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ABSTRACT

In this paper, we introduce Dynamic Layer Operations (DLO), a novel approach
for vertically scaling transformer-based Large Language Models (LLMs) by dy-
namically expanding, activating, or skipping layers using a sophisticated rout-
ing policy based on layerwise feature similarity. Unlike traditional Mixture-of-
Experts (MoE) methods that focus on extending the model width, our approach
targets model depth, addressing the redundancy observed across layer representa-
tions for various input samples. Our framework is integrated with the Supervised
Fine-Tuning (SFT) stage, eliminating the need for resource-intensive Continual
Pre-Training (CPT). Experimental results demonstrate that DLO not only out-
performs the original unscaled models but also achieves comparable results to
densely expanded models with significantly improved efficiency. Our work of-
fers a promising direction for building efficient yet powerful LLMs. Our code is
available at https://github.com/DaizeDong/LLaMA-DLO.git.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; Team et al., 2023) excel in NLP tasks by cap-
turing complex patterns in data. Traditional scaling focuses on horizontal expansion, as in Mixture-
of-Experts (MoE) architectures (Shazeer et al., 2017; Fedus et al., 2022b; Lepikhin et al., 2020),
which optimize parameter usage by activating subsets of parameters (Fedus et al., 2022a). However,
vertical expansion remains underexplored.
Inspired by brains’ selective neural activation for complex tasks (Baddeley, 1992; Koechlin et al.,
2003), we propose DLO, a method for dynamic vertical scaling that expands, activates, or skips
layers based on feature similarity. Vertically scaling LLMs faces three challenges: ❶ Optimiza-
tion Complexity. Selecting optimal layer configurations is NP-hard (Glorot & Bengio, 2010; Hest-
ness et al., 2017), with existing approximations showing limited improvement (Wang et al., 2023a).
❷ Computation Cost. Deeper networks increase latency and resource usage. ❸ Feature Collapse.
Figure 1 (b) shows significant similarity in consecutive layers, suggesting redundancy.
To address these, we propose Dynamic Layer Operation (DLO), consisting of (i) expansion,
(ii) activation, and (iii) skipping operations for vertical scaling without proportional com-
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putational costs. Key designs include: ❶ Expansion: Dynamically adds layers to simplify op-
timization. ❷ Activation & Skip: Uses similarity-induced labels to activate or skip layers.
❸ Adaptive FLOPs: Varies sparsity settings for tokens, improving efficiency. ❹ Enhanced Gen-
eralizability: Adjusts layer-specific learning rates based on sparsity. All modules are trained during
the Supervised Fine-Tuning (SFT) stage, avoiding the costly Continual Pre-training (CPT).

2 RELATED WORK

Mixture-of-Experts (MoE). MoE architectures enhance LLM efficiency and scalability by activat-
ing only a subset of parameters per input, significantly reducing computational overhead compared
to traditional networks that activate all parameters (Shazeer et al., 2017; Lepikhin et al., 2020; Fe-
dus et al., 2022b; Zoph et al., 2022; Zhu et al., 2024; Jiang et al., 2024). This selective activation
enables scaling to billions of parameters without proportional computational costs. While MoE opti-
mizes width through horizontal expansion, it often overlooks layer redundancy. Our Dynamic Layer
Operation (DLO) complements MoE by focusing on vertical scaling, dynamically expanding and
activating layers to enhance depth scalability and reduce redundancy.

(a) Human Brain Analogy

(b) Cosine Similarity in LLaMA2-7B
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Figure 1: (a) DLO structure inspired by hu-
man brain activities in a math problem (Koech-
lin et al., 2003), where primary neurons perceive
numbers, secondary neurons understand opera-
tions, and higher-order neurons calculate results.
(b) Layer-wise token similarity and distribution.

Efficient Model Stacking. Model stacking is
a common ensemble technique that improves
performance by combining models to leverage
complementary strengths (TING, 1997; Chen
et al., 2015). In LLMs, stacking integrates
models hierarchically, where outputs from one
model serve as inputs to another, capturing di-
verse features (Dabre & Fujita, 2019; Chen
et al., 2021a; Wang et al., 2023b; Kim et al.,
2023).

Recent advancements stack pre-trained trans-
former layers to create composite models, re-
ducing training costs but increasing inference
latency (Gong et al., 2019; Gu et al., 2020; Evci
et al., 2022; Yao et al., 2023; Du et al., 2024;
Wu et al., 2024). To address this, layer-skipping
methods enable early exits via additional classi-
fiers, minimizing processed layers (Wang et al.,
2022; Chen et al., 2023; Zhang et al., 2024).
Conditional computation techniques further en-
hance efficiency by dynamically skipping lay-
ers based on token-specific conditions (Ainslie
et al., 2023; Raposo et al., 2024), but often re-
quire pre-training modifications, adding com-
plexity.

In contrast, our DLO method ensures efficiency
and scalability through dynamic vertical scaling during the SFT stage, offering a high-performance
solution without the computational demands of stacked ensembles.

3 METHODOLOGY

We introduce the Dynamic Layer Operation (DLO) framework, designed to optimize the vertical
scaling of large language models (LLMs) by dynamically adjusting their depth during the supervised
fine-tuning (SFT) phase. DLO comprises three core operations: layer expansion, layer
activation, and dynamic skipping. Algorithm 1 provides a high-level overview, while
details are provided in Appendix A.

3.1 LAYER EXPANSION

DLO divides the R transformer layers into P groups of Q layers each and dynamically expands each
group by q layers. This results in a total of R′ = P × (Q+ q) layers. The new layers are initialized
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Figure 3: Training pipeline of DLO

using strategies such as Xavier initialization, parameter copying, or spherical linear interpolation
(SLERP). See Appendix A.1 for mathematical details and initialization strategies.

3.2 LAYER ACTIVATION AND SKIPPING

During training and inference, DLO selectively activates or skips the MLP module within each
transformer layer based on a decision score computed by a linear router. The router dynamically
evaluates token embeddings to determine layer activation. Key steps include computing the deci-
sion score, token-specific activation, and the dynamic update of router parameters. Mathematical
formulations for score calculation and dynamic activation are provided in Appendix A.2.

3.3 TRAINING AND INTEGRATION

DLO optimizes both task-specific and router-related objectives through an integrated training pro-
cess. The skip loss Lskip, based on binary cross-entropy (BCE), penalizes incorrect router predic-
tions. The overall loss is defined as L = Ltask + ϵLskip, where ϵ controls the influence of the skip
loss. We employ a skip rate annealing strategy and layer-wise learning rates to progressively increase
sparsity and enhance training stability (see Appendix A.3).

3.4 ADAPTIVE INFERENCE-TIME FLOPS

At inference time, DLO applies token-specific sparsity settings to optimize floating-point operations
(FLOPs). For each layer Li, the FLOPs are computed as: FLOPsi = ρ̂i · FLOPsfull, where ρ̂i
is the sparsity predicted by the router, and FLOPsfull is the FLOPs for a fully active layer. See
Appendix A.4 for more details.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Model Selection. We use LLaMA2-7B (Touvron et al., 2023) as the primary backbone for its open-
source availability and extensive usage. It comprises R = 32 transformer layers grouped into P = 4
clusters of Q = 8 layers (Wu et al., 2024). For expansion, we increase the group size to Q′ = 10,
creating LLaMA-DLO, a dense model with 40 layers and 8 billion parameters. We also compare
against LLaMA-Pro-8B (Wu et al., 2024), trained with Continual Pre-Training (CPT). Section 4.3
shows DLO balances performance and computation cost effectively. While DLO is model-agnostic,
experiments on larger models are left as future work due to academic lab constraints.

Fine-tuning Details. We fine-tune using five instruction tuning datasets: ShareGPT (Team, 2023a),
EvolInstruct (Luo et al., 2023), SlimOrca (Team, 2023b), MetaMath (Yu et al., 2023), and Evol-
CodeAlpaca (Team, 2022), with ShareGPT tripled, totaling 1.44 million instances (Wu et al., 2024).
Training uses a batch size of 128, sequence length of 4,096 tokens, and a learning rate of 2e−5 with
cosine scheduling and AdamW (Loshchilov & Hutter, 2017). Flash Attention (Dao et al., 2022)
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Model FLOPs ↓ Language ↑ Math ↑ Code ↑ Avg. ↑ARC-C GLUE MMLU OBQA PIQA TruthfulQA WinoGrande GSM8K MathQA HumanEval MBPP

0%

•LLaMA2-7B 29.3T 53.1 40.6 46.9 44.2 79.0 38.8 74.0 14.5 28.3 21.8 29.0 42.75
•LLaMA2-7B+SFT 54.0 72.4 53.0 44.4 78.8 40.8 74.2 56.6 30.8 57.3 30.5 52.89
•LLaMA-Pro-8B 36.4T 54.1 40.7 47.9 41.6 78.2 39.0 74.0 17.9 29.5 28.7 33.2 44.07
•LLaMA-Pro-8B+SFT 51.0 71.0 53.0 45.0 79.0 38.0 73.6 58.6 30.8 58.4 30.5 53.53
•LLaMA-DLO-8B+SFT 36.5T 53.2 75.5 53.2 43.7 79.0 38.7 74.0 57.4 31.0 57.0 30.2 53.90

5% ◦ LLaMA2-7B+SFT 28.4T 51.0 74.4 50.4 41.6 77.4 38.8 72.6 48.9 30.0 50.1 28.7 51.26
◦ LLaMA-DLO-8B+SFT 35.3T 50.8 73.2 51.6 43.0 77.8 39.0 70.2 53.4 30.5 56.7 28.9 52.28

10% ◦ LLaMA2-7B+SFT 27.5T 51.0 72.5 51.1 40.2 78.0 39.3 71.0 53.4 29.6 49.7 28.3 51.28
✩ LLaMA-DLO-8B+SFT 34.2T 52.5 75.4 51.4 43.6 78.7 41.0 73.4 55.0 31.4 55.3 29.1 53.34

15% ◦ LLaMA2-7B+SFT 26.7T 44.2 71.8 50.6 38.6 75.4 36.9 55.3 17.0 26.2 3.9 0.0 38.17
◦ LLaMA-DLO-8B+SFT 33.1T 48.7 74.0 51.2 43.0 77.4 39.0 72.8 46.8 28.1 56.6 28.7 51.48

20% ◦ LLaMA2-7B+SFT 25.8T 33.0 69.9 50.4 35.0 65.6 36.9 54.2 1.0 24.5 0.0 0.0 33.68
◦ LLaMA-DLO-8B+SFT 32.0T 51.2 73.3 50.8 43.2 78.2 38.9 73.2 50.1 30.5 57.6 28.2 52.29

25% ◦ LLaMA2-7B+SFT 25.0T 29.5 67.4 47.1 37.8 57.6 35.4 58.3 0.0 22.6 0.0 0.0 32.34
◦ LLaMA-DLO-8B+SFT 31.9T 46.8 73.1 51.6 42.6 77.6 39.6 70.9 42.8 30.4 50.9 26.7 50.27

30% ◦ LLaMA2-7B+SFT 24.1T 28.1 2.8 47.1 35.0 53.8 37.9 52.2 0.0 21.6 0.0 0.0 25.32
◦ LLaMA-DLO-8B+SFT 29.8T 44.6 73.0 50.1 41.2 77.1 37.1 63.2 46.9 28.1 31.2 6.0 45.32

Table 1: Performance comparison of DLO (our approach) on various datasets using LLaMA2-7B as
the backbone. Models marked with • are dense models, either original or those expanded using DLO
expansion. Models with 8B parameters indicate expansion via LLaMA-Pro or our DLO. Models
marked with ◦ are sparse models incorporating DLO activation and skipping operations.
Inference FLOPs are counted with a sequence with 2,048 tokens. The proposed • LLaMA-DLO-
8B with 0% spasity signifies that no layer is skipped and all the original and expanded layers are
activated. ◦ LLaMA2-7B with non-zero sparsity equals LLaMA-DLO without expanding layers. ✩
indicates the sparsity leads to the best performance with DLO.

and bfloat16 mixed-precision training are employed to accelerate training. Fine-tuning LLaMA-
DLO under varying skip ratios produces sparse models, with each run taking 36 hours on eight
NVIDIA A100 GPUs. Additional hyperparameter details are in Appendix C.

Evaluation Benchmarks. We evaluate models using EleutherAI LM Harness (Gao et al., 2023)
and BigCode Harness (Ben Allal et al., 2022) across three domains: ❶ Language [ARC-C (Clark
et al., 2018), GLUE (Wang et al., 2018), MMLU (Hendrycks et al., 2020), OBQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), TruthfulQA (Lin et al., 2021), WinoGrande (Sakaguchi et al.,
2021)], ❷ Math [GSM8K (Cobbe et al., 2021), MathQA (Amini et al., 2019)], and ❸ Code [Hu-
manEval (Chen et al., 2021b), MBPP (Austin et al., 2021)]. Accuracy is the primary metric, with
additional details in Appendix D.

4.2 OVERALL PERFORMANCE

Table 1 summarizes DLO’s performance across various datasets using LLaMA2-7B as the backbone.
Key observations include:

❶ Dense Models’ Superiority: Dense models (•) generally outperform sparse models (◦), partic-
ularly on harder tasks like Math and Code. For example, dense LLaMA-DLO-8B+SFT achieves an
average score of 53.90, compared to the sparse model’s 53.34.

❷ Efficiency of Sparse Models: Sparse models (◦) significantly reduce inference FLOPs while
maintaining competitive accuracy. At 10% sparsity, sparse LLaMA-DLO-8B+SFT achieves 53.34
with 34.2T FLOPs, compared to the dense counterpart’s 53.90 with 36.5T FLOPs. However, higher
sparsities (e.g., ρ = 30%) lead to performance degradation.

❸ DLO-Expansion Advantages: Models with DLO expansion outperform the original
LLaMA2-7B and SOTA methods. For instance, dense LLaMA-DLO-8B+SFT achieves a higher
score (53.90) than LLaMA2-7B+SFT (52.89) and LLaMA-Pro-8B+SFT (53.53).

❹ Balanced Performance of Sparse Models: Sparse models offer an excellent balance between
performance and efficiency. At 30% sparsity, LLaMA-DLO maintains strong performance on GLUE
(73.0 vs. 2.8) and HumanEval (31.2 vs. 0.0) while significantly reducing FLOPs.

❺ General Observations: DLO effectively balances performance and efficiency, leveraging
expansion and skipping to enhance scalability and reduce computational costs, making it
a robust solution for LLM deployment.

Further ablation analysis of DLO’s components, including experiments on initialization strategies,
router score rescaling, sparsity allocation, and performance comparisons with baseline methods, is
provided in Appendix B.
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Method ARC-C MMLU TruthfulQA WinoGrande GSM8K Avg. ↑
SOLAR 24.8 24.8 38.8 50.7 2.2 28.3
SD-Stack 23.5 23.4 36.0 51.1 2.5 27.3
DLO 52.5 51.4 41.0 73.4 55.0 54.7

Table 2: Comparison with different expansion methods. We extend ◦ LLaMA-DLO layers using
different strategies and fine-tune the expanded models with DLO under overall skip rate ρ = 10%.

(a) Layer-wise Number of Activations (b) Layer-wise Average Similarity (c) Layer Activation Examples

Figure 4: Visualization on different datasets of (a) Layer-Wise Number of Activations, (b) Layer-
Wise Average Similarity, and (c) Token Activation Examples.Efficient Expansion. In addition to the high-cost LLaMA-Pro approach (studied in Table 1), we
compare our expansion method with two state-of-the-art efficient vertical expansion baselines: SO-
LAR Kim et al. (2023) and Self-Duplicate Stack (SD-Stack) Team (2024). These two methods
duplicate blocks of transformer layers and stack them together in a training-free manner.

As shown in Table 2, the proposed DLO-expansion significantly outperforms both SOLAR and
SD-Stack by a considerable margin. This highlights the critical role of SFT in adapting the expanded
layers effectively. Unlike training-free approaches, DLO-expansion achieves a superior balance
between training cost and performance, demonstrating the importance of fine-tuning in maximizing
the effectiveness of layer expansion.

▷ Layer-Wise Skip Rates. Adjusting skip rates for each layer aims to selectively activate or skip lay-
ers based on their contribution to task performance, which is measured by layer-wise similarity. This
method helps focus computational resources on more critical layers. Results in Table 5 suggest that
this approach can lead to more efficient sparsity allocation with less impact on model performance.
Figure 4 also shows that DLO can skip layers that have high layer-wise similarity.

▷ Layer-Wise Skip Rates. Adjusting skip rates based on layer-wise similarity selectively activates
critical layers, optimizing computational resources. Table 5 shows this approach improves sparsity
allocation with minimal impact on performance. Figure 4 illustrates that DLO effectively skips
layers with high similarity.

▷ Sparsity Allocation. Tailoring skip rates by layer helps distribute sparsity more effectively, poten-
tially reducing computational overhead. As indicated in Table 5, models with layer-wise skip rates
tend to maintain performance while achieving better computational efficiency.

4.3 SCALABILITY

The proposed LLaMA-DLO model surpasses the performance of the original dense LLaMA while
also achieving comparable results to the dense LLaMA-Pro. Notably, it does so at a significantly
lower training cost without the need for expensive CPT. Additionally, LLaMA-DLO facilitates effi-
cient inference through adaptively reduced FLOPs, making it a cost-effective choice for both training
and deployment. Figure 5 illustrates the trade-off between model performance and both training and
inference costs. LLaMA-DLO emerges as the best solution, achieving a favored balance across
these metrics. This demonstrates the model’s scalability, ensuring that high performance is main-
tained while keeping computational costs relatively manageable.
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5 CONCLUSION
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Figure 5: (a) Performance (↑) v.s. Training time (↓).
LLaMA-Pro is reported in H800 GPU hours quoted from the
original paper. The rest are reported in A100 GPU hours. (b)
Performance (↑) v.s. Inference FLOPs (↓). DLO achieves
the best trade-off between performance and training / infer-
ence costs.

This paper presents LLaMA-DLO,
a framework for efficient vertical
scaling of LLMs that dynamically
expands, activates, and skips lay-
ers to optimize computational re-
sources. Our experiments demon-
strate that LLaMA-DLO achieves
performance on par with expen-
sive dense expansion model like
LLaMA-Pro, while significantly re-
ducing training costs and enhancing
inference efficiency. These results
highlight LLaMA-DLO’s potential as
a cost-effective solution for scaling
LLMs in various NLP tasks, offering
a balanced approach between model
performance and resource manage-
ment.
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attention with io-awareness. URL https://arxiv. org/abs/2205.14135, 2022.

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and
Jie Fu. Stacking your transformers: A closer look at model growth for efficient llm pre-training.
arXiv preprint arXiv:2405.15319, 2024.

Utku Evci, Bart van Merrienboer, Thomas Unterthiner, Max Vladymyrov, and Fabian Pe-
dregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

William Fedus, Jeff Dean, and Barret Zoph. A review of sparse expert models in deep learning.
arXiv preprint arXiv:2209.01667, 2022a.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022b.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, d Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive bert training. arXiv preprint arXiv:2010.12562, 2020.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

7

https://zenodo.org/records/10256836
https://zenodo.org/records/10256836


Published as a workshop paper at SCOPE - ICLR 2025

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Dahyun Kim, Chanjun Park, Sanghoon Kim, Wonsung Lee, Wonho Song, Yunsu Kim, Hyeonwoo
Kim, Yungi Kim, Hyeonju Lee, Jihoo Kim, et al. Solar 10.7 b: Scaling large language models
with simple yet effective depth up-scaling. arXiv preprint arXiv:2312.15166, 2023.

Etienne Koechlin, Chrystele Ody, and Frédérique Kouneiher. The architecture of cognitive control
in the human prefrontal cortex. Science, 302(5648):1181–1185, 2003.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. arXiv preprint arXiv:2306.08568, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

David Raposo, Sam Ritter, Blake Richards, Timothy Lillicrap, Peter Conway Humphreys, and
Adam Santoro. Mixture-of-depths: Dynamically allocating compute in transformer-based lan-
guage models. arXiv preprint arXiv:2404.02258, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th Annual
Conference on Computer Graphics and Interactive Techniques, pp. 245–254. ACM, 1985.

EvolCodeAlpaca Team. Evolcodealpaca dataset, Feb 2022. URL https://www.kaggle.com/
code/mpwolke/evol-codealpaca.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Self-Duplicate Stack Team. Self-duplicate stack, May 2024. URL https://huggingface.
co/mlabonne/Meta-Llama-3-120B-Instruct.

ShareGPT Team. Sharegpt dataset, Apr 2023a. URL https://huggingface.co/
datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/main.

SlimOrca Team. Slimorca dataset, Dec 2023b. URL https://www.kaggle.com/
datasets/thedevastator/open-orca-slimorca-gpt-4-completions.

WK TING. Stacking bagged and dagged models. In Proceedings of ICML’97, pp. 367–375. Morgan
Kaufmann, 1997.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

8

https://www.kaggle.com/code/mpwolke/evol-codealpaca
https://www.kaggle.com/code/mpwolke/evol-codealpaca
https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct
https://huggingface.co/mlabonne/Meta-Llama-3-120B-Instruct
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/main
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/tree/main
https://www.kaggle.com/datasets/thedevastator/open-orca-slimorca-gpt-4-completions
https://www.kaggle.com/datasets/thedevastator/open-orca-slimorca-gpt-4-completions


Published as a workshop paper at SCOPE - ICLR 2025

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Jue Wang, Ke Chen, Gang Chen, Lidan Shou, and Julian McAuley. Skipbert: Efficient inference
with shallow layer skipping. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7287–7301, 2022.

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023a.

Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu, Jianbo Yuan, Haibin Lin, Ruoyu Sun, and
Hongxia Yang. Lemon: Lossless model expansion. arXiv preprint arXiv:2310.07999, 2023b.

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao Wang, Ye Feng, Ping Luo, and Ying Shan.
Llama pro: Progressive llama with block expansion. arXiv preprint arXiv:2401.02415, 2024.

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. In The Twelfth International Conference on Learning Representations,
2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
for large language models. arXiv preprint arXiv:2309.12284, 2023.

Xingjian Zhang, Jiaxi Tang, Yang Liu, Xinyang Yi, Li Wei, Lichan Hong, Qiaozhu Mei, and Ed H
Chi. Conditional transformer fine-tuning by adaptive layer skipping. In 5th Workshop on practical
ML for limited/low resource settings, 2024.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan, Jingqi Tong, Conghui He, and Yu Cheng.
Llama-moe: Building mixture-of-experts from llama with continual pre-training, 2024. URL
https://arxiv.org/abs/2406.16554.

Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer, and
William Fedus. St-moe: Designing stable and transferable sparse expert models. arXiv preprint
arXiv:2202.08906, 2022.

A METHODOLOGY DETAILS

This section provides a comprehensive explanation of the Dynamic Layer Operation (DLO) frame-
work, including its key components: layer expansion, activation, skipping, training integration, and
inference-time efficiency.

A.1 LAYER EXPANSION

To enable dynamic depth adjustment, DLO divides R transformer layers into P groups of Q layers
each, such that R = P × Q. Each group is expanded by q additional layers, resulting in R′ =
P × (Q+ q) layers after expansion. Let Gi denote the i-th group consisting of layers Li1, . . . ,LiQ.
The expanded group G′

i includes layers Li(Q+1), . . . ,Li(Q+q).

The new layers are initialized using one of the following strategies:

• Random Initialization (Πrand): Parameters θ′ij are initialized using Xavier initializa-
tion (Glorot & Bengio, 2010):

θ′ij ∼ U
(
−
√

6

nin + nout
,

√
6

nin + nout

)
, (1)

where nin and nout represent the input and output dimensions of the layer.
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• Copy Initialization (Πcopy): Parameters are copied from the previous layer:

θ′ij = θi(Q+q−1). (2)

• Identity Initialization (Πidentity) (Wu et al., 2024): Parameters are copied from the preced-
ing layer, with the output projection matrix of the multi-head self-attention (MHSA) set to
zero.

• Linear Merge (Πlinear): The new layer’s parameters are a weighted sum of multiple pre-
ceding layers:

θ′ij =

τ∑
k=1

αkθi(Q+q−k),

τ∑
k=1

αk = 1. (3)

• Spherical Linear Interpolation (SLERP) (Πslerp) (Shoemake, 1985): SLERP smoothly
interpolates between two parameter vectors u and v on a unit sphere:

SLERP(u,v, α) =
sin((1− α)Ω)

sin(Ω)
u+

sin(αΩ)

sin(Ω)
v, (4)

where Ω = arccos
(

u·v
∥u∥∥v∥

)
is the angle between the vectors, and α ∈ [0, 1] is the inter-

polation parameter.

A.2 LAYER ACTIVATION AND SKIPPING

During training and inference, DLO selectively activates or skips the MLP module within each
transformer layer based on a decision score computed by a linear router. Let hi denote the token
embeddings at layer Li. The router computes the decision score as:

ri =
β + (2σ(hiWi)− 1)γ

2
, (5)

where σ is the sigmoid function, and β, γ are hyperparameters controlling the score range.

Activation Condition: During inference, layer Li is activated if ri ≥ β
2 . The output is computed

as:

hi+1 =

{
ri · Mi ◦ Ai(hi), if ri ≥ β

2 ,

Ai(hi), otherwise.
(6)

A.3 TRAINING AND INTEGRATION

DLO optimizes both task-specific and router-related objectives through a combined loss function.
The skip loss Lskip is defined as:

Lskip =
1

R′S

R′,S∑
i,s=1

LBCE(σ(h
s
iWi), λ̃

s
i ), (7)

where λ̃s
i are supervised labels generated based on cosine similarity between token embeddings:

µs
i =

Ai(h
s
i ) · Mi ◦ Ai(h

s
i )

∥Ai(hs
i )∥∥Mi ◦ Ai(hs

i )∥
. (8)

Tokens with the lowest similarity scores are labeled for activation:

λ̃s
i =

{
1, if µs

i ∈ Bottom⌊(1−ρ)R′S⌋({µs
i}),

0, otherwise.
(9)

The overall training objective is:
L = Ltask + ϵLskip, (10)

where ϵ controls the contribution of the skip loss.
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Skip Rate Annealing: The sparsity factor ρt is annealed over T ′ steps:

ρt =

{
ρ̄+ (ρ− ρ̄) t

T ′ , if t ≤ T ′,

ρ, otherwise.
(11)

Layer-Wise Learning Rates: To enhance generalization, DLO employs layer-wise learning rates:

ζi,t = ζ̄ · 1− ρi,t
1− ρt

. (12)

A.4 ADAPTIVE INFERENCE-TIME FLOPS

During inference, DLO applies token-specific sparsity to reduce floating-point operations (FLOPs).
For each layer Li, the FLOPs are computed as:

FLOPsi = ρ̂i · FLOPsfull, (13)

where ρ̂i is the predicted sparsity and FLOPsfull is the FLOPs for a fully active layer. This mechanism
improves inference efficiency while maintaining performance.

B ABLATION STUDIES

Initialization Strategies for Expanded Layers.

❶ The identity and copy initialization strategies demonstrate the most consistent and high-
performing results, suggesting that leveraging existing layer information is beneficial for stabilizing
and enhancing model performance. These methods help maintain coherence in the model’s internal
representations, leading to robust results across tasks, including GLUE and HumanEval.

❷ Interestingly, while linear and SLERP initializations were expected to offer smoother transitions
and potentially enhance performance, their results were only moderately effective. This indicates
that while sophisticated initialization techniques can offer benefits, they may not always outperform
simpler strategies like identity and copy initialization, which directly utilize pre-existing structures.

❸ Random initialization yields the lowest performance. The variability in task performance with
this method highlights the challenges of using non-specific weights, which can lead to unstable and
suboptimal model behavior, particularly in complex tasks like math and coding.

Overall, the findings emphasize that initialization strategies that leverage prior information from
existing layers tend to provide a better foundation for training expanded models, leading to improved
performance. We thus choose Πidentity as the default initialization strategy.

Method Language ↑ Math ↑ Code ↑ Avg. ↑ARC-C GLUE MMLU OBQA PIQA TruthfulQA WinoGrande GSM8K MathQA HumanEval MBPP

Random 25.1 41.4 24.4 26.8 50.3 37.7 49.3 0.3 20.3 0.0 1.3 25.17
Identity 52.5 75.4 51.4 43.6 78.7 41.0 73.4 55.0 31.4 55.3 29.1 53.34
Copy 52.0 71.3 52.3 43.2 78.6 40.8 73.0 52.2 29.0 41.1 26.7 50.93
Linear 48.6 70.7 53.4 39.4 72.9 38.7 57.5 29.7 25.7 24.0 0.7 41.94
Slerp 42.2 71.6 49.6 39.8 76.4 36.2 63.0 43.0 27.1 40.4 4.9 44.93

Table 3: Experiments on the effectiveness of different initialization strategies for the expanded
blocks. For this study, we evaluate ◦ LLaMA-DLO-8B with 10% sparsity.

Method Language ↑ Math ↑ Code ↑ Avg. ↑ARC-C GLUE MMLU OBQA PIQA TruthfulQA WinoGrande GSM8K MathQA HumanEval MBPP

DLO 52.5 75.4 51.4 43.6 78.7 41.0 73.4 55.0 31.4 55.3 29.1 53.34
w/o Zero Init 51.9 73.0 52.1 44.6 77.7 40.3 74.3 55.0 30.5 56.1 28.2 53.06
w/o Rescaling 47.4 71.3 49.4 35.8 75.3 39.6 67.5 35.0 24.5 55.6 28.2 48.15

Table 4: Ablation Study on the effectiveness of zeros router initialization & score rescaling. For this
evaluation, we deploy ◦ LLaMA-DLO-8B with 10% sparsity for the experiment.

▷ Zeros Router Initialization. Initializing the router parameters to zero aims to start the model
from a neutral state, avoiding any initial bias toward layer activation or skipping. This method
allows the model to learn activation patterns from scratch without being influenced by predefined
weights. Results in Table 4 indicate that this approach helps maintain balanced training dynamics
and mitigates premature convergence, as reflected in the performance stability observed.
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▷ Score Rescaling. Score rescaling adjusts the routing scores to maintain them within a specific
range, typically 0 to 1. This adjustment is intended to preserve gradient flow and prevent extreme
activations, ensuring that the model remains responsive to training signals. Our findings suggest that
score rescaling helps avoid over-activation of layers, leading to efficient use of the model’s capacity.

The combined use of zeros router initialization and score rescaling appears to prevent performance
degradation effectively. As shown in Table 4, models with these techniques generally achieve more
consistent accuracy and efficiency across various tasks. These results suggest that careful initial-
ization and rescaling strategies are beneficial for maintaining robust performance during adaptation.

Method Language ↑ Math ↑ Code ↑ Avg. ↑ARC-C GLUE MMLU OBQA PIQA TruthfulQA WinoGrande GSM8K MathQA HumanEval MBPP

Uniform 36.0 61.7 48.7 36.6 58.4 36.8 68.2 25.4 21.7 23.7 2.2 38.13
Layer-Wise 52.5 75.4 51.4 43.6 78.7 41.0 73.4 55.0 31.4 55.3 29.1 53.34

Table 5: Performance of the fine-tuned ◦ LLaMA-DLO-8B with 10% sparsiy and different sparsity
distribution strategies. “Uniform” represents all layers use the same sparsity ρi = ρ during training.
“Layer-Wise” denotes the model maintains different skip rates for different layers.

C HYPERPARAMETER TUNING

We list the key hyperparameters searched in our experiments and mark the adopted values as bold
below. We select combination of hyperparameters giving best performance via grid search Belete &
Huchaiah (2022).

• Base learning rate ζ̄: 4e− 5, 2e− 5, 1e− 5.
• Batch size: 64, 128, 256.
• Weight of skip loss ϵ: 0.001, 0.01, 0.1, 1.0, 2.0.
• Annealing steps T ′: 0, 1000, 2000, 3000.

D EVALUATION DETAILS

We list the number of shots and the metric used for each dataset below. Our options of metrics are
akin to common practices of previous works Touvron et al. (2023); Wu et al. (2024)

• ARC-C: 25 shots, normalized accuracy.
• GLUE: 0 shot, accuracy.
• MMLU: 5 shots, normalized accuracy.
• PIQA: 0 shot, normalized accuracy.
• OBQA: 0 shot, normalized accuracy.
• TruthfulQA: 0 shot, accuracy.
• WinoGrande: 5 shots, accuracy.
• GSM8K: 5 shots, accuracy.
• MathQA: 0 shot, normalized accuracy.
• HumanEval: 200 rounds, pass@100.
• MBPP: 15 rounds, pass@10.

E ACKNOWLEDGMENT OF AI ASSISTANCE IN WRITING AND REVISION

We utilized ChatGPT-4 for revising and enhancing wording of this paper.

F REPRODUCIBILITY

The implmentation of our framework, including code for model construction, data preprocessing,
and experiments, is released at https://anonymous.4open.science/r/LLaMA-DLO.
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G DISCUSSION AND FUTURE WORK

Due to the computational limits in academic labs, we primarily experiment with the widely used
LLaMA2-7B. It is noteworthy that the proposed framework is model-agnostic and is compatible to
general transformer-based LLMs. We save the experiments for LLMs in larger sizes or different
architectures as future works.

H PSEUDO-CODE STYLE DESCRIPTION OF DYNAMIC LAYER OPERATION
(DLO)

A pseudo-code style description of DLO is attached in the next page.
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Algorithm 1 Dynamic Layer Operation (DLO)
Require: Pre-trained LLM with R layers, group size Q, expansion size q, target overall sparsity ρ, training

steps T , annealing steps T ′, base learning rate ζ̄
Ensure: Optimized LLM with dynamic scaling

1: Initialize: P ← R / Q, Q′ ← Q+ q, ρi,1 ← ρ
2: // Layer Expansion:
3: for group i← 1 to P do
4: for layer j ← Q+ 1 to Q+ q do
5: Initialize θ′ij using Π:
6: if Π = ‘Xavier’ then
7: θ′ij ∼ U

(
−
√

6
nin+nout

,
√

6
nin+nout

)
8: else if Π = ‘Copy’ then
9: θ′ijLskipθi(Q+q−1)

10: else if Π = ‘Identity’ then
11: θ′ijLskipθi(Q+q−1), W ′

out = 0
12: else if Π = ‘Linear Merge’ then
13: θ′ijLskip

∑τ
k=1 αkθi(Q+q−k)

14: else if Π = ‘SLERP’ then
15: Ω = arccos

(
u·v

∥u∥∥v∥

)
16: θ′ijLskip

sin((1−α)Ω)
sin(Ω)

u+ sin(αΩ)
sin(Ω)

v

17: end if
18: end for
19: end for
20: // Layer Activation and Skipping:
21: for step t← 1 to T do
22: // Skip Rate Annealing:
23: if t ≤ T ′ then
24: ρt ← ρ̄+ (ρ− ρ̄) t

T ′

25: else
26: ρt ← ρ
27: end if
28: // Training and Integration:
29: Lskip ← 0
30: for layer i← 1 to R′ do
31: for token s in sequence do
32: // Dynamic Skip:
33: rsi ← 1

2
(β + (2σ(hs

iWi)− 1)γ)
34: if training then
35: λ̂s

i ← ⊮rsi ∈ Top⌊ρi,tS⌋
(
{rsi }Ss=1

)
36: else
37: λ̂s

i ← ⊮ri > β
2

38: end if
39: if rsi = 1 then
40: hs

i+1 ← ri · Mi ◦ Ai(h
s
i )

41: else
42: hs

i+1 ← Ai(h
s
i )

43: end if
44: // Skip Loss:
45: µs

i ← cos(Ai(h
s
i ),Mi ◦ Ai(h

s
i ))

46: λ̃s
i ← ⊮µs

i ∈ Bottom⌊(1−ρt)R′S⌋
(
{µs

i}R
′,S

i,s=1

)
47: Lskip ← Lskip + LBCE(σ(h

s
iWi), λ̃

s
i )

48: end for
49: // Layer-Wise Skip Rate:
50: ρi,t+1 ←

∑S
s=1 λ̃

s
i / S

51: end for
52: Lskip ← Lskip / R′S
53: L ← Ltask + Lskip

54: Adjust learning rate ζi,t ← ζ̄ · 1−ρi,t
1−ρt

55: end for
56: return Optimized LLM
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