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Abstract

Recent advances in test-time scaling have en-001
abled Large Language Models (LLMs) to dis-002
play sophisticated reasoning abilities via ex-003
tended Chain-of-Thought (CoT) generation.004
Despite their impressive reasoning abilities,005
Reasoning LLMs (RLMs) frequently display006
unstable behaviors, e.g., hallucinating unsup-007
ported premises, overthinking simple tasks, and008
displaying higher sensitivity to prompt varia-009
tions. This raises a deeper research question:010
How can we represent the reasoning process011
of RLMs to map their minds? To address this,012
we propose a unified graph-based analytical013
framework for fine-grained modeling and quan-014
titative analysis of RLM reasoning dynamics.015
Our method first clusters long, verbose CoT016
outputs into semantically coherent reasoning017
steps, then constructs directed reasoning graphs018
to capture contextual and logical dependencies019
among these steps. Through a comprehensive020
analysis of derived reasoning graphs, we also021
reveal that key structural properties, such as ex-022
ploration density, branching, and convergence023
ratios, strongly correlate with models’ perfor-024
mance. The proposed framework enables quan-025
titative evaluation of internal reasoning struc-026
ture and quality beyond conventional metrics027
and also provides practical insights for prompt028
engineering and cognitive analysis of LLMs.029
Code and resources will be released to facili-030
tate future research in this direction.031

1 Introduction032

Recent LLMs equipped with test-time scaling capa-033

bilities, such as OpenAI’s o-series (OpenAI et al.,034

2024; OpenAI, 2025), DeepSeek-R1 (DeepSeek-035

AI et al., 2025), and Gemini-2.5 (Kavukcuoglu,036

2025), employ a system II, think-slow-before-037

answer, pipeline that transforms how these mod-038

els approach complex problems during test time.039

Rather than producing outputs directly after the040

input with normally limited token length, these rea-041

soning models engage in explicit and free extended042

reasoning through Chain-of-Thought (Wei et al., 043

2022) mechanisms. This innovation enables rea- 044

soning models to decompose intricate challenges 045

in various domains, explore multiple possible so- 046

lutions, and self-assess intermediate conclusions 047

before synthesizing final responses during their 048

extended inference time. In general, these rea- 049

soning models currently outperform conventional 050

LLMs on various types of benchmarks, which re- 051

quire advanced math (Patel et al., 2024) and cod- 052

ing (Jimenez et al., 2024) capability. 053

Despite these promising advancements, reason- 054

ing models exhibit undesire (Chen et al., 2024) 055

and unstable (Yang et al., 2025b) behaviors that 056

challenge the established understanding of large 057

language models. One of the particularly strik- 058

ing phenomena is the performance degradation as- 059

sociated with few-shot learning, which in most 060

cases improves the performance of conventional 061

LLMs. Recent technique reports also documented 062

that these RLMs are somehow more sensitive to 063

prompts (DeepSeek-AI et al., 2025). We believe 064

these existing unclear behaviors of RLM call for 065

deeper investigations into how RLMs operate and 066

reason. 067

Our research proposes a novel framework to 068

trace the reasoning processes from a graph perspec- 069

tive. While some work has previously examined 070

the correlation between the quantity of reasoning 071

tokens and RLM’s accuracy (Sui et al., 2025; Bal- 072

lon et al., 2025; Yang et al., 2025b), our approach 073

goes beyond the token perspective and focuses on 074

the semantic organization of the model’s reason- 075

ing processes. Specifically, our analytical frame- 076

works first cluster raw and verbose reasoning to- 077

kens into coherent logic steps and then map their 078

inter-dependencies as a graph, enabling globally se- 079

mantical insights into how reasoning models reason 080

at a higher level (Figure 1). After a comprehensive 081

analysis of derived reasoning graphs, we identify 082

specific quantifiable features that are associated 083
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Okay, the user is asking about ... Wait, based on 
what I’ve learnt ... But, the problem is... Wait, we 
need to find...However, it is unlikely that...Again, 
the user is explicityly asking for computing... Thus, 
the final answer to the original problem is ...

setup
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Figure 1: A conceptual overview of our framework for
modeling the long reasoning CoT with a graph structure.
This graph-based representation enables stronger read-
ability for human researchers, systematic interpretability
of the global structure, and quantifiable graph metrics
for in-depth analysis.

with advanced reasoning behavior, which is often084

linked to higher problem-solving performance.085

To summarize, our contributions in this paper086

include:087

• a novel reasoning-graph toolkit that converts088

natural language long Chain-of-Thought into089

analyzable graph structures, enabling quantifi-090

cation of reasoning through topological and091

semantic metrics.092

• comprehensive analysis of how different093

prompting strategies may influence reasoning094

LLMs, establishing quantitative boundaries095

for prompt engineering optimization.096

• quantifiable indicators of reasoning quality097

beyond task accuracy, providing a higher-098

level cognitive understanding of reasoning in099

LLMs.100

2 Related Works101

Test-Time Scaling Similar to human dual-102

processing hypothesis of the mind (Da Silva,103

2023), augmenting the computational budget at104

test-time has been shown to substantially enhance105

the reasoning capabilities of large language mod-106

els (LLMs) (OpenAI et al., 2024; OpenAI, 2025;107

Kavukcuoglu, 2025; Anthropic, 2025). These rea- 108

soning LLMs (RLMs) show highly advanced self- 109

reflection, backtracking, and cross-validation be- 110

havior during the extended chain-of-thought (CoT) 111

responses, enabling them to tackle intricate rea- 112

soning challenges and outperform previous con- 113

ventional base LLMs (Li et al., 2025; Chen et al., 114

2025). 115

Few-Shot Learning Few-shot prompting once 116

emerged as a crucial technique for enhancing the 117

performance and adaptability of large language 118

models (LLMs) by providing limited yet highly 119

informative demonstrations (Song et al., 2023). 120

In detail, it leverages a minimal number of illus- 121

trative examples embedded directly into the in- 122

put context, enabling models to rapidly general- 123

ize across diverse tasks without explicit parameter 124

updates (Brown et al., 2020). However, many re- 125

searchers and practitioners have reported that few- 126

shot prompting could instead degrade the model’s 127

performance (DeepSeek-AI et al., 2025), signaling 128

the instability of current reasoning LLMs. In this 129

paper, we will examine the impact of zero/few-shot 130

prompting on RLM’s reasoning, assessing both the 131

quality of internal reasoning and overall perfor- 132

mance in in-context learning scenarios. Provide 133

more valuable insights for future prompt engineer- 134

ing and model optimization. 135

Long CoT Analysis Some previous studies 136

have identified a negative relationship between an 137

RLM’s accuracy and the number of reasoning to- 138

kens it generates (Ballon et al., 2025; Yang et al., 139

2025b). However, their analyses of RLMs mainly 140

relied on a one-dimensional metric: the length of 141

CoT token sequences. It still remains unclear and 142

counterintuitive why even longer system II think- 143

ing could lead to performance degradation, sug- 144

gesting a gap in our understanding of how RLMs 145

work in general. In this work, we introduce a com- 146

prehensive structured framework to formulate the 147

chain-of-thought process, offering deeper insights 148

into the underlying reasoning behavior. 149

3 Constructing Reasoning Graph from 150

Raw Reasoning Tokens 151

Given more computational resources at infer- 152

ence time, Reasoning Language Models (RLMs) 153

can autonomously explore feasible solutions, per- 154

form cross-validations, actively access intermedi- 155

ate steps, and synthesize consolidations through 156
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Step Perspective
<think>⏎
Okay, I need to find the volume...
Hmm. Alright, let’s start by recalling spatial geometry...
...
Therefore, the volume is 3π√3. Probably written as 3√3 π.
Let   me check once more.⏎
...
Yes, the steps are all correct. The key was to ...so once 
you have the radius, just plug into the volume formula. All 
steps check out. So the volume is 3π√3...
**Final Answer**:⏎
The volume of the cone is \\boxed{3\\sqrt{3}\\pi}. ⏎
</think>
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Problem Restate: Okay, I need to find the volume of a 
cone that has the...

Organize Knowns: Hmm. Alright, let’s start by 
recalling spatial geometry...

Solve Equations: Let's solve for r. First...So: 2√3 = 
√(r² + 3)...Therefore, r = √9 = 3. ...

Compute Volume: The volume of the cone is (1/3)πr²h. 
So plugging in the values: ...(1/3)π*9*√3 = 3π√3.

Figure 2: Our pipeline for building the graph structure from reasoning large language models’ output. Starting from
raw token perspective, we first use "\n\n" as natural delimiters to split the raw reasoning tokens into an ordered
list of reasoning units. Then we perform logical clustering to combine logically cohesive reasoning units into a
reasoning step (node), shifting into intermediate step perspective. Lastly, we detect semantical relationships (edge)
between steps (node) to reveal the high-level graph perspective from reasoning LLM’s output.

extended chain-of-thought tokens. This critical157

feature allows RLMs to fully release their inter-158

nal reasoning potential under sophisticated chal-159

lenges. However, current test-time scaling is also a160

double-edged sword: as models are encouraged to161

elaborate and reflect, their behavior often becomes162

unreliable and less predictable.163

Counterintuitively, the “thinking out loud” style164

of RLM should, in theory, offer richer data for165

LLM interpretability research and help us under-166

stand how LLM actually reasons. Yet, to the best167

of our knowledge, there is still a lack of effective168

methods to systematically analyze and model the169

semantic content of RLM-generated reasoning to-170

kens. To fill this gap, we propose a novel, struc-171

tured approach for representing and dissecting the172

reasoning process of RLMs.173

It is widely acknowledged that RLMs tend to174

generate complex, branching chains of thought.175

This pattern closely mirrors the way humans rea-176

son: rather than following a strictly linear path,177

our thinking often leaps between ideas, drawing178

on contextual cues, connecting prior knowledge179

and memories, searching for potential solutions,180

and constantly checking for errors along the way.181

It is precisely this interplay of multiple analytical182

paths that allows us to synthesize a coherent con-183

clusion. Inspired by this convoluted human mind184

map, we propose a unified, graph-based framework185

(Figure 2) to model the structure of RLM outputs.186

3.1 Graph Formalization187

We can formally define the reasoning graph G =188

(V,A) with the following components:189

• V = {s1, s2, ..., sn}: An ordered list of ver-190

tices representing semantically clustered rea-191

soning steps.192

• A ∈ {−1, 0, 1}n×n: An adjacency matrix rep- 193

resenting the ternary logical relationship be- 194

tween reasoning steps. 195

In the remaining part of this section, we will 196

first introduce a method for clustering long and 197

verbose reasoning traces into discrete, semantically 198

coherent reasoning steps, each of which will serve 199

as a node in a reasoning graph (Section 3.2). We 200

then describe how to extract semantic dependencies 201

between these steps to form the edges of the rea- 202

soning graph ((Section 3.3)). This reasoning graph 203

construction method will be used in subsequent 204

sections as a key tool for quantitatively analyzing 205

RLM’s behavior. 206

3.2 Clustering Raw Tokens into Discrete 207

Reasoning Steps 208

Long chain-of-thought (CoT) sequences generated 209

by RLMs often span thousands of tokens. While 210

these detailed traces offer rich insight into the 211

model’s reasoning process, their length and frag- 212

mented nature present challenges for systematic 213

analysis. A common pre-processing strategy is to 214

segment the output based on explicit delimiters: 215

RLMs frequently insert the token “\n\n” to de- 216

note boundaries between successive thoughts. Let 217

T = (t1, t2, . . . , tN ) represent the generated token 218

sequence and use D = "\n\n" as the delimiter. 219

We thus obtain an initial partition into reasoning 220

units: 221

U = (u1, u2, . . . , uM ), 222

where each ui is a contiguous subsequence 223

bounded by delimiters, i.e., ui = (tsi , . . . , tei) and 224

tei+1 = D. 225

Despite its simplicity, delimiter-based segmenta- 226

tion has two fundamental limitations. For complex 227

tasks such as advanced mathematical reasoning or 228
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Pclu Context-aware Logical Units Clustering

Instruction:
You are given a sequence of reasoning units...
[Logical Units Template]

Your task is to cluster consecutive reasoning units that are
semantically connected...

Expected Output Format: [Output Guideline]

Output: {"s0": {"title":..., "content":...},...}

Figure 3: Our abbreviated prompt template to guide
LLM to cluster reasoning units into logical cohesive
reasoning steps. For detailed Logical Units Template &
Output Guideline see Appendix A.

code generation, M can be excessively large, re-229

sulting in an unwieldy number of fragmented units230

that hinder semantic analysis and dependency ex-231

traction. Moreover, the model’s stylistic tendency232

to insert delimiters frequently can lead to reason-233

ing units that are too fine-grained, often lacking234

coherent context for standalone analysis.235

Context-aware Logical Units Clustering. To236

address these challenges, we introduce a context-237

aware logical units clustering procedure that ag-238

gregates semantically related reasoning units into239

higher-level reasoning steps. Specifically, we lever-240

age a large language model (LLM) to sample pos-241

sible clusterings under decoding temperatures τr242

conditioned on a carefully designed prompt tem-243

plate Pclu (see Figure 3) Pclu:244

S = (s1, s2, . . . , sK) ∼ PLLM(S | Pclu, U ; τr),245

where each sj is ideally formed by concatenating246

adjacent ui meeting a semantic affinity criterion,247

with K ≪ M . This aggregation aims to ensure248

that each reasoning step sj provides sufficient con-249

text for downstream analysis while maintaining a250

manageable total number of segments.251

Yet, given the generative nature of LLMs, re-252

peated invocations of the clustering prompt do not253

guarantee an identical clustering. Rather than treat-254

ing this variability as noise, we further harness it255

through a further ensemble sampling and selection256

approach to identify the most coherent clustering.257

Ensemble Sampling To capture the full range of258

possible clustering, we generate an ensemble of B259

candidate instances of clustering by independently260

sampling PLLM(S | Pclu, U) from with varied ran-261

dom seeds and decoding temperatures: 262

C = {C(1), C(2), . . . , C(B)} 263

C(b) = (s
(b)
1 , . . . , s

(b)
Kb

) 264

Each C(b) is a candidate clustering of the original 265

reasoning units. 266

To objectively compare these candidates, we in- 267

troduce a weighted average quality score that eval- 268

uates key properties of each clustering. In general, 269

we compute 270

F (C(b)) =

L∑
ℓ=1

wℓ ϕℓ(C
(b)), 271

where each ϕℓ is a quantitative metric and the 272

weights wℓ are non-negative and sum to one. In our 273

experiments, we consider three intuitive criteria: 274

Criteria 1 Intra-step coherence. 275

ϕic(C
(b)) =

1

Kb

∑
j

2
∑

u<v∈s(b)j

cos(eu, ev)

|s(b)j |(|s
(b)
j | − 1)

276

which rewards semantic similarity among units 277

within each reasoning step. 278

Criteria 2 Step-to-step separation. 279

ϕsep(C
(b)) =

1

Kb − 1

Kb−1∑
j=1

[
1− cos(e

s
(b)
j

, e
s
(b)
j+1

)

]
280

which encourages semantic distinctiveness be- 281

tween adjacent reasoning steps. 282

Criteria 3 Length regularity. 283

ϕlen(C
(b)) = 1−

∣∣∣∣∣∣
1
Kb

∑
j |s

(b)
j |

µref
− 1

∣∣∣∣∣∣ 284

where µref is a referenced average step length 285

derived from the original CoT structure (see Ap- 286

pendix E for details), penalizing pathological 287

segmentations that are too short or too long. 288

Here, e· denotes a sentence embedding vector 289

derived from a pretrained encoder. 290

The final segmentation is selected as the candi- 291

date with the highest composite score: 292

V := C∗ = argmax
C∈C

F (C). 293
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Psem Adjacency Matrix Sampling

Instruction:
Given an ordered sequence of K reasoning steps,...
[Logical Steps Template]

...Your task is to decide whether step i supports, contra-
dicts, or is independent of step j...

Expected Output Format: [Output Guideline]

Output: {(s0, s1):..., (s0, s2): ..., (s1, s0): ...}

Figure 4: Our abbreviated prompt template to detect
semantical relationship between two different reasoning
steps. For detailed input/output template and intuition
behind the instruction, see Appendix A

This ensemble–scoring framework offers a flexible294

yet principled way to select coherent and analyz-295

able reasoning step from all plausible instances of296

clustering generated by the LLM. The complete297

clustering and selection algorithm is summarized298

in Appendix D.299

For all subsequent analyses, each sj in the se-300

lected C∗ is treated as a node in our reasoning301

graph, providing a compact yet semantically rich302

foundation for structural and dependency analysis.303

3.3 Extracting Inter-Dependencies between304

Reasoning Steps305

our next objective is to construct a directed seman-306

tic graph G = (V,E), where each edge (i, j) ∈ E307

represents an inferred relationship—such as sup-308

port or contradiction—between step si and step sj .309

To achieve this, we propose a rejection sampling-310

based semantic detection procedure that fuses311

global predictions from multiple LLM samplings.312

Adjacency Matrix Sampling. We first obtain di-313

verse global views of step-wise dependencies by re-314

peatedly prompting the LLM with a structured tem-315

plate Psem (see Figure 3). Each prompt presents the316

entire ordered set of reasoning steps and requests317

predictions for every ordered pair (i, j), i < j. The318

model outputs a full adjacency matrix:319

A(r) ∼ PLLM (A | Psem, V ; τr)320

A(r) ∈ {−1, 0, 1}K×K ,321

where A
(r)
ij = 1 (support), −1 (contradict), or 0322

(independent). We repeat this sampling R times,323

varying the decoding temperature τr to enhance di-324

versity. This strategy ensures the LLM can leverage325

the full context for globally consistent predictions326

while capturing uncertainty.327

Adaptive Edge-wise Probability Estimation. 328

For each possible edge (i, j), we aggregate predic- 329

tions across the R samples to estimate the empirical 330

probability of each relation: 331

p̂ij(c) =
1

R

R∑
r=1

1
[
A

(r)
ij = c

]
, c ∈ {−1, 0, 1}. 332

These aggregated probabilities provide a measure 333

of confidence for the existence and type of each 334

possible semantic relation. 335

Rather than relying on a fixed number R of sam- 336

pled adjacencies, we fuse information across all 337

samples for a robust final graph construction. Sam- 338

pling continues until the estimated probabilities 339

for all edges reach a specified confidence level. 340

Specifically, for each edge, we compute the pooled 341

standard error: 342

SEij =

√√√√ 1

R

∑
l∈{−1,+1}

p̂ij(l)
(
1− p̂ij(l)

)
343

Here, we explicitly omitted (l = 0) case to sim- 344

plify the estimator while preserving the accuracy 345

required for the adaptive stopping criterion (see Ap- 346

pendix F). The process halts once maxi<j SEij ≤ 347

ε 1, or a hard cap Rmax is reached. This guarantees 348

that our edge probability estimations are statisti- 349

cally reliable before moving to the next phase. 350

With reliable probability estimates, we next con- 351

struct the final adjacency matrix via a consensus 352

rule. For each pair (i, j), we define the signed 353

confidence: 354

wij := p̂ij(+1)− p̂ij(−1), wij ∈ [−1, 1]. 355

We then apply a dual-threshold criterion: 356

Aij =


+1, if wij ≥ τpos

−1, if wij ≤ −τneg

0, otherwise,

Aji = −Aij , 357

where τpos and τneg can be tuned independently2. 358

The resulting weighted adjacency W =
[
wij

]
i,j

359

is preserved for future analysis, while we pay at- 360

tention to the hard-thresholded A = sign(W ) ⊙ 361

1[|W | ≥ τ ], which serves as the binary backbone 362

for structural analysis. We also include a complete 363

1in practice ε=0.05 suffices
2We typically set τpos = 0.4, τneg = 0.3 to reflect the

empirical imbalance between supporting and contradicting
links.
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adjacency matrix sampling and adaptive edge esti-364

mation algorithm in Appendix D.365

To sum up, the pipeline described in this section366

provides a principled and systematic framework367

for converting raw reasoning traces from RLMs368

into interpretable graph structures. This unified369

graph representation serves as a powerful analyti-370

cal tool, enabling fine-grained examination of how371

RLMs organize, connect, and validate intermedi-372

ate inferences. In the following sections, we will373

leverage this reasoning graph formalism to quan-374

titatively analyze the internal reasoning dynamics375

and decision-making behaviors of advanced RLMs.376

4 Reveal Cognitive Behavior of RLM with377

Reasoning Graph378

Existing analysis of Reasoning LLMs (RLMs) have379

primarily relied on performance-based metrics such380

as accuracy or token-level statistics like reasoning381

length. While these measures offer a coarse under-382

standing of model behavior, they fail to capture the383

complex and dynamic structure exposed by RLM’s384

output.385

In this section, we propose to move beyond386

token-level perspectives and instead leverage the387

reasoning graph constructed in Section 3 as an ef-388

fective medium for cognitive analysis. By repre-389

senting the model’s chain-of-thought as a graph of390

semantically coherent reasoning steps (nodes) and391

their directed relationships (edges), we can system-392

atically quantify the structure, flexibility, and ef-393

fectiveness of model reasoning. This shift enables394

us to answer deeper questions about how RLMs395

organize, explore, and consolidate information dur-396

ing problem problem-solving process. Figure 2397

provides a concrete example of RLM’s reasoning398

process for solving a spatial geometric problem.399

All implementation details are included in Ap-400

pendix C.401

4.1 Graph-Based Metrics for Quantifying402

Model Reasoning403

To systematically analyze the cognitive organiza-404

tion of RLM reasoning, we introduce several graph-405

based metrics, each designed to capture a distinct406

structural aspect of the reasoning process.407

Exploration Density (ρE): Measures the overall408

connectivity among reasoning steps, reflecting the409

breadth of the model’s exploration.410

ρE(G) =
|E|

|V |(|V | − 1)
411

Higher values indicate denser intra-reasoning- 412

step correlations. 413

Branching Ratio (γB): Quantifies the diver- 414

sity of alternative reasoning paths, capturing the 415

model’s capacity for exploring parallel ideas and 416

diverse solutions. 417

γB(G) =
|{s ∈ V | d−(s) > 1}|

|V |
418

where d−(s) is the out-degree of node s. 419

Convergence Ratio (γC) : Captures the extent 420

to which the model integrates multiple reasoning 421

threads into unified conclusions, indicating its abil- 422

ity to synthesize disparate ideas. 423

γC(G) =
|{s ∈ V | d+(s) > 1}|

|V |
(1) 424

where d+(s) is the in-degree of node s. 425

Linearity (ℓ): Represents the prevalence of 426

strictly sequential reasoning, measuring the frac- 427

tion of nodes with degree greater than one. 428

ℓ(G) = 1− |{s ∈ V | d(s) > 2}|
|V |

(2) 429

where d(s) is the total degree of node s. 430

Collectively, these metrics offer a comprehen- 431

sive high-level view of the reasoning graph struc- 432

ture. They allow us to quantify not only how much 433

the model reasons, but how it organizes its think- 434

ing through branching exploration, convergence, or 435

rigid linearity. In the following analyses, we will 436

show how these quantities are directly related to 437

and influence model performance. 438

4.2 Impact of Prompting Paradigms on 439

Reasoning Structure 440

Having established our graph-based metrics, we 441

next investigate how different prompting styles 442

shape the internal reasoning structure of RLMs. 443

We focus on three few-shot demonstration styles: 444

Minimal, Concise, and Explanatory. (see Ap- 445

pendix B for detailed definitions). Each style pro- 446

vides a distinct richness of context, ranging from 447

bare problem–answer pairs to human-like concise 448

reasoning and extended, self-reflective chains gen- 449

erated by the model itself. 450
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Figure 5: Few-shot prompting accuracy on GPQA-
Diamond∗ dataset using reasoning Qwen-7B (distilled
from DeepSeek-R1). The accuracy drops dramatically
with respect to the increasing number of examples
within the prompt.

Prompting Style Modulates RLM Performance.451

Our results reveal a consistent and striking trend:452

increasing the number of in-context examples leads453

to a monotonic decline in accuracy, regardless of454

demonstration style (Figure 5). However, the sever-455

ity of this decline is strongly related to the struc-456

ture and verbosity of the provided exemplars, with457

Minial being the most RLM-unfriendly prompting458

style.459

While there is a hypothesis explaining that few-460

shot prompting leads to a reduction in total length461

of I/O tokens (Figure 6), raw length alone does462

not fully explain the loss of reasoning effective-463

ness. Instead, these phenomena call for deeper464

understanding and explanations for the observed465

degradation in model performance.466

Structural Shifts Triggered by Prompting Styles467

To better understand these performance variations,468

we examine the corresponding changes in reason-469
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Figure 6: Average number of tokens under different
numbers of shots with explanatary few-shot style.
Few-shot prompting leads to significantly fewer rea-
soning tokens compared with zero-shot prompting.
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Figure 8: Different metrics of reasoning graph given
different numbers of few-shot examples.

ing graph topology across prompting conditions 470

(Figure 8). It turns out that zero-shot prompt- 471

ing induces richer, more complex graph structures: 472

graphs feature higher exploration density, greater 473

branching and convergence, and a more diverse dis- 474

tribution of reasoning step counts (Figure 7). This 475

suggests that, when not being influenced by extra 476

demonstrations, the model engages in more adap- 477

tive and active exploration, revisiting, branching, 478

and synthesizing reasoning steps. 479

In contrast, increasing the number of few-shot 480

exemplars, especially in more verbose forms, sys- 481

tematically reduces both branching and conver- 482

gence ratios, resulting in more linear graph archi- 483

tectures. The model appears to mimic the struc- 484

ture of the provided examples, limiting its capac- 485

ity for active online reasoning. Notably, even a 486

single demonstration can trigger a significant dis- 487

tributional shift toward shorter, more stereotyped 488
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Prompt Type Acc (%) ρE γB γC ℓ Mean Steps

LLAMA-8B∗

Zero-shot 44.5 0.117 0.564 0.676 0.744 11.6
Concise 41.2 0.065 0.252 0.426 0.947 8.6

Explanatory 32.7 0.057 0.238 0.392 0.926 10.8

QWEN-14B∗

Zero-shot 51.8 0.122 0.612 0.719 0.716 15.8
Concise 48.5 0.069 0.264 0.453 0.931 12.2

Explanatory 45.3 0.061 0.243 0.420 0.946 14.2

QWEN3-32B

Zero-shot 56.2 0.188 0.835 0.760 0.444 19.0
Concise 53.7 0.110 0.529 0.634 0.766 15.6

Explanatory 50.1 0.069 0.283 0.449 0.931 18.0

Table 1: Comparison of model performance and rea-
soning graph metrics across different model sizes and
prompting paradigms. ∗ denotes reasoning models that
are officially distilled from DEEPSEEK-R1.

reasoning chains.489

These findings underscore the critical role of few-490

shot prompting styles in shaping RLM reasoning.491

Including no or a few extra demonstrations encour-492

ages flexible exploration and integration, which493

fosters more RLM’s innate sophisticated reason-494

ing graphs and leads to higher task performance.495

This motivates a shift in prompt engineering: ef-496

fective demonstrations should balance informative-497

ness with structural diversity, avoiding excessive498

unnecessary context that suppresses the model’s499

reasoning potential.500

4.3 Structural Signatures of Effective501

Reasoning502

To comprehensively reveal the relationship be-503

tween reasoning structure and task performance,504

we present in Table 1 a systematic comparison of505

graph-based metrics across multiple model scales506

and prompting paradigms. Several key patterns507

emerge that robustly distinguish effective reason-508

ing.509

Sophisticated Reasoning Graph Structure Drive510

Success. Across all models and prompt types,511

higher accuracy is consistently associated with512

richer reasoning graph structure: increased explo-513

ration density (ρE), higher branching ratio (γB),514

and greater convergence ratio (γC). Notably, larger515

models (e.g., Qwen3-32B) exhibit both the highest516

accuracy and the most complex graph structures,517

particularly under zero-shot prompting. This indi-518

cates that effective reasoning is achieved through a519

harder exploration (multiple attempts generation)520

and integrative convergence (synthesizing reason-521

ing threads). 522

Prompt Constraints Induce Linearity and Im- 523

pair Performance. Prompt types that impose 524

stronger structural constraints consistently yield 525

lower branching and convergence ratios, along with 526

increased linearity (ℓ). This shift toward more 527

linear graph topologies is directly correlated with 528

performance degradation. The effect is most pro- 529

nounced in smaller models but persists even for 530

larger architectures. These results again highlight 531

the double-edged nature of few-shot demonstra- 532

tions for RLM. 533

Quantitative Correlations. We extend the Pear- 534

son correlation analysis to all four graph-based 535

metrics and observe that exploration density (r = 536

0.68), branching ratio (r = 0.67), and convergence 537

ratio (r = 0.68) each exhibit a strong positive as- 538

sociation with accuracy with all significant at the 539

0.05 level. These results indicate that denser, more 540

exploratory and convergent reasoning paths are 541

closely linked to model accuracy. Notably, these 542

trends persist across all model scales and prompting 543

regimes, highlighting the robustness and explana- 544

tory value of our structural framework. 545

In summary, these results provide compelling 546

evidence demonstrating that reasoning graph anal- 547

ysis provides highly correlated and deep insights 548

into the internal cognitive dynamics of reasoning 549

language models. 550

5 Conclusion 551

This paper introduces a novel graph-based frame- 552

work for analyzing reasoning output produced by 553

reasoning large language models, offering quan- 554

tifiable findings about how models organize their 555

thought flow under various factors. We first pro- 556

pose a reasoning graph toolkit that efficiently con- 557

verts raw Chain-of-Thought tokens into analyzable 558

graph structures. We then offer discovery regard- 559

ing how various prompting styles may cast signifi- 560

cant influence on RLM’s internal reasoning struc- 561

ture and thus final performance. We also provide 562

strong evidence supporting that graph-level predic- 563

tors strongly correlate with RLM problem-solving 564

performance. These findings not only establish 565

quantitative insights for future prompt engineering 566

for reasoning models, but also provide a new struc- 567

tural perspective for evaluating reasoning quality 568

beyond traditional metrics and interpreting how 569

LLMs reason at a higher level. 570
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6 Limitations & Future Work571

While our current graph-based analysis of RLMs fo-572

cuses primarily on mathematical and coding tasks,573

extending this framework to broader domains, such574

as multi-modal or open-domain reasoning, may575

yield deeper insights into model behavior across576

varied scenarios and further inform our understand-577

ing of test-time scaling. In addition, the quantifi-578

able structural metrics we propose provide a foun-579

dation for future research to explore more localized580

patterns and relational dynamics within reasoning581

graphs. We believe that ongoing work along these582

lines can contribute to a more comprehensive un-583

derstanding and interpretability of large language584

models in practice.585
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A Experimental Prompts752

To facilitate robust and reproducible semantic anal-753

ysis of RLM-generated reasoning traces, we design754

two explicit prompting templates, detailed docu-755

mented in Template 9 and Template 10.756

Template 9 guides the model to cluster rea-757

soning units into coherent, higher-level reasoning758

steps. This step provides context-aware candidate759

instances of clustering of long chain-of-thought760

tokens.761

Template 10 is used to extract the seman-762

tic relationship between every pair of reasoning763

steps. By explicitly labeling each pair as support,764

contradict, or independent, this template en-765

ables the later probabilistic estimation of interde-766

pendencies within the model’s chain-of-thought.767

B Few-Shot Prompting Styles768

Most existing research works reporting the perfor-769

mance degradation of RLM given few-shot prompt-770

ing have not explicitly analyzed the structure of771

few-shot examples, while the concrete formulation772

of few-shot demonstrations could play a significant773

role on the behavior of language model. To iso-774

late potential structural factors contributing to this775

performance degradation, in this paper, we intro-776

duce and analyze three distinct few-shot prompting777

style:778

i) Minimal: Minimal exemplars containing only779

problem statements and final answers, without in-780

termediate reasoning steps or explanatory content.781

ii) Concise: Human-authored concise reasoning782

traces characterized by short, linear progression783

from problem formulation to solution with minimal784

exploration.785

iii) Explanatory: RLM-generated long reasoning786

sequences featuring extensive problem space ex-787

ploration, iterative verification mechanisms, and788

explicit self-reflection.789

C Implementation Details790

Models We evaluate a range of reasoning791

LLMs, including DeepSeek-R1-distilled-Llama-792

8B, DeepSeek-R1-distilled-Qwen-14B, and793

QWEN3-32B (Yang et al., 2025a). For conditional794

sampling (PLLM), we adopt DEEPSEEK-V3-795

0324 (DeepSeek-AI et al., 2024).796

Hyper-parameters To ensure reproducibility,797

we set the generation temperature to 0 when pro-798

ducing reasoning chains (CoT) with RLMs. Dur-799

Pclu Logical Clustering

Instruction:
You are given a sequence of reasoning units, each repre-
senting a contiguous fragment from a language model’s
chain-of-thought (CoT) output. These units have typically
been segmented using raw delimiters and may be overly
fine-grained or fragmented for downstream analysis.
[Input Template]

Your task is to cluster consecutive reasoning units that are
semantically connected, producing a concise and coherent
set of higher-level reasoning steps. Each reasoning step
should: - Combine all units that express a single coher-
ent sub-task, logical inference, or closely related set of
thoughts. Aim to group together units that collectively
advance the same intermediate goal or logical point. - En-
sure that each resulting reasoning step contains enough
self-contained context to be analyzed independently, but
avoid excessive merging that would result in overly broad
or incoherent segments. - Maintain the original sequential
order of reasoning. - Avoid splitting apart reasoning units
that clearly belong to the same sub-problem or share strong
contextual dependency. - Use concise yet informative titles
for each reasoning step, reflecting its main logical function
or purpose (e.g., "Restate Problem", "Recall Known Facts",
"Solve Equation", "Synthesize Solution", etc.).

Expected Output Format:

{
"s0": {"title": "...", "content": "..."},
"s1": {"title": "...", "content": "..."},
...

}

where each "sX" key indexes an ordered reasoning step,
with an appropriate "title" summarizing its logical pur-
pose and "content" containing the merged, cleaned rea-
soning text.

Please ensure the output is structured, coherent, and well-
suited for subsequent semantic analysis or graph-based
modeling of the reasoning process.

Output: {"s0": {"title":..., "content":...},...}

Figure 9: Complete instruction (Pclu) for clustering rea-
soning units into logical cohesive reasoning steps.

ing logical clustering and semantics detection pro- 800

cesses, we keep τr ∼ [0.3, 0.7] to ensure sampling 801

diversity. 802

Datasets All experiments are conducted on the 803

GPQA-Diamond benchmark (Rein et al., 2023). 804

To facilitate robust reasoning analysis and avoid 805

potential training data contamination, we convert 806

multiple-choice items into open-ended questions, 807

requiring models to actively generate reasoning 808

CoT as well as final answer rather than matching 809

existing choices. 810

D algorithm 811

This appendix provides the detailed pseudocode for 812

the core algorithmic components of our framework: 813
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Psem Semantics Detection
Instruction:
Given an ordered sequence of K reasoning steps, each
representing a semantically meaningful stage in a language
model’s chain-of-thought output, your task is to systemati-
cally assess the semantic relationship between each pair of
reasoning steps.
[Logical Steps Template]

For every ordered pair (i, j) with 1 ≤ i < j ≤ K, your
task is to decide whether step i: - supports step j (i.e.,
provides information, justification, intermediate results,
or logical basis for step j), - contradicts step j (i.e.,
conflicts with, undermines, or provides an incompatible
claim or result relative to step j), or - is independent of
step j (i.e., is neither directly supportive nor contradictory;
the steps are unrelated in logical content).
When making your decision, consider both explicit logical
connections (e.g., mathematical derivation, use of previous
results, direct contradiction) and more implicit semantic
dependencies (e.g., fact recall enabling downstream calcu-
lations).

Expected Output Format:

{
"(0,1)": "support",
"(0,2)": "independent",
"(1,2)": "contradict",
...

}

where each key "(i,j)" denotes an ordered pair of step
indices (with i < j), and each value is one of "support",
"contradict", or "independent".

For each pair, provide only one label reflecting the most
salient semantic relationship. If the relationship is unclear
or borderline, default to independent unless clear evi-
dence suggests support or contradiction.

Ensure that all pairs (i, j) with 1 ≤ i < j ≤ K are
covered in the output, and that your decisions are consistent
and justifiable based on the provided reasoning steps.

Output: {(S0, S1):..., (S0, S2): ..., (S1, S0): ...}

Figure 10: Complete instruction (Psem) for detecting
semantical relationship among all reasoning steps.

ensemble-based clustering of reasoning units 1,814

and adaptive sampling-based construction of the815

semantic dependency graph 2. These algorithms816

operationalize the methods described in the main817

text, clarifying the iterative processes and statisti-818

cal aggregation techniques used to ensure robust,819

uncertainty-aware structure induction from RLM820

outputs.821

E Reference Step Length µref822

The ideal average step length µref serves as a ref-823

erence for the length-regularity term and is com-824

puted by dividing the total number of tokens N825

by a target number of reasoning steps Ktarget. We826

Algorithm 1: Ensemble-Based Clustering
of Reasoning Units
Input: Reasoning units U , clustering

prompt Pcluster, number of samples
B, temperature grid {τ1, . . . , τB}

Output: Selected segmentation C∗

1 for b← 1 to B do
2 C(b) ∼ PLLM(S | Pcluster, U ; τb);
3 F (b) ← F

(
C(b)

)
;

4 C∗ ← argmaxb F
(b);

5 return C∗;

set Ktarget = min(max(3, ⌈
√
M⌉), 30), where 827

M is the number of initial delimiter-based seg- 828

ments. This square-root heuristic with lower and 829

upper bounds ensures µ_ref adapts to different CoT 830

lengths and discourages both over-segmentation 831

and overly coarse steps, enabling a scale-invariant 832

and task-agnostic regularization. 833

F Standard-Error Derivation for the 834

Signed Edge Confidence 835

Let a single LLM adjacency sample yield a la- 836

bel c ∈ {−1, 0,+1} for the ordered pair (i, j), 837

corresponding to contradict, independent, and 838

support, respectively. Define the random variable 839

Z =


+1, c = +1,

−1, c = −1,
0, c = 0.

840

The signed edge confidence is the empirical mean 841

of Z over R samples, 842

wij =
1

R

R∑
r=1

Z(r) = p̂ij(+1) − p̂ij(−1), 843

where p̂ij(c) =
1
R

∑
r 1[c

(r) = c]. 844

Because E[Z] = p(+1)− p(−1), only the two 845

informative labels contribute to the signed mean. 846

The variance of Z under the true distribution p is 847

Var(Z) 848

= (+1)2p(+1) + (−1)2p(−1) + 02p(0) 849

−
[
p(+1)− p(−1)

]2
850

= p(+1) + p(−1) −
[
p(+1)− p(−1)

]2
. 851

Replacing p(·) with their empirical estimates and 852

dividing by R yields an unbiased standard-error 853
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estimator:854

SEij =

√√√√ 1

R

∑
l∈{−1,+1}

p̂ij(l)
(
1− p̂ij(l)

)
855

The independent label (l = 0) contributes nei-856

ther positive nor negative mass to Z; its influ-857

ence is expressed implicitly via the complement858

1−p(+1)−p(−1). A full multinomial variance ex-859

pression would add a term−2 p(+1)p(−1), whose860

magnitude is O(p(+1)p(−1)) and empirically neg-861

ligible for our edge-sparse setting. Omitting this862

term simplifies the estimator while preserving the863

accuracy required for the adaptive stopping crite-864

rion865

Algorithm 2: Adaptive Sampling-based Se-
mantic Edge Construction
Input: Reasoning steps S = (s1, . . . , sK),

prompt Psem, confidence threshold ε,
maximum samples Rmax, thresholds
τpos, τneg

Output: Adjacency matrix A, edge weights
W

1 Initialize counts: Cij(c)← 0 for all i < j
and c ∈ {−1, 0,+1} ;

2 r ← 0;
3 repeat
4 r ← r + 1;
5 Sample A(r) ∼ PLLM(A | Psem, V ; τr) ;
6 foreach i < j do
7 c← A

(r)
ij ;

8 Cij(c)← Cij(c) + 1;

9 foreach i < j do
10 foreach c ∈ {−1, 0,+1} do
11 p̂ij(c)← Cij(c)

r ;

12 SEij ←√
1
r

∑
l∈{−1,+1} p̂ij(l)(1− p̂ij(l));

13 until maxi<j SEij ≤ ε or r ≥ Rmax;
14 foreach i < j do
15 wij ← p̂ij(+1)− p̂ij(−1);
16 if wij ≥ τpos then
17 Aij ← +1, Aji ← −1;
18 else
19 if wij ≤ −τneg then
20 Aij ← −1, Aji ← +1;
21 else
22 Aij ← 0, Aji ← 0;

23 Wij ← wij , Wji ← −wij ;

24 return A, W ;
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