
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

TASK AND MODEL AGNOSTIC DIFFERENTIALLY PRI-
VATE GRAPH NEURAL NETWORKS VIA COARSENING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for analyzing
graph-structured data, deriving representations by aggregating information from
neighboring nodes. However, this aggregation process inherently increases the
risk of exposing confidential data, as a single node may influence the inference
process for multiple nodes simultaneously. To mitigate this risk, researchers have
explored differentially private training methods for GNN models. Existing privacy-
preserving approaches, however, face significant challenges. They often incur high
computational costs during training or struggle to generalize across various GNN
models and task objectives. To address these limitations, we introduce Differentially
Private Graph Coarsening (DPGC), a novel method that tackles two key challenges
in GNN training: scalability and privacy guarantees that are independent of the
downstream task or GNN model. Through comprehensive experiments on six
datasets across diverse prediction tasks, we demonstrate that DPGC sets new
benchmarks in graph coarsening. Our method achieves superior compression-
accuracy trade-offs while maintaining robust privacy guarantees, outperforming
state-of-the-art baselines in this domain.

1 INTRODUCTION AND RELATED WORKS

Graph-structured data derived from social and communication networks have become invaluable for
generating insights across fields such as social, behavioural, and information sciences Fan et al. (2019);
Liu et al. (2024). Such data naturally conforms to a graph-based model, encapsulating rich, nuanced,
and organized information. However, there are significant challenges when dealing with large graph
data, particularly scalability and privacy preservation. Additionally, due to seamless data collection,
often facilitated via personal devices, individual data within network contexts tends to be highly
sensitive. The strong inter-node relationships in graph-structured data make it especially vulnerable
to privacy attacks, increasing the risk of disclosing individuals’ data without their consent Liu et al.
(2016); Zhang et al. (2021); Mueller et al. (2024).

Beyond privacy concerns, the sheer size of graphs presents significant scalability challenges in
graph-based learning methods, as highlighted by recent research Hashemi et al. (2024). Large
graphs, comprising millions or even billions of nodes and edges, impose enormous computational and
memory demands, making it difficult to perform training and inference with standard methods. The
irregular and non-Euclidean nature of graph data exacerbates these challenges, requiring complex
operations like neighbourhood aggregation that do not parallelize efficiently. As the field evolves,
addressing the scalability of large graphs remains a critical area of research, driving the development
of more efficient graph-based learning frameworks.

1.1 GAPS IN EXISTING WORKS

Differential Privacy for GNNs: Depending on the level of privacy sought, one may consider edge-
level privacy, node-level privacy Raskhodnikova & Smith (2016), or both. Edge-level privacy ensures
that two graphs differing by a single edge are indistinguishable based on the algorithm’s output Blocki
et al. (2012); Dwork et al. (2014b); Hardt & Roth (2012); Upadhyay (2013). Alternatively, node-level
privacy protects the privacy of individual nodes, a focus of prior studies Daigavane et al. (2021);
Olatunji et al. (2023); Zhang et al. (2024). Existing algorithms typically guarantee differential privacy
(DP) on the learned GNN embeddings. However, this approach has a significant limitation: the
embeddings are often specific to particular GNN architectures and/or loss functions tailored to target
tasks. This specificity constrains the flexibility of these algorithms, making it challenging to adapt

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Table 1: Comparison of Graph Coarsening Algorithms. The cell in Green indicates the presence of a
feature, and the cell in Red indicates its absence. n and m are the number of nodes and edges in the
original graph, and k denotes the number of (super) nodes in the coarsened graph.

Algorithm Topology-Aware Feature-Aware Time Complexity Privacy

LVN Loukas & Vandergheynst (2018) ✓ ✗ O(n3) ✗
LVE Loukas & Vandergheynst (2018) ✓ ✗ O(n3) ✗
LVC Huang et al. (2021) ✓ ✗ O(n3) ✗
HEM Ron et al. (2011) ✓ ✗ O(m) ✗
Alg. Distance Chen & Safro (2011) ✓ ✗ O(m) ✗
Affinity Livne & Brandt (2012) ✓ ✗ O(m) ✗
Kron Dorfler & Bullo (2012) ✓ ✗ O(n3) ✗
FGC Kumar et al. (2023) ✓ ✓ O(n2k) ✗
FACH Kataria et al. (2023) ✓ ✓ O(n) ✗
LAGC Kumar et al. (2024) ✓ ✓ O(n2k) ✗
DPGC (our) ✓ ✓ O(n) ✓

them to novel GNN architectures or unforeseen tasks. In our work, we overcome this limitation
by ensuring privacy guarantees irrespective of the GNN architecture or the downstream task. This
approach offers a more versatile and robust privacy-preserving framework for graph machine learning.

𝑣!

𝑣"

𝑣#

𝑣$ 𝑣""

𝑣%

𝑣"!

𝑣&
𝑣' 𝑣(

𝑣)𝑣*

Figure 1: In this shown graph, node labels are
represented by colors. Nodes v1 and v11 are
among the most distant pairs in terms of short-
est path length. However, any 2-layer GNN
will invariably produce identical embeddings
for these nodes. This occurs because their
respective 2-hop neighborhoods are indistin-
guishable under 1-Weisfeiler-Lehman (WL)
tests Xu et al. (2018). For a more detailed
reasoning, please refer to App. A.1.

Graph Coarsening: Table 1 lists the various algo-
rithms for graph coarsening. While several algo-
rithms have been proposed, to the best of our knowl-
edge, none of them are locality-aware. Specifically,
a message-passing GNN Kipf & Welling (2016a);
Hamilton et al. (2017); Xu et al. (2018) of L-layers
would produce similar embeddings for any pairs of
nodes with similar L-hop neighborhoods Xu et al.
(2018). Importantly, this means even distant nodes
may produce similar, or even identical, embeddings.
Fig. 1 illustrates such an example. Intuitively, the
topological distribution of node labels is similar
around v1 and v11 in Fig 1, making them indistin-
guishable by any message-passing GNN. Although
existing methods consider network connectivity, they
typically focus on positional information, where
short-range, dense connections are criterion for coars-
ening individual nodes into supernodes. Consequently, locality information, which is the cornerstone
of message-passing GNNs, is overlooked. We note that while network proximity often implies similar
neighborhoods, the converse may not hold true. Finally, as shown in Table 1, we note that several
algorithms also ignore node attribute information during the coarsening process.

1.2 CONTRIBUTIONS

In this paper, we propose Differentially Private Graph Coarsening (DPGC), the first unified frame-
work to jointly perform graph coarsening while also ensuring differential privacy for any downstream
message-passing GNN architecture and tasks. The key innovations driving this result are as follows:
• GNN-aligned graph coarsening: Instead of sole reliance on spectral similarity, DPGC coarsens the

topology by embedding nodes into a feature space using Weisfeiler-Lehman kernel. Subsequently,
the nodes are coarsened into supernodes through locality sensitive hashing. This design aligns
DPGC to the computation framework of message-passing GNNs and unshackles itself from the
limitations of existing coarsening strategies where distant nodes, even when producing similar
embeddings, are not considered as candidates to be merged into a supernode.

• Strong theoretical guarantees: DPGC is grounded on rigorous theoretical guarantees. First,
we prove that DPGC is (ε,δ)-DP (differentially private). Second, by virtue of post-processing
theorem, any GNN trained on the coarsened graph produced by DPGC is also differentially private.
Third, DPGC ensures restricted spectral similarity. Finally, DPGC scales linearly with the number
of nodes in a graph resulting in superior efficiency (Table 1).

• Empirical evaluation: Through extensive experiments on six real-world datasets, we establish that
DPGC outperforms state-of-the-art graph coarsening algorithms on accuracy, while ensuring su-
perior privacy-accuracy trade-off compared to existing algorithms for differential privacy on GNNs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 BACKGROUND AND PROBLEM FORMULATION

In this section, we formulate our problem and introduce the preliminary concepts central to our work.

2.1 GRAPH COARSENING

A graph with node features is denoted by G = (V ,E ,A,X), where V = {v1,v2, · · · ,vn} is the
vertex set, E ⊆ V ×V is the edge set and A is the adjacency (weight) matrix corresponding to
the graph. Let X = [x1, · · · ,xn]

T , where xi is the d-dimensional feature vector associated with i-th
node of an undirected graph. Given an original graph G = (V ,E ,A,X) with n nodes, the goal
of graph coarsening is to construct an appropriate “smaller" or coarsened graph G̃ = (Ṽ , Ẽ , Ã, X̃)
with k ≪ n nodes, such that G̃ and G have similar properties. In coarsening, we define a linear
mapping π : V → Ṽ that maps a set of nodes in G having similar properties to a super-node in G̃ , i.e,
{π−1(ṽ) : ṽ ∈ Ṽ } is a partition of V .

Let the Laplacian matrices of the graphs G and G̃ be denoted as L ∈Rn×n and L̃ ∈Rk×k, respectively.
Following Loukas (2019) we define the coarsening matrix P ∈ Rk×n

+ and call its pseudo-inverse
C = P† as the loading matrix. These matrices are Laplacian-consistent, i.e., they are defined such that:

L̃ = CT LC.

The details on how such a matrix can be chosen are available in Loukas (2019). We use X̃ to denote
the feature matrix of the coarsened graph.
Definition 1 (Graph Coarsening for GNNs). Let G = (V ,E ,A,X) be a graph with an associated
node feature matrix X ∈ Rn×d and node labels Y ∈ {0,1}n×c, where c is the number of classes.
The goal is to obtain a coarsened graph G̃ = (Ṽ , Ẽ , Ã, X̃) such that a GNN model M (Ã, X̃;Θ),
parameterized by Θ and trained on G̃ , satisfies the following:

minL [M (A,X;Θ),Y]

s.t. Θ = argmin
θ

L
[
M (Ã, X̃;θ), Ỹ

]
,

(1)

where L is a loss function, and Ỹ is the corresponding label set for the coarsened graph obtained as
the majority label of constituent nodes.

2.2 DIFFERENTIAL PRIVACY

Differential Privacy (DP) ensures that the output distributions of an algorithm remain indistinguishable,
with a specific probability, when the input datasets differ by only a single record. The datasets that
differ by one record are called neighbours, and in the case of graph data, the neighbour graph can be
defined in teams of node and edge difference. For edge-privacy, we call two graphs G = (V ,E) and
G ′ = (V ′,E ′) neighbouring if it holds that V = V ′ and |(E\E ′)∪ (E ′\E)| ≤ 1. For node-privacy,
the graphs G = (V ,E) and G ′ = (V ′,E ′) are neighbouring if they differ by a single node and its
corresponding edges. Then, the definition of edge or node differential privacy can be given as follows:
Definition 2 (Differential Privacy Dwork et al. (2014a)). A randomized algorithm A is (ε,δ)-
differentially private if for all neighboring graphs G and G ′ and all subsets of outputs S,

Pr[A(G) ∈ S]≤ eε ·Pr[A(G ′) ∈ S]+δ,

where the probability is over the randomness of the algorithm.

Here, ε is the privacy budget: a lower privacy budget leads to stronger privacy guarantees but reduced
utility. δ is the failure probability and is usually chosen to be very small.

Privacy Attacks on GNNs: Membership Inference Attacks. In a membership inference (MI)
attack, an adversary tries to infer whether a data point was part of the training set used to train the
target model. An MI attack on GNNs can be defined as follows:
Definition 3 (MI Attack on GNN). Let a GNN model M be trained using the graph Gt = (Vt ,Et).
Given a node v and its L-hop neighborhood, the adversary aims to determine whether v ∈ Vt . Note
that even if v was part of the training set, the L-hop neighborhood known to the adversary might
differ from the one used during the training of the model M .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: The figure illustrates the overall pipeline of the DPGCframework.

In other words, the adversary constructs a classifier C (fθ(v)) for node v, such that:

Pr[C (fθ(v)) = 1 | v ∈ Vt]> Pr[C (fθ(v)) = 1 | v /∈ Vt].

Similarly, an adversary can design an MI attack for an edge e ∈ Et . To mitigate these MI attacks,
designing differentially private graph neural networks (DP-GNNs) is a de facto solution. The problem
of building DP-GNNs can be defined as follows:

Definition 4 (DP-GNNs). Let G = (V ,E ,A,X) represent a graph, where X ∈ Rn×d is the node
feature matrix, and A is the adjacency matrix. The goal is to train a GNN model M (A,X;Θ) such
that it satisfies differential privacy (DP), ensuring that:

1. The model’s outputs (o) on any two neighboring graphs G and G ′, differing by a single node or
edge, are indistinguishably close with respect to a privacy parameter ε.

2. The model M can still perform effectively on downstream tasks, such as node classification or
link prediction, while providing rigorous privacy guarantees.

Mathematically, the model must satisfy the following DP condition:

Pr[M (G) = o]≤ eε ·Pr[M (G ′) = o]+δ, (2)

where ε > 0 is the privacy budget, and δ is a small failure probability.

2.3 PROBLEM FORMULATION

Problem 1 (Differentially Private Graph Coarsening). Let G = (V ,E ,A,X) be a graph with an
associated node feature matrix X ∈ Rn×d and node labels Y ∈ {0,1}n×c, where c is the number of
classes. Our goal is to construct a coarsened graph G̃ that satisfies the quality objectives of Def. 1,
while being differential private as defined in Def. 3.

3 DPGC: PROPOSED METHODOLOGY

Fig. 2 presents the pipeline of the proposed algorithm DPGC. There are three key steps:

1. Unsupervised node embeddings: Each node is embedded into a feature space using the Weisfeiler
Lehman Kernel (Togninalli et al., 2019).

2. Supernode construction: Next, these embeddings are hashed into buckets using Locality Sensitive
Hashing (LSH) (Charikar, 2002). Based on the collisions obtained in LSH, the nodes are grouped
into supernodes, and then edges and are determined among these supernodes.

3. Learning supernode attributes: Finally, the attributes of the supernodes are generated to obtain
the differentially private coarsened graph.

In the subsequent sections, we detail each of the individual steps and establish how differential
privacy is ensured in DPGC.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.1 AUGMENTED WEISFEILER-LEHMAN NODE FEATURES

Intuitively, we seek to group nodes into a supernode if their embeddings are similar. GNNs follow
an iterative message-passing scheme where the embedding of a node is a function of its L-hop ego
graph; L represents the number of layers in the GNN. Formally, the node embeddings are computed
as follows:

Initialization: Set h0
i = xi,∀vi ∈ V .

Message creation: In layer ℓ, collect and aggregate messages from each neighbor.

mℓ
i (j) = MESSAGEℓ(hℓ−1

j ,hℓ−1
i), ∀v j ∈ Ni = {v j | (v j,vi) ∈ E}

mℓ
i = AGGREGATEℓ({{mℓ

i (j) : v j ∈ Ni}})
Update embedding: hℓ

i = UPDATEℓ(hℓ−1
i ,mℓ

i)

MESSAGEℓ, AGGREGATEℓ, and UPDATEℓ may be predefined functions (e.g., mean pooling) or
neural networks. {{·}} denotes a multiset since different neighbors may send an identical message.
This process repeats for L layers to generate the final node representations zi = hL

i .

We now point to two properties of GNNs that have been established in the literature (Xu et al., 2018).
Definition 5 (Sufficiency). In an L-layered GNN, the L-hop ego graph is sufficient to compute node
embedding zi = hL

i , ∀vi ∈ V .
Definition 6 (Equivalence). The expressive power of a message-passing GNN is limited by the
Weisfeiler-Lehman (1-WL) test (Xu et al., 2018). This implies that if the L-hop ego graphs of two
nodes cannot be distinguished by the 1-WL test, then their corresponding embeddings will be identical.
Importantly, the 1-WL test fails to differentiate between isomorphic graphs (Shervashidze et al., 2011).

Empowered by these observations, we propose mapping nodes with similar L-hop ego graphs to a sin-
gle supernode. To achieve this, we embed each node into a feature vector using the Weisfeiler-Lehman
(WL) kernel, a generalization of 1-WL test where similar (ego) graphs generate similar embeddings.
Definition 7 (Weisfeiler-Lehman (WL) Kernel (Togninalli et al., 2019)). WL-kernel embeds each
node in a graph via a message-passing aggregation. Like in GNNs, the initial embedding a0

i in layer
0 is xi ∈X . The embedding in any subsequent layer ℓ is defined as:

aℓ(i) =
1
2

aℓ−1
i +

1
deg(vi)

∑
j∈N (i)

w((i, j)) ·aℓ−1
j

 (3)

N (i) denotes the neighbors of vi and deg(vi) =
∣∣N (i)

∣∣. For unweighted graphs, w((i, j)) = 1. We
denote the final embedding of node vi after L hops as ai. We used a 1-hop ego graph, and the final
embeddings were obtained by concatenating the original node features to it.

3.2 CONSTRUCTING DIFFERENTIALLY PRIVATE SUPERNODES VIA LSH

To map nodes to supernodes while achieving differential privacy, we use the method of Kenthapadi
et al. (2013), i.e., we use Locality Sensitive Hashing (LSH) to hash the features associated with each
node, adding a bias in order to ensure differential privacy. All nodes whose final value lands in the
same bucket are mapped to the same supernode. The specific hash function used is:
Definition 8 (Random Hyperplane based Hash Function (Charikar, 2002)). Let x and y be vectors in
Rd , and let w ∈Rd be a random vector drawn from a d-dimensional Gaussian distribution. The hash
function hw corresponding to w is defined as:

hw(x) =
{

1 if w ·x ≥ 0
0 if w ·x < 0

We note that one of the properties of this hash function is that it tends to hash together those data
points that are close to each other in Euclidean space. To apply LSH to graph nodes, we project
each node vi’s WL embedding ai onto J random vectors, H = {w1, · · · ,wJ}, creating J hash tables.
Each projection (wj ·ai, w j ∈ H) maps ai to a real line as a function of their similarity. We divide
the projection line into equal-width bins of width r and assign each node to a bin using the scalar
projection:

h j(ai) =

⌊
w j ·ai +bi

r

⌋

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

where bi is a random bias drawn from a predefined distribution (e.g., Gaussian or uniform).

In effect, let H ∈ Rd×J be the matrix containing projection vectors, and let B ∈ Rn×J be the matrix
of bias terms corresponding to each of the J hash functions, drawn from a Gaussian distribution
bi j ∼ N [0,σ2] (i = 1,2, . . . ,n and j = 1,2, . . . ,J). We will discuss the choice of σ below. The
hashcode is then obtained as D = (X ·H+B)/r. It is important to note that the dimension d should
be consistent with the dimension of the augmented feature vector. A larger J increases the probability
of finding true nearest neighbors, reducing false negatives. On the other hand, a larger r implies
wider bins, which may increase false positives. The final hashcode hi assigned to node vi is the most
frequent hash generated across all J projections.

hi = argmax
x

| j : Di j = x,1 ≤ j ≤ J|
We create a supernode corresponding to each unique final hashcode. Subsequently, each node vi is
mapped to the supernode that corresponds to its assigned hashcode hi. Further, we assign an edge
between two supernodes, say ũ and ṽ, if any nodes u and v, respectively mapped to ũ and ṽ, have
an edge in the original graph. This method of creating edges ensures that the coarsening matrix P
satisfies the characterisation of Laplacian consistency given in Proposition 7 of (Loukas, 2019).

We now discuss how to set the standard deviation σ of the bias matrix B. It is shown in (Kenthapadi
et al., 2013) (Theorem 1) that to achieve (ε,δ)-differentially privacy with δ < 1/2 we need

σ ≥ w2(H)

√
2ln(1

2δ
)+ ε

ε

where w2(H) is the maximum of the ℓ2-norms of the rows of H (referred to as the ℓ2-sensitivity of H
in Kenthapadi et al. (2013).)

3.3 LEARNING ATTRIBUTES OF SUPERNODES WITH SIMILARITY GUARANTEE

Our next objective is to obtain a suitable transformation F such that X̃ = F(X), i.e., that produces
the coarsened graph’s feature matrix from the original graph’s features. Clearly, X̃ and X must be
“similar” in some way. We make the notion of similarity concrete by using the concept of Spectral
Similarity for Coarsened Graph Data (SSCGD) (Kumar et al., 2023). In the following, given a d × k
matrix X and a k× k positive definite matrix A, ∥X∥A := Tr(XT AX).
Definition 9 (η-Spectral Similarity for Coarsened Graph Data). (Kumar et al., 2023) If G =
(V ,E ,A,X) is a graph with an associated node feature matrix X and Laplacian L, and G̃ =

(Ṽ , Ẽ , Ã, X̃) is a coarsened version of this graph with Laplacian L̃ and associated features X̃ = F(X)
where F is a (not necessarily linear) transformation between the two feature spaces, we say that the
coarsening G̃ is η-SSCGD to G

(1−η)||X||L ≤ ∥X̃∥L̃ ≤ (1+η)||X||L, (4)
for some η ≥ 0.
A small value of η indicates strong preservation of multiple properties between the original graph
and its coarsened counterpart. Specifically, the Courant-Fisher theorem (Loukas, 2019) implies
that the spectrum of the coarsened graph approximates the first k eigenvalues of the original graph.
This spectral preservation encodes crucial information about graph cuts and random walk dynamics.
Intuitively, the similarity in the values of quadratic forms suggests that the interplay between node
features and graph topology, as encoded in the respective Laplacians, is maintained through the
coarsening process. This feature-topology interaction preservation is fundamental to the performance
of GNNs. The fact that using an η-SSCGD transformation with η bounded in [0,1) gives us results
that match the original GNN validate this intuition. We use the method of Kumar et al. (2023) to
learn a feature transformation for which it is possible to bound η. This is done by minimizing the
objective function:

min
X̃

{Tr
(
X̃CT LCX̃

)
+

α

2
∥CX̃−X∥2

F}. (5)

Since the Eq. 5 is strongly convex, a closed-form solution exists. However, to avoid the inversion of
the matrix, we use a gradient descent updates to find X̃.

X̃t+1 = X̃t −ξ
[
2CT LCX̃+αCT (CX̃−X)

]
(6)

ξ is the learning rate, and α is a hyperparameter. We initialize X̃ as X̃ = PX. It is shown in Kumar
et al. (2023) that this method gives an η ∈ [0,1).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

3.4 CHARACTERIZATION OF DPGC

Node-DP. To ensure the privacy of node features in the coarsened graph, we use the output
perturbation-based DP framework proposed in (Chaudhuri et al., 2011) (Dwork et al., 2006). In this
framework, the non-private outcome is perturbed by adding noise according to the sensitivity of
the optimization objective. The ℓ2-sensitivity of Eq. 5) is proportional to α. Then using Gaussian
mechanism, (ε,δ)-DP node features are given as follows:

X̃′ = X̃+N (0,σ2I),

where σ ≥ kα

√
2log(1

δ
)

ε
and k is the number of supernodes in the coarsened graph.

Theorem 1 (Differentially private GNN). The GNN trained on the coarsened graph is DP.
Proof. If we have a differentially private output, any computation performed on the output of this
mechanism will not degrade the privacy guarantee. This property is known as Post-Processing
Theorem (Dwork et al., 2014a). Formally,
Lemma 1 (Post-Processing Theorem (Dwork et al., 2014a)). Let M : D → R be an (ε,δ)-
differentially private mechanism, and let f : R → R

′
be any (possibly randomized) function. Then the

mechanism f ◦M : D → R
′
, defined by (f ◦M)(D) = f (M(D)), is also (ε,δ)- differentially private.

Since our coarsening is DP, the GNN trained on it is also DP.

Generalizability of DP: Unlike existing differentially private GNNs that offer task-specific or
architecture-specific privacy guarantees, DPGC provides a general-purpose privacy guarantee appli-
cable to any GNN architecture and downstream task. This is achieved by ensuring that the coarsening
process itself is differentially private, thus guaranteeing the privacy of any subsequent operations on it.
Computation Cost: The time complexity of DPGC is O(nJd +m). App. A.2 details the derivation.

4 EXPERIMENTS

In this section, we benchmark DPGC and establish:
• Differential Privacy (DP) Vs. Accuracy trade-off: DPGC outperforms state-of-the-art algorithms

for DP in GNNs by demonstrating higher accuracy across a multitude of prediction tasks, datasets
and privacy budgets.

• Resilience: DPGC exhibits robust resilience to membership inference attacks (Def. 3).
• Coarsening vs. Accuracy trade-off: GNNs trained on coarsened graphs produced by DPGC leads

to superior accuracy when compared to existing baselines.

The details of our experimental setup and parameters are detailed in App. A.3.1. Our codebase is
available at https://anonymous.4open.science/r/DPGC-6BE8.

4.1 DATASETS, BASELINES AND METRICS

Datasets. Table 2 characterizes the 6 real-world datasets used to benchmark DPGC.

Table 2: Summary statistics of used datasets.
Name # nodes # edges # Features # Classes

Cora 2,708 5,278 1,433 7
CiteSeer 3,327 9,104 3,703 6
PubMed 19,717 44,324 500 3
Coauthor 18,333 163,788 6,805 15
Physics 34,493 247,962 8,415 5
DBLP 17,716 105,734 1,639 4

Baselines for graph coarsening: We include 8 state-
of-the-art baselines: Local Variation Edges (LVE)
and Local Variation Neighbourhood (LVN) are
two variants proposed in Loukas & Vandergheynst
(2018); Local Variation Clique (LVC) (Huang et al.,
2021); Algebraic Distance, based on the strength
of node connections (Chen & Safro, 2011); Affin-
ity (Livne & Brandt, 2012) and Heavy Edge Match-
ing (HEM) (Ron et al., 2011), both of which aggregate nodes based on a proximity measure; Kron,
which reduces the graph based on the Schur complement of the original Laplacian (Dorfler & Bullo,
2012); and FACH, which uses hashing (Kataria et al., 2023).

Private GNN baselines: We consider 5 baselines for node-DP and 4 for edge-DP. For node-DP, we
include DP-MLP (Daigavane et al., 2021), DP-GNN (Daigavane et al., 2021), GAP (Sajadmanesh
et al., 2023), PrivGNN (Olatunji et al., 2023) and DPAR (Zhang et al., 2024).

For edge-DP, we compare our algorithm with GAP (Sajadmanesh et al., 2023), DPGCN (Wu et al.,
2022), LPGNet (Kolluri et al., 2022) and Eclipse (Tang et al., 2024).

7

https://anonymous.4open.science/r/DPGC-6BE8

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 3: (Node-DP) Test accuracy of DPGC and the baseline method for different privacy budgets
(ε) on various graph datasets. The value of δ is 2×10−3 for Cora, CiteSeer & PubMed datasets and
1×10−4 for other datasets. Boldface indicates the best results.

Dataset ε DP-MLP DP-GNN GAP PrivGNN DPAR DPGC

Cora 1 27.33 ± 1.17 29.60 ± 1.04 34.50 ± 0.24 36.35 ± 0.26 34.21± 0.15 67.05± 0.29
8 41.07 ± 0.77 45.06 ± 1.39 57.33± 0.16 56.82 ± 0.19 61.99 ± 0.28 73.55± 0.22

CiteSeer 1 28.12 ± 0.25 32.42 ± 0.42 34.00 ± 0.46 35.23 ± 0.15 33.55 ± 0.81 66.95 ± 0.25
8 31.72 ± 0.47 41.25± 0.23 56.55 ± 0.42 55.10± 0.22 62.00± 0.20 72.48 ± 0.36

PubMed 1 63.70 ± 0.60 65.50± 0.45 60.66 ± 0.26 63.50 ± 0.40 75.60 ± 0.28 83.50 ± 0.22
8 66.20 ± 1.08 66.25 ± 0.45 73.14 ± 0.14 73.86± 0.14 80.65 ± 0.22 85.00± 0.10

Coauthor 1 51.44 ± 0.16 55.62 ± 0.12 66.00 ± 0.10 67.11 ± 0.22 89.27 ± 0.05 91.98 ± 0.10
8 63.50 ± 1.05 63.20 ± 0.66 85.37 ± 0.13 84.37 ± 0.22 90.63 ± 0.37 93.07± 0.28

Physics 1 54.12 ± 0.81 55.88 ± 0.60 81.92 ± 0.59 80.10 ± 0.35 89.48 ±0.24 92.70 ± 0.15
8 60.17± 0.75 67.22 ± 0.66 90.88 ± 0.24 88.36 ± 0.28 91.01 ± 0.35 94.40± 0.10

Table 4: (Edge-DP) Test accuracy of DPGC and the baseline method for different privacy budgets
(ε) on various graph datasets. The value of δ is 2×10−3 for Cora, CiteSeer & PubMed datasets and
1×10−4 for other datasets. Boldface indicates the best results.

Dataset ε DP-MLP GAP DPGCN LPGNet Eclipse DPGC

Cora 1 27.33 ± 1.17 34.50± 0.24 35.80 ±0.42 48.05 ± 0.22 65.70± 0.31 71.66± 0.16
8 41.07 ± 0.77 57.33 ± 0.16 73.10 ± 1.05 70.60 ± 0.97 67.00 ± 0.66 73.80 ± 0.35

CiteSeer 1 28.12 ±0.25 34.00 ±0.46 34.80 ± 1.10 49.15 ± 0.88 63.20 ± 0.046 67.55± 0.12
8 31.72 ± 0.47 56.55±0.42 63.30± 0.66 64.30 ± 0.52 63.50 ± 0.46 73.05 ± 0.37

PubMed 1 63.70 ± 0.60 60.66 ±0.26 54.20 ± 0.62 67.66 ± 0.86 73.22 ± 0.20 83.55 ± 0.28
8 66.20 ± 1.08 73.14 ± 0.14 63.46 ± 1.02 75.35 ± 0.44 72.20 ± 0.88 85.00± 0.30

Physics 1 54.12 ± 0.81 81.92 ± 0.59 64.20 ± 0.32 69.00 ± 0.66 89.10 ± 0.12 92.85 ± 0.10
8 60.17 ± 0.75 90.88± 0.24 89.46 ± 0.16 91.06 ± 0.08 90.15 ± 0.11 94.45 ± 0.05

Metrics: In addition to accuracy on test datasets, we use Relative Eigen Error (REE) and Hyperbolic
Error (HE) for consistency of properties between original graph and coarsened graph. The details of
these metrics are detailed in App. A.3.2. For DP, we also use membership inference attacks (Def. 3).

4.2 PRIVACY VS. ACCURACY TRADE-OFF

Node-DP: To compare our proposed framework with baselines for node-DP, we split the dataset into
80−20% as training and test sets as given in (Zhang et al., 2024). With a given privacy budget ε and
fixed δ value chosen to be roughly equal to the inverse of each dataset’s number of training nodes, we
first obtain a coarsened graph via DPGC at 50% on which the GNN (GCN) model is trained.

Table 3 shows the test accuracies by benchmarked algorithms. DPGC demonstrates superior accuracy
across all datasets for privacy budgets ranging from small to large (ε = 1 to 8). The results indicate
that shifting the focus of privacy preservation to the coarsening process, rather than applying it
directly during GNN training leads to enhanced performance. Furthermore, this approach allows
DPGC to remain model and task agnostic, thereby offering greater flexibility in its application.
Edge-DP: Table 4 presents the results. The trend is consistent with the observations in Node-DP;
DPGC outperforms all baselines across all datasets.

To further investigate how it behaves compared to baselines under different privacy budgets, we
vary ε = 1 to 8 for node-DP and from 0.1 to 8 for edge-DP and compare the precision of the
best-performing method. Figures 3 and 4 present the results for node-DP and edge-DP methods,
respectively. For both (node and edge) privacy, DPGC consistently outperforms the best baselines
from small to large privacy budgets. Furthermore, we observe that edge-DP has better accuracy than
node-DP for the same values of ε. This is in line with the fact that nodes have more information to
hide in a graph than edges.

4.3 ROBUSTNESS AGAINST MIA ATTACKS

This binary classification attack aims to infer if a node v is in the training set VT of the tar-
get GNN. Due to overfitting, GNNs often assign higher confidence scores to training nodes,
which attackers exploit. The attacker first trains a shadow GNN on a dataset from the same
distribution, with known membership labels, and then uses these scores to train a model that
infers membership in the target graph. Following the TSTF approach (Olatunji et al., 2021),

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

0.2 1 4 8
Privacy Cost ()

30
35
40
45
50
55
60
65
70
75

Ac
cu

ra
cy

 (%
)

Cora

0.2 1 4 8
Privacy Cost ()

30

40

50

60

70
CiteSeer

0.2 1 4 8
Privacy Cost ()

60

65

70

75

80

85 PubMed

0.2 1 4 8
Privacy Cost ()

80
82
84
86
88
90
92
94

Physics

Figure 3: Privacy cost (ε) vs. accuracy for node-DP methods.

0.2 1 4 8
Privacy Cost ()

20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

Cora

0.2 1 4 8
Privacy Cost ()

30

40

50

60

70
CiteSeer

0.2 1 4 8
Privacy Cost ()

50
55
60
65
70
75
80
85
90 PubMed

0.2 1 4 8
Privacy Cost ()

60
65
70
75
80
85
90
95

100 Physics

Figure 4: Privacy cost (ε) vs. accuracy for edge-DP methods.
we assume a strong adversary with a shadow dataset of 1,000 nodes per class, randomly sam-
pled from the target dataset. The shadow model uses the same architecture as the target GNN.
The attack model, a 3-layer MLP with 64 hidden units, is evaluated using AUC, averaged
over 10 runs. Results are presented in Table 5; it is observed that the DPGC is as effective
as other methods where attackers’ accuracy is close to random guesses (approximately 50%).

Table 5: Average AUC of node membership attack.
Dataset Method ε = 1 ε = 2 ε = 4 ε = 8

Cora

GAP 50.15 ± 0.03 50.20± 0.05 50.41 ± 0.02 51.08 ±0.05
PrivGNN 50.21 ± 0.03 50.21 ± 0.03 50.22 ± 0.01 50.19 ± 0.03

DPAR 50.30 ± 0.02 50.64 ± 0.02 50.27 ±0.03 50.62 ± 0.03
DPGC 50.15 ± 0.02 50.20 ± 0.03 50.38 ±0.03 50.58 ± 0.05

CiteSeer

GAP 50.04 ± 0.10 50.16 ± 0.04 50.33 ± 0.04 51.55 ± 0.01
PrivGNN 50.03 ± 0.01 50.03 ± 0.01 50.60± 0.05 50.65 ± 0.05

DPAR 50.25 ± 0.03 50.22 ± 0.05 51.31 ± 0.03 51.43 ± 0.04
DPGC 50.05 ± 0.02 50.05 ± 0.03 50.26 ± 0.03 50.44 ± 0.05

Pubmed

GAP 50.06 ± 0.04 50.33± 0.03 51.10 ± 0.02 51.30 ± 0.02
PrivGNN 50.05 ± 0.03 50.05 ± 0.05 50.33 ± 0.01 50.65 ± 0.02

DPAR 50.10 ± 0.02 50.40 ± 0.01 50.45 ± 0.05 50.76 ± 0.04
DPGC 50.31 ± 0.02 50.28 ± 0.02 50.53 ± 0.08 50.97 ± 0.01

Coauthor

GAP 50.05± 0.05 50.20 ± 0.05 50.50 ± 0.05 51.45 ± 0.02
PrivGNN 50.01 ± 0.03 50.10 ± 0.05 50.55 ± 0.03 50.92 ± 0.06

DPAR 50.30 ± 0.05 50.53 ± 0.01 50.97 ± 0.03 51.43 ± 0.05
DPGC 50.25 ± 0.02 50.33 ± 0.09 50.30 ± 0.05 50.41 ± 0.05

4.4 ASSESSING THE
QUALITY OF COARSENING

Node Classification Table
6 presents a comparison
of DPGC for node clas-
sification when a GCN is
trained on the coarsened
graph (50%). DPGC out-
performs baselines across all,
but one dataset, by a sig-
nificant margin. The supe-
rior performance of DPGC
can be attributed to its use
of WL-kernel, which differs
from the connectivity-based approaches commonly employed in other methods. Message-passing
GNNs capture locality in their embeddings, meaning that two nodes that are distant in the graph may
still have similar representations. Connectivity-based coarsening methods overlook this aspect, while
DPGC, by leveraging the WL-kernel, aligns well with the message-passing structure of GNNs and
effectively captures these subtle relationships.

Robustness to other GNN architectures: In Table 7, we benchmark the performance of DPGC
on four different GNN architectures, namely GCN (Kipf & Welling, 2016a), GAT (Veličković et al.,
2017), GIN (Xu et al., 2018), GRAPHSAGE Hamilton et al. (2017). We observe that across all
datasets and architectures, DPGC produces either the highest or second highest accuracy. Our results
demonstrate the robustness of using Weisfeiler-Lehman (WL) kernel embeddings as the signal for
supernode construction, in contrast to the dominant strategy in the literature that relies on network
connectivity. From Def. 5 and Def. 6, we know that regardless of the GNN architecture, similar L-hop
ego neighborhoods lead to similar embeddings. We exploit these observations by employing the
WL-kernel to construct embeddings that characterize the L-hop neighborhood of a node. This method
allows us to group nodes into supernodes based on the similarity of their extended local structures,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 6: Node classification Accuracy (ACC) when a GCN is trained on 50% coarsened graph (higher
ACC is better, with boldface indicating the best results).

Model Cora CiteSeer PubMed Physics Coauthor DBLP
LVN 79.70 ±1.20 69.54 ± 2.33 77.87 ± 1.22 93.74 ± 0.5 85.90 ± 0.22 77.05 ± 0.30
LVE 81.57 ± 0.92 70.60 ± 1.12 78.34 ± 0.78 93.86 ± 0.54 87.63 ± 0.71 78.72 ± 1.02
LVC 80.92 ± 0.45 68.81 ± 1.42 73.32 ± 3.40 92.94 ± 0.62 85.66 ± 0.21 78.69 ± 0.28
HEM 79.90 ± 1.51 71.11 ± 1.34 74.66 ± 2.12 93.03 ± 0.47 69.54 ± 3.22 77.46 ± 1.23
Alg. Distance 79.83 ± 1.05 70.09 ± 0.73 74.59 ± 1.05 93.94 ± 0.09 83.74 ± 1.03 74.51 ± 0.30
Affinity 80.20 ± 2.31 70.70 ± 1.16 80.53 ± 0.73 93.06 ± 0.44 85.10 ± 0.25 78.15 ± 0.19
Kron 80.71 ± 1.76 69.00 ± 2.15 74.89 ± 2.91 92.26 ± 0.82 84.22 ± 0.04 77.79 ± 0.08
FACH 74.92 ± 0.13 66.97 ± 0.20 85.65 ± 0.07 94.70 ± 0.05 74.19 ± 1.51 75.50 ± 0.33
DPGC 85.33 ± 0.10 73.25 ± 0.16 85.91 ± 0.51 95.85 ± 0.11 86.03 ± 0.14 78.75 ± 0.23

Table 7: Node classification Accuracy (ACC) different GNN model (GCN, GAT, GIN and GraphSage)
when trained on 50% coarsened dataset (higher ACC is better). The best and the second best results
in row are highlighted in bold font and underlining, respectively

Dataset GNN LVN LVE LVC HEM Alg. Distance Affinity Korn FACH DPGC

Cora

GCN 79.70 81.57 80.92 79.90 79.83 80.20 80.71 74.92 85.33
GAT 69.50 74.02 74.52 68.85 73.10 73.63 73.24 73.21 74.21
GIN 47.75 35.69 53.10 35.45 63.20 25.40 48.90 65.25 66.13

GraphSage 70.49 69.42 70.11 69.20 71.96 67.80 73.25 68.35 70.50

PubMed

GCN 77.87 78.34 75.32 74.66 74.59 80.53 74.89 85.65 85.91
GAT 75.20 72.54 74.76 61.05 70.35 60.70 71.95 81.20 83.54
GIN 74.70 40.28 47.20 36.05 33.15 49.75 40.45 74.50 75.35

GraphSage 78.75 63.55 67.20 60.21 64.05 71.20 63.25 80.50 83.66

DBLP

GCN 77.05 78.42 78.69 77.46 74.51 78.15 77.79 75.50 78.75
GAT 70.20 74.00 72.80 71.35 71.15 71.12 72.25 73.49 73.95
GIN 35.85 33.96 35.24 25.16 51.47 47.30 42.25 53.55 55.29

GraphSage 68.55 60.22 73.31 72.70 72.18 71.79 71.75 73.22 73.22

Physics

GCN 93.74 93.86 92.94 93.03 93.94 93.06 92.26 94.70 95.85
GAT 91.05 91.70 91. 44 91.40 91.94 92.30 91.55 92.20 93.40
GIN 90.30 87.90 89.35 90.12 87.56 91.22 91.55 91.20 92.50

GraphSage 89.90 87.55 87. 33 89.91 87.55 90.12 91.42 93.35 93.22

rather than just immediate connections. The effectiveness of this approach is evidenced by its
performance across various GNN prediction tasks, showing that capturing higher-order neighborhood
similarities can lead to more effective graph coarsening for GNN applications.

Additional Experiments: In Fig. 7 in the Appendix, we present further evidence that even after 70%
coarsening for training, DPGC maintains its accuracy. Furthermore, we show that DPGC continues
to outperform existing coarsening algorithms in the task of Link Prediction (Table 9, App. A.4.1). We
also evaluate the relative eigen error of DPGC in App. A.4.2 Table 10. In the App A.4.3, we further
investigate the relationship between graph size reduction and privacy budget ε.

5 CONCLUSIONS, LIMITATIONS AND FUTURE WORKS

Graph Neural Networks (GNNs) face two major obstacles to widespread adoption: potential exposure
of sensitive training data in public applications and computational challenges due to vast datasets with
millions of nodes and edges. Our algorithm, Differentially Private Coarse Graining (DPGC), tackles
both issues simultaneously through privacy-preserving graph compression. DPGC consistently
outperformed existing methods in both graph coarsening and differential privacy across six real-world
datasets. This superior performance stems from our novel approach of using the Weisfeiler-Lehman
(WL) kernel for supernode construction, rather than conventional network connectivity metrics.
This strategy enables provable privacy guarantees while enhancing computational efficiency. By
addressing privacy concerns and reducing computational demands, DPGC paves the way for broader,
safer deployment of GNNs in real-world applications.

Limitations and Future Works: In this work, we base the methodology on message-passing GNNs.
It remains to be seen how it generalizes to other forms of GNNs such as Graph Transformers.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REPRODUCIBILITY

To replicate the results reported in this paper, the software and hardware requirements are
given in the Appendix A.3.1. All the data sets used in the experiments are publicly
available in the PyTorch Geometric Library. Parameters, hyperparameters and instructions
for running code are also given in the codebase at https://anonymous.4open.science/r/
DPGC-6BE8.

REFERENCES

Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform
itself preserves differential privacy. In Proceedings of the 2012 IEEE 53rd Annual Symposium on
Foundations of Computer Science, FOCS ’12, pp. 410–419, USA, 2012. IEEE Computer Society.
ISBN 9780769548746. 1

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002. 4, 5

Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate. Differentially private empirical risk
minimization. Journal of Machine Learning Research, 12(3), 2011. 7

Jie Chen and Ilya Safro. Algebraic distance on graphs. SIAM Journal on Scientific Computing, 33(6):
3468–3490, 2011. 2, 7

Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta, Gaurav Aggarwal,
and Prateek Jain. Node-level differentially private graph neural networks. arXiv preprint
arXiv:2111.15521, 2021. 1, 7

Florian Dorfler and Francesco Bullo. Kron reduction of graphs with applications to electrical networks.
IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1):150–163, 2012. 2, 7

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006. 7

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3–4):211–407, 2014a. 3, 7

Cynthia Dwork, Kunal Talwar, Abhradeep Thakurta, and Li Zhang. Analyze gauss: optimal bounds
for privacy-preserving principal component analysis. In Proceedings of the Forty-Sixth Annual
ACM Symposium on Theory of Computing, STOC ’14, pp. 11–20, New York, NY, USA, 2014b.
Association for Computing Machinery. ISBN 9781450327107. 1

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pp. 417–426, 2019. 1

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. 2, 9, 16

Moritz Hardt and Aaron Roth. Beating randomized response on incoherent matrices. In Proceedings
of the Forty-Fourth Annual ACM Symposium on Theory of Computing, STOC ’12, pp. 1255–1268,
New York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450312455. 1

Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B. Aditya Prakash, and Wei Jin.
A comprehensive survey on graph reduction: Sparsification, coarsening, and condensation. In
Kate Larson (ed.), Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, IJCAI-24, pp. 8058–8066. International Joint Conferences on Artificial Intelligence
Organization, 8 2024. doi: 10.24963/ijcai.2024/891. URL https://doi.org/10.24963/ijcai.
2024/891. Survey Track. 1

11

https://anonymous.4open.science/r/DPGC-6BE8
https://anonymous.4open.science/r/DPGC-6BE8
https://doi.org/10.24963/ijcai.2024/891
https://doi.org/10.24963/ijcai.2024/891

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph neural
networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 675–684, 2021. 2, 7, 15

Mohit Kataria, Aditi Khandelwal, Rocktim Das, Sandeep Kumar, and Jayadeva Jayadeva. Linear
complexity framework for feature-aware graph coarsening via hashing. In NeurIPS 2023 Workshop:
New Frontiers in Graph Learning, 2023. 2, 7

Krishnaram Kenthapadi, Aleksandra Korolova, Ilya Mironov, and Nina Mishra. Privacy via the
johnson-lindenstrauss transform. Journal of Privacy and Confidentiality, 5(1), 2013. 5, 6

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
CoRR, abs/1609.02907, 2016a. URL http://arxiv.org/abs/1609.02907. 2, 9

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016b. 15

Aashish Kolluri, Teodora Baluta, Bryan Hooi, and Prateek Saxena. Lpgnet: Link private graph
networks for node classification. In Proceedings of the 2022 ACM SIGSAC Conference on
Computer and Communications Security, pp. 1813–1827, 2022. 7

Manoj Kumar, Anurag Sharma, Shashwat Saxena, and Sandeep Kumar. Featured graph coarsening
with similarity guarantees. In International Conference on Machine Learning, pp. 17953–17975.
PMLR, 2023. 2, 6

Manoj Kumar, Subhanu Halder, Archit Kane, Ruchir Gupta, and Sandeep Kumar. Optimization
framework for semi-supervised attributed graph coarsening. In The 40th Conference on Uncertainty
in Artificial Intelligence, 2024. 2

Changchang Liu, Supriyo Chakraborty, and Prateek Mittal. Dependence makes you vulnberable:
Differential privacy under dependent tuples. In NDSS, volume 16, pp. 21–24, 2016. 1

Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph neural
networks in epidemic modeling. arXiv preprint arXiv:2403.19852, 2024. 1

Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear solver.
SIAM Journal on Scientific Computing, 34(4):B499–B522, 2012. 2, 7

Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine Learning
Research, 20(116):1–42, 2019. 3, 6, 15

Andreas Loukas and Pierre Vandergheynst. Spectrally approximating large graphs with smaller graphs.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3237–3246,
2018. 2, 7, 15

Tamara T Mueller, Dmitrii Usynin, Johannes C Paetzold, Rickmer Braren, Daniel Rueckert, and
Georgios Kaissis. Differentially private guarantees for analytics and machine learning on graphs:
A survey of results. Journal of Privacy and Confidentiality, 14(1), 2024. 1

Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference attack on graph
neural networks. In 2021 Third IEEE International Conference on Trust, Privacy and Security in
Intelligent Systems and Applications (TPS-ISA), pp. 11–20. IEEE, 2021. 8

Iyiola Emmanuel Olatunji, Thorben Funke, and Megha Khosla. Releasing graph neural networks
with differential privacy guarantees. Transactions on Machine Learning Research, 2023. ISSN
2835-8856. 1, 7

Sofya Raskhodnikova and Adam Smith. Differentially private analysis of graphs. Encyclopedia of
Algorithms, 2016. 1

Dorit Ron, Ilya Safro, and Achi Brandt. Relaxation-based coarsening and multiscale graph organiza-
tion. Multiscale Modeling & Simulation, 9(1):407–423, 2011. 2, 7

12

http://arxiv.org/abs/1609.02907

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Sina Sajadmanesh, Ali Shahin Shamsabadi, Aurélien Bellet, and Daniel Gatica-Perez. GAP: Differ-
entially private graph neural networks with aggregation perturbation. In 32nd USENIX Security
Symposium (USENIX Security 23), pp. 3223–3240, Anaheim, CA, 2023. ISBN 978-1-939133-37-3.
7

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. J. Mach. Learn. Res., 12(null):2539–2561, nov 2011.
ISSN 1532-4435. 5

Tingting Tang, Yue Niu, Salman Avestimehr, and Murali Annavaram. Edge private graph neural
networks with singular value perturbation. arXiv preprint arXiv:2403.10995, 2024. 7

Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian Rieck, and Karsten Borgwardt.
Wasserstein weisfeiler–lehman graph kernels. In Advances in Neural Information Processing
Systems 32 (NeurIPS), pp. 6436–6446, 2019. 4, 5

Jalaj Upadhyay. Random projections, graph sparsification, and differential privacy. In Kazue Sako and
Palash Sarkar (eds.), Advances in Cryptology - ASIACRYPT 2013, pp. 276–295, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. 1

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017. 9, 15

Fan Wu, Yunhui Long, Ce Zhang, and Bo Li. Linkteller: Recovering private edges from graph
neural networks via influence analysis. In 2022 ieee symposium on security and privacy (sp), pp.
2005–2024. IEEE, 2022. 7

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? CoRR, abs/1810.00826, 2018. URL http://arxiv.org/abs/1810.00826. 2, 5, 9,
15

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018. 16

Qiuchen Zhang, Hong kyu Lee, Jing Ma, Jian Lou, Carl Yang, and Li Xiong. Dpar: Decoupled graph
neural networks with node-level differential privacy. WWW ’24, 2024. 1, 7, 8

Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu, and Enhong Chen.
Graphmi: Extracting private graph data from graph neural networks. In Zhi-Hua Zhou (ed.),
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp.
3749–3755. International Joint Conferences on Artificial Intelligence Organization, 2021. 1

13

http://arxiv.org/abs/1810.00826

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 EXPLANATION OF LOCALITY-AWARENESS IN FIG. 1

GNNs iteratively accumulate messages (features) from their neighbors in a layer-by-layer manner
(Recall Section 3.1). A computation tree, also known as the receptive field, encodes how messages
propagate to the target node, whose embedding is being computed. In the context of v1 and v11 in
Fig. 1, the 2-hop computation trees are isomorphic for v1 and v11 leading to identical embeddings
in any 2-layered message-passing GNN regardless of the specific architecture being used. The
computation trees are identical, since their one-hop and two-hop nodes have identical attributes.

2-hop paths from 𝑣! 2-hop paths from 𝑣!!
𝒗𝟏, 𝒗𝒐, 𝒗𝟏
𝒗𝟏, 𝒗𝟎, 𝒗𝟐
𝒗𝟏, 𝒗𝟐, 𝒗𝟏
𝒗𝟏, 𝒗𝟐, 𝒗𝟎
𝒗𝟏, 𝒗𝟐, 𝒗𝟑

𝒗𝟏𝟏, 𝒗𝟏𝟎, 𝒗𝟏𝟏
𝒗𝟏𝟏, 𝒗𝟏𝟎, 𝒗𝟗
𝒗𝟏𝟏, 𝒗𝟖, 𝒗𝟏𝟏
𝒗𝟏𝟏, 𝒗𝟖, 𝒗𝟕
𝒗𝟏𝟏, 𝒗𝟖, 𝒗𝟗

Computation tree

Figure 5: Computation trees of v1 and v11 in Fig. 1.

In our proposed algorithm, through the usage of the WL kernel (Eq. 3), we emulate this message-
passing framework and thereby encode locality information into the coarsening process. In other
words, if two nodes have similar computation trees, they are likely to be coarsened into a supernode.
This locality-aware coarsening represents a significant departure from existing coarsening methods
in the literature. By considering the similarity of local structures rather than just graph proximity,
our approach can identify and merge nodes that play similar roles in the graph, even if they are
distant. This novel method enables us to achieve superior results compared to traditional coarsening
techniques.

A.2 TIME COMPLEXITY AND RUN TIME

Complexity Analysis: The DPGC algorithm consists of the following phases. We assume n and m to
be the number of nodes and edges, respectively, in the original graph.

1. Embedding ego graphs: The first phase involves computing node embeddings using WL-kernel.
WL-kernel performs the same iterative message passing as in any message-passing GNNs, where
each edge is traversed twice. Hence, the time complexity is O(m)

2. Projection into buckets using LSH: The complexity of performing projections is O(nJd) time,
where d is the feature dimension, and J is the number of hash functions. This complexity arises
from the multiplication of matrices of size n×d and d × J.

3. Construction of supernodes and superedges: Constructing supernodes consumes O(nJ) time
since it involves iterating over all nodes and identifying the most frequent bucket, among J buckets,
they have been hashed into. Once supernodes are constructed, we need to iterate over all original
edges and see if the two endpoints are in two different supernodes, in which case an edge is added
among the corresponding supernodes. This requires O(m) time.

4. Learning node attributes: Finally, we learn the node attributes, which involves minimizing Eq. 5.
requiring O(nkd) time. Since the Laplacian is fixed for the coarsened graph and the multiplication
of X̃ by CT LC takes O(k2d). The trace operation has complexity O(kd). For the second term, CX̃
takes O(nkd) time and computing the Frobenius norm involves subtraction and squaring, which
takes O(nd) time. Therefore, the overall time complexity for node feature learning is dominated
by the term O(nkd) as k is small.

After combining all components, the overall time complexity is O(nJd+m). The runtime comparison
of coarsening methods is given in Table 8.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Table 8: Runtime (in seconds) comparison of graph coarsening methods. The results are presented
for coarsening the graph to 50% of its original size, averaged over 5 runs.

Model Cora CiteSeer PubMed Physics Coauthor DBLP
LVN 6.63 8.70 25.00 58.50 23.41 22.80
LVE 5.35 7.40 18.79 68.20 16.81 20.61
LVC 7.30 9.80 61.85 70.00 24.56 38.40
HEM 0.70 1.45 12.05 40.50 7.64 8.42
Alg. Distance 0.95 1.55 10.50 46.55 9.59 9.75
Affinity 2.40 2.55 165.40 910.50 165.10 115.5
Kron 0.65 1.40 6.00 35.65 9.01 7.10
FACH 0.53 0.75 1.65 6.05 3.20 1.50
DPGC 0.53 0.76 1.67 6.10 3.15 1.65

A.3 QUALITY OF GRAPH COARSENING: NODE CLASSIFICATION AND LINK PREDICTION
ALGORITHMS

A.3.1 EXPERIMENTAL SETUP

All experiments were performed on a machine with an Intel(R) Core(TM) CPU @ 2.30GHz, 16GB
RAM, and an RTX A4000 GPU with 16GB memory, running Microsoft Windows 11 HSL. To ensure
consistency with all baselines, we used two hidden-layer GNN models with standard hyperparameter
values, following Kipf & Welling (2016b); Huang et al. (2021). We used a train-validation-test split
of 80:10:10 in our experiments. The dimensions of both hidden layer embeddings were set to 16,
with a learning rate of 0.005 and a weight decay rate of 5×10−4.

A.3.2 REE AND HE

A popular metric to evaluate the quality of the coarsened graph is Relative Eigen Error (REE) Loukas
(2019). The coarsened graphs are the best approximation of the original if the value of REE is close
to zero. Similarly, to quantify how much structural similarities are preserved in the coarsened graph
Gc, Hyperbolic error (HE) is defined in terms of lifted Laplacian Ll .
Definition 10 (Lifted Laplacian L f Loukas & Vandergheynst (2018)). For the coarsening matrix
P ∈ Rk×n

+ and the Laplacian matrix for coarsened graph L̃ ∈ Rk×k, the lifted Laplacian matrix is
defined as follows:

L f = PT L̃P.

The lifted Laplacian matrix reconstructs the original dimension n×n from the coarsened dimension
of k× k. When moving from a G̃ representation back to the G , the disparity between the original and
projected data can be quantified by the Hyperbolic Error (HE).
Definition 11 (Hyperbolic Error (HE) Loukas (2019)). For the given feature matrix X, the hyperbolic
error between the original Laplacian matrix L and lifted Laplacian matrix L f is defined as

HE = arccosh
(

1+
||(L−L f)X||2F ||X||2F

2Tr(XT LX) ·Tr(XT L f X)

)
.

Along with these metrics, one can further perform downstream tasks on a coarsened graph and
compare it with the original one, e.g. node classification using GNNs. In Table 10, we have presented
REE for all algorithms at 50% coarsening ratio. In Figure 6, REE and HE values have been evaluated
on different coarsening ratios ranging from 10% to 95% on the PubMed dataset. The DPGC is
comparable with the state-of-the-art coarsening algorithm on REE and HE while having better
downstream take performance and privacy protection. Table 6 compares the node classification
accuracy of GCN when graph size is reduced to 50% using coarsening algorithms. To further show
the effectiveness of DPGC, we coarsened the graph from 5% to 95% using all baselines and then
trained GCN, Figure 6 (right) shows that DPGC consistently performs better in comparison to the
state-of-the-art method.

As DPGC is designed for graph coarsening, we can use any GNN architecture to perform downstream
tasks. To establish this, we performed node classification using GAT Veličković et al. (2017), GIN Xu

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

0 20 40 60 80 100
Graph Size (%)

1
2
3
4
5
6
7
8

HE

0 20 40 60 80 100
Graph Size (%)

0.0
0.5
1.0
1.5
2.0
2.5

RE
E

0 20 40 60 80 100
Graph Size (%)

55
60
65
70
75
80
85

Ac
cu

ra
cy

 (%
)

Figure 6: Coarsening quality: HE (left), REE (middle) and GCN node classification accuracy (right)
comparison of coarsening algorithms on PubMed dataset.

Table 9: Link prediction performance of the baselines and DPGC in terms of AUC (higher is better).
The coarsening ratio is kept small for relatively small datasets (Cora & CiteSeer) and large for larger
datasets (PubMed). Here, size denotes the size of the coarsened graph. The boldface indicates the
best results.

Dataset Size Full Data GCond LVN FGC LAGC DPGC
30% 68.13 ± 0.16 70.42 ± 0.55 77.35 ± 0.22 78.27 ± 0.28 82.25 ± 0.05

Cora 10% 84.14 ±0.77 66.24 ± 0.54 68.06 ± 0.24 75.27 ± 0.15 77.35 ± 0.37 80.03 ± 0.14
5% 63.46 ± 1.09 63.19 ± 0.97 73.12 ± 0.22 75.28 ± 0.14 78.00 ± 0.02

30% 72.18 ± 0.48 71.70 ± 0.23 73.16 ± 0.16 75.25 ± 0.19 77.00 ± 0.02
CiteSeer 10% 78.46 ± 0.60 69.82 ± 0.40 69.68 ± 0.59 70.01 ± 0.37 74.02 ± 0.33 75.50 ± 0.01

5% 63.11 ± 0.80 64.12 ± 0.66 68.01 ± 0.37 72.29 ± 0.44 72.46 ± 0.05
5% 61.51 ± 0.85 62.32± 0.87 67.27 ±0.38 77.25 ± 0.31 81.05 ± 0.05

PubMed 3% 83.46 ± 0.59 60. 81 ± 0.60 62.36 ± 0.58 66.50 ± 0.20 72.48 ± 0.22 76.00 ± 0.05
1% 57.14 ± 0.55 61.78 ± 0.22 66.05 ± 0.40 68.34 ± 0.46 72.40 ± 0.01

et al. (2018), and GraphSage Hamilton et al. (2017)) popular GNN architectures on four datasets
when the graph size is reduced to 50%. Table 7 presents the results on different datasets for four GNN
architectures. The performance of all GNNs is observed to be similar as it is on original datasets.

A.4 ADDITIONAL EXPERIMENTS

A.4.1 LINK PREDICTION

In link prediction, the task is to predict the existence of a connection between two given nodes. We
use SEAL (Zhang & Chen, 2018) on the coarsened graph for this task. Table 9 presents the AUCROC
achieved by DPGC and the baselines at various coarsening levels. DPGC outperforms all baselines
across all coarsening ratios demonstrating its robustness and efficacy.

A.4.2 RELATIVE EIGEN ERROR (REE)

A common strategy among baselines has been to create a coarsened graph with a similar eigen-
spectrum as the original graph. Consequently, REE has become a popular metric for assessing
coarsening quality (See App. A.3.2 for the mathematical formulation).

Table 10: The Relative Eigen Error (REE) of DPGC and
baselines at 50% coarsening ratio. (Lower is better).

Model Cora Citeseer PubMed Physics Coauthor DBLP
LVN 0.12 0.18 0.11 0.27 0.25 0.12
LVE 0.13 0.14 0.96 0.04 0.05 0.14
LVC 0.09 0.06 1.21 0.04 0.03 0.08
HEM 0.07 0.04 0.83 0.03 0.05 0.09
Alg. Dist 0.11 0.11 0.40 0.12 0.09 0.05
Affinity 0.10 0.06 0.06 0.05 0.06 0.07
Kron 0.07 0.03 0.38 0.06 0.06 0.06
FACH 0.22 0.34 0.18 0.02 0.21 0.15
DPGC 0.13 0.23 0.16 0.02 0.18 0.10

Table 10 presents a comparison of REE val-
ues for the top-100 eigenvalues across all
baseline methods. Before analyzing the re-
sults, we note that while a low REE is likely
to correlate to good GNN training on the
coarsened graph, this is not a necessity. As
previously discussed, in a message-passing
GNN, a node’s embedding encapsulates in-
formation from its L-hop ego graph. This
means that nodes do not necessarily need

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Cora Citeseer Coauthor Physics PubMed DBLP60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Corsening Ratio
30%
50%
70%

Figure 7: Effect of the coarsening process on GNN prediction performance when coarsening all
graph datasets with different coarsening ratios of 30%, 50% and 70% in DPGC.

to be spatially close in the network to have similar embeddings. Coarsening strategies that focus on
preserving the eigen-spectrum tend to group only proximal nodes into supernodes, which may not
always be optimal for preserving the most relevant graph properties for GNN training.

The above intuition aligns well with the results presented in Table 10. Although the baselines exhibit
lower RRE than DPGC in most datasets, this does not translate to superior performance in GNN
prediction tasks (Table 6 and Table 9).

A.4.3 PRIVACY AND REDUCTION IN GRAPH SIZE

In this section, we further investigate the relationship between graph size reduction using DPGC and
a given privacy budget ε, while ensuring utility remains preserved. In Fig. 8, we observe that for
all datasets, the reduction in graph size is proportional to the privacy budget ε. Specifically, when ε

is small, the graph size should be reduced less, while for larger ε, the graph can be coarsened to a
greater extent without significant loss of utility in downstream tasks such as node classification.

0.2 1 4 8
Privacy Cost ()

0
20
40
60
80

100

Re
du

ct
ion

 in
 G

ra
ph

 S
ize

 (%
) Cora

CiteSeer
Pubmed
Physics

Figure 8: Trade-off between graph size reduction and privacy cost while maintaining downstream
utility at the same level.

17

	Introduction and Related Works
	Gaps in Existing Works
	Contributions

	Background and Problem Formulation
	Graph Coarsening
	Differential Privacy
	Problem Formulation

	DPGC: Proposed Methodology
	Augmented Weisfeiler-Lehman Node Features
	Constructing Differentially Private Supernodes via LSH
	Learning Attributes of Supernodes with Similarity Guarantee
	Characterization of DPGC

	Experiments
	Datasets, Baselines and Metrics
	Privacy vs. Accuracy Trade-off
	Robustness Against MIA Attacks
	Assessing the Quality of Coarsening

	Conclusions, Limitations and Future Works
	Appendix
	Explanation of locality-awareness in Fig. 1
	Time complexity and run time
	Quality of Graph Coarsening: Node Classification and Link Prediction Algorithms
	Experimental Setup
	REE and HE

	Additional Experiments
	Link Prediction
	Relative Eigen Error (REE)
	Privacy and Reduction in Graph Size

