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Abstract
We consider the emerging problem of identifying
the presence of watermarking schemes in pub-
licly hosted, closed source large language models
(LLMs). Rather than determine if a given text is
generated by a watermarked language model, we
seek to answer the question of if the model itself
is watermarked. We introduce a suite of baseline
algorithms for identifying watermarks in LLMs
that rely on analyzing distributions of output to-
kens and logits generated by watermarked and
unmarked LLMs. Notably, watermarked LLMs
tend to produce token distributions that diverge
qualitatively and identifiably from standard mod-
els. Furthermore, we investigate the identifiability
of watermarks at varying strengths and consider
the tradeoffs of each of our identification mecha-
nisms with respect to watermarking scenario.

1. Introduction
Recent progress in large language models (LLMs) has im-
proved their ability to produce convincingly human-like
text. Models like GPT-4 (OpenAI, 2023b) and PaLM-2
(Anil et al., 2023) can perform at expert levels in many
fields, sparking worries that LLMs could be used to spread
disinformation. As such, distinguishing AI and human gen-
erated text has become a popular field of research. Yet
current methods are shockingly fallible - OpenAI’s detector
has a false positive rate of 9% and a (self-reported) true
positive rate of just 26% (Kirchner et al., 2023). Such poor
performance makes these methods impractical for detecting
student cheating or AI-generated spam emails.

One alternative is to watermark the text while it is being
generated - subtly modifying it in a way that is indistinguish-
able to humans but detectable by algorithms. Several forms
of watermarks have been introduced, subject to the require-
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ment that the detection algorithm has sufficient access to a
subset of the watermark’s parameters (Kirchenbauer et al.,
2023; Aaronson, 2023).

But we believe the deployment of watermark technology
poses risks for consumer rights in several ways. First, wa-
termark technology must degrade the quality of products
themselves. As described in section two, watermarks like
that proposed by (Kirchenbauer et al., 2023) randomly ad-
just a subset of the outputs, which inherently changes model
outputs and thus quality. While the authors try to minimize
quality degradation, any watermark strength above 0 must
impact quality.

LLM watermarking also bears similarities to digital rights
management (DRM) software in media, where the concern
of unauthorized usage and distribution degraded the qual-
ity of users’ products without their consent. While DRM
software has many vocal opponents, with Apple famously
removing DRM software from iTunes, there is almost no
concern regarding the watermarking of LLMs. Motivated
by these concerns, we are interested in identifying water-
marked language models. Differing from previous work,
where the focus is on determining if text has been produced
by a watermarked model, here we study the problem of if
a language model has been watermarked. Critically, our
black-box algorithms only require querying the model and
do not necessitate any knowledge of underlying watermark-
ing parameters.

2. Related Work
Generated Text Detection Via Statistical Discrepancies
Recent methods such as DetectGPT and GPTZero distin-
guish between machine-generated and human-written text
by analyzing their statistical discrepancies (Tian, 2023;
Mitchell et al., 2023). DetectGPT compares the log probabil-
ity computed by a model on unperturbed text and perturbed
variations, leveraging the observation that text sampled from
a LLM generally occupy negative curvature regions of the
model’s log probability function. GPTZero instead uses
perplexity and burstiness to distinguish human from ma-
chine text, with lower perplexity and burstiness indicating
a greater likelihood of machine-generated text. However,
these heuristics do not generalize and are often fallible.
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(a) Lorenz curve for a unmarked Flan-T5-XXL language
model. Most of the probability mass is concentrated in a

few top tokens, as visualized by the sharp spike towards the
right of the Lorenz curve.

(b) Lorenz curve for a Flan-T5-XXL model affected by a
Kirchenbauer watermark with parameters γ = 0.5 and

δ = 100. Notice that the Lorenz curve is slightly smoother
under this setting, due to the δ application on low-probability

tokens.

Figure 1. Examples of ranked probability Lorenz curves of the first token generated by Flan-T5-XXL under different Kirchenbauer
watermarking strengths. The dashed line represents a perfectly uniform distribution. In both watermarking settings, the majority of the
probability mass is concentrated in the top few tokens.

Detection by Learning Classifiers Several papers have
proposed to train classifiers to distinguish between AI and
human generated text. During the initial GPT-2 release,
OpenAI trained a RoBERTa classifier to detect GPT-2 gen-
erated text with 95% accuracy (Solaiman et al., 2019). More
recently, OpenAI fine-tuned a GPT model on a dataset of
machine-generated and human texts focusing on the same
topic, with a true positive identification rate of 26% (Ope-
nAI, 2023a). Similarly, Guo et al. (2023) collected the Hu-
man ChatGPT Comparison Corpuse (HC3) and fine-tuned
RoBERTa for the detection task.

Notably, the capabilities of such classifiers decrease as
machine-generated text becomes increasingly human-like.
Sadasivan et al. (2023) show theoretically that for suffi-
ciently advanced language models, machine-generated text
detectors offer only a marginal improvement over random
classifiers. Moreover, such methods are prone to adversarial
attacks and are not robust to out-of-distribution text.

Watermarking Large Language Models An alternative
to detecting machine-generated text is watermarking. Water-
marks are hidden patterns in machine-generated text that are
imperceptible to humans, but algorithmically identifiable as
synthetic. Natural language watermarks long predate the
development of LLMs, relying on methods such as synonym
substitution, as well as syntactic and semantic transforma-

tions (Topkara et al., 2005).

More recently, Kirchenbauer et al. (2023) proposed a water-
marking scheme that minimizes degradation in the quality
of generated text, while being efficient to detect in text.
In ongoing work, Aaronson (2023) introduces a conceptu-
ally similar watermarking scheme. At any given inference
step, both watermarking approaches modify the output to-
ken probabilities of the underlying model with an algorithm
using a secret key, hashing, and pseudorandom function
properties. We broadly refer to both of these watermarks as
Kirchenbauer watermarks, which we develop identification
mechanisms against.

Briefly, a Kirchenbauer watermark operates at decoding
step t by first using the underlying LLM to generate a prob-
ability vector p(t) over a vocabulary V ; next computing a
hash from the previous token s(t−1) and seeding a random
number generator (RNG); then using the RNG to partition
V into two sub-vocabularies G (green list) and R (red list);
followed by adding δ to all logits corresponding to G; and
finally sampling token s(t) based on p(t) after the δ pertur-
bation on G. For a green list proportion of γ ∈ (0, 1) and
a watermarked text of length T , this procedure expects a
human, or otherwise LLM with no knowledge of the water-
marking scheme, to use γT green list tokens with variance
Tγ(1−γ). Defining the following null hypothesis H0 : The
text sequence is generated with no knowledge of the water-
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Table 1. Tradeoffs between proposed watermarking identification algorithms. An ideal watermarking is not specific to Kirchenbauer
and can detect general watermarks; does not require access to logits, which is common in publicly hosted models; is sensitive to
small δ and parameter values; is robust against other distribution shifts not induced by watermarks; and can be performed in a single
snapshot of time without reference to previous distributions or tests.

DETECTION METHOD GENERAL WATERMARKS LOGIT-FREE δ-SENSITIVE SHIFT-ROBUST SINGLE-SHOT

RNG DIVERGENCE
√ √ √

× ×
MEAN ADJACENT × ×

√
× ×

δ-AMPLIFICATION × ×
√ √ √

mark’s partitioning, one can then apply a one-proportion
z-test to accept or reject H0 with the following z-statistic:

z = (|s|G − γT )/
√

Tγ(1− γ)

3. Baseline Mechanisms for Identifying
Watermarked Large Language Models

Here, we introduce three baseline mechanisms for identi-
fying the presence of watermarks in LLMs. These mech-
anisms are centered on analyzing the exact and approxi-
mate probability and logit distributions produced by a LLM.
Critically, our mechanisms do not require any access to
information governing the underlying watermark genera-
tion procedure, such as a hash function or random number
generator.

Our three proposed algorithms vary in their access to exact
versus sampled logits, generalizability across watermark-
ing schemes, and statistical robustness. Depending on the
objective and identification constraints, such as efficient
computation, interpretable test statistic, availability of log-
its, and robustness to random shifts in the data, a different
algorithm will be optimal. We hope these algorithms can
serve as sound baselines for future work in this field.

3.1. Measuring Divergence of RNG Distributions

The first algorithm is centered on the simple idea of measur-
ing divergence in “random” number distributions generated
by a LLM. Specifically, we treat LLMs as random number
generators, asking them to generate integers from 1 to 100:

"""Below is an instruction that
describes a task. Write a response that
appropriately completes the request.

### Instruction:
Generate a random number between
1 and 100.

### Response:"""
%

A key benefit of the random number generation task over
alternatives is that the output space for any model is fairly
consistent between models. While the distribution of num-
bers is certainly expected to change across models, the range
of outputs is relatively more stable.

To detect if a specific LLM is watermarked, we first generate
a 1000 number empirical distribution Fu,n using a known
unmarked model as described above. Then, we watermark
the LLM and produce an empirical distribution Fw,m in
the same fashion. Finally, we compute the Kolmogorov-
Smirnov statistic (Massey Jr, 1951) as follows to determine
whether the empirical random number distribution of the
LLM has shifted under watermark application:

Dn,m = supx |Fu,n(x)− Fw,m(x)|

Here n and m are the sizes of each sample, and n = m =
1000 specifically in our case. The null hypothesis is that the
samples are drawn from the same distribution, i.e.:

H0: Fu,n and Fw,m are drawn from the same underlying
distribution

We reject H0 at significance level α if:

Dn,m > c(α)
√

n+m
n·m

Here c(α) =
√
− ln

(
α
2

)
· 1
2 , and we set the significance

level α = 0.05 in our experiments.

3.2. Mean Adjacent Token Differences

Inspired by econometrics, we use the Lorenz curve of model
output probabilities to understand language model behavior.
Specifically, we examine the output token probabilities of a
model and construct ranked probability Lorenz curves. The
x-axis of a ranked probability Lorenz curve lists the tokens
sorted from lowest to highest probability, and the y-axis
of the curve displays the probabilities of each token. Due
to the sorted construction of the x-axis, the ranked token
Lorenz curve is monotonically increasing. Figure 1 displays
an example of these Lorenz curves.

The Lorenz curve is an effective tool for understanding
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(a) Distribution of logit values prior to δ-Amplification. (b) Distribution of logit values after applying δ-Amplification,
averaging across 140 prompts.

Figure 2. Distribution of Alpaca-LoRA logit values before and after δ-Amplification for the “Now write me a story:” prompt at a small δ
value of 4. The x-axis is the logit value and y-axis is the frequency. Without δ-Amplification, it is not clear whether the distribution of
logit values exhibits bimodality. Bimodality emerges only after applying δ-Amplification, enabling watermark identification.

the effects of a Kirchenbauer watermark. In the ranked
token Lorenz curve, the watermark produces manifests a
smoothing effect, as seen on the right of Figure 1, indicating
that a portion of lower-probability tokens have experienced
a δ-increase.

To rigorize this notion of smoothness, one can compute the
Gini coefficient G of the Lorenz curve:

G =

∑n
i=1

∑n
j=1 |xi − xj |
2n2x

Here xi, xj are the probabilities of i-th and j-th tokens on
the curve, indexed by the ordered ranking, and x is the
average probability. Traditionally in economics, G is used
to measure the inequality of a distribution. High G suggests
more inequality, reflected in unmarked distributions, while
low G suggests less inequality and a smoother distribution,
suggesting the presence of a watermark.

A natural extension is to analyze the average increase in
logit value between adjacent tokens. That is, we compute:

I =

∑n−1
i=1 ℓi+1 − ℓi

n− 1

Here, ℓi is the logit at index i on the Lorenz curve, and n is
the total number of tokens in the vocabulary.

Note that for a Kirchenbauer-watermarked LLM with logit
perturbation δ and green list G with proportion γ, we have

an average logit increase of:

IW =

∑n−1
i=1 (ℓi+1 − ℓi)1[i ∈ G]

n− 1

=
γ(n− 1)δ +

∑n−1
i=1 (ℓi+1 − ℓi)

n− 1

Taking the difference with the average logit increase of an
unmarked model, IU , we have:

IW − IU =
γ(n− 1)δ

n− 1
= γδ

Taking the above IW − IU as inspiration, a simple identifi-
cation procedure is to periodically compute I and observe
how it varies over time. Notice that IW − IU directly varies
with γ and δ; that is, the strength of the watermark directly
influences its detectability. For a strong watermark, varia-
tions in I will be obvious, while weaker watermarks will
manifest subtler differences in I.

3.3. Robustly Identifying Small-δ Watermarks

While §3.2 introduces a metric that will successfully detect
a Kirchenbauer watermark for small δ, it is sensitive to
general logit distribution perturbations introduced by other
scenarios, such as routine model updates. An identification
method robust to general distribution shifts should rely on
shift characteristics specific to a Kirchenbauer watermark.
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Table 2. δ-Amplification algorithm produces the corresponding bimodality test dip and p-values for a small-δ watermarked Alpaca-LoRA
model when using prompt prefixes randomly sampled from the Pile and OpenWebText datasets. Greater diversity in prompt prefix task
and content increasingly induces bimodality and thus watermark identification. Notice that when only using Pile prompts, δ-Amplification
is only identify a watermarked model at strength δ = 7, compared to δ = 5 when using both OWT and Pile prompts.

δ P-VALUE (OWT & PILE) DIP (OWT & PILE) p (PILE) DIP (PILE)

0 0.886 0.0017 0.908 0.0016
1 1.0 0.00094 0.999 0.00097
2 0.991 0.0013 1.0 0.00092
3 0.900 0.0016 1.0 0.00093
4 0.204 0.0025 1.0 0.00093
5 0.0 0.00497 1.0 0.00093
6 0.0 0.0087 0.947 0.0015
7 0.0 0.012 0.0 0.0048
8 0.0 0.017 0.0 0.013
9 0.0 0.023 0.0 0.025

10 0.0 0.033 0.0 0.037

A consequence of the Kirchenbauer watermark is that it
induces perceptible separations of logit mass, where the sep-
aration magnitude is of size δ. Inspired by this observation,
we draw an analogue between the separation of logit values
into bands and the bimodality of logit frequencies. Under
this reframing, testing for bimodality, such as in Figure 2, is
equivalent to testing for the existence of a band gap.

However, though this approach is robust to other distribution
shifts, it does not yet consider small-δ perturbations. To
handle such situations, we introduce the δ-Amplification
algorithm.

Algorithm 3.1 (δ-Amplification). Suppose we have a po-
tentially watermarked LLM L. We wish to detect if it is
watermarked. We prompt L repeatedly as follows:

[Random string sampled from training
datasets]. Now write me a story:

Take the produced logits and average them across repeti-
tions. If the resulting frequency of averaged logits is bi-
modal, conclude that Ws(L) is watermarked.

To recover the underlying Kirchenbauer watermark param-
eters, we estimate δ by measuring the distance between the
peaks, and γ by measuring their respective masses.

Critically, as watermarks (Kirchenbauer et al., 2023; Aaron-
son, 2023) only use a fixed-size previous token window
(rumored to be 5-tokens in OpenAI models) to determine
green list indices, the green list partition across all prompts
is the same under this algorithm, as every prompt ends in a
fixed “Now write me a story:” suffix. Therefore, the output
logit distributions all experience the same δ mask.

However, the model is still influenced by earlier tokens in
the prompt, and thus exhibits differing logit values across
prompts. Intuitively then, averaging distributions across dif-

ferent prompts reduces the variation of logits, but maintains
the same effect of the δ perturbation. The averaged distri-
bution thus amplifies the effects of a small-δ watermark.
Figure 2 demonstrates an example of this effect.

We test for bimodality via the Hartigan dip test (Hartigan
& Hartigan, 1985). For a distribution with probability dis-
tribution function f , this test computes the largest absolute
difference between f and the unimodal distribution which
best approximates it.

D(f) = inf
g∈U

sup
x

|f(x)− g(x)|

Here U is the set of all unimodal distributions over x. The
corresponding p-value is calculated as the probability of
achieving a Dip score at least as high as D from the nearest
unimodal distribution.

3.4. Tradeoffs Between Detection Algorithms

The algorithms proposed above are all effective in different
senses. §3.1 introduced a RNG divergence approach to
watermark detection that is not specific to Kirchenbauer
watermarks, does not require access to logits and can thus be
used directly on black-box public APIs, and is also sensitive
to small δ watermarks.

§3.2 introduced an adjacent token metric for analyzing
Kirchenbauer watermarks that is sensitive to small-δ.

Finally, we extended this approach in §3.3 to robustly han-
dle small-δ watermarks, while preserving the single-shot
criteria. Moreover, the δ-Amplification approach lent itself
nicely to statistical testing, specifically of bimodality. It is
also the only identification method that can be performed in
a single shot. That is, it does not require comparing behavior
between a watermarked and unmarked model, and equiva-
lently between a single model across multiple snapshots in
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time, as is the case for the previous two algorithms.

Each method has merit depending on the specific identifica-
tion setting, but will also sacrifice certain desiderata. Table
1 summarizes these tradeoffs.

4. Results
We perform experiments on our identification mechanisms
using the Flan-T5-XXL and Alpaca-LoRA models due to
their strong instruction-following capabilities but differing
Byte-Pair Encoding and digit tokenization methods.

Table 3 displays the p-values resulting from the
Kolmogorov-Test method. For each model and watermark
strength, the method is performed across 30 independent
instances of 1000-sample distributions generated from a
Kirchenbauer-watermarked model. Specifically, we perform
a test between each of the 30 distributions and a distribution
generated by an unmarked model. Under this procedure,
any model with distributions producing an average p-value
less than α = 0.05 would be considered watermarked. The
p-values are highest when comparing an unmarked distribu-
tion against an unmarked distribution, as expected. Notably,
the p-values are extremely low for a majority of watermark
strengths for both Flan-T5-XXL and Alpaca-LoRA.

The results of the δ-Amplification method and correspond-
ing bimodality test are in Table 2. Concretely, we sample a
diverse range of prompt prefixes from Pile and OpenWeb-
Text via HuggingFace datasets and run tests on the logit
value distributions from these generations. Notably, diver-
sity in prompt prefix task and content enables uncorrelated
variance in δ, thus most effectively eliminating logit vari-
ance post-averaging.

We observe that at δ ≥ 5, our method produces p-values less
than α = 0.05, thus successfully identifying the presence
of a watermark. Critically, increasing the number of varied
prefix prompts also increases identification potency - aver-
aging logit distributions only across Pile prompts identifies
Kirchenbauer-watermarked models only at strength δ ≥ 7,
while averaging across both Pile and OpenWebText prompts
identifies watermarked models at strength δ ≥ 5.

5. Conclusion
In this work, we develop a framework for understanding the
novel problem of identifying watermarked large language
models. Rather than detect if text is generated by a water-
marked LLM, we detect if the LLM itself is watermarked.
To that end, we provide three black-box baseline mecha-
nisms – measuring divergence of RNG distributions, mean
adjacent token differences in logits, and δ-Amplification
– all of which fundamentally rely on the analysis of the
distributions of model outputs, logits, and probabilities.

Table 3. Kolmogorov-Smirnov test results on 1000-sample “RNG“
distributions from models watermarked at varying strengths. A
test is performed between 30 distributions generated from the
model against a random distribution generated from an unmarked
model. The reported p-values are averaged across these 30 samples.
Rows where γ = δ = 0 compare an unmarked model against an
unmarked model.

MODEL γ δ AVERAGE P-VALUE

FLAN-T5-XXL 0 0 0.80
FLAN-T5-XXL 0.1 1 3.54E-7
FLAN-T5-XXL 0.1 10 1.22E-9
FLAN-T5-XXL 0.1 50 6.75E-7
FLAN-T5-XXL 0.1 100 8.11E-8
FLAN-T5-XXL 0.25 1 0.002
FLAN-T5-XXL 0.25 10 6.47E-9
FLAN-T5-XXL 0.25 50 2.59E-7
FLAN-T5-XXL 0.25 100 1.33E-6
FLAN-T5-XXL 0.5 1 0.00024
FLAN-T5-XXL 0.5 10 0.057
FLAN-T5-XXL 0.5 50 0.054
FLAN-T5-XXL 0.5 100 0.054
FLAN-T5-XXL 0.75 1 0.42
FLAN-T5-XXL 0.75 10 0.22
FLAN-T5-XXL 0.75 50 0.34
FLAN-T5-XXL 0.75 100 0.23

ALPACA-LORA 0 0 0.63
ALPACA-LORA 0.1 1 1.40E-10
ALPACA-LORA 0.1 10 4.31E-37
ALPACA-LORA 0.1 50 4.31E-36
ALPACA-LORA 0.1 100 1.48E-35
ALPACA-LORA 0.25 1 3.10E-13
ALPACA-LORA 0.25 10 1.93E-10
ALPACA-LORA 0.25 50 4.52E-14
ALPACA-LORA 0.25 100 2.14E-11
ALPACA-LORA 0.5 1 4.17E-13
ALPACA-LORA 0.5 10 0.0089
ALPACA-LORA 0.5 50 0.066
ALPACA-LORA 0.5 100 0.06
ALPACA-LORA 0.75 1 0.00015
ALPACA-LORA 0.75 10 0.52
ALPACA-LORA 0.75 50 0.40
ALPACA-LORA 0.75 100 0.48

All of our techniques rely on knowledge about the behav-
ior of the underlying models, which can take many forms
- knowledge that the distribution of logits in transformer
models is unimodal or knowledge that LLMs sample inte-
gers at certain probabilities. Schemes to remove bias from
LLMs could make them more vulnerable to these attacks
- if there was a query that caused a LLM to return “male”
and “female” with equal probability (e.g. “Guess the gender
of a barrister”), we could apply a similar scheme as used
in section 3.1. We hope our work serves as a baseline for
future watermark detection techniques.
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