 - 32.61 73.69
OE+Energy 99.20 98.78 99.02 98.55 98.58 97.31 98.57 93.12 99.33 98.74 80.16 92.84 96.28
OE+Gradnorm 99.95 99.71 99.83 99.46 99.42 97.93 99.38 96.57 99.26 98.51 60.56 88.73 95.12
OE+MLS+ReAct 95.18 92.22 79.46 83.34 83.68 87.46 86.89 95.43 98.73 97.93 79.92 93.00 89.34
OE+ODIN+ReAct 84.16 82.92 64.00 73.90 75.45 71.65 75.35 87.52 87.78 85.62 79.47 85.10 79.25
OE+Energy+ReAct 94.41 91.36 73.88 80.03 81.16 86.19 84.51 95.43 98.74 78.67 79.84 88.17 85.97

Figure 2: Histogram of activations for ResNet-18 pretrained on a subset of CIFAR10 with four
training classes and evaluated on: training and ID testing data; OSR data (disjoint six classes in
CIFAR10) and OOD data (from SVHN and Textures). Specifically, each subplot shows the maximum
activation (along channel, width and height dimension) at the outputs from layer 1 to layer 4 of
a ResNet-18, displayed from left to right in the figures. Results on more OOD datasets are shown in
Appendix C. The behavior of OE is different from CE, whose activation maps become more separable
in the deeper rather than the shallower layers.

later on in the network. It is clear that activations in later layers are more discriminative after using
OE loss when compared with using CE loss.
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4 A CONSOLIDATED BENCHMARKING OF DISTRIBUTION SHIFT

Having analyzed methodologies for detecting distribution shift across the OOD and OSR settings, we
turn our attention to the benchmarks. While it is clear that OSR specifically aims to detect unseen
categories, there is no specification of the type of distribution shift which OOD benchmarks aim to
capture, or how they would relate to a real-world scenario. In this section, we propose a lens through
which to consolidate types of distribution shift. Specifically, we propose that ‘distribution shift’ can
be parameterised along two broad, orthognal, axes: semantic shift and covariate shift. Pure semantic
shift is when new categories are encountered, and is the explicit focus of OSR, while covariate shift
refers to the setting when the semantics of test images remain constant, but other features change.

Formally, similarly to (Wiles et al., 2022), we consider a latent variable model of the data generation
process, with latent z:

z ∼ p(z) yi ∼ p(yi|z) i ∈ {1...K} x ∼ p(x|z) (1)

Here, x is an image and yi represents an image attribute. The set of attributes could include traditional
features such as ‘color’ or ‘shape’, or refer to more abstract features such as ‘beak shape’ of a bird.
We define a set of semantic attributes, YS , such that the category label of an image is a function
of these attributes. Furthermore, we define covariate attributes, YC , which can be freely varied
without the category label changing. In this framing, given marginal training distributions ptrain(YS)
and ptrain(YC), detecting semantic shift is the task of flagging when ptest(YS) ̸= ptrain(YS).
Analogously, we wish to flag covariate shift if ptest(YC) ̸= ptrain(YC).

To motivate this setting, consider the perceptual system in an autonomous car, which has been trained
to recognize ‘cars’ and ‘pedestrians’ during the day. A semantic shift detector is necessary for when
the system encounters a new category, e.g to flag that ‘bicycle’ is an unknown concept. Meanwhile,
a covariate shift detector is necessary for when the system is deployed at night-time, where the
categories may be familiar, but the performance of the system could be expected to degrade.

4.1 DATASETS

As a starting point, we note that (Vaze et al., 2022) introduced the Semantic Shift Benchmark (SSB),
a distribution shift benchmark with isolates semantic shift. We mainly focus on ImageNet-SSB
(Russakovsky et al., 2015a) and CUB-SSB (Wah et al., 2011) datasets. ‘Seen’ classes in ImageNet-
SSB are the original ImageNet-1K classes, while ‘unseen’ classes selected from the disjoint set of
ImageNet-21K-P (Ridnik et al., 2021a). Meanwhile, CUB-SSB splits the 200 bird classes in CUB
into ‘seen’ and ‘unseen’ categories. Furthermore, the unseen categories are split into Easy and Hard
classes by their attributes, and the splitting rule depends on semantic similarity of every pair of visual
attributes in the unknown classes and the training classes. For all the above datasets, categories
appearing in the training set would not be included in the evaluation set. We further report figures on
SCars-SSB (Krause et al., 2013) and FGVC-Aircraft-SSB (Maji et al., 2013) in the appendix.

For covariate shift, we propose ImageNet-C (Hendrycks & Dietterich, 2019) and ImageNet-R
(Hendrycks et al., 2020) to demonstrate distribution shift with respect to the standard ImageNet
dataset. Both datasets contain images from a subset of the ImageNet-1K categories, but with different
low-level image statistics. ImageNet-C applies four main corruptions (e.g. noise, blur, weather
and digital) with varying intensities to the validation images of ImageNet-1K, while ImageNet-R
collects various artistic renditions of foreground classes from the ImageNet-1K dataset. We also
choose Waterbirds (Sagawa et al., 2019) to test the model trained on the CUB -SSB ‘Seen’ classes.
Waterbirds inserts bird photographs from the CUB dataset into backgrounds picked from the Places
dataset (Zhou et al., 2017), meaning it has the same semantic categories to CUB but in different
scenery.

Discussion. We note that there is no uniquely optimal framing for discussing distribution shift, and
here briefly discuss alternate proposals. For instance, (Zhao et al., 2022) propose a fine-grained
analysis of the shifts, where the test time distribution is controlled for specific attributes such as shape
and pose. Also related, (Tran et al., 2022) discuss that indications of ‘unfamiliarity’ in a neural
network could refer to many things, including confusing classes and sub-population shift. We propose
our simple framing as a way to fill the ‘negative space’ left by the semantic shift detection task of
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OSR. Furthermore, we suggest it is important to study distribution shift in this way as classifiers are
optimized to differentiate between one set features (YS) while in fact being invariant to others (YC).
As such, we would expect models to react differently to changes their distributions.

4.2 QUANTITATIVE ANALYSIS

In Tables 2 and 3, we evaluate a selection of previously discussed methods on our large-scale
benchmark for both OOD and OSR. Through this large-scale evaluation, we find that in terms of
training methods, among CE, ARPL (+CS), and OE, there is no clear winners across the board. It is
surprising that the best performer on the previous small scale benchmarks (see Table 1), OE, appears
to be struggling (last two rows in Table 2) on the large-scale benchmark. This is contradicting with
the finding on the small scale benchmarks, which we will analyse in the next subsection. In terms of
scoring rules, the maganitude-awere scoring rules, MLS and Energy, consistently produce the best
performance regardless of the methods and benchmarks (both standard small-scale ones and our
large-scale ones).

Table 2: Evaluation on large-scale OOD and OSR benchmarks using ResNet-50 model trained with
different losses and scoring rules. Models trained with the CE loss outperforms the ones with ARPL
on both covariate shift and semantic shift.

(a) Evaluation based on ResNet-50 trained with the CE loss.

Method Covariate Shift Semantic Shift OverallImageNet-C
ID=63.05

ImageNet-R
ID=76.13

Waterbird
(Easy/Hard) AVG ImageNet-SSB

(Easy/Hard)
CUB

(Easy/Hard) AVG
CE+MSP 64.63 80.53 81.65 75.33 75.54 80.16 75.01 88.11 79.43 80.68 78.11
CE+MLS 67.92 86.71 81.87 75.18 77.92 80.28 75.05 88.29 79.33 80.74 79.33
CE+ODIN 63.69 85.62 79.51 71.54 75.09 74.56 75.27 86.24 73.88 77.49 76.29
CE+Energy 68.05 87.04 82.49 74.60 78.05 79.76 74.96 88.81 79.06 80.65 79.35
CE+MLS+ReAct 66.64 84.82 81.69 75.12 77.07 80.28 75.07 88.29 79.33 80.74 78.91
CE+ODIN+ReAct 61.69 83.25 79.48 71.50 73.98 74.56 75.29 86.24 73.88 77.49 75.74
CE+Energy+ReAct 66.88 83.92 82.48 74.55 76.96 79.76 74.99 88.81 79.06 80.66 78.81

(b) Evaluation based on ResNet-50 trained with the ARPL loss.

Method Covariate Shift Semantic Shift OverallImageNet-C
ID=63.05

ImageNet-R
ID=76.13

Waterbird
(Easy/Hard) AVG ImageNet-SSB

(Easy/Hard)
CUB

(Easy/Hard) AVG
ARPL+MSP 61.85 78.68 79.42 72.30 73.06 79.90 74.67 83.53 75.64 78.44 75.75
ARPL+MLS 63.94 82.77 79.48 72.09 74.57 79.92 74.60 83.50 75.49 78.38 76.47
ARPL+ODIN 61.88 77.03 73.76 69.26 70.48 68.72 71.23 73.87 69.77 70.90 70.69
ARPL+Energy 64.13 83.25 79.64 71.86 74.72 79.87 74.49 83.70 75.46 78.38 76.55
ARPL+MLS+ReAct 62.69 80.69 79.44 72.07 73.72 79.92 74.60 83.44 75.43 78.35 76.04
ARPL+ODIN+ReAct 62.23 76.08 73.75 69.23 70.32 68.72 71.23 67.42 63.91 67.82 69.07
ARPL+Energy+ReAct 62.89 81.17 79.60 71.83 73.87 79.87 74.49 83.70 75.41 78.37 76.12

Table 3: Results of OOD and OSR benchmarks on large-scale datasets, using ResNet-50 model
trained with the OE loss compared with CE and ARPL baselines. We separately introduce outlier
data from different data sources including Places and YFCC15M to feed OE.

Method Covariate Shift Semantic Shift Overall
ImageNet-C ImageNet-R AVG ImageNet-SSB

(Easy/Hard)
CUB

(Easy/Hard)
Scars

(Easy/Hard)
FGVC

(Easy/Hard) AVG
CE+MLS 67.92 86.71 77.32 80.28 75.05 88.29 79.33 94.03 82.24 90.65 82.55 84.05 82.71
ARPL CS+MLS 63.94 82.77 73.36 79.92 74.60 83.50 75.49 94.78 83.63 87.04 77.71 82.08 80.34
OE (with Places)+MLS 61.77 80.53 71.15 82.42 75.58 79.16 73.83 91.02 78.69 88.38 79.19 80.81 78.88
OE (with YFCC15M)+MLS 64.12 82.01 73.07 79.37 72.55 75.19 70.28 84.03 71.34 74.20 66.63 71.12 71.51

4.3 WHY DOES OE UNDERPERFORM ON LARGE-SCALE DATASETS?

Here, we investigate why OE underperforms other methods on large-scale benchmark. One critical
difference between OE and other methods is that OE requires auxiliary OOD data for training.
Intuitively, if the distribution of the auxiliary OOD training data can reflect the distribution of the actual
OOD testing data, we would expect a better performance on detecting, while incomplete or biased
outlier data may hurt the learning. In fig. 3, we visualize the t-SNE projection of the representations
for in-distribution (ID) data (i.e., CIFAR10), auxiliary training OOD data (300K (Hendrycks et al.,
2019) vs YFCC15M), and different test-time OOD datasets. As can be seen, using the 300K images
generally shows a better overlap with the test-time OOD data. Hence, OE trained with 300K as the
auxiliary OOD data achieves better performance than the counterpart trained with YFCC15M (table 1
vs table 7).

For the experiments on standard (small-scale) benchmark, we experiment using 300K images v.s
YFCC15M as the auxiliary training data. While for the experimentes on our large-scale benchmark,
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Figure 3: t-SNE visualization of representations extracted by models with CE/ARPL+CS/OE
loss. Each point denotes a sample and its color denotes which distribution it comes from. The
pink/green/brown dots stand for ID/OOD/auxiliary data respectively. Together with quantitative
results shown in Table 1 and those in Table 7, we can observe that the performance boost can be
achieved only when the auxiliary data distribution has sufficient overlap with the test-time OOD
distribution (e.g. Texture and Places365).

Figure 4: Nearest neighbours of samples in small-scale (e.g. LSUN R) and large-scale (e.g. ImageNet-
R) OOD datasets.

we use YFCC15M because 300K images are not competent in large-scale setting. In fig. 4 (first
macro row), as a more fine-grained analysis on standard benchmark, we identify the most confident
true positive (TP, i.e., correctly predicted OD sample) and the most confident true negative (TN,
correctly predicted ID sample) with MLS scoring, and then find their top-k nearest samples from
the auxiliary training OOD data according to feature similarities. As can be seen, for a TP sample,
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(a) Nearest Neighbours in ImageNet-1K for confusing samples in ImageNet-R dataset.

(b) Nearest Neighbours in CUB training set for confusing samples in Waterbirds dataset.

Figure 5: We show confusion samples under both covariate shift and semantic shift with testing
examples for ResNet-50. Posture/viewpoint, semantic similarity, color and object in the background
may cause the confusion.

the NNs retrieved from 300K are more similar than those retrieved from YFCC15M in to the OOD
testing sample. This is consistent with the finding in fig. 3. Further, we carry out a similar experiment
on our large-scale benchmark (see fig. 4, second macro row), by retrieving the NNs from the union of
ID training set and YFCC15. We observe that the retrieved NN for TPs are less similar to the TPs,
suggesting less similarities between the test-time OOD data and the auxiliary training OOD data.

Finally, in fig. 5, for CE and ARPL models, in which no auxiliary OOD training data are used, we
also identify the most confident predictions (TP and TN) and most confusing predictions (FN and FP)
on our benchmarking datasets, ImageNet-R and Waterbirds, and retrieve their NNs from the training
ID datasets (i.e., ImageNet and CUB). We observe that the current decision paradigm is susceptible
to posture, viewpoint, background color/object and even semantic similarity. FNs and FPs are often
mislead by posture (e.g., FN-1 from the ARPL model in Waterbirds), viewpoint (e.g., FP-5 and FP-4
in ImageNet-1K), background (e.g., FN-1 from the CE model in Waterbirds) and semantic similarity
(e.g., cartoon style in FN-1 from the CE model in ImageNet-1K and the shark from the ARPL one).
More results and analysis can be found in the appendix.

5 CONCLUSION

In this paper, we have provided a consolidated exploration of Out-of-Distribution detection (OOD) and
Open-set Recognition (OSR). We performed rigorous cross-evaluation between methods developed
for OOD and OSR and identified a strong correlation between their performances. We also proposed
a new, large-scale benchmark setting, to disentangle the OOD and OSR, by breaking the distribution
shift problem down into covariate shift and semantic shift, suggesting large-scale evaluation protocols
for the task. We also showed that the best performing method on both OSR and OOD does not
generalize well to our challenging large-scale benchmark, and found that magnitude-aware scoring
rules are generally more reliable than the others. We believe our new benchmark can serve as a better
testbed to measure progresses in OSR and OOD, and hope our findings in this work can shed light for
further exploration on the shared space of OSR and OOD and foster new development for this field.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and
Yonghong Tian. Learning open set network with discriminative reciprocal points. In ECCV, 2020.

Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points
learning for open set recognition. IEEE TPAMI, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. De-
scribing textures in the wild. In CVPR, 2014.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
with cutout. arXiv preprint arXiv:1708.04552, 2017.

Thomas G. Dietterich and Alexander Guyer. The familiarity hypothesis: Explaining the behavior of
deep open set methods. ArXiv e-prints, 2022.

Zongyuan Ge, Sergey Demyanov, and Rahil Garnavi. Generative openmax for multi-class open set
classification. In BMVC, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. ICLR, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. ICLR, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. In ICLR, 2019.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, F. Wang, Evan Dorundo, Rahul
Desai, Tyler Lixuan Zhu, Samyak Parajuli, M. Guo, D. Song, J. Steinhardt, and J. Gilmer. The
many faces of robustness: A critical analysis of out-of-distribution generalization. arXiv preprint
arXiv:2006.16241, 2020.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-of-
distribution image without learning from out-of-distribution data. In CVPR, pp. 10951–10960,
2020.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
shifts in the wild. NeurIPS, 2021.

Shu Kong and Deva Ramanan. Opengan: Open-set recognition via open data generation. In CVPR,
pp. 813–822, 2021.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In International IEEE Workshop on 3D Representation and Recognition (3dRR),
2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NeurIPS, 2012.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. In ICLR, 2018.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
NeurIPS, 2020.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

10



Under review as a conference paper at ICLR 2023

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In ECCV, 2018a.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In ECCV, 2018b.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. NeurIPS, 32, 2019.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. arXiv preprint arXiv:2104.10972, 2021a.

Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, and Lihi Zelnik-Manor. Imagenet-21k pretraining for
the masses. ArXiv e-prints, 2021b.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. IJCV, 2015a.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
challenge. IJCV, 2015b.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generalization.
ICLR, 2019.

Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks, Yixuan Li, Mohammad Hossein Rohban,
and Mohammad Sabokrou. A unified survey on anomaly, novelty, open-set, and out-of-distribution
detection: Solutions and future challenges. arXiv, 2021.

Walter J Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E Boult. Toward
open set recognition. IEEE TPAMI, 2012.

Walter J. Scheirer, Anderson Rocha, Archana Sapkota, and Terrance E. Boult. Towards open set
recognition. IEEE TPAMI, 2013.

Yiyou Sun, Chuan Guo, and Yixuan Li. React: Out-of-distribution detection with rectified activations.
NeurIPS, 2021.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
nonparametric object and scene recognition. IEEE TPAMI, 2008.

Dustin Tran, Jeremiah Liu, Michael W. Dusenberry, Du Phan, Mark Collier, Jie Ren, Kehang Han,
Zi Wang, Zelda Mariet, Huiyi Hu, Neil Band, Tim G. J. Rudner, Karan Singhal, Zachary Nado,
Joost van Amersfoort, Andreas Kirsch, Rodolphe Jenatton, Nithum Thain, Honglin Yuan, Kelly
Buchanan, Kevin Murphy, D. Sculley, Yarin Gal, Zoubin Ghahramani, Jasper Snoek, and Balaji
Lakshminarayanan. Plex: Towards reliability using pretrained large model extensions. In ArXiv
e-prints, 2022.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: a good
closed-set classifier is all you need? In International Conference on Learning Representations,
2022.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre-Alvise Rebuffi, Ira Ktena, Krishnamurthy Dj
Dvijotham, and Ali Taylan Cemgil. A fine-grained analysis on distribution shift. In ICLR, 2022.

Pingmei Xu, Krista A Ehinger, Yinda Zhang, Adam Finkelstein, Sanjeev R Kulkarni, and Jianxiong
Xiao. Turkergaze: Crowdsourcing saliency with webcam based eye tracking. arXiv preprint
arXiv:1504.06755, 2015.

11



Under review as a conference paper at ICLR 2023

Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:
A survey. ArXiv e-prints, 2021.

Jingkang Yang, Kaiyang Zhou, and Ziwei Liu. Full-spectrum out-of-distribution detection. ArXiv
e-prints, 2022.

Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. Lsun:
Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv
preprint arXiv:1506.03365, 2015.

Bingchen Zhao, Shaozuo Yu, Wufei Ma, Mingxin Yu, Shenxiao Mei, Angtian Wang, Ju He, Alan
Yuille, and Adam Kortylewski. Robin: A benchmark for robustness to individual nuisances in
real-world out-of-distribution shifts. ECCV, 2022.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. In IEEE TPAMI, 2017.

12



Under review as a conference paper at ICLR 2023

A DETAILED TRAINING CONFIGURATION FOR CIFAR BENCHMARKS

For training ResNet-18 on CIFAR10, we set the initial learning rate 0.1 and apply cosine annealing
schedule, using SGD with 0.9 momentum. The weight decay factor is set to 5e−4. The total training
epochs are 200 and the batch size is 128.

For CIFAR100, we also set the initial learning rate 0.1, but divided by 5 at 60th, 120th, 160th epochs,
train for 200 epochs with a batch size of 128 and weight decay 5e-4, Nesterov momentum of 0.9,
following (DeVries & Taylor, 2017)

For ReAct config, the models are trained with a batch size of 128 for 100 epochs. The start learning
rate is 0.1 and decays by a factor of 10 at epochs 50, 75, and 90. For MLS config, we train the
models with a batch size of 128 for 600 epochs with a cosine annealed learning rate, restarting the
learning rate to the initial value at epochs 200 and 400. Besides, we linearly increase the learning rate
from 0 to the initial value at the beginning. The initial learning rate is 0.1 for CIFAR but 0.01 for
TinyImageNet.
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B EXPERIMENTAL RESULTS ON LARGE-SCALE BENCHMARKS

Table 4: Results of OOD and OSR benchmarks on large-scale datasets, using ResNet-50 model
trained with the CE loss.

Method Covariate Shift Semantic Shift OverallImageNet-C
ID=63.05

ImageNet-R
ID=76.13 AVG ImageNet-SSB

(Easy/Hard)
CUB

(Easy/Hard)
Waterbirds

(Easy/Hard)
Scars

(Easy/Hard)
FGVC

(Easy/Hard) AVG

CE+MSP 64.63 80.53 72.58 80.16 75.01 88.11 79.43 81.65 75.33 94.15 82.34 90.63 82.55 82.94 81.21
CE+MLS 67.92 86.71 77.32 80.28 75.05 88.29 79.33 81.87 75.18 94.03 82.24 90.65 82.55 82.95 82.01
CE+ODIN 63.69 85.62 74.66 74.56 75.27 86.24 73.88 79.51 71.54 92.87 80.88 90.97 80.97 80.67 79.67
CE+Energy 68.05 87.04 77.55 79.76 74.96 88.81 79.06 82.49 74.60 93.92 82.03 90.86 82.82 82.93 82.03
CE+MLS+ReAct 66.64 84.82 75.73 80.28 75.07 88.29 79.33 81.69 75.12 94.01 82.23 90.61 82.57 82.92 81.72
CE+ODIN+ReAct 61.69 83.25 72.47 74.56 75.29 86.24 73.88 79.48 71.50 92.80 80.85 90.88 80.92 80.64 79.28
CE+Energy+ReAct 66.88 83.92 75.4 79.76 74.99 88.81 79.06 82.48 74.55 93.89 82.00 90.80 82.79 82.91 81.66

Table 5: Results of OOD and OSR benchmarks on large-scale datasets, using ResNet-50 model
trained with the ARPL loss.

Method Covariate Shift Semantic Shift OverallImageNet-C
ID=65.33

ImageNet-R
ID=78.39 AVG ImageNet-SSB

(Easy/Hard)
CUB

(Easy/Hard)
Waterbirds

(Easy/Hard)
Scars

(Easy/Hard)
FGVC

(Easy/Hard) AVG

ARPL+MSP 61.85 78.68 70.27 79.90 74.67 83.53 75.64 79.42 72.30 94.83 83.96 86.81 78.01 80.91 79.13
ARPL+MLS 63.94 82.77 73.36 79.92 74.60 83.50 75.49 79.48 72.09 94.78 83.63 87.04 77.71 80.82 79.58
ARPL+ODIN 61.88 77.03 69.46 68.72 71.23 73.87 69.77 73.76 69.26 82.08 69.10 70.24 73.47 72.15 71.70
ARPL+Energy 64.13 83.25 73.69 79.87 74.49 83.70 75.46 79.64 71.86 94.70 83.56 87.28 77.74 80.83 79.64
ARPL+MLS+ReAct 62.69 80.69 71.69 79.92 74.60 83.44 75.43 79.44 72.07 94.77 83.66 87.01 77.69 80.80 79.28
ARPL+ODIN+ReAct 62.23 76.08 69.16 68.72 71.23 67.42 63.91 73.75 69.23 82.07 69.09 70.20 73.49 70.91 70.62
ARPL+Energy+ReAct 62.89 81.17 72.03 79.87 74.49 83.70 75.41 79.60 71.83 94.69 83.56 87.27 77.71 80.81 79.35

Table 6: Results of OOD and OSR benchmarks on large-scale datasets, using ResNet-50 model
trained with the OE loss combined with auxiliary data from Places.

Method Covariate Shift Semantic Shift Overall
ImageNet-C ImageNet-R Waterbird

(Easy/Hard) AVG ImageNet-SSB
(Easy/Hard)

CUB
(Easy/Hard) AVG

OE+MSP 61.02 75.30 79.11 73.88 72.33 82.20 73.45 75.91 69.18 75.19 73.76
OE+MLS 61.77 80.53 79.31 73.88 73.87 82.42 75.58 79.16 73.83 77.75 75.81
OE+ODIN 57.74 82.31 71.28 69.30 70.16 81.75 70.87 73.71 66.05 73.10 71.63
OE+Energy 64.10 81.11 76.39 70.86 73.12 83.47 75.61 78.56 73.01 77.66 75.39
OE+MLS+ReAct 62.39 79.76 77.00 71.93 72.77 81.23 73.07 72.09 70.16 74.14 73.45
OE+ODIN+ReAct 58.28 77.94 69.74 70.06 69.01 80.27 70.54 74.4 68.00 73.30 71.15
OE+Energy+ReAct 62.26 80.91 75.32 69.71 72.05 82.10 73.79 77.30 70.74 75.98 74.02

Table 7: Results of OOD and OSR benchmarks on small-scale datasets, using ResNet-18 model
trained with the OE loss combined with auxiliary data from YFCC-15M.

Method OOD benchmarks OSR benchmarks Overall
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ACC=95.47
CIFAR10

ACC=97.52
CIFAR+10
ACC=97.76

CIFAR+50
ACC=97.29

TinyImageNet
ACC=87.3 AVG

OE+MSP 98.96 99.50 98.17 94.44 94.50 99.61 97.53 90.17 91.21 88.17 80.54 87.52 93.53
OE+MLS 98.97 99.50 98.19 94.46 94.55 99.61 97.55 90.36 93.47 89.25 81.44 88.63 93.98
OE+ODIN 99.02 97.40 97.12 87.21 87.84 97.18 94.30 87.93 79.37 79.47 81.58 82.09 89.41
OE+Energy 98.93 99.48 98.12 94.19 94.33 99.61 97.44 89.90 94.91 90.20 81.43 89.11 94.11
OE+MLS+ReAct 98.86 99.49 97.76 94.69 94.78 99.60 97.53 89.77 91.99 89.92 81.32 88.25 93.82
OE+ODIN+ReAct 98.89 96.66 95.48 82.50 83.60 96.37 92.25 83.31 84.32 82.37 81.43 82.86 88.49
OE+Energy+ReAct 98.83 99.47 97.70 94.51 94.66 99.61 97.46 89.45 93.00 90.21 81.40 88.52 93.88

Table 8: Results of OOD and OSR benchmarks on large-scale datasets, using ResNet-50 model
trained with the OE loss combined with auxiliary data from YFCC-15M.

Method Covariate Shift Semantic Shift Overall
ImageNet-C ImageNet-R Waterbird

(Easy/Hard) AVG ImageNet-SSB
(Easy/Hard)

CUB
(Easy/Hard) AVG

OE+MSP 59.02 70.01 73.67 68.71 67.85 68.44 71.60 71.11 65.27 69.11 68.48
OE+MLS 64.12 82.01 79.72 74.08 74.98 79.37 72.55 75.19 70.28 74.35 74.67
OE+ODIN 60.80 74.36 66.80 68.94 67.73 72.01 66.87 71.48 67.91 69.57 68.65
OE+Energy 64.31 81.50 77.95 72.76 74.13 81.50 74.33 77.78 70.09 75.93 75.03
OE+MLS+ReAct 60.15 79.42 76.99 73.58 72.54 72.30 72.74 73.46 69.67 72.04 72.29
OE+ODIN+ReAct 60.98 74.05 66.10 68.89 67.51 64.67 61.79 72.26 67.76 66.62 67.06
OE+Energy+ReAct 61.87 79.79 78.83 71.98 73.12 71.24 73.26 75.78 69.85 72.53 72.83

C ACTIVATIONS OF OOD AND OSR AT DIFFERENT LAYERS
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Figure 6: Histogram of the maximum logit scores for a ResNet-18 pretrained on CIFAR10. This
is evaluated on the training data (train in), ID testing data (test in), OOD data (OOD from
SVHN) and OSR data (OSR from CIFAR100).

Figure 7: Histogram of activations for ResNet-18 pretrained on CIFAR10, evaluated on training and
ID testing data; OSR data (from CIFAR100) and OOD data (from LSUN, LSUN R and Places365).
Specifically, each subplot shows the maximum activation (along channel, width and height dimension)
at the outputs from layer 1 to layer 4 of a ResNet-18 trained on CIFAR10, displayed from left
to right in the figures.
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Figure 8: Histogram of activations for ResNet-18 pretrained on CIFAR10. This is evaluated on the
training data (train in), ID testing data (test in), OOD data (OOD from SVHN) and OSR data
(OSR from CIFAR100).
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D INFLUENCE OF TRAINING CONFIGURATIONS FOR OOD PERFORMANCE

Table 9: Results on OOD and OSR benchmarks, using ResNet-18 with the ReAct config supervised
by the CE loss.

Methods OOD benchmarks OSR benchmarks
SVHN Textures LSUN-C LSUN-R iSUN Places365 AVG

ID=92.27
CIFAR10
ID=97.13

CIFAR+10
ID=96.6

CIFAR+50
ID=96.8

TinyImageNet
ID=83.4 AVG Overall

CE+MLS 85.42 82.20 86.56 86.40 85.40 84.62 85.1 92.54 95.62 91.81 81.31 90.32 87.19
CE+ODIN 70.62 65.32 72.49 71.68 70.43 69.10 69.94 59.77 51.37 50.22 80.96 60.58 66.20
CE+Energy 85.45 82.20 86.62 86.45 85.44 84.65 85.14 92.52 95.68 91.86 81.28 90.34 87.22
CE+MLS+ReAct 83.94 79.67 98.18 93.87 92.31 88.42 89.40 92.57 94.92 90.88 81.65 90.01 89.64
CE+ODIN+ReAct 83.84 79.62 98.31 94.00 92.44 88.48 89.45 56.65 47.76 48.40 81.30 58.53 77.08
CE+Energy+ReAct 83.08 76.63 95.06 94.17 92.18 85.46 87.76 92.58 95.02 90.99 81.67 90.07 88.14

Table 10: Results on OOD and OSR benchmarks, using ResNet-18 with the ReAct config supervised
by the ARPL+CS loss.

Methods OOD benchmarks OSR benchmarks
SVHN Textures LSUN-C LSUN-R iSUN Places365 AVG

ID=92.99
CIFAR10
ID=97.13

CIFAR+10
ID=97.75

CIFAR+50
ID=97.83

TinyImageNet
ID=85.1 AVG Overall

ARPL+CS+MLS 79.18 86.85 95.59 95.00 94.47 89.98 90.18 93.23 97.93 96.27 82.5 92.48 91.1
ARPL+CS+ODIN 50.14 38.35 74.25 42.96 43.46 53.99 50.53 92.57 97.37 95.23 53.20 84.59 64.15
ARPL+CS+Energy 79.08 86.82 95.68 95.07 94.54 90.03 90.20 93.19 97.96 96.30 80.45 91.98 90.91
ARPL+CS+MLS+ReAct 84.19 89.11 94.98 95.52 94.98 90.23 91.50 92.63 97.96 96.30 79.78 91.67 91.57
ARPL+CS+ODIN+ReAct 49.22 37.19 65.89 37.80 38.77 47.55 46.07 91.00 94.74 91.84 47.47 81.26 60.15
ARPL+CS+Energy+ReAct 84.13 89.13 95.10 95.63 95.09 90.32 91.57 92.59 98.01 96.33 79.90 91.71 91.62

Table 11: Results on OOD and OSR benchmarks, using ResNet-18 with the MLS config supervised
by the ARPL+CS loss.

Methods OOD benchmarks OSR benchmarks
SVHN Textures LSUN-C LSUN-R iSUN Places365 AVG

Acc=91.02
CIFAR10
ID=96.96

CIFAR+10
ID=96.77

CIFAR+50
ID=96.69

TinyImageNet
ID=86.91 AVG Overall

ARPL+CS+MLS 96.36 90.20 96.59 96.95 96.88 93.29 95.05 93.16 96.58 94.67 84.79 92.30 93.95
ARPL+CS+ODIN 75.92 71.64 86.25 95.14 95.19 75.97 83.35 58.04 74.80 71.52 63.13 66.87 76.76
ARPL+CS+Energy 96.52 90.11 96.76 97.16 97.07 93.45 95.18 93.22 96.74 94.82 82.10 91.72 93.80
ARPL+CS+MLS+ReAct 95.87 92.37 96.37 96.34 96.30 92.97 95.04 92.70 96.42 94.53 82.05 91.43 93.59
ARPL+CS+ODIN+ReAct 71.87 73.36 83.19 92.34 92.36 69.10 80.37 55.71 62.88 61.85 54.29 58.68 71.70
ARPL+CS+Energy+ReAct 96.06 92.35 96.59 96.58 96.53 93.17 95.21 92.80 96.61 94.70 82.14 91.56 93.75

Table 12: Results on OOD and OSR benchmarks, using ResNet-18 with the official configuration
supervised by the OE loss.

Method OOD benchmarks OSR benchmarks
SVHN Textures LSUN-C LSUN-R iSUN Places365 AVG

ID=94.77
CIFAR10
ID=97.59

CIFAR+10
ID=97.38

CIFAR+50
ID=97.34

TinyImageNet
ID=77.96 AVG Overall

OE+MLS 95.94 94.57 76.58 85.20 87.16 88.46 87.99 96.26 98.95 98.20 77.88 92.82 89.92
OE+ODIN 93.32 92.84 65.85 84.50 87.24 82.29 84.34 93.44 96.18 93.69 77.49 90.20 86.68
OE+Energy 95.84 94.45 75.50 84.55 86.64 88.19 87.54 96.33 98.95 98.04 77.73 92.76 89.62
OE+MLS+ReAct 95.46 94.32 93.57 90.66 90.75 88.97 92.29 96.20 98.93 98.18 77.60 92.73 92.46
OE+ODIN+ReAct 87.64 88.52 89.56 86.19 86.57 76.02 85.75 93.03 95.45 92.75 76.90 89.53 87.26
OE+Energy+ReAct 87.84 89.29 88.66 90.14 93.69 94.67 90.72 91.04 98.93 98.02 77.48 91.37 90.98

16



Under review as a conference paper at ICLR 2023

E EXPERIMENTS OF OOD ON CIFAR-100

Table 13: Results of various methods on OOD benchmarks, using CIFAR100 as ID. We train a
ResNet-18 with the CE loss and report the in distribution accuracy as ‘ID’.

Method OOD benchmarks
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=78.69
CE+MSP 83.56 78.38 78.21 79.60 79.07 73.56 78.73
CE+MLS 85.21 79.33 77.75 81.63 81.12 73.48 79.75
CE+ODIN 97.47 77.05 90.49 77.59 79.38 71.96 82.32
CE+GODIN 52.70 58.40 59.64 76.34 76.59 62.09 64.29
CE+SEM 65.54 31.85 83.58 35.81 37.38 51.01 50.86
CE+Energy 85.71 79.50 77.12 82.19 81.72 73.26 79.92
CE+Gradnorm 65.73 62.82 61.13 64.41 64.60 61.08 63.30
CE+MLS+ReAct 84.51 83.94 84.96 80.30 79.98 78.32 82.00
CE+ODIN+ReAct 96.39 78.74 89.62 75.88 77.28 71.78 81.62
CE+Energy+ReAct 84.36 83.48 77.93 77.09 77.26 75.55 79.28

Table 14: Results of various methods on OOD benchmarks, using CIFAR100 as ID. We train a
ResNet-18 with the ARPL+CS loss and report the in distribution accuracy as ‘ID’.

Method OOD benchmarks
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=78.86
ARPL+CS+MSP 79.95 79.00 80.28 88.16 87.71 74.69 81.63
ARPL+CS+MLS 81.27 79.73 79.93 89.63 89.23 74.77 82.43
ARPL+CS+ODIN 87.72 64.90 78.21 82.03 82.60 65.12 76.76
ARPL+CS+GODIN 73.81 62.55 59.30 66.42 75.00 51.41 64.75
ARPL+CS+SEM 55.94 33.81 86.74 32.23 34.34 57.19 50.04
ARPL+CS+Energy 81.69 79.84 78.91 90.57 90.21 74.58 82.63
ARPL+CS+Gradnorm 50.79 52.91 49.03 54.68 56.20 50.14 52.29
ARPL+CS+MLS+ReAct 77.71 80.32 85.93 88.44 87.78 76.41 82.77
ARPL+CS+ODIN+ReAct 20.02 33.07 20.25 36.67 36.74 37.82 30.76
ARPL+CS+Energy+ReAct 62.27 63.78 56.36 80.73 81.33 60.05 67.42

Table 15: Results of various methods on OOD benchmarks, using CIFAR100 as ID. We train a
ResNet-18 with the OE loss and report the in distribution accuracy as ‘ID’.

Method OOD benchmarks
SVHN Textures LSUN LSUN-R iSUN Places365 AVG

ID=77.16
OE+MSP 93.88 87.76 73.66 73.10 74.72 74.49 79.60
OE+MLS 94.32 88.44 72.53 73.22 75.21 74.10 79.64
OE+ODIN 97.20 83.94 85.96 71.61 74.60 71.90 80.87
OE+GODIN 74.18 83.35 67.85 74.71 77.22 66.61 73.99
OE+SEM 68.48 47.58 80.55 48.33 46.99 49.15 56.85
OE+Energy 94.26 88.47 71.19 72.56 74.67 73.70 79.14
OE+Gradnorm 86.54 79.75 53.73 55.55 57.59 63.90 66.18
OE+MLS+ReAct 94.50 89.04 77.72 80.31 80.88 76.73 83.20
OE+ODIN+ReAct 96.76 82.66 85.65 76.91 78.48 70.50 81.83
OE+Energy+ReAct 94.07 89.32 68.41 75.63 77.25 73.94 79.77
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F QUALITATIVE SAMPLES FROM THE ID AND OOD DATASETS

CIFAR10

Figure 9: Examples on ID data (CIFAR10).

SVHN Textures LSUN-C LSUN-R

iSUN Places365

Figure 10: Typical success cases on different OOD datasets.

SVHN Textures LSUN-C LSUN-R

iSUN Places365

Figure 11: Typical failure cases on different OOD datasets.
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G CORRESPONDENCE POINTS FOR IMAGENET-SSB

Figure 12: Correspondence Points for ImageNet-SSB using DINO-ViT.
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