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Abstract

Recent advances in test-time scaling have en-
abled Large Language Models (LLMs) to dis-
play sophisticated reasoning abilities via ex-
tended Chain-of-Thought (CoT) generation.
Despite their impressive reasoning abilities,
Reasoning LLMs (RLMs) frequently display
unstable behaviors, e.g., hallucinating unsup-
ported premises, overthinking simple tasks, and
displaying higher sensitivity to prompt varia-
tions. This raises a deeper research question:
How can we represent the reasoning process
of RLMs to map their minds? To address this,
we propose a unified graph-based analytical
framework for fine-grained modeling and quan-
titative analysis of RLM reasoning dynamics.
Our method first clusters long, verbose CoT
outputs into semantically coherent reasoning
steps, then constructs directed reasoning graphs
to capture contextual and logical dependencies
among these steps. Through a comprehensive
analysis of derived reasoning graphs, we also
reveal that key structural properties, such as ex-
ploration density, branching, and convergence
ratios, strongly correlate with models’ perfor-
mance. The proposed framework enables quan-
titative evaluation of internal reasoning struc-
ture and quality beyond conventional metrics
and also provides practical insights for prompt
engineering and cognitive analysis of LLMs.
Code and resources will be released to facili-
tate future research in this direction.

1 Introduction

Recent LLMs equipped with test-time scaling capa-
bilities, such as OpenAlI’s o-series (OpenAl et al.,
2024; OpenAl, 2025), DeepSeek-R1 (DeepSeek-
Al et al., 2025), and Gemini-2.5 (Kavukcuoglu,
2025), employ a system II, think-slow-before-
answer, pipeline that transforms how these mod-
els approach complex problems during test time.
Rather than producing outputs directly after the
input with normally limited token length, these rea-
soning models engage in explicit and free extended

reasoning through Chain-of-Thought (Wei et al.,
2022) mechanisms. This innovation enables rea-
soning models to decompose intricate challenges
in various domains, explore multiple possible so-
lutions, and self-assess intermediate conclusions
before synthesizing final responses during their
extended inference time. In general, these rea-
soning models currently outperform conventional
LLMs on various types of benchmarks, which re-
quire advanced math (Patel et al., 2024) and cod-
ing (Jimenez et al., 2024) capability.

Despite these promising advancements, reason-
ing models exhibit undesire (Chen et al., 2024)
and unstable (Yang et al., 2025b) behaviors that
challenge the established understanding of large
language models. One of the particularly strik-
ing phenomena is the performance degradation as-
sociated with few-shot learning, which in most
cases improves the performance of conventional
LLMs. Recent technique reports also documented
that these RLMs are somehow more sensitive to
prompts (DeepSeek-Al et al., 2025). We believe
these existing unclear behaviors of RLM call for
deeper investigations into how RLLMs operate and
reason.

Our research proposes a novel framework to
trace the reasoning processes from a graph perspec-
tive. While some work has previously examined
the correlation between the quantity of reasoning
tokens and RLM’s accuracy (Sui et al., 2025; Bal-
lon et al., 2025; Yang et al., 2025b), our approach
goes beyond the token perspective and focuses on
the semantic organization of the model’s reason-
ing processes. Specifically, our analytical frame-
works first cluster raw and verbose reasoning to-
kens into coherent logic steps and then map their
inter-dependencies as a graph, enabling globally se-
mantical insights into how reasoning models reason
at a higher level (Figure 1). After a comprehensive
analysis of derived reasoning graphs, we identify
specific quantifiable features that are associated
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Figure 1: A conceptual overview of our framework for
modeling the long reasoning CoT with a graph structure.
This graph-based representation enables stronger read-
ability for human researchers, systematic interpretability
of the global structure, and quantifiable graph metrics
for in-depth analysis.

with advanced reasoning behavior, which is often
linked to higher problem-solving performance.

To summarize, our contributions in this paper
include:

* anovel reasoning-graph toolkit that converts
natural language long Chain-of-Thought into
analyzable graph structures, enabling quantifi-
cation of reasoning through topological and
semantic metrics.

* comprehensive analysis of how different
prompting strategies may influence reasoning
LLMs, establishing quantitative boundaries
for prompt engineering optimization.

* quantifiable indicators of reasoning quality
beyond task accuracy, providing a higher-
level cognitive understanding of reasoning in
LLM:s.

2 Related Works

Test-Time Scaling Similar to human dual-
processing hypothesis of the mind (Da Silva,
2023), augmenting the computational budget at
test-time has been shown to substantially enhance
the reasoning capabilities of large language mod-
els (LLMs) (OpenAl et al., 2024; OpenAl, 2025;

Kavukcuoglu, 2025; Anthropic, 2025). These rea-
soning LLMs (RLMs) show highly advanced self-
reflection, backtracking, and cross-validation be-
havior during the extended chain-of-thought (CoT)
responses, enabling them to tackle intricate rea-
soning challenges and outperform previous con-
ventional base LLMs (Li et al., 2025; Chen et al.,
2025).

Few-Shot Learning Few-shot prompting once
emerged as a crucial technique for enhancing the
performance and adaptability of large language
models (LLMs) by providing limited yet highly
informative demonstrations (Song et al., 2023).
In detail, it leverages a minimal number of illus-
trative examples embedded directly into the in-
put context, enabling models to rapidly general-
ize across diverse tasks without explicit parameter
updates (Brown et al., 2020). However, many re-
searchers and practitioners have reported that few-
shot prompting could instead degrade the model’s
performance (DeepSeek-Al et al., 2025), signaling
the instability of current reasoning LLMs. In this
paper, we will examine the impact of zero/few-shot
prompting on RLM’s reasoning, assessing both the
quality of internal reasoning and overall perfor-
mance in in-context learning scenarios. Provide
more valuable insights for future prompt engineer-
ing and model optimization.

Long CoT Analysis Some previous studies
have identified a negative relationship between an
RLM'’s accuracy and the number of reasoning to-
kens it generates (Ballon et al., 2025; Yang et al.,
2025b). However, their analyses of RLMs mainly
relied on a one-dimensional metric: the length of
CoT token sequences. It still remains unclear and
counterintuitive why even longer system II think-
ing could lead to performance degradation, sug-
gesting a gap in our understanding of how RLMs
work in general. In this work, we introduce a com-
prehensive structured framework to formulate the
chain-of-thought process, offering deeper insights
into the underlying reasoning behavior.

3 Constructing Reasoning Graph from
Raw Reasoning Tokens

Given more computational resources at infer-
ence time, Reasoning Language Models (RLMs)
can autonomously explore feasible solutions, per-
form cross-validations, actively access intermedi-
ate steps, and synthesize consolidations through
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Figure 2: Our pipeline for building the graph structure from reasoning large language models’ output. Starting from
raw token perspective, we first use "\n\n" as natural delimiters to split the raw reasoning tokens into an ordered
list of reasoning units. Then we perform logical clustering to combine logically cohesive reasoning units into a
reasoning step (node), shifting into intermediate step perspective. Lastly, we detect semantical relationships (edge)
between steps (node) to reveal the high-level graph perspective from reasoning LLM’s output.

extended chain-of-thought tokens. This critical
feature allows RLMs to fully release their inter-
nal reasoning potential under sophisticated chal-
lenges. However, current test-time scaling is also a
double-edged sword: as models are encouraged to
elaborate and reflect, their behavior often becomes
unreliable and less predictable.

Counterintuitively, the “thinking out loud” style
of RLM should, in theory, offer richer data for
LLM interpretability research and help us under-
stand how LLM actually reasons. Yet, to the best
of our knowledge, there is still a lack of effective
methods to systematically analyze and model the
semantic content of RLM-generated reasoning to-
kens. To fill this gap, we propose a novel, struc-
tured approach for representing and dissecting the
reasoning process of RLMs.

It is widely acknowledged that RLMs tend to
generate complex, branching chains of thought.
This pattern closely mirrors the way humans rea-
son: rather than following a strictly linear path,
our thinking often leaps between ideas, drawing
on contextual cues, connecting prior knowledge
and memories, searching for potential solutions,
and constantly checking for errors along the way.
It is precisely this interplay of multiple analytical
paths that allows us to synthesize a coherent con-
clusion. Inspired by this convoluted human mind
map, we propose a unified, graph-based framework
(Figure 2) to model the structure of RLM outputs.

3.1 Graph Formalization

We can formally define the reasoning graph G =
(V, A) with the following components:

o V = {s1,52,..., Sp,}: An ordered list of ver-
tices representing semantically clustered rea-
soning steps.

« A e {-1,0,1}"*": An adjacency matrix rep-
resenting the ternary logical relationship be-
tween reasoning steps.

In the remaining part of this section, we will
first introduce a method for clustering long and
verbose reasoning traces into discrete, semantically
coherent reasoning steps, each of which will serve
as a node in a reasoning graph (Section 3.2). We
then describe how to extract semantic dependencies
between these steps to form the edges of the rea-
soning graph ((Section 3.3)). This reasoning graph
construction method will be used in subsequent
sections as a key tool for quantitatively analyzing
RLM’s behavior.

3.2 Clustering Raw Tokens into Discrete
Reasoning Steps

Long chain-of-thought (CoT) sequences generated
by RLMs often span thousands of tokens. While
these detailed traces offer rich insight into the
model’s reasoning process, their length and frag-
mented nature present challenges for systematic
analysis. A common pre-processing strategy is to
segment the output based on explicit delimiters:
RLMs frequently insert the token “\n\n” to de-
note boundaries between successive thoughts. Let
T = (t1,to,...,tN) represent the generated token
sequence and use D = "\n\n" as the delimiter.
We thus obtain an initial partition into reasoning
units:

U= (uy,ug,...,up),

where each w; is a contiguous subsequence
bounded by delimiters, i.e., u; = (ts,, ..., te,) and
te,41 =D.

Despite its simplicity, delimiter-based segmenta-
tion has two fundamental limitations. For complex
tasks such as advanced mathematical reasoning or
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Instruction:
You are given a sequence of reasoning units...
[Logical Units Template]

Your task is to cluster consecutive reasoning units that are
semantically connected...

Expected Output Format: [Output Guideline]

Figure 3: Our abbreviated prompt template to guide
LLM to cluster reasoning units into logical cohesive
reasoning steps. For detailed Logical Units Template &
Output Guideline see Appendix A.

code generation, M can be excessively large, re-
sulting in an unwieldy number of fragmented units
that hinder semantic analysis and dependency ex-
traction. Moreover, the model’s stylistic tendency
to insert delimiters frequently can lead to reason-
ing units that are too fine-grained, often lacking
coherent context for standalone analysis.

Context-aware Logical Units Clustering. To
address these challenges, we introduce a context-
aware logical units clustering procedure that ag-
gregates semantically related reasoning units into
higher-level reasoning steps. Specifically, we lever-
age a large language model (LLM) to sample pos-
sible clusterings under decoding temperatures 7,
conditioned on a carefully designed prompt tem-
plate Py, (see Figure 3) Pepy:

S = (s1,82,...,5K) ~ Pem(S | Pew, Us 77),
where each s; is ideally formed by concatenating
adjacent u; meeting a semantic affinity criterion,
with K < M. This aggregation aims to ensure
that each reasoning step s; provides sufficient con-
text for downstream analysis while maintaining a
manageable total number of segments.

Yet, given the generative nature of LLMs, re-
peated invocations of the clustering prompt do not
guarantee an identical clustering. Rather than treat-
ing this variability as noise, we further harness it
through a further ensemble sampling and selection
approach to identify the most coherent clustering.

Ensemble Sampling To capture the full range of
possible clustering, we generate an ensemble of B
candidate instances of clustering by independently
sampling P im(S | Pew, U) from with varied ran-

dom seeds and decoding temperatures:

c={cWH,c?® .. cBy
b b
C = (s, 50
Each C(®) is a candidate clustering of the original
reasoning units.

To objectively compare these candidates, we in-
troduce a weighted average quality score that eval-
uates key properties of each clustering. In general,
we compute

L
F(C®) =Y wepu(C?),
=1

where each ¢, is a quantitative metric and the
weights wy are non-negative and sum to one. In our
experiments, we consider three intuitive criteria:

Criteria I Intra-step coherence.
1 2 Zu<v€s(.b) cos(eu, ev)
J

9e(CY) = =3
Ky & sP)s”) - 1)

J

which rewards semantic similarity among units
within each reasoning step.

Criteria 2 Step-to-step separation.

Kp—1
1 b

eep(C?) = K1 >

[1 — cos(esg_b),es(m )
i=1

J+1

which encourages semantic distinctiveness be-
tween adjacent reasoning steps.

Criteria 3 Length regularity.

b
HXls
Mref

¢len(0(b)) =1- 1

where pgr 1s a referenced average step length
derived from the original CoT structure (see Ap-
pendix E for details), penalizing pathological
segmentations that are too short or too long.

Here, e. denotes a sentence embedding vector
derived from a pretrained encoder.

The final segmentation is selected as the candi-
date with the highest composite score:

Vi=C"= F(C).
C arg max (@)



Psem Adjacency Matrix Sampling

Instruction:
Given an ordered sequence of /& reasoning steps,...
[Logical Steps Template]

...Your task is to decide whether step ¢ supports, contra-
dicts, or is independent of step j...

Expected Output Format: [Output Guideline]

Output: {(s0, $1):-.., (S0, 52): ..., (51, 80): ...}

Figure 4: Our abbreviated prompt template to detect
semantical relationship between two different reasoning
steps. For detailed input/output template and intuition
behind the instruction, see Appendix A

This ensemble—scoring framework offers a flexible
yet principled way to select coherent and analyz-
able reasoning step from all plausible instances of
clustering generated by the LLM. The complete
clustering and selection algorithm is summarized
in Appendix D.

For all subsequent analyses, each s; in the se-
lected C* is treated as a node in our reasoning
graph, providing a compact yet semantically rich
foundation for structural and dependency analysis.

3.3 Extracting Inter-Dependencies between
Reasoning Steps

our next objective is to construct a directed seman-
tic graph G = (V, E'), where each edge (i,j) € E
represents an inferred relationship—such as sup-
port or contradiction—between step s; and step s;.
To achieve this, we propose a rejection sampling-
based semantic detection procedure that fuses
global predictions from multiple LLM samplings.

Adjacency Matrix Sampling. We first obtain di-
verse global views of step-wise dependencies by re-
peatedly prompting the LLM with a structured tem-
plate Psem (see Figure 3). Each prompt presents the
entire ordered set of reasoning steps and requests
predictions for every ordered pair (4, ), 7 < j. The
model outputs a full adjacency matrix:

A(r) ~ Piim (A ’ Psem, V; TT‘)
A e {=1,0,1} %K,

where Ag-) = 1 (support), —1 (contradict), or 0
(independent). We repeat this sampling R times,
varying the decoding temperature 7, to enhance di-
versity. This strategy ensures the LLM can leverage
the full context for globally consistent predictions
while capturing uncertainty.

Adaptive Edge-wise Probability Estimation.
For each possible edge (i, j), we aggregate predic-
tions across the R samples to estimate the empirical
probability of each relation:

pijc) = % Y1 [Ag?) - c} ,

These aggregated probabilities provide a measure
of confidence for the existence and type of each
possible semantic relation.

Rather than relying on a fixed number R of sam-
pled adjacencies, we fuse information across all
samples for a robust final graph construction. Sam-
pling continues until the estimated probabilities
for all edges reach a specified confidence level.
Specifically, for each edge, we compute the pooled
standard error:

ce{-1,0,1}.

1

SEij = — Z ﬁlj(l)(l _ﬁZ](D)

le{-1,+1}

Here, we explicitly omitted (! = 0) case to sim-
plify the estimator while preserving the accuracy
required for the adaptive stopping criterion (see Ap-
pendix F). The process halts once max;; SE;; <
e ! orahard cap Rpyax is reached. This guarantees
that our edge probability estimations are statisti-
cally reliable before moving to the next phase.

With reliable probability estimates, we next con-
struct the final adjacency matrix via a consensus
rule. For each pair (i, ), we define the signed
confidence:

wij = pij(+1) — Py (—1), wi; € [-1,1].

We then apply a dual-threshold criterion:

+1, if Wi = Tpos
Aij = —1, if wij S _Tneg Aji = _Aij7
0, otherwise,

where 7,05 and Tyee can be tuned independentlyQ.
The resulting weighted adjacency W = [wij] i
is preserved for future analysis, while we pay at-
tention to the hard-thresholded A = sign(WW) ®
1[|W| > 7], which serves as the binary backbone
for structural analysis. We also include a complete

'in practice £ =0.05 suffices

*We typically set Tpos = 0.4, Tweg = 0.3 to reflect the
empirical imbalance between supporting and contradicting
links.



adjacency matrix sampling and adaptive edge esti-
mation algorithm in Appendix D.

To sum up, the pipeline described in this section
provides a principled and systematic framework
for converting raw reasoning traces from RLMs
into interpretable graph structures. This unified
graph representation serves as a powerful analyti-
cal tool, enabling fine-grained examination of how
RLMs organize, connect, and validate intermedi-
ate inferences. In the following sections, we will
leverage this reasoning graph formalism to quan-
titatively analyze the internal reasoning dynamics
and decision-making behaviors of advanced RLMs.

4 Reveal Cognitive Behavior of RLM with
Reasoning Graph

Existing analysis of Reasoning LLMs (RLMs) have
primarily relied on performance-based metrics such
as accuracy or token-level statistics like reasoning
length. While these measures offer a coarse under-
standing of model behavior, they fail to capture the
complex and dynamic structure exposed by RLM’s
output.

In this section, we propose to move beyond
token-level perspectives and instead leverage the
reasoning graph constructed in Section 3 as an ef-
fective medium for cognitive analysis. By repre-
senting the model’s chain-of-thought as a graph of
semantically coherent reasoning steps (nodes) and
their directed relationships (edges), we can system-
atically quantify the structure, flexibility, and ef-
fectiveness of model reasoning. This shift enables
us to answer deeper questions about how RLMs
organize, explore, and consolidate information dur-
ing problem problem-solving process. Figure 2
provides a concrete example of RLM’s reasoning
process for solving a spatial geometric problem.

All implementation details are included in Ap-
pendix C.

4.1 Graph-Based Metrics for Quantifying
Model Reasoning

To systematically analyze the cognitive organiza-
tion of RLM reasoning, we introduce several graph-
based metrics, each designed to capture a distinct
structural aspect of the reasoning process.

Exploration Density (pz): Measures the overall
connectivity among reasoning steps, reflecting the
breadth of the model’s exploration.

R
VIV =1)
Higher values indicate denser intra-reasoning-
step correlations.

pE(G)

Branching Ratio (vp): Quantifies the diver-
sity of alternative reasoning paths, capturing the
model’s capacity for exploring parallel ideas and
diverse solutions.

[{s €V |d(s) > 1}]
V]

v8(G) =

where d~ () is the out-degree of node s.

Convergence Ratio (7¢) : Captures the extent
to which the model integrates multiple reasoning
threads into unified conclusions, indicating its abil-
ity to synthesize disparate ideas.

[{s €V |d¥(s) > 1}
V]

10(G) = ey

where d* (s) is the in-degree of node s.

Linearity (¢): Represents the prevalence of
strictly sequential reasoning, measuring the frac-
tion of nodes with degree greater than one.

{s €V |d(s)> 2}
14

where d(s) is the total degree of node s.

Collectively, these metrics offer a comprehen-
sive high-level view of the reasoning graph struc-
ture. They allow us to quantify not only how much
the model reasons, but how it organizes its think-
ing through branching exploration, convergence, or
rigid linearity. In the following analyses, we will
show how these quantities are directly related to
and influence model performance.

0G)=1- 2)

4.2 TImpact of Prompting Paradigms on
Reasoning Structure

Having established our graph-based metrics, we
next investigate how different prompting styles
shape the internal reasoning structure of RLMs.
We focus on three few-shot demonstration styles:
Minimal, Concise, and Explanatory. (see Ap-
pendix B for detailed definitions). Each style pro-
vides a distinct richness of context, ranging from
bare problem—answer pairs to human-like concise
reasoning and extended, self-reflective chains gen-
erated by the model itself.
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Figure 5: Few-shot prompting accuracy on GPQA-
Diamond* dataset using reasoning Qwen-7B (distilled
from DeepSeek-R1). The accuracy drops dramatically
with respect to the increasing number of examples
within the prompt.

Prompting Style Modulates RLM Performance.
Our results reveal a consistent and striking trend:
increasing the number of in-context examples leads
to a monotonic decline in accuracy, regardless of
demonstration style (Figure 5). However, the sever-
ity of this decline is strongly related to the struc-
ture and verbosity of the provided exemplars, with
Minial being the most RLM-unfriendly prompting
style.

While there is a hypothesis explaining that few-
shot prompting leads to a reduction in total length
of I/O tokens (Figure 6), raw length alone does
not fully explain the loss of reasoning effective-
ness. Instead, these phenomena call for deeper
understanding and explanations for the observed
degradation in model performance.

Structural Shifts Triggered by Prompting Styles
To better understand these performance variations,
we examine the corresponding changes in reason-
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Figure 6: Average number of tokens under different
numbers of shots with explanatary few-shot style.
Few-shot prompting leads to significantly fewer rea-
soning tokens compared with zero-shot prompting.
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Figure 7: Distribution of reasoning step counts under
zero-shot and one-shot prompting. The inclusion of
a single demonstration in one-shot settings causes a
pronounced shift in the distribution compared to zero-
shot, highlighting the sensitivity of RLM to prompt
design.
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Figure 8: Different metrics of reasoning graph given
different numbers of few-shot examples.

ing graph topology across prompting conditions
(Figure 8). It turns out that zero-shot prompt-
ing induces richer, more complex graph structures:
graphs feature higher exploration density, greater
branching and convergence, and a more diverse dis-
tribution of reasoning step counts (Figure 7). This
suggests that, when not being influenced by extra
demonstrations, the model engages in more adap-
tive and active exploration, revisiting, branching,
and synthesizing reasoning steps.

In contrast, increasing the number of few-shot
exemplars, especially in more verbose forms, sys-
tematically reduces both branching and conver-
gence ratios, resulting in more linear graph archi-
tectures. The model appears to mimic the struc-
ture of the provided examples, limiting its capac-
ity for active online reasoning. Notably, even a
single demonstration can trigger a significant dis-
tributional shift toward shorter, more stereotyped



Prompt Type Acc (%) PE B Yo J4 Mean Steps

LLAMA-8B*

Zero-shot 445 0.117 0564 0.676  0.744 11.6

Concise 41.2 0.065 0252 0426 0.947 8.6

Explanatory ~ 32.7 0.057 0238 0392 0.926 10.8
QWEN-14B*

Zero-shot 51.8 0.122 0612 0719 0.716 15.8

Concise 48.5 0.069 0.264 0453 0931 12.2

Explanatory  45.3 0.061 0.243 0420 0.946 14.2
QWEN3-32B

Zero-shot 56.2 0.188  0.835 0.760  0.444 19.0

Concise 53.7 0.110 0529 0.634  0.766 15.6

Explanatory ~ 50.1 0.069 0283 0449 0931 18.0

Table 1: Comparison of model performance and rea-
soning graph metrics across different model sizes and
prompting paradigms. * denotes reasoning models that
are officially distilled from DEEPSEEK-R1.

reasoning chains.

These findings underscore the critical role of few-
shot prompting styles in shaping RLM reasoning.
Including no or a few extra demonstrations encour-
ages flexible exploration and integration, which
fosters more RLM’s innate sophisticated reason-
ing graphs and leads to higher task performance.
This motivates a shift in prompt engineering: ef-
fective demonstrations should balance informative-
ness with structural diversity, avoiding excessive
unnecessary context that suppresses the model’s
reasoning potential.

4.3 Structural Signatures of Effective
Reasoning

To comprehensively reveal the relationship be-
tween reasoning structure and task performance,
we present in Table 1 a systematic comparison of
graph-based metrics across multiple model scales
and prompting paradigms. Several key patterns
emerge that robustly distinguish effective reason-
ing.

Sophisticated Reasoning Graph Structure Drive
Success. Across all models and prompt types,
higher accuracy is consistently associated with
richer reasoning graph structure: increased explo-
ration density (pg), higher branching ratio (yp),
and greater convergence ratio (¢ ). Notably, larger
models (e.g., Qwen3-32B) exhibit both the highest
accuracy and the most complex graph structures,
particularly under zero-shot prompting. This indi-
cates that effective reasoning is achieved through a
harder exploration (multiple attempts generation)
and integrative convergence (synthesizing reason-

ing threads).

Prompt Constraints Induce Linearity and Im-
pair Performance. Prompt types that impose
stronger structural constraints consistently yield
lower branching and convergence ratios, along with
increased linearity (¢). This shift toward more
linear graph topologies is directly correlated with
performance degradation. The effect is most pro-
nounced in smaller models but persists even for
larger architectures. These results again highlight
the double-edged nature of few-shot demonstra-
tions for RLM.

Quantitative Correlations. We extend the Pear-
son correlation analysis to all four graph-based
metrics and observe that exploration density (r =
0.68), branching ratio (r = 0.67), and convergence
ratio (r = 0.68) each exhibit a strong positive as-
sociation with accuracy with all significant at the
0.05 level. These results indicate that denser, more
exploratory and convergent reasoning paths are
closely linked to model accuracy. Notably, these
trends persist across all model scales and prompting
regimes, highlighting the robustness and explana-
tory value of our structural framework.

In summary, these results provide compelling
evidence demonstrating that reasoning graph anal-
ysis provides highly correlated and deep insights
into the internal cognitive dynamics of reasoning
language models.

5 Conclusion

This paper introduces a novel graph-based frame-
work for analyzing reasoning output produced by
reasoning large language models, offering quan-
tifiable findings about how models organize their
thought flow under various factors. We first pro-
pose a reasoning graph toolkit that efficiently con-
verts raw Chain-of-Thought tokens into analyzable
graph structures. We then offer discovery regard-
ing how various prompting styles may cast signifi-
cant influence on RLM’s internal reasoning struc-
ture and thus final performance. We also provide
strong evidence supporting that graph-level predic-
tors strongly correlate with RLM problem-solving
performance. These findings not only establish
quantitative insights for future prompt engineering
for reasoning models, but also provide a new struc-
tural perspective for evaluating reasoning quality
beyond traditional metrics and interpreting how
LLMs reason at a higher level.



6 Limitations & Future Work

While our current graph-based analysis of RLMs fo-
cuses primarily on mathematical and coding tasks,
extending this framework to broader domains, such
as multi-modal or open-domain reasoning, may
yield deeper insights into model behavior across
varied scenarios and further inform our understand-
ing of test-time scaling. In addition, the quantifi-
able structural metrics we propose provide a foun-
dation for future research to explore more localized
patterns and relational dynamics within reasoning
graphs. We believe that ongoing work along these
lines can contribute to a more comprehensive un-
derstanding and interpretability of large language
models in practice.
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A Experimental Prompts

To facilitate robust and reproducible semantic anal-
ysis of RLM-generated reasoning traces, we design
two explicit prompting templates, detailed docu-
mented in Template 9 and Template 10.

Template 9 guides the model to cluster rea-
soning units into coherent, higher-level reasoning
steps. This step provides context-aware candidate
instances of clustering of long chain-of-thought
tokens.

Template 10 is used to extract the seman-
tic relationship between every pair of reasoning
steps. By explicitly labeling each pair as support,
contradict, or independent, this template en-
ables the later probabilistic estimation of interde-
pendencies within the model’s chain-of-thought.

B Few-Shot Prompting Styles

Most existing research works reporting the perfor-
mance degradation of RLM given few-shot prompt-
ing have not explicitly analyzed the structure of
few-shot examples, while the concrete formulation
of few-shot demonstrations could play a significant
role on the behavior of language model. To iso-
late potential structural factors contributing to this
performance degradation, in this paper, we intro-
duce and analyze three distinct few-shot prompting
style:

i) Minimal: Minimal exemplars containing only
problem statements and final answers, without in-
termediate reasoning steps or explanatory content.
ii) Concise: Human-authored concise reasoning
traces characterized by short, linear progression
from problem formulation to solution with minimal
exploration.

iii) Explanatory: RLM-generated long reasoning
sequences featuring extensive problem space ex-
ploration, iterative verification mechanisms, and
explicit self-reflection.

C Implementation Details

Models We evaluate a range of reasoning
LLMs, including DeepSeek-R1-distilled-Llama-
8B, DeepSeek-R1-distilled-Qwen-14B, and
QWEN3-32B (Yang et al., 2025a). For conditional
sampling (P M), we adopt DEEPSEEK-V3-
0324 (DeepSeek-Al et al., 2024).

Hyper-parameters To ensure reproducibility,
we set the generation temperature to O when pro-
ducing reasoning chains (CoT) with RLMs. Dur-
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Pau  Logical Clustering

Instruction:

You are given a sequence of reasoning units, each repre-
senting a contiguous fragment from a language model’s
chain-of-thought (CoT) output. These units have typically
been segmented using raw delimiters and may be overly
fine-grained or fragmented for downstream analysis.
[Input Template]

Your task is to cluster consecutive reasoning units that are
semantically connected, producing a concise and coherent
set of higher-level reasoning steps. Each reasoning step
should: - Combine all units that express a single coher-
ent sub-task, logical inference, or closely related set of
thoughts. Aim to group together units that collectively
advance the same intermediate goal or logical point. - En-
sure that each resulting reasoning step contains enough
self-contained context to be analyzed independently, but
avoid excessive merging that would result in overly broad
or incoherent segments. - Maintain the original sequential
order of reasoning. - Avoid splitting apart reasoning units
that clearly belong to the same sub-problem or share strong
contextual dependency. - Use concise yet informative titles
for each reasoning step, reflecting its main logical function
or purpose (e.g., "Restate Problem", "Recall Known Facts",
"Solve Equation", "Synthesize Solution", etc.).

Expected Output Format:

{
"s@”: {"title": "...",
"s17: {"title”: "..."

"content”: "..."},
, "content”: "..."},

)

where each "sX" key indexes an ordered reasoning step,
with an appropriate "title"” summarizing its logical pur-
pose and "content” containing the merged, cleaned rea-
soning text.

Please ensure the output is structured, coherent, and well-
suited for subsequent semantic analysis or graph-based
modeling of the reasoning process.

Output: {"so": {"title":..., "content":...},...}

Figure 9: Complete instruction (P, ) for clustering rea-
soning units into logical cohesive reasoning steps.

ing logical clustering and semantics detection pro-
cesses, we keep 7. ~ [0.3,0.7] to ensure sampling
diversity.

Datasets All experiments are conducted on the
GPQA-Diamond benchmark (Rein et al., 2023).
To facilitate robust reasoning analysis and avoid
potential training data contamination, we convert
multiple-choice items into open-ended questions,
requiring models to actively generate reasoning
CoT as well as final answer rather than matching
existing choices.

D algorithm

This appendix provides the detailed pseudocode for
the core algorithmic components of our framework:



Psem Semantics Detection

Instruction:

Given an ordered sequence of K reasoning steps, each
representing a semantically meaningful stage in a language
model’s chain-of-thought output, your task is to systemati-
cally assess the semantic relationship between each pair of
reasoning steps.

[Logical Steps Template]

For every ordered pair (z,7) with 1 <7 < j < K, your
task is to decide whether step i: - supports step j (i.e.,
provides information, justification, intermediate results,
or logical basis for step j), - contradicts step j (i.e.,
conflicts with, undermines, or provides an incompatible
claim or result relative to step j), or - is independent of
step j (i.e., is neither directly supportive nor contradictory;
the steps are unrelated in logical content).

When making your decision, consider both explicit logical
connections (e.g., mathematical derivation, use of previous
results, direct contradiction) and more implicit semantic
dependencies (e.g., fact recall enabling downstream calcu-
lations).

Expected Output Format:

{
"(@,1)": "support”,
"(0,2)": "independent”,
"(1,2)": "contradict”,

}

where each key " (i,j)" denotes an ordered pair of step
indices (with ¢ < j), and each value is one of "support”,
"contradict”, or "independent”.

For each pair, provide only one label reflecting the most
salient semantic relationship. If the relationship is unclear
or borderline, default to independent unless clear evi-
dence suggests support or contradiction.

Ensure that all pairs (¢,7) with 1 < i < j < K are
covered in the output, and that your decisions are consistent
and justifiable based on the provided reasoning steps.

Output: {(So, S1):..., (S0, S2): ..., (S1, So): ...}

Figure 10: Complete instruction (Pgp) for detecting
semantical relationship among all reasoning steps.

ensemble-based clustering of reasoning units 1,
and adaptive sampling-based construction of the
semantic dependency graph 2. These algorithms
operationalize the methods described in the main
text, clarifying the iterative processes and statisti-
cal aggregation techniques used to ensure robust,
uncertainty-aware structure induction from RLM
outputs.

E Reference Step Length /i,

The ideal average step length p.f serves as a ref-
erence for the length-regularity term and is com-
puted by dividing the total number of tokens N
by a target number of reasoning steps Kiyrger. We

Algorithm 1: Ensemble-Based Clustering
of Reasoning Units

Input: Reasoning units U, clustering
prompt Pepyster, Number of samples
B, temperature grid {71,...,75}
Output: Selected segmentation C*
1 for b < 1to B do
2 c® ~ PLLM<S ‘ Petusters U Tb);
FO + F(Cc®);

4 C* + argmaxy FO).
5 return C*;

3

set Kurgee = min(max(3, [v/M]),30), where
M is the number of initial delimiter-based seg-
ments. This square-root heuristic with lower and
upper bounds ensures p_ref adapts to different CoT
lengths and discourages both over-segmentation
and overly coarse steps, enabling a scale-invariant
and task-agnostic regularization.

F Standard-Error Derivation for the
Signed Edge Confidence

Let a single LLM adjacency sample yield a la-
bel ¢ € {—1,0,+1} for the ordered pair (i, j),
corresponding to contradict, independent, and
support, respectively. Define the random variable

+1, c=+1,
Z =<-1, ¢c=-1,
0, ¢=0

The signed edge confidence is the empirical mean
of Z over R samples,

R
D20 = pij(+1) — py(-1),
r=1
where pj;i(c) = £ >, L[ = d].
Because E[Z] = p(+1) — p(—1), only the two
informative labels contribute to the signed mean.
The variance of Z under the true distribution p is

1
R

wij =

Var(2)

(+1)%p(+1) + (—=1)%p(=1) + 0%p(0)
[p(+1) = p(-1)]?
= p(+1) +p(=1) — [p(+1) = p(-1)]

2

Replacing p(-) with their empirical estimates and
dividing by R yields an unbiased standard-error



estimator:

SEU = % Z ﬁzj(l)(l _plj(l))

le{-1,+1}

The independent label (I = 0) contributes nei-

ther positive nor negative mass to Z; its influ- Algorithm 2: Adaptive Sampling-based Se-
ence is expressed implicitly via the complement mantic Edge Construction

1—p(4+1)—p(—1). A full multinomial variance ex-
pression would add a term —2 p(+1)p(—1), whose
magnitude is O(p(+1)p(—1)) and empirically neg-
ligible for our edge-sparse setting. Omitting this

Input: Reasoning steps S = (s1,...,Sk),
prompt Pgen, confidence threshold e,
maximum samples Ry,,x, thresholds

Thoss Ti

term simplifies the estimator while preserving the Output'p;idj ;(fincy matrix A, edge weights
accuracy required for the adaptive stopping crite- %

rion

1 Initialize counts: Cj;(c) < 0 forall i < j
andc € {—1,0,+1};

2 17+ 0;

3 repeat

4 rr+1;

5 Sample A(r) ~ PLLM(A | Psema V;Tr) 5

6 foreach ¢ < j do

7 C AE;);
8 | Cij(c) < Cij(c) + 15
9 foreach i < j do
10 foreach c € {—1,0,+1} do
1 t Dij(c) + C”f(c),
12 SE;; +
VA Ziecran b = by (D);

13 until max;<; SE;; <ecorr > Ryax;
14 foreach i < j do

15| wij = Pij(+1) — pij(=1);

16 if w;; > 7,0, then

17 ‘ Aij — +1, Ajz' +— —1;

18 else

19 if w;; < —76, then

20 ‘ Aij +— —1, Aji — +1;
21 else

22 L Aij 0, Ajz' +— 0;

23 Wij < Wiy, Wji S —Wiy;s

24 return A, W;
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