
Under review as submission to TMLR

FMU: Fair Machine Unlearning via Distribution Correction

Anonymous authors
Paper under double-blind review

Abstract

Machine unlearning, a technique used to remove the influence of specific data points from
a trained model, is often applied in high-stakes scenarios. While most current machine
unlearning methods aim to maintain the performance of the model after removing requested
data traces, they may inadvertently introduce biases during the unlearning process. This
raises the question: Does machine unlearning actually introduce bias? To address this
question, we evaluate the fairness of model predictions before and after applying existing
machine unlearning approaches. Interestingly, our findings reveal that the model after
unlearning can exhibit a greater bias. To mitigate the bias induced by unlearning, we
developed a novel framework, Fair Machine Unlearning (FMU), which ensures group fairness
during the unlearning process. Specifically, for privacy preservation, FMU first withdraws
the model updates of the batches containing the unlearning requests. For debiasing, it
then deletes the model updates of sampled batches that have reversed sensitive attributes
associated with the unlearning requests. To validate the effectiveness of FMU, we compare
it with standard machine unlearning baselines and one existing fair machine unlearning
approach. FMU demonstrates superior fairness in predictions while maintaining privacy
and comparable prediction accuracy to retraining the model. Furthermore, we illustrate
the advantages of FMU in scenarios involving diverse unlearning requests, encompassing
various data distributions of the original dataset. Our framework is orthogonal to specific
machine unlearning approaches and debiasing techniques, making it flexible for various
applications. This work represents a pioneering effort, serving as a foundation for more
advanced techniques in fair machine unlearning.

1 Introduction

Table 1: Utility and fairness were evaluated before
(fair training) and after applying machine unlearn-
ing (Amnesiac) on the Adult and ACS-I datasets,
with gender as the sensitive attribute. For un-
learning, 30% of data randomly sampled from
unprivileged groups (females positive on Adult
and males positive on ACS-I) was removed. The
last column shows a performance drop, indicating
increased bias after unlearning.

Metric Fair Training Amnesiac Drop (%)

Ad
ul

t Acc. (↑) 80.5±0.1 78.1±1.8 2.98
AUC (↑) 86.5±0.8 80.3±2.8 7.17
△EO (↓) 2.6±0.1 22.3±5.2 757.69
△DP (↓) 1.6±0.9 30.8±9.4 1825.00

AC
S-

I Acc. (↑) 77.4±1.4 76.7±1.9 0.90
AUC (↑) 85.2±1.7 79.0±1.1 7.28
△EO (↓) 2.3±0.6 28.8±7.9 1152.17
△DP (↓) 2.1±0.3 23.9±4.3 1038.09

Building responsible machine learning algorithms for pro-
tecting data privacy (Jain et al., 2016; Chen et al., 2021) is
an ever-present concern that holds significant importance
within both academia and industry. In recent years, signif-
icant progress has been made in the development of vital
legal regulations for protecting personal data. These in-
clude the General Data Protection Regulation (GDPR), a
landmark initiative by the European Union (Commission,
2018), the California Consumer Privacy Act (CCPA) (DoJ,
2018), the comprehensive Personal Information Protection
and Electronic Documents Act, and the Brazilian General
Data Protection Law. Of particular significance is the
concept of the "right to be forgotten" (RTBF), introduced
as a fundamental component of the GDPR (Rosen, 2011).
The RTBF mandates organizations and institutions to
promptly and diligently erase personal data upon a user’s
request. This provision underscores the commitment to
individual privacy rights (Viorescu et al., 2017). In the
context of machine learning (ML), the RTBF translates
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into the obligation for model providers to effectively eliminate both the "information" pertaining to the data
and its corresponding "impact" from ML models. This process, known as "machine unlearning" (MU), presents
an intriguing challenge to researchers.

With the rapid evolution of machine unlearning applications, including recommender systems (Chen et al.,
2022a; Li et al., 2023; Zhang et al., 2023c; Xu et al., 2023b; Liu et al., 2023), graph learning (Chen et al., 2022b;
Cheng et al., 2023; Cong & Mahdavi, 2022; Klicpera et al., 2019), and federated learning (Liu et al., 2021;
2022; Yuan et al., 2023), extensive efforts have been made towards developing MU framework to achieving
the RTBF compliance. While much attention is given to privacy concerns in these investigations, there is a
lack of focus on trustworthy issues of MU, particularly the fairness (Mehrabi et al., 2021; Dwork et al., 2012).
Only one literature exists that studies the fairness of MU frameworks (Zhang et al., 2023a). It concludes that
when data deletion is non-uniform, certain MU methods outperform others in achieving fairness.

In light of this observation, we pioneer through a more diverse empirical investigation to reveal the relationship
between machine unlearning and fairness. Our exploration has revealed a significant concern: machine
unlearning poses a considerable risk of causing a decline in fairness, as exemplified in Table 1. This potential
discrimination within a machine learning model can give rise to significant social and ethical issues, thus
limiting the applicability of the model after unlearning in real-world applications, including healthcare (Ahmad
et al., 2020; Chen et al., 2018), job recruitment (Mehrabi et al., 2021), credit scoring (Kozodoi et al., 2022),
and criminal justice (Berk et al., 2021). Hence, there is a pressing need to develop a fair machine unlearning
approach that remains free from biases after unlearning (Li et al., 2021; Mehrabi et al., 2021; Barocas et al.,
2017). This gives rise to a key question that anchors our study:

Can machine unlearning both ensure fairness and keep prediction accuracy?

The primary challenge of this study is the input to the MU framework is a trained model. In contrast, many
advanced debiasing approaches, such as in-processing methods, depend on solving an objective function
that incorporates a debiasing module during the training process. Moreover, specific machine unlearning
frameworks rely on distributed training, so they need to consider both local and global fairness concerns. For
instance, directly applying debiasing techniques to models trained on different data subsets does not guarantee
global fairness, especially when predictions from these subsets are subsequently aggregated (e.g., through
voting) for decision-making purposes. An alternative approach could involve centralized fair retraining after
unlearning, but it contradicts the fundamental purpose of unlearning, which is to circumvent the cost of
retraining on the remaining data.

To tackle these challenges, we introduce FMU, designed to ensure fairness and privacy while maintaining
the accuracy of predictions, which is crucial for downstream tasks. One key benefit of FMU is its simplicity
in implementation, requiring just a few extra lines of code to perform debiasing for a machine unlearning
approach. FMU works efficiently in two steps. First, it removes the model updates linked to the data batches
marked for unlearning. Then, it compensates by offsetting a similar number of model updates from the
opposite-sensitive data groups within the trained model. The overview framework of FMU is illustrated
in Figure 1. This method allows FMU to ensure that model parameters are balanced across all sensitive
groups from a global view. Our main contributions are summarized below:

• We pioneer an investigation to reveal the impact of machine unlearning on group fairness through the
following observations: 1) both exact machine unlearning and approximate unlearning methods can make a
fair model unfair; 2) the distribution shift of the model weights is the cause of the bias after the unlearning
request has been executed by the unlearning methods.

• To the best of our knowledge, this is one of the first attempts at studying the fair machine unlearning
problems. We propose a novel framework, FMU which provides an extremely simple yet effective solution
that is adaptive to any trained ML model.

• Comprehensive experimental results on five real-world datasets validate FMU in achieving fairness and
privacy while maintaining utility, i.e., high prediction accuracy in prediction tasks.

• FMU is straightforward in implementation and does not require any additional storage beyond a standard
machine unlearning. Besides, it is agnostic to the ML models and debiasing methods, which makes it
versatile in practice.
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2 Fair Machine Unlearning

In this section, we first offer background knowledge, including existing techniques for machine unlearning
as well as fairness in machine learning. Then, we present our approach FMU, which involves two key steps.
Firstly, we detail the unlearning process for the specific data that the users request to unlearn. Secondly, we
explain the debiasing step, which involves the removal of an equal amount of model updates associated with
data exhibiting the same label but having an opposite sensitive attribute.

Problem Statement of Machine Learning. Suppose we have a training dataset with N data
samples, denotes as D = {X, Y} = {(x1, y1) , . . . , (xN , yN )} ∈ D, where D is the input space with
dimension RN×d, xi ∈ X is a feature vector of dimension d; yi ∈ Y = {0, 1} is a binary label;
and si ∈ S = {0, 1} is a binary sensitive attribute. A machine learning problem can be formu-
lated as a mapping M : D → H that maps a dataset D to a model M(D) in a hypothesis space H.
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Figure 1: The framework of the proposed FMU. When
the unlearning request comes, FMU withdraws the model
updates of batches that contain the data that the users
request to unlearn, and then deletes the model updates
of batches that have the data with the reversed sensitive
attribute of the unlearning request.

2.1 Machine Unlearning

The goal of machine unlearning is to deal with the
requests invoking the "right to be forgotten". Given
a set of samples that are requested to be unlearned
Du ⊆ D, machine unlearning aims to efficiently
find a model that resembles the model retrained on
D\Du from scratch. We define an unlearning mech-
anism as a mapping U : H × D × D → H that maps
a learned model M(D), the original dataset D, and
a subset Du ⊆ D of data points to be deleted, to
a new unlearned model U(M(D), D, Du). Ideally,
the unlearned model U(M(D), D, Du) is statisti-
cally indistinguishable from M(D\Du). Both the
learning algorithm M and the unlearning mecha-
nism U are assumed to be randomized, i.e., their
outputs produce a probability distribution over the
hypothesis H given the input.

There are two primary approaches to machine un-
learning: exact and approximate machine unlearn-
ing (Nguyen et al., 2022; Zhang et al., 2023b). The
machine unlearning problem can be formulated as
the comparison between two distributions of ML
models. Let Pr(M(D)) denote the distribution of a model trained on a dataset D by a learning algorithm
M(·). Let Pr (U (D, Du, M(D))) be the distribution of a unlearned model. The rationale behind representing
the output of U(·) as a distribution rather than a single point is the learning algorithms M(·) and unlearning
algorithms U(·) are randomized, as discussed previously.

2.1.1 Exact Unlearning:

In exact unlearning, requested data information is directly removed from the training set, achieved by
retraining models on the remaining data subsets after deleting the requested data (Bourtoule et al., 2021;
Cao & Yang, 2015b; Ginart et al., 2019; Bourtoule et al., 2020). The distributions of the unlearned model
should be indistinguishable from the original model to ensure attackers cannot recover any information from
the unlearned model (Xu et al., 2023a). The definition can be formulated as follows.

Definition 2.1 (Exact Unlearning). Given a learning algorithm M(·), we say the process U(·) is an exact
unlearning process iff ∀T ⊆ H, D ∈ D, Du ⊂ D:

Pr (M (D\Du) ∈ T ) = Pr (U (D, Du, M(D)) ∈ T ) . (1)
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One representative method is SISA (Bourtoule et al., 2020). This is an exact machine unlearning method
aiming to reduce the computational cost of the retraining process by employing a data partitioning technique.

2.1.2 Approximate Unlearning:

In contrast, approximate unlearning adjusts model parameters to remove the impact of deleted data (Guo
et al., 2019; Izzo et al., 2021; Neel et al., 2021; Thudi et al., 2022; Graves et al., 2021).

2.2 Definition (ϵ-Approximate Unlearning). Given ϵ > 0, an unlearning mechanism U performs ϵ unlearning
for a learning algorithm M if ∀T ⊆ H, D ∈ D, x ∈ X:

e−ϵ ≤ Pr(U(D, x, M(D)) ∈ T )
Pr(M(D\x) ∈ T ) ≤ eϵ, (2)

where x is the removed sample. In our experiment, we compare our method with a typical approximate
unlearning method, Amnesiac (Graves et al., 2021). It leverages batch training characteristics and records the
updated parameters of a model for each batch in storage.

2.2 Group Fairness

The literature on group fairness has put forth numerous concepts of fairness. These definitions, each target
distinct statistical measures to achieve equilibrium among subgroups within the data. We consider Equalized
Opportunity and Demographic Parity as the fairness metrics in this paper.

Equal Opportunity (EO). Equal opportunity (EO) (Hardt et al., 2016) requires the classifier to maintain
equal true positive rates across different subgroups, aiming for a perfect classifier. The fairness measurement
corresponding to EO can be expressed as follows:

△EO = |P (ŷ = 1|y = 1, s = 0) − P (ŷ = 1|y = 1, s = 1)|. (3)
A low △EO indicates that the probability of an instance in a positive class being assigned to a positive
outcome for both subgroup members is relatively small.

Demographic Parity. Demographic Parity (DP) (Zafar et al., 2017; Feldman et al., 2015) requires the
prediction ŷ to be independent with the sensitive attribute s, i.e., ŷ⊥s. The majority of the literature focuses
on binary classification and binary attributes, i.e., y ∈ {0, 1} and s ∈ {0, 1}. Similar to equal opportunity,
the fairness in terms of DP can be measured by:

△DP = |P (ŷ = 1|s = 0) − P (ŷ = 1|s = 1)|. (4)
A lower △DP indicates a more fair classifier. Both the DP and EO can be easily extended to multi-class and
multi-category sensitive attributes problems by ensuring ŷ⊥s.

2.3 The FMU Framework

Training. Recall that in the original fairness-aware training (Zliobaite, 2015; Calders et al., 2009), most of
the existing models can be summarized as a learning process:

min
θ

L = min
θ

(Lutility + αLfairness), (5)

where θ represents the learned parameters, Lutility denotes the loss function for the utility, Lfairness corre-
sponds to the applied fairness regularize to achieve the group fairness, defined in Section 2.2, DiffDP (Chuang
& Mroueh, 2020), and α controls the trade-off between utility and fairness:

θM = θinitial +
P∑

p=1

B∑
b=1

∆θp,b
, (6)

where ∆θp,b
is the model update for the epoch p batch b, and P stands for the number of epochs, while B

corresponds to the total count of batches within each epoch. θinitial denotes the initial parameters of the ML
model. This displays the accumulation of parameter changes across epochs and batches, contributing to the
model training progression.
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Algorithm 1: Algorithm FMU
1 Input: Trained model parameters θM , a unlearning

request list Bu.
2 (1) Unlearning stage:
3 Initialize θM ′ = θM .
4 for u ∈ Bu do
5 θM ′ = θM ′ − ∆θu .
6 (2) Debiasing stage:
7 Sample a list R ∈ B\Bu, with

|R| = n′
1−s,y=|Bu| = ns,y

8 Initialize θM ′
fair

= θM ′ .
9 for r ∈ R do

10 θM ′
fair

= θM ′
fair

− ∆θr .
11 Return: θM ′

fair
.

During the training process, a record detailing
which specific batches including each individual
sample is maintained. This record can take var-
ious forms, such as an index correlating batches
with each example in the training dataset, an
index associating batches with respective classes,
or any other format. As a result, this record
includes the batch index of the data instances
that users request for unlearning, denoted as Bu.
Furthermore, upholding the updates made to the
model parameters from each batch containing
sensitive data is important. However, a compre-
hensive strategy involves detailed documentation
of every single batch update, and a more targeted
approach can be adopted. If the user’s concern
is primarily on a subset of data, then only the
parameter updates in the batches that correspond to this subset need to be obtained by retraining on the
remaining data.

Unlearning. After the training procedure is finished, the unlearned model M ′ can be generated by deleting
the parameter updates of each batch u in list Bu from the original model θM (Graves et al., 2021):

θM ′ = θinitial +
P∑

p=1

B∑
b=1

∆θp,b
−

∑
u∈Bu

∆θu
= θM −

∑
u∈Bu

∆θu
. (7)

Debiasing. FMU starts by sampling a batch list R from the remaining data in B\Bu. This step guarantees
the sampled batches excluding any requested user information, thus preventing potential privacy leakage.
The sampling for R follows the rules below.

Suppose the unlearning batch list Bu includes ns,y samples for each combination of sensitive attribute
s ∈ {0, 1} and label y ∈ {0, 1}. For each group defined by s and y in Bu, we include in R an equal number of
samples with the opposite sensitive attribute but the same outcome as those in Bu. In other words, if Bu has
n samples for a particular combination of s and y, then R will also contain n samples with the opposite s,
i.e., 1 − s, but the same y. In mathematical notation, we set n′

1−s,y = ns,y, where n and n′ represent the
number of samples in Bu and R, respectively, and s and y can take values of either 0 or 1.

To ensure fairness in the prediction after unlearning, we need to balance the effects of removing samples from
Bu. Hence, from the remaining data in B\Bu, we delete the model updates of batches in the list R to offset
the effect of the unlearning from Bu. The fair model after the unlearning can be obtained by:

θM ′
fair

= θ′
M −

∑
r∈R

∆θr
. (8)

Finally, the resulting model after unlearning maintains fairness and accuracy, by balancing the model updates
after the removal of requested data. The algorithm of FMU is summarized in Algorithm 1.

Discussion. The process of unlearning can cause a fair-trained model to become unfair since it changes the
distribution of sensitive groups. One way to tackle this is by excluding updates related to fairness loss and
only keeping those that improve utility for the sensitive group that was removed. This helps balance out the
distribution of sensitive groups after data removal. However, this approach has an extra need for storage
to keep fairness and utility updates separately. To tackle this problem, we suggest a different approach:
deleting a similar number of updates from the opposing sensitive group. This is similar to a technique called
upsampling mentioned in previous research (Visa & Ralescu, 2005; Tran et al., 2022). One advantage of this
method is that it requires the same amount of storage as the standard unlearning method. It can also be
extended to handle multiple sensitive attributes and cases with multiple classes.
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3 Experiments

In this section, we mainly investigate the performance of FMU from three perspectives: 1) the machine
unlearning performance, 2) the utility, i.e., task-specific prediction accuracy, and 3) the fairness
performance, under different experimental settings. In particular, we examine whether the final model
is able to protect data privacy against attacks, and how the prediction and fairness performance changes
with different unlearning ratios and sensitive groups. Besides, we visualize a comparison of the prediction
distribution of unlearning baselines across sensitive groups. Finally, we evaluate how the trade-off between
fairness and accuracy changes with the controlling hyperparameter α in Equation (5).

3.1 Datasets

We conducted experiments using five widely used fairness datasets to assess the fairness and utility of machine
unlearning baselines. These include four tabular datasets: Adult (Kohavi & Becker, 1996), COMPAS (Larson
et al., 2016), ACS-I, and ACS-T (Ding et al., 2021), as well as one image dataset, CelebA-A (Liu et al., 2015).
Following the previous work (Biswas & Rajan, 2020; Chakraborty et al., 2020; Zhang & Harman, 2021), in
our experiment, we select gender and race for the sensitive attributes. Further information on the datasets is
provided in Appendix E.1, and the detailed statistics are summarized in Table 11.

3.2 Baselines

For the baselines, we consider fairness-aware machine learning, standard machine unlearning, and existing fair
machine unlearning approaches. The introduction of the standard machine unlearning baselines is as follows:

• Retraining (Fair) is conducted by integrating a fairness regularizer into the standard retraining in
our experiment. The standard retraining, referred to as ’Retraining (Standard)’ in this paper, is widely
recognized as the benchmark for machine unlearning literature (Zhang et al., 2023b; Xu et al., 2023a;
Nguyen et al., 2022). It involves retraining the model on the remaining data following the removal of
the requested information from the original dataset. Its privacy-preserving performance serves as the
ceiling baseline. However, retraining comes with a significant cost, motivating the exploration of alternative
machine unlearning techniques aimed at circumventing this expense.

• SISA (Bourtoule et al., 2020) is a representative exact machine unlearning approach. Initially, the
original dataset is divided into subsets called shards. Each shard is then split into several slices. A deep
learning (DL) model is created for each shard, and its refinement involves progressively adding slices. The
parameters of a DL model are all retained in storage. The final outputs are generated by aggregating
the outputs of DL models. For addressing requests for removing data, SISA automatically identifies the
relevant shards and slices and retrains the corresponding DL models from a cached stage before the deleted
data slices are incorporated.

• Amnesiac (Graves et al., 2021) is a typical approximate machine unlearning approach. When the RTBF
requests arrive, Amnesiac automatically locates the batches containing the instances that need to be deleted.
Then, the parameters of the DL model are rolled back to remove the impact of the deleted data on the
trained DL model. However, Amnesiacdeletes the model update directly, which will lead to a distribution
shift, further amplifying the bias within the model.

• Oesterling (Oesterling et al., 2023) is a recently proposed fair machine unlearning method that utilizes
a convex fairness regularizer with pairwise comparisons and unrolls the comparisons in an unlearnable
form. However, the assumption of convex fairness regularizer limits their application for many commonly
used fairness regularizations including a gap regularization, which is often non-convex (Chuang & Mroueh,
2020), including demographic parity, equalized opportunity, and equalized odds, making it impracticable
for Oesterling to directly optimize them.

3.3 Experimental Setup

Data unlearning strategies. To simulate the “right to be forgotten” (RTBF) requests in the real world, we
consider five types of data unlearning requests for each dataset, including four sensitive groups, and a mixed
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Table 2: Utility and fairness performance on Adult, COMPAS, ACS-I, ACS-T, and CelebA-A before (original
training) and after unlearning. For standard unlearning, retraining, and fair unlearning, the unlearning ratio
is 30% if otherwise stated. We use Amne., Acc., Sens. Attr. to represent Amnesiac, accuracy, and sensitive
attribute for short, correspondingly.

Sens.
Attr.

Metric Original Training Standard Unlearning Retraining Fair Unlearning
Standard Fair SISA (10%) SISA Amne. (10%) Amne. Standard Fair Oesterling FMU

Ad
ul

t

Race
Acc. (↑) 84.4±0.3 80.1±0.7 77.3±0.9 76.3±1.2 78.9±1.2 76.7±1.3 82.3±0.5 80.4±0.5 77.3±2.6 78.4±1.3
AUC (↑) 90.1±0.5 85.3±0.5 82.3±0.7 78.4±0.4 80.3±1.7 77.1±1.7 87.2±1.9 83.2±1.3 80.4±2.3 80.9±1.6
△EO (↓) 9.25±3.8 1.25±1.0 13.5±2.4 19.8±5.2 15.3±3.4 29.4±7.1 10.6±5.6 1.32±0.2 5.82±2.1 1.85±0.5
△DP (↓) 13.4±0.8 0.95±0.6 16.4±3.1 21.4±2.6 9.45±4.5 26.2±6.3 15.2±4.8 1.54±0.4 6.37±3.2 1.74±0.8

Gender
Acc. (↑) 84.6±0.3 80.5±0.1 78.4±1.5 76.4±1.1 78.6±1.3 76.1±1.8 82.1±0.7 79.4±1.7 78.4±0.7 78.9±0.2
AUC (↑) 90.8±0.2 86.5±0.8 82.4±2.1 79.3±2.1 80.2±2.2 79.3±2.8 88.4±1.2 82.1±0.8 79.3±1.9 81.2±0.5
△EO (↓) 8.43±3.2 2.64±0.1 9.42±4.1 20.9±3.7 14.3±3.4 22.3±5.2 9.21±2.5 1.75±0.3 5.47±1.2 1.63±0.2
△DP (↓) 16.5±0.9 1.62±0.9 12.5±3.2 24.6±4.3 20.1±4.2 30.8±9.4 15.2±2.1 1.14±0.6 6.70±2.6 1.87±0.4

CO
MP

AS

Race
Acc. (↑) 66.9±1.0 60.9±1.1 56.4±1.2 54.2±0.8 56.3±1.5 54.7±1.4 65.3±1.8 60.9±0.6 57.4±1.8 59.9±0.5
AUC (↑) 72.4±0.8 69.4±1.8 63.4±1.7 61.1±1.9 64.7±1.8 61.9±2.3 72.1±2.1 67.2±1.5 64.4±1.7 66.5±1.1
△EO (↓) 19.4±4.6 0.91±0.3 16.8±3.6 19.5±4.2 20.4±2.2 27.6±3.3 16.3±6.2 1.02±0.7 7.35±3.8 1.24±0.3
△DP (↓) 17.2±4.1 1.37±1.1 26.5±7.7 34.2±10.2 23.1±6.6 29.0±8.4 18.4±5.4 1.05±0.3 9.86±2.3 1.93±0.6

Gender
Acc. (↑) 66.8±0.7 62.1±1.5 57.3±2.0 55.4±1.9 56.7±1.2 54.9±2.6 65.4±1.6 62.6±1.5 59.3±1.4 60.1±0.8
AUC (↑) 72.1±0.9 68.2±1.6 64.9±1.8 61.2±0.8 63.2±1.5 60.3±2.1 66.7±1.0 62.3±0.8 60.0±1.8 61.4±0.6
△EO (↓) 12.4±5.8 2.12±0.5 16.5±3.5 29.3±6.7 15.3±5.5 31.3±14.8 16.2±4.8 2.68±1.9 8.31±2.9 2.90±1.5
△DP (↓) 17.2±4.3 1.73±0.8 20.8±6.3 33.5±16.7 27.6±7.4 34.6±17.5 18.8±6.2 1.62±0.5 9.08±3.5 1.92±0.8

AC
S-

T

Race
Acc. (↑) 66.3±0.3 65.7±0.2 62.3±2.6 59.3±1.4 61.2±1.5 58.7±0.8 65.2±1.0 64.4±0.8 59.2±2.0 61.5±1.3
AUC (↑) 72.6±0.2 71.2±0.2 68.2±1.4 65.3±1.9 68.0±2.3 64.2±2.4 70.3±1.6 68.2±2.4 65.4±2.1 67.8±1.1
△EO (↓) 6.93±1.2 0.86±0.5 10.3±7.5 17.4±9.5 11.6±6.7 15.4±8.1 7.4±2.4 1.01±0.3 5.31±2.8 1.53±0.6
△DP (↓) 10.2±1.6 2.83±0.7 15.7±12.5 18.2±7.4 16.7±8.8 14.3±9.9 11.4±2.4 2.32±1.1 8.12±3.3 1.82±0.5

Gender
Acc. (↑) 66.2±0.4 65.9±0.4 60.8±2.5 57.2±2.1 61.0±2.4 58.9±2.7 64.3±0.7 63.5±0.8 60.5±1.9 62.7±0.7
AUC (↑) 72.7±0.2 72.0±0.3 68.4±0.8 66.2±1.8 68.2±2.1 67.2±1.9 70.2±2.4 67.3±1.0 64.1±1.3 68.6±0.8
△EO (↓) 6.14±3.5 1.83±0.5 11.2±5.6 17.9±7.3 11.4±9.7 22.5±10.5 8.8±2.2 2.45±1.0 6.42±4.3 2.73±1.1
△DP (↓) 7.25±2.6 1.54±0.4 13.0±4.1 15.6±9.3 10.3±4.5 17.8±7.4 6.2±3.5 2.23±0.7 5.29±5.7 2.91±1.3

AC
S-

I

Race
Acc. (↑) 81.2±0.1 80.2±1.2 76.4±1.8 75.3±1.9 75.2±1.3 75.0±1.1 80.9±1.5 77.9±1.5 76.5±0.8 78.3±0.9
AUC (↑) 90.1±0.1 87.0±1.6 83.2±2.0 82.5±2.4 83.5±2.5 81.5±1.6 89.7±2.1 86.6±1.1 84.1±1.6 85.2±1.0
△EO (↓) 7.42±0.6 1.96±0.5 14.6±5.2 23.5±4.4 17.9±5.1 25.3±4.0 9.07±1.4 1.23±0.7 7.64±2.2 1.36±0.2
△DP (↓) 10.0±1.8 1.66±0.2 18.4±1.5 26.3±7.7 14.3±4.7 23.3±6.2 11.3±3.8 1.02±0.4 3.42±1.8 0.92±0.4

Gender
Acc. (↑) 82.0±0.2 80.9±0.6 76.3±2.0 75.4±2.2 77.3±0.8 76.7±1.9 81.1±0.6 78.3±1.2 75.3±0.8 78.0±0.8
AUC (↑) 90.1±0.1 85.2±1.7 81.9±2.4 80.2±2.6 80.9±2.4 79.0±1.1 88.4±1.8 84.2±2.0 82.1±0.9 84.0±1.5
△EO (↓) 6.12±0.6 2.31±0.6 12.4±0.7 24.3±3.3 11.6±5.2 28.8±7.9 9.05±0.5 1.40±0.3 10.2±2.7 1.66±1.0
△DP (↓) 10.2±1.6 2.13±0.3 17.2±0.9 28.4±6.8 15.4±3.7 23.9±4.3 12.4±2.2 1.68±0.8 2.55±0.6 1.67±1.2

Ce
le

bA
-A

Race
Acc. (↑) 78.1±0.6 75.0±1.9 71.3±1.7 68.3±0.8 69.2±1.2 66.7±0.4 77.2±0.9 76.4±0.4 74.2±2.0 76.5±0.8
AUC (↑) 85.9±0.8 81.3±0.6 77.2±1.9 75.3±0.9 78.2±1.3 74.2±1.8 84.3±1.2 81.2±1.8 77.4±2.1 80.8±0.7
△EO (↓) 19.3±1.5 0.93±0.3 23.3±5.6 27.4±11.2 21.6±12.6 35.4±13.5 21.4±1.7 1.01±0.5 5.31±2.8 1.53±0.2
△DP (↓) 38.7±1.8 1.62±1.3 35.7±8.9 41.2±21.4 36.7±18.8 40.3±20.4 37.4±1.6 2.32±0.9 8.12±3.3 1.82±0.3

Gender
Acc. (↑) 78.1±0.6 74.3±1.6 70.8±1.7 67.2±1.9 71.0±1.6 68.9±1.8 78.4±0.5 73.5±0.6 70.5±1.9 72.7±0.7
AUC (↑) 85.9±0.8 81.7±1.2 77.4±1.2 76.2±2.1 78.2±1.9 77.2±1.4 84.2±0.8 82.3±1.2 80.1±1.3 81.6±0.8
△EO (↓) 35.6±2.1 1.12±0.4 33.2±15.6 37.9±21.3 31.4±8.4 42.5±20.5 37.8±26.7 2.45±0.7 12.4±4.3 2.73±0.6
△DP (↓) 50.6±2.6 2.21±0.5 39.0±14.1 45.6±19.3 40.3±24.3 47.8±27.4 53.2±24.3 2.23±0.6 15.2±5.7 1.81±0.5

unlearning. For example, if the sensitive attribute is gender, then the five sensitive groups are female positive,
female negative, male positive, male negative, and mixed. In the context of privacy concerns, we focus on
investigating the following three unlearning requests:

• Unlearning from a Privileged Group: It typically refers to those who historically have been more inclined
to be categorized favorably in a binary classification task within machine learning. Privilege emerges from
disparities in power dynamics, and it is important to note that the same groups may not universally enjoy
privilege across all contexts, even within the same society (Varshney, 2019). This demographic often seeks
to protect their personal data, particularly due to their extensive education, thus prioritizing the privacy of
their sensitive information (Upton et al., 2001; eur, 2019).

• Unlearning from an Unprivileged Group: In contrast to the privileged group, this refers to a group less
likely to receive favorable predictions. Previous studies have shown that unprivileged groups face higher
privacy risks and costs for achieving fairness in machine learning models (Chang & Shokri, 2021; Strobel &
Shokri, 2022). As a result, protecting their privacy and ensuring fairness becomes important.
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• Mixed Unlearning: This involves unlearning requests from all sensitive groups and is the most common
scenario. For this unlearning process, we implement random sampling from the entire demographic, ensuring
that each sample has an equal chance of being selected for unlearning.

We test different types of unlearning requests by randomly selecting data at a specified ratio from the
corresponding group or from the entire training dataset if it’s a mixed group, simulating the unlearning
request. We assess the performance of the model across unlearning ratios ranging from 10% to 50%.

Evaluation metrics. We consider two types of evaluation metrics: utility and fairness. Following the
previous studies, for measuring the utility, the accuracy and AUC (Area Under the ROC Curve) are tested,
and for evaluating the fairness, the △EO and △DP are considered, as introduced in Section 2.2.

Training setup. For implementing FMU, we use Pytorch (Paszke et al., 2017) with Adam Optimizer (Kingma
& Ba, 2014). We set the initial learning rate to 0.01, and weight decay to 0. For tabular data, a 2-layer
Multilayer Perceptron (MLP) with 256 hidden neurons is utilized. For image data, a 2-layer MLP with 128
hidden neurons is employed. The batch size used for all datasets is 32. The number of epochs for the training
or unlearning process is 100, with a StepLR step of 0.1, and a StepLR gamma of 50. We use the binary cross
entropy loss for calculating the utility loss.

3.4 Can FMU Surpass Existing MU Methods in Fairness Performance While Maintaining Strong
Prediction Capabilities?

To validate the efficacy of the proposed method, we provide a detailed comparison of FMU with the
aforementioned baselines on five datasets, which contain both tabular data and image data. For this
experiment, we delete the unprivileged group on each dataset, e.g., female positive on Adult, and with 10%
and 30% ratios and report both mean and standard deviation of 20 runs for all models across all datasets.
Based on the results in Table 2, we can make the following observations:

Observation 1: Both exact machine unlearning, e.g., SISA, and approximate machine unlearning,
e.g., Amnesiac, can introduce bias to a fairly trained model. On all five datasets in Table 2, unlearning
10% or 30% of unprivileged groups using SISA or Amnesiac will lead to more unbiased predictions compared
to the standard training, in terms of ∆DP and ∆EO. Specifically, 1) Higher unlearning ratios, such as 30%,
result in more bias in the model compared to lower ratios like 10%; 2) Removing data from an unbalanced
dataset (Adult) induces more bias than from a balanced dataset (ACS-I) because unbalanced data is more
sensitive to the removal of the unprivileged group; 3) Deleting data from a larger dataset leads to a smaller
drop in accuracy compared to a smaller dataset, but FMU can approximate the retraining accuracy for both
scenarios.

Observation 2: The proposed method demonstrates comparable accuracy to retraining while
ensuring fairness. FMU shows comparable fairness and utility performance with fair retraining, and it does
not require additional computational and storage costs. In contrast to a fair machine unlearning baseline
Oesterling, our method exhibits superior fairness. Additionally, Oesterling imposes a convex assumption on
the objective function, thereby limiting its capacity to employ advanced debiasing techniques.

3.5 The Machine Unlearning Performance of FMU

The primary goal of machine unlearning is to remove the information requested for unlearning by the user on
a model. To evaluate the effectiveness of FMU, we conducted two experiments: Assessing model accuracy on
both the target and non-target groups before and after unlearning, and (2) Evaluating the performance of
membership inference attacks.

3.5.1 Will FMU Efficiently Unlearn the Requested Information?

To answer this question, we evaluate the performance of the model on both unlearned and remaining data
before and after applying FMU or the other two unlearning baselines. Following the prior research, we select
a group of data as the target group for unlearning, while the remaining data constitutes the non-target
group. In Figure 2, we report the utility on ACS-I. Here, we specify the male positives as the target group
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Figure 2: The training accuracy of both target and non-target data on ACS-I is analyzed, considering a 30%
unlearning ratio, with gender as the sensitive attribute.

for unlearning, while the non-target groups include male negatives, female positives, and female negatives.
Initially, we conduct fair training. At epoch 100, we apply each unlearning approach to forget the entire
target group data and obtain an unlearned model. Then, we continue training on each unlearned model and
report the test accuracy for both the target and non-target groups in Figure 2. The obtained results lead to
the following observations:

Table 3: Recall of Membership Inference Attacks.
Epoch Retraining Oesterling FMU

0 0.97±0.17 0.97±0.17 0.97±0.17
0∗ 0.97±0.17 0.97±0.17 0.00±0.05
5 0.12±0.03 0.00±0.0 0.00±0.00
10 0.05±0.01 0.00±0.0 0.00±0.00
15 0.01±0.00 0.00±0.0 0.00±0.00
20 0.00±0.00 0.00±0.0 0.00±0.00

Observation 1: FMU preserves the utility on non-
target data comparing to retraining. In Figure 2(a),
fair retraining exhibits the highest accuracy after unlearn-
ing the target group at epoch 100, benefiting from re-
training on the remaining data. While FMU initially
experiences a slight dip, a brief period of training corrects
this, resulting in comparable accuracy with fair retraining.
Additionally, FMU outperforms Oesterling, which requires
more epochs to recover the accuracy on the non-target data. This demonstrates the effectiveness of FMU in
maintaining performance after unlearning for the non-target group.

Observation 2: FMU is effective at unlearning the requested data. Figure 2(b) illustrates that FMU
exhibits the best unlearning performance, showing the lowest prediction accuracy on the target data, which is
close to random guessing for the binary classification task. This suggests that the unlearned model obtained
from FMU has largely forgotten the target data and struggles to make accurate predictions when trained
solely on the remaining data. In contrast, both fair retaining and Oesterlingmodels achieve higher prediction
accuracies on the target data compared to FMU, indicating that they retain some level of knowledge regarding
the target data within their unlearned models. Fair retraining achieves the highest performance among
the three methods, reaching its peak accuracy at approximately 110 epochs. However, there is a decline in
performance afterward. This decline may result from the model remembering knowledge of the target data
at the beginning, but as it is now training on the remaining data, which does not contain the target data
anymore, inconsistency occurs, impairing its ability to effectively predict the target data.

3.5.2 Can A Membership Inference Attack Deduce Information From Unlearned Data?

The threat model. The adversary aims to determine whether specific records are present in the training
data by employing membership inference attacks. Such leakage of membership information can significantly
compromise privacy. In this scenario, the adversary has white-box access to the currently published model
but lacks access to any previously released versions. The adversary can use data from a distribution similar
to that used to train the target model. While the adversary’s data may include duplicate records from the
training set, such duplicates are not required.

Membership Inference Attack. We conducted a membership inference attack (MIA) (Yeom et al., 2018)
on the trained model both prior to and after applying machine unlearning techniques. MIAs employ 20
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Figure 3: Accuracy difference (Acc. Diff.), △EO difference (△EO Diff.), and △DP difference (△DP Diff.) on
Adult and ACS-I at different unlearning ratios {5%, 10%, 20%, 50%}, measured by the performance distance
between applying Amnesiac and FMU. The sensitive attribute is gender. Adult’s unprivileged group is Female
Positive, while ACS-I has more balanced classes.

shadow models, and the target model has trained for 100 epochs. Our evaluation of the effectiveness of
these MIAs is based on the recall metric. These MIAs were systematically executed with a focus on specific
individual examples. Following that, data removal techniques were employed in an effort to eliminate any
learned information associated with this subset of individual examples. Notably, the unlearning process was
initiated at epoch 0, and the outcomes of the MIA on the model, after applying the data removal technique
but before any retraining, are observable at epoch 0∗. The recall value of the attack is reported.

Observation. As shown in Table 3, the results demonstrate that fair retraining offers minimal protection
against the leakage of private class information for a span of more than 20 complete retraining epochs. By
comparison, both Oesterling and FMU protect against MIA with less than 5 epochs of retraining, with FMU
even showcasing the efficiency without any retraining.

3.6 How Do Different Unlearning Ratios And Distributions Impact FMU?

Due to the complexity of unlearning requests in the real world, we delve into a comprehensive analysis that
considers various scenarios, each characterized by distinct ratios within different groups. Our assessment

(a) Fair Training (fair) (b) Amnesiac (unfair) (c) Fair Retraining (fair)(d) Oesterling (less fair) (e) FMU (more fair)
Figure 4: The distribution comparison for different baselines. The distribution is based on the predicted
probability of male and female groups on the Adult dataset. The value indicates ŷ.
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focuses on the sensitive attribute gender, and we compare our method against the model after applying
Amnesiac. This study involves a relatively balanced dataset, Adult, and an imbalanced dataset, ACS-I.

We report the performance improved, measured by the distance between Amnesiac and FMU. Specifically, for
the utility metric, the difference is determined by the increment in value from Amnesiac to FMU, i.e., Acc.
Diff.=Acc.(FMU)-Acc.(Amnesiac). While for the fairness metrics, the difference is determined by the value
decrease from Amnesiac to FMU. In other words, i.e., △DP Diff.=△DP (Amnesiac)-△DP (FMU), and △EO

Diff.=△EO(Amnesiac)-△EO(FMU). From the results synthesized in Figure 3, the following observations come
to light:

Observation 1: The accuracy and fairness performance is correlated with original data distribu-
tion. Specifically, when deleting the unprivileged group of a dataset, the fairness difference is large since
the standard unlearning can generate a highly biased model. This phenomenon becomes especially apparent
when dealing with imbalanced datasets like Adult, in such cases, eliminating data from the unprivileged
group tends to result in more significant fairness issues compared to data removal from the privileged group.
However, when testing with balanced datasets like ACS-I, the fairness discrepancy stemming from data
removal among different groups is generally smaller.

Observation 2: The mixed unlearning request will have less impact on the fairness by the
unlearning since the trained model is already fair, and it will cause fewer distribution shifts, thus leaving
less space for FMU to improve. While it can cause performance degeneration to a large degree since the
unlearning is based on the whole dataset, the same percentage will cause more samples to be removed.

3.7 How Does FMU Achieve Better Fairness?
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Figure 5: Effect of α on accuracy and fairness.

To understand why FMU is effective at reducing
bias, we compared its prediction distribution with
baseline methods. We tested it by removing 30% of
the unprivileged group (female positive) from the
Adult dataset, where gender is the sensitive attribute.
The results, shown in Figure 4, confirm our previ-
ous observations: using standard machine un-
learning techniques can make an initially fair
trained model (Figure 4(a)) become unfair
(Figure 4(b)). However, FMU achieves fairness
levels similar to those obtained through fair retrain-
ing. FMU works by mitigating discrepancies in the representation of different groups. Remarkably, FMU
outperforms Oesterling in fairness, which further demonstrates its effectiveness.

3.8 Can We Balance the Accuracy and Fairness Trade-Off by Adjusting α?

One important hyperparameter in FMU is α, controlling the influence of fairness regularizer on the model
prediction. To explore how sensitive the model is to α and to strike a balance between high accuracy and low
discrimination, we train FMU on various datasets using different α values. Specifically, we test α values of
0.5, 1.5, 3.0, 5.0, 7.0. Analyzing the results in Figure 5, we observe that, in general, higher α values initially
lead to better fairness in FMU, but as α increases further, the debiasing ability degenerates.
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Figure 6: Accuracy and △DP trade-off on five datasets. Results located in the upper-left corner are preferable.
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Specifically, from Figure 5(a), we observe that when α ≤ 1.5, the classification performance is almost
unaffected. Once α is too large, the accuracy will decay sharply. The impacts of α on the discrimination
score are presented in Figure 5(b). When increasing the value of α, FMU will first have decreased
discrimination scores, while when the value is too large, the fairness drops because it would be
difficult to optimize the model to the global minimum. Therefore, to achieve a balance of accuracy and
fairness, in all other experiments, we choose α = 3.0 to perform FMU.

3.9 How Well Do Various Fairness Regularizers Work?

We further consider the accuracy-fairness trade-offs on different debiasing methods, including HSIC (Li et al.,
2019), PrejudiceRemover (PRemover) (Kamishima et al., 2012), adversarial debiasing (Adv) (Zhang et al.,
2018b), as well as DiffDP (Chuang & Mroueh, 2020). Figure 6 displays the Pareto front curves (Yao et al.,
2023; Ling et al., 2022) produced by a grid search of hyperparameters for each method. The top left data
point represents the ideal performance, with the highest accuracy and lowest bias.

For the fairness loss design in FMU, the Demographic Parity gap regularization DiffDP (Chuang & Mroueh,
2020) was employed, defined by: Lfairness = 1

N

∑N
i=1(|P (ŷi = 1|si = 0) − P (ŷi = 1|si = 1)|). While DiffDP

is chosen as the primary regularizer in our work, other fairness regularizers could also be utilized in FMU.
To evaluate the impact of various fairness regularizers, we conducted an ablation study, and the results are
exhibited in Figure 6. This study aims to understand how different choices of fairness regularizers affect the
trade-off between fairness and utility.

From Figure 6, we observe that: 1) at equal accuracy, HSIC exhibits lower △DP compared with baselines, 2)
while Adv shows its power in utility but it lacks stable debiasing ability, 3) PRemover exhibits its advantage
in debiasing while performing less on the prediction task, 4) DiffDP shows a balanced trade-off for
both discrimination scores and accuracy. Finally, we concluded that DiffDP achieves the best balance
between fairness and utility, making it our final choice for implementing FMU in all other experiments.

4 Conclusion

While current methods for machine unlearning focus on protecting the privacy of requested data, they
often overlook the crucial issue of introducing bias during the unlearning process. To tackle this problem,
we develop a new framework called FMU that aims to promote fairness among different groups during
unlearning. Our approach involves removing the model updates corresponding to unlearning requests, while
also incorporating updates from sampled batches where sensitive attributes are aligned inversely with the
unlearning requests. We demonstrate that FMU is effective in achieving better fairness while still maintaining
privacy and utility. FMU is adaptable, working with various unlearning techniques and model designs for
different web applications. Additionally, we show that FMU is versatile in handling different unlearning
requests, making it flexible across a wide range of unlearning scenarios.
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A Related Work

A.1 Fairness on Machine Learning

In recent years, the concept of fairness in machine learning has gained substantial attention. The primary
objective of fairness in this context is to ensure that machine learning models remain impartial and unbiased,
regardless of the individual or group involved. This pursuit of fairness can be broadly categorized into two
main domains: group fairness and individual fairness. Group fairness (Dwork et al., 2012; Hardt et al., 2016;
Corbett-Davies et al., 2017; Zafar et al., 2017; Madras et al., 2018) aims to guarantee equitable treatment
across diverse groups. On the other hand, individual fairness (Dwork et al., 2012; Sharifi-Malvajerdi et al.,
2019) centers on the principle that similar individuals should receive similar treatment. The literature on
group fairness has put forth several definitions of fairness. Among these, the three most prevalent definitions
are Demographic Parity (Zafar et al., 2017; Feldman et al., 2015; Zliobaite, 2015; Calders et al., 2009),
Equalized Odds (Hardt et al., 2016), and Equality of Opportunity (Hardt et al., 2016).

Various bias mitigation techniques have been developed to effectively address issues related to fairness
and bias in machine learning models. These techniques can be broadly classified into three categories:
pre-processing (Kamiran & Calders, 2012; Calmon et al., 2017a), in-processing (Kamishima et al., 2012;
Zhang et al., 2018a; Madras et al., 2018; Zhang et al., 2022; Buyl & De Bie, 2022; Alghamdi et al., 2022;
Shui et al., 2022; Mehrotra & Vishnoi, 2022), and post-processing (Hardt et al., 2016; Jiang et al., 2020).
Pre-processing algorithms strive to rectify the inherent biases within the dataset to ensure that the resulting
trained model attains fairness (Calmon et al., 2017b). In-processing algorithms, on the other hand, operate
during the training phase by adapting conventional empirical risk minimization objectives to incorporate
fairness constraints (Gross et al., 2022; Sherman & Berk, 2017; Burakov et al., 2018; Martinez-Nadal et al.,
2020). Post-processing algorithms adjust the predictions of a classifier to ensure equitable treatment across
groups, leveraging insights gleaned from the training data (Tsaousis & Alghamdi, 2022; Hardt et al., 2016).

A.2 Machine Unlearning

The concept of machine unlearning, introduced in (Cao & Yang, 2015a), extends the "right to be forgotten"
to the realm of machine learning. This involves removing specific data points from a trained model’s dataset.
The conventional method for implementing machine unlearning is to eliminate the designated instances
from the original training dataset and then retrain the machine learning model from scratch. However, this
approach becomes impractical due to the substantial computational burden it places, particularly when
dealing with large datasets and frequent requests for data removal. Consequently, recent research in the
field of machine unlearning, as seen in studies such as (Baumhauer et al., 2022; Bourtoule et al., 2021; Cao
& Yang, 2015a; Izzo et al., 2021), has been predominantly focused on devising strategies to mitigate the
computational overhead associated with the unlearning process.

For instance, (Cao & Yang, 2015a) introduced an innovative approach aimed at transforming learning
algorithms into a summation form aligned with statistical query learning principles. This transformation
effectively disentangles the intricate dependencies within the training data (Cao & Yang, 2015a). In practical
terms, the model owner can seamlessly eliminate a specific data sample by simply excluding its corresponding
transformations from the summations reliant on that particular sample. However, it’s worth noting that this
method finds limitations in its applicability to certain learning algorithms, particularly those, like neural
networks, that resist transformation into summation forms.

An alternative solution comes from a previous study (Bourtoule et al., 2020), which proposed a more
encompassing technique known as the Split-Integrated Sub-Model Approach (SISA). SISA revolves around a
fundamental concept: the segmentation of training data into distinct shards, with each shard dedicated to
training a specific sub-model. Consequently, the elimination of a particular sample mandates the retraining
of solely the sub-model encompassing that sample. To expedite the unlearning process further, the authors
suggest partitioning each shard into multiple slices and preserving intermediate model parameters during
the model’s refinement by each slice. This strategy contributes to the acceleration of the unlearning process
while preserving overall model integrity.
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An additional avenue of research in the field of machine unlearning focuses on the validation of compliance
with data deletion requests by model owners. In this context, (Sommer et al., 2020) introduced a novel
approach centered around the utilization of a backdoor-based method. The fundamental concept involves
enabling data owners to strategically insert a backdoor within their data prior to the training phase of a
Machine Learning as a Service (MLaaS) model. Subsequently, when these data owners seek to have their
data removed, they possess the means to verify the thoroughness of the data deletion process by assessing
the success rate of the implanted backdoor. This innovative method not only enhances accountability but
also empowers data owners to actively monitor the status of their data even after integration into the model.

B Additional Experiments on the intuitive method

We want to study why we do not directly employ the intuitive approach mentioned in Section 2.3. The
main issue is it needs to figure out which data relates to specific sensitive groups and store them separately
during training, so it requires double storage to store the total update for each batch in every iteration during
training. And FMU just needs a list of batches with sensitive group categories, so the separate storage is
saved. Basically, the intuitive approach is impractical due to high storage requirements, while our method is
more feasible and efficient.

We performed additional experiments using the intuitive method, where (R) denotes the sensitive attribute as
race and (G) represents gender. correspondingly. We have highlighted results superior to FMU by presenting
them in bold.

Table 4: The utility and fairness performances of the intuitive method across five datasets.
Adult (R) Adult (G) COMPAS (R) COMPAS (G) ACS-T (R) ACS-T (G) ACS-I (R) ACS-I (G) CelebA-A (R) CelebA-A (G)

Acc. 78.2 ± 0.3 78.1 ± 0.4 58.5 ± 0.2 59.3 ± 0.5 60.1 ± 0.5 61.8 ± 0.6 77.9 ± 0.4 77.7 ± 0.6 76.1 ± 0.5 72.5 ± 0.4
AUC 80.2 ± 0.7 80.9 ± 0.6 65.7 ± 0.4 60.8 ± 0.7 67.0 ± 1.0 67.9 ± 0.7 84.7 ± 1.4 85.1 ± 0.8 80.4 ± 0.5 81.1 ± 0.9
△EO 2.31 ± 1.1 2.91 ± 0.5 2.75 ± 0.6 4.19 ± 1.0 1.74 ± 0.5 3.14 ± 0.7 1.20 ± 0.9 2.52 ± 1.2 2.54 ± 0.6 3.43 ± 1.8
△DP 2.26 ± 1.7 3.68 ± 2.1 3.62 ± 1.5 3.15 ± 1.3 2.84 ± 0.6 4.07 ± 2.3 1.50 ± 1.2 1.26 ± 1.4 2.19 ± 2.2 4.52 ± 2.9

The results in the Table 4 reveal that the intuitive method demonstrates a prediction performance that is
marginally inferior but still deemed acceptable while exhibiting a fairness performance comparable to FMU.
This discrepancy in prediction performance can be attributed to imbalanced utility updates,
which adversely impact predictive accuracy (Rout et al., 2018). Additionally, a conspicuous drawback
of this method is its requirement for double the storage space compared to FMU.

C Additional Experiments on Various Deletion Distributions

We conducted additional experiments involving two distinct deletion distributions: a uniform deletion
distribution with mixed sensitive groups, and a deletion specifically targeting the privileged group. For both
scenarios, we examined varying deletion ratios, encompassing both small and large values.

C.1 Mixed Deletion on the Overall Data

C.1.1 5% Deletion on the Overall Data

Table 5: The utility and fairness performance of FMU on ACS-I with the sensitive attribute gender after
unlearning. We assess the performance of a 5% data unlearning on the overall data. ‘Std.’ denotes the
standard process without debiasing components.

SISA Amnesiac Std. Retraining Fair Retraining Oesterling FMU
Acc. 79.2 ± 0.8 78.4 ± 0.4 81.6 ± 0.9 80.7 ± 0.9 78.7 ± 0.5 80.5 ± 0.3
AUC 83.4 ± 2.2 82.4 ± 1.3 89.8 ± 0.4 84.8 ± 2.5 84.8 ± 1.1 86.8 ± 1.7
△EO 5.8 ± 2.7 6.1 ± 1.9 6.6 ± 0.8 2.8 ± 0.2 5.4 ± 1.0 4.3 ± 1.2
△DP 4.1 ± 2.6 5.3 ± 1.1 9.6 ± 3.4 2.9 ± 0.3 3.2 ± 1.4 3.7 ± 0.5

Based on the findings, it is reasonable to derive the following conclusions:
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• Deleting only 5% of overall data does not significantly impact the utility performance, primarily
due to the substantial sample base in ACS-I.

• The bias introduced by this deletion is comparatively lower than that resulting from deleting the
unprivileged group, compared to Table 2. This supports our earlier inference that bias is introduced
by the distribution shift in model weights.

• Even when the bias is small after the unlearning process in this experiment, as evident from the
observations of SISA and Amnesiac, FMU continues to exhibit effective debiasing.

C.1.2 20% Deletion on the Overall Data

Table 6: The utility and fairness performance of FMU on ACS-I with sensitive attribute gender after unlearning.
We assess the performance of a 20% data unlearning on the overall data. ‘Std.’ denotes the standard process
without debiasing components.

SISA Amnesiac Std. Retraining Fair Retraining Oesterling FMU
Acc. 77.4 ± 1.4 76.2 ± 0.7 78.6 ± 1.2 77.7 ± 0.5 74.1 ± 0.7 75.2 ± 0.6
AUC 81.4 ± 2.1 82.4 ± 1.3 86.8 ± 1.1 83.8 ± 1.7 81.8 ± 0.9 82.8 ± 1.0
△EO 7.3 ± 4.2 9.6 ± 5.1 5.4 ± 3.7 1.5 ± 0.6 3.4 ± 0.7 1.8 ± 0.9
△DP 6.4 ± 3.6 7.5 ± 3.9 7.9 ± 4.5 1.9 ± 1.6 3.0 ± 1.6 2.6 ± 1.8

Based on the results, several conclusions can be inferred:

• A larger deletion ratio across the entire dataset has a more pronounced impact on both utility
and fairness performance decline. This is attributed to a greater number of model weights being
affected during the unlearning process, leading to increased imbalance.

• The performance of debiasing becomes more significant when the remaining dataset is smaller,
especially when compared to a 5% overall deletion.

C.2 Deletion on Privileged Group

C.2.1 10% deletion on the privileged group

Table 7: The utility and fairness performances of FMU on ACS-I with sensitive attribute gender after
unlearning. We assess the performance of a 10% data unlearning on the privileged group. ‘Std.’ denotes the
standard process without debiasing components.

SISA Amnesiac Std. Retraining Fair Retraining Oesterling FMU
Acc. 78.5 ± 0.5 77.8 ± 0.7 81.4 ± 1.1 80.2 ± 0.8 78.8 ± 0.4 79.9 ± 0.6
AUC 85.2 ± 0.6 84.3 ± 0.9 89.9 ± 0.8 87.4 ± 1.3 86.0 ± 0.3 86.8 ± 0.6
△EO 10.5 ± 4.7 9.6 ± 5.6 5.3 ± 2.4 2.7 ± 1.1 4.1 ± 1.6 2.5 ± 1.8
△DP 9.7 ± 3.7 10.3 ± 5.1 8.3 ± 3.6 2.4 ± 1.9 3.6 ± 1.7 2.7 ± 0.9

C.2.2 30% deletion on the privileged group

Upon analyzing the results of deletion on the privileged group from the two tables above, several observations
have surfaced:

• Deleting the privileged group at the same deletion ratio appears to have a lesser impact on the
overall prediction performance, in contrast to the deletion of the unprivileged group, comparing
to results in Table 2 in the paper.
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Table 8: The utility and fairness performances of FMU on ACS-I with sensitive attribute gender after
unlearning. We assess the performance of a 30% data unlearning on the privileged group. ‘Std.’ denotes the
standard process without debiasing components.

SISA Amnesiac Std. Retraining Fair Retraining Oesterling FMU
Acc. 77.6 ± 1.6 78.1 ± 0.6 81.7 ± 1.1 79.1 ± 1.5 78.2 ± 1.7 79.2 ± 0.9
AUC 84.6 ± 1.0 85.5 ± 1.5 89.7 ± 0.8 86.7 ± 1.9 85.5 ± 0.7 86.1 ± 1.3
△EO 12.8 ± 6.0 11.1 ± 7.1 8.6 ± 0.8 1.6 ± 0.2 7.7 ± 2.3 2.1 ± 0.7
△DP 15.5 ± 10.9 10.3 ± 8.8 9.6 ± 3.4 1.8 ± 0.3 2.3 ± 1.2 1.9 ± 0.6

• The bias introduced from deleting the privileged group at the same deletion ratio is found to be
lower than that resulting from the deletion of the unprivileged group.

• FMU consistently showcases its efficacy in mitigating bias.

D Additional Experiments on Runtime and Storage

D.1 Runtime Comparison

We conducted a runtime comparison between FMU and the established baselines. The experiments were
executed using NVIDIA RTX A4000 GPUs with 16GB GDDR6 Memory, with a fixed number of requests set
at 100. For both tabular and image datasets, we configured the retraining epoch to 100. It’s important to
note that in the case of SISA, S = 20 corresponds to the number of shards (Bourtoule et al., 2021).

Table 9: Runtime comparison (in seconds) on different unlearning methods.
Retraining SISA Amnesiac Oesterling FMU

Runtime (Adult) 80.3 s 25.5 s 1.4 s 4.2 s 2.1 s
Speedup (Adult) - 3.1× 57.4× 19.1× 38.2×
Runtime (CelebA-A) 1657.1 s 137.9 s 3.6 s 15.2 s 5.2 s
Speedup (CelebA-A) - 12.0× 460.3× 109.1× 318.7×

Based on the findings, the following observations can be made:

• The computational time for FMU is consistently less than 2.1 seconds and 5.2 seconds on Adult and
seconds on CelebA-A. This represents a significant improvement, being 38.2× and 318.7× faster than
the retraining approach, respectively.

• Both Amenisac and FMU demonstrate superior time efficiency when compared to retraining and
SISA. Notably, SISA necessitates the retraining of sub-models, whereas Amenisac and FMU operate
without such a requirement.

• FMU outperforms Oesterling in terms of time efficiency, owing to its simplified computational design.

D.2 Storage Efficiency Comparison

We have recorded the counts of parameters stored for applying FMU and baselines for 2000 unlearned samples
on both Adult and CelebA-A datasets. Note that the number of shards on SISA is set at 20. We follow the
evaluation (Warnecke et al., 2021).

Table 10: Number of parameter counts.
Fair Retraining SISA Amnesiac Oesterling FMU

#Paras (Adult) 1.6 × 106 3.6 × 104 2.2 × 103 3.3 × 104 2.5 × 103

#Paras (CelebA-A) 5.2 × 107 2.7 × 105 1.1 × 104 2.5 × 105 1.2 × 104
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From the results in Table 10, we have the following observations:

• Retaining necessitates the largest storage capacity, followed by SISA, and then Oesterling, FMU, and
Amnesiac.

• In comparison to Amnesiac, FMU additionally stores parameters related to the fair loss of the model.
Consequently, opting for a complex and advanced fair loss choice may not be as storage-friendly,
making DiffDP a preferable option due to its simplicity.

• It is noteworthy that SISA optimizes storage by partitioning data into shards and slices. Each
shard contains a single model, and the final output is an aggregation of multiple models across
these shards. Only the shards containing sensitive data are retrained. However, it requires saving a
model checkpoint during training to enable retraining from an intermediate state. As the number of
unlearned samples increases, more shards are needed for retraining, leading to a significant growth in
storage demand.

• Oesterling’s storage primarily is caused by the computation and inversion of the Hessian matrix of
fair loss over the remaining dataset, incurring substantial storage costs.

In summary, FMU emerges as the most favorable choice for the trade-off between performance and storage.

E More Experimental Settings

E.1 Statistics of Datasets

• Adult1 (Kohavi & Becker, 1996). The Adult dataset contains the 1994 U.S. census data, its primary
objective involves predicting whether an individual’s annual earnings surpass $50, 000. This prediction
is based on demographic and financial attributes. Age and gender are sensitive attributes.

• COMPAS2 (Larson et al., 2016). The COMPAS dataset contains information about criminal defendants,
utilized for forecasting the likelihood of a defendant’s recidivism within a span of two years. This
dataset comprises attributes of the defendant, including their criminal history. It contains sensitive
attributes of gender and race.

• ACS3 (Ding et al., 2021). The ACS dataset offers a range of prediction tasks, including determining
if an individual’s income exceeds $50, 000 and whether they are currently employed. Derived from
the American Community Survey (ACS) Public Use Microdata Sample (PUMS), it includes race,
gender, and other pertinent task-related attributes for all tasks.

• CelebA-A4 (Liu et al., 2015) The CelebFaces Attributes dataset is a collection of 20, 000 facial images
featuring 10, 000 different celebrities. For each image, there are annotations of 40 binary labels that
meticulously detail distinct facial attributes, including but not limited to gender, hair color, and age.

Table 11: The statistics of the datasets. #Feat. is the number of features after pre-processing. The N : P is
the ratio of binary target label, i.e., y = 0 : y = 1 and s = 0 : 1 is the ratio of the sensitive attributes. Sens.
is sensitive attributes.

Dataset Target Sens. #Data #Feat. N : P s = 0 : 1 s = 0 : 1
Adult income gender, race 45, 222 101 1 : 0.33 1 : 2.08 1 : 9.20
COMPAS credit gender, race 6, 172 405 1 : 0.83 1 : 4.25 —
ACS-I income gender, race 195, 665 908 1 : 0.70 1 : 0.89 1 : 1.62
ACS-T travel time gender, race 172, 508 1567 1 : 0.94 1 : 0.89 1 : 1.61
CelebA-A attractive gender, age 202, 599 48 × 48 1 : 0.95 1 : 1.40 1 : 0.29

1https://archive.ics.uci.edu/ml/datasets/adult
2https://github.com/propublica/compas-analysis
3https://github.com/zykls/folktables
4https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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E.2 Hyperparameter Selection Range

For implementing FMU, we tune the hyperparameter α, and the specific range for hyperparameter selection
is outlined below:

Table 12: The selections of fairness control hyperparameter α.
Regularizer Fairness Control Hyperparameter α
DiffDP 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, 4
PRemover 0.05, 0.2, 0.3, 0.40, 0.50, 0.7, 0.9, 1.0
HSIC 50, 100, 200, 300, 400, 500, 600, 1000
Adv 0.5, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5

F Discussion on the Limitation

F.1 Information Loss of the Proposed Method

To evaluate the potential information loss resulting from the deletion of updates related to the opposing
sensitive group, it is essential to evaluate the model’s overall performance rather than solely focusing on
predictions within the privileged group. When dealing with imbalanced or biased data, the presence of
redundant information in the privileged group exacerbates the data imbalance issue, hindering the model’s
utility instead of enhancing its performance (Rout et al., 2018). This phenomenon is similar to downsampling
methods employed in previous studies to address unbalanced data, demonstrating empirically that reducing
privileged group data can improve overall model performance (Rout et al., 2018; Spelmen & Porkodi,
2018). The proposed approach seeks to boost overall performance. In addition to task performance, the
consideration of fairness performance is crucial. A trade-off between fairness and utility exists, indicating
that compromising the utility of privileged groups may be necessary to achieve superior overall prediction
and fairness performance.

F.2 Analysis of the Trade-offs between Fairness and Computational Efficiency

Upon examining the runtime results presented in Table 9, FMU demonstrates the most favorable trade-offs
between fairness and computational efficiency overall. The analysis is detailed as follows:

Standard Machine Unlearning Methods - SISA V.S. Amnesiac: SISA guarantees precise unlearning
but demands substantial memory usage and requires implementation during training. On the other hand,
Amnesiac necessitates storage space for a set of parameter update values from each batch. However, the
overhead of these methods is generally lower than retraining a complete model from scratch. Notably, SISA
incurs higher runtime compared to Amnesiac as it involves retraining sub-models.

Approximate Machine Unlearning Methods - Amnesiac V.S. FMU: Amnesiac exhibits slightly faster
performance attributed to the sampling and debiasing processes in FMU. However, FMU excels in achieving
better fairness, albeit at the cost of increased runtime.

Fair Machine Unlearning Methods - Oesterling V.S. FMU: FMU proves more time-efficient than
Oesterling, primarily due to its simplified computation design. Oesterling’s runtime is largely influenced
by the computation and inversion of the Hessian matrix of fair loss over the remaining dataset. While
Oesterling demonstrates commendable debiasing performance, FMU emerges as a more economical choice in
the fairness-computation trade-off.
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