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ABSTRACT

State-of-the-art models for high-resolution image generation, such as BigGAN
and VQVAE-2, require an incredible amount of compute resources and/or time
(512 TPU-v3 cores) to train, putting them out of reach for the larger research com-
munity. On the other hand, GAN-based image super-resolution models, such as
ESRGAN, can not only upscale images to high dimensions, but also are efficient
to train. In this paper, we present NOT-SO-BIG-GAN (NSB-GAN), a simple yet
cost-effective two-step training framework for deep generative models (DGMs)
of high-dimensional natural images. First, we generate images in low-frequency
bands by training a sampler in the wavelet domain. Then, we super-resolve these
images from the wavelet domain back to the pixel-space with our novel wavelet
super-resolution decoder network. Wavelet-based down-sampling method pre-
serves more structural information than pixel-based methods, leading to signifi-
cantly better generative quality of the low-resolution sampler (e.g., 64×64). Since
the sampler and decoder can be trained in parallel and operate on much lower
dimensional spaces than end-to-end models, the training cost is substantially re-
duced. On ImageNet 512×512, our model achieves a Fréchet Inception Distance
(FID) of 10.59 – beating the baseline BigGAN model – at half the compute (256
TPU-v3 cores).

1 INTRODUCTION

Generative modeling of natural images has achieved great success in recent years (Kingma &
Welling, 2013; Goodfellow et al., 2014; Arjovsky et al., 2017; Menick & Kalchbrenner, 2019; Zhang
et al., 2018a). Advancements in scalable computing and theoretical understanding of generative
models (Miyato et al., 2018; Zhang et al., 2018a; Gulrajani et al., 2017; Mescheder et al., 2018;
2017; Roth et al., 2017; Nowozin et al., 2016; Srivastava et al., 2017; 2020; Karras et al., 2020),
have, for the first time, enabled the state-of-the-art techniques to generate photo-realistic images in
higher dimensions than ever before (Brock et al., 2018; Razavi et al., 2019; Karras et al., 2020).
Yet, generating high-dimensional complex data, such as ImageNet, still remains challenging and ex-
tremely resource intensive. At the forefront of high-resolution image generation is BigGAN (Brock
et al., 2018), a generative adversarial network (GAN) (Goodfellow et al., 2014) that tackles the curse
of dimensionality (CoD) head-on, using the latest in scalable GPU-computing. This allows for train-
ing BigGAN with large mini-batch sizes (e.g., 2048), which greatly helps to model highly diverse,
large-scale datasets like ImageNet. But, BigGAN’s ability to scale to high-dimensional data comes
at the cost of a hefty compute budget. A standard BigGAN model at 256×256 resolution can require
up to a month or more of training time on as many as eight Tesla V100 graphics processing units
(GPUs). This compute requirement raises the barrier to entry for using and improving upon these
technologies as the wider research community may not have access to any specialized hardware
(e.g., Tensor processing units (TPUs) (Jouppi et al., 2017). The environmental impact of training
large-scale models can also be substantial as training BigGAN on 512×512 images with 512 TPU
cores for two days reportedly used as much electricity as the average American household does in
about six months (Schwab, 2018).

Motivated by these problems, we present NOT-SO-BIG-GAN (NSB-GAN), a small compute training
alternative to BigGAN, for class-conditional modeling of high-resolution images. In end-to-end
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generative models of high-dimensional data, such as VQVAE-2 (Razavi et al., 2019) and Karras
et al. (2017), the lower layers transform noise into low resolution images, which are subsequently
upscaled i.e. super-resolved to higher dimensions in the higher layers. Based on this insight, in
NSB-GAN we propose to split the end-to-end generative model into two separate neural networks,
a sampler and an up-scaling decoder that can be trained in parallel on much smaller dimensional
spaces. In turn, we drastically reduce the compute budget of training. This split allows the sampler
to be trained in up to 16-times lower dimensional space, not only making it compute efficient, but
also alleviating the training instability of end-to-end approaches. To this end, we propose wavelet-
space training of GANs. As compared to pixel-based interpolation methods for down-sampling
images, wavelet-transform (WT) (Haar, 1909; Daubechies, 1992; Antonini et al., 1992) based down-
sampling preserves much more structural information, leading to much better samplers in fairly low
resolutions (Sekar et al., 2014). When applied to a 2D image, wavelet transform slices the image
into four equally-sized image-like patches along different frequency bands. This process can be
recursively applied multiple times in order to slice a large image into multiple smaller images, each
representing the entire image in different bandwidths. This is diagrammatically shown in Figure 1.
Here, the top-left patch (TL) lies in the lowest frequency band and contains most of the structure of
the original image and therefore the only patch preserved during downsampling. The highly sparse
top-right (TR), bottom-left (BL) and bottom-right (BL) patches lie in higher bands of frequency and
are therefore dropped. But wavelet-space sampling prohibits the use of existing pixel-space super-
resolution models, such as Ledig et al. (2017); Wang et al. (2018), to upscale the samples. Thus, we
introduce two wavelet-space super-resolution decoder networks that can work directly with wavelet-
space image encoding, while matching the performance of equivalent pixel-space methods. Training
our decoders is extremely compute efficient (e.g., 3 days on the full ImageNet dataset), and, once
trained on a diverse dataset like ImageNet, can generalize beyond the original training resolution
and dataset.

Figure 1: Wavelet transformation consists of a low-pass and a high-pass filter, followed by a down-
sampling step that splits the image into two equal-sized patches. Each of these two patches undergo
the same operation again resulting in four equal-sized patches, TL, TR, BL and BR.

Our main contributions are the following:

• We introduce a simple training framework NSB-GAN for large generative models and show
that super-resolving low-resolution samplers reduces the cost of training by orders of mag-
nitude without sacrificing image quality and even outperforms the baseline BigGAN model
at higher resolution (e.g., 512× 512).

• In addition to a simple pixel-based version of NSB-GAN, we introduce wavelet-space train-
ing of DGMs and demonstrate that it leads to better image quality compared to pixel-space
NSB-GAN model on average.

• While conceptually simple (especially in the pixel-space), training large models to work in
tandem requires careful engineering. Therefore, we make our entire NSB-GAN code-base
publicly available to the wider research community.

2 BACKGROUND AND RELATED WORK

Given a set X = {xi|∀i ∈ {1, . . . N}, xi ∈ RD} of samples from the true data distribution p(x),
the task of deep generative modeling is to approximate this distribution using deep neural networks.
All generative models of natural images assume that p(x) is supported on a K-dimensional, smaller
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manifold of RD. As such, they model the data using a conditional distribution pθ(x|z), where
θ represents the model parameters and Z ∈ RK is the latent variable with the prior p(z). Z is
marginalized to obtain the log-likelihood (LLH) log pθ(x) = log

∫
p(z)pθ(x|z)dz of X under the

model. Generative model are trained by either maximizing this LLH or its lower-bound. There are
two types of deep generative models, explicit models like variational autoencoders (VAE) (Kingma
& Welling, 2013) that have an explicit form for the LLH and implicit models such as GANs (Good-
fellow et al., 2014) that do not have such a form. VAEs use a decoder network Dθ to parameterize
the model distribution pθ(x|z) and an encoder network Eφ to parameterize a variational distribution
qφ(z|x) as an approximation to the true posterior under the model. They can then be trained using
the evidence lower-bound (ELBO), log pθ(x) ≥ −KL[qφ(z|x)‖p(z)] +

∫
qφ(z|x) log pθ(x|z)dz.

KL here refers to the Kullback–Leibler divergence between qφ(z|x) and p(z). Unlike VAEs, GANs
do not make any assumptions about the functional form of the conditional distribution pθ(x|z) and,
therefore, do not have a tractable likelihood function. Instead, they directly attempt to minimize
either a variational lowerbound to a chosen f -divergence (Nowozin et al., 2016; Srivastava et al.,
2017) or integral probability metric (IPM) (Arjovsky et al., 2017; Li et al., 2017; Srivastava et al.,
2020) between the model distribution pθ(x) and p(x) using binary classifier based density ratio
estimators.

Though the idea of multiscale modeling in GANs has been considered throughly in Denton et al.
(2015); Karras et al. (2017; 2020); Liu et al. (2019b), our method is more closely related to VQVAE-
2 (Razavi et al., 2019) and the Subscale Pixel Network (SPN) (Menick & Kalchbrenner, 2019) mod-
els. VQVAE-2 is a hierarchical version of the VQVAE model (van den Oord et al., 2017) that unlike
VAEs, does not impose a KL-based regularization on the latent space. Instead, VQVAE/VQVAE2
models use vector quantization as a strong functional prior. As such, sampling from the latent space
is not straightforward and requires a large compute budget to train auto-regressive PixelSNAIL
(Chen et al., 2017) models to estimate the density on the latent space to generate samples. (Menick
& Kalchbrenner, 2019) shows that it is easier to generate high-resolution images by splitting the
process into two steps. In step one, they slice the image into small patches and then learn to gen-
erate these patches using a patch-level autoregressive model. This step allows for capturing the
general structure of the image but misses the finer details. Therefore, in step two, they train another
network that learns to fill in the missing details. The SPN model has a significant shortcoming,
however, as its patch-level autoregressive approach fails to capture long term dependencies (e.g.
eyes on a face looking in different directions). Similar to SPN’s multi-scale approach, NSB-GAN
decouples structure learning from adding details. Unlike SPN, however, it does not suffer from the
long-term dependency problem. This is because NSB-GAN uses wavelet transformation to slice the
image, which naturally decouples the structure (TL) from the details (TR, BL, BR) in the image. We
demonstrate this difference diagrammatically in the Appendix F. More importantly, wavelet trans-
form alleviates the need for autoregressive modeling of the patches as each patch represents the
entire image in different frequency bands.

Image Super Resolution Since the pioneering work of SRCNN (Dong et al., 2014) to tackle the
problem of single image super-resolution, recovering a high-resolution image from a low-resolution
image, with a deep neural network, deep convolutional neural network approaches have demon-
strated great success reconstructing realistic high-resolution images. ESRGAN (Wang et al., 2018)
is the state-of-the-art GAN model that majorly builds on SRGAN, RDN, and EDSR (Ledig et al.,
2017; Zhang et al., 2018b; Lim et al., 2017). Improving upon its predecessor SRGAN, it modifies
the SRGAN’s architecture from SRResNet to Residual-in-Residual Dense Block (RRDB) without
batch normalization, finetunes the perceptual loss implemented with the VGG-19 model (Simonyan
& Zisserman, 2015), and utilizes a relativistic GAN-like (Jolicoeur-Martineau, 2019) adversarial
loss to predict relative realness. First, only the generator is trained as a Peak Signal-to-Noise Ratio
(PSNR)-oriented model with L1 loss. Then, the GAN is trained as a whole, initialized from this
pre-training, with carefully balanced L1, perceptual, and adversarial losses. With such, ESRGAN is
able to reconstruct realistic high-frequency texture and details missing in the low-resolution images.

3 METHOD

NSB-GAN training introduces a fairly simple change to the original BigGAN model. Instead of
training the generator directly on the full dimensionality of the data, D = 256 (say, for ImageNet
dataset), we train the generator in K = 64. Then, in order to upscale the 64 × 64 image back
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to 256, we train an up-scaling decoder. We now describe two specific instances of the NSB-GAN
framework, NSB-GAN-W and NSB-GAN-P in detail.

3.1 NSB-GAN-W

NSB-GAN-W is best described as an autoencoder that operates in the frequency domain instead
of the usual pixel space. It is comprised of a deterministic encoder, a learned decoder and learned
prior network, i.e. sampler. These three components form a full generative model that can produce
high-quality, high-resolution samples with a week of training on commodity hardware.

3.1.1 DETERMINISTIC ENCODER.

The NSB-GAN-W encoder is a deterministic function that recursively applies wavelet transform to
the input image, retaining only the TL patches at each level. Each TL patch is a quarter of the size of
the previous TL patch, resulting in a pyramid-like stack of 2D patches after multiple transformations.
The last TL contains the lowest frequencies and, therefore, the most structural information about the
image. We use it as a compressed, lossy representation of the input image in our encoding step.

For aN2-dimensional imageX , let us denote the matrix obtained after wavelet transform asW (X),
which is a N ×N block matrix with the following structure,

W (X) =

[
W1,1(X) W1,2(X)
W2,1(X) W2,2(X)

]
.

Here, with a slight abuse of notation, W1,1(X) represents the
(
N
2 ×

N
2

)
-dimensional TL patch of

image X. NSB-GAN’s encoder E can then be defined recursively as follows,

E0(X) = X

El(X) = W1,1(El−1(X)), 1 ≤ l ≤ L (1)

where l is the number of wavelet transforms applied to the input image. As can be seen, the size of
the retained TL patch decreases exponentially with l.

3.1.2 DECODER

After wavelet transform, the original image can be deterministically recovered from the TL, TR,
BL, and BR patches using IWT. NSB-GAN-W, however, discards the high-frequency patches dur-
ing its encoding step, rendering a fully deterministic decoding impossible. Thus, the NSB-GAN
decoder first learns to recover the missing high-frequency patches (using a neural network) and then
deterministically combines them using IWT to reconstruct the original input. We now present two
NSB-GAN-W decoder designs based on ResNet (He et al., 2016; Ledig et al., 2017) and UNet
(Ronneberger et al., 2015) architectures respectively.

ESRGAN-W Since NSB-GAN-W sampler generates samples in the wavelet domain, we modify
the basic ESRGAN architecture (Wang et al., 2018) to allow it to accept images in the wavelet-
domain, up-scale them, and then project them back to the pixel-space. Specifically, we replace the
generator in ESRGAN with a 16-block-deep SRResNet without batch normalization (Ledig et al.,
2017), denoted by fθ, and replaced the bilinear interpolation based up-scaling with IWT. We can
then define the decoder as,

D(W l
1,1; Θ) = IWT

([
W l

1,1 000
000 000

])
+ fθ(W

l
1,1). (2)

This design not only allows us to directly input wavelet-encoded images in the decoder, but also
lets us use the carefully balanced GAN-based training of ESRGAN since our decoder still operates
in the pixel space to recover the missing higher frequencies. Similarly to ESRGAN, we pre-train
SRResNet with only L1 Loss, initialize the generator at this state, and then start the full adversarial
training with perceptual loss and adversarial loss. We refer to these two models as ResNet-W and
ESRGAN-W, respectively. We defer further training details of the decoder to the Appendix C.2.
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UNet-Decoder While the ESRGAN-W decoder works well with wavelet-encoded inputs, it does
not take full advantage of the compression that wavelet space modeling brings about. Therefore, we
also introduce a UNet-based decoder that takes full advantage of the wavelet decomposition of 2D
data to completely bypass the original dimensionality of the target image. Due to space limitations,
we defer the details of this design to the Appendix C.3.

3.1.3 SAMPLER: LEARNED PRIOR NETWORK

The functional prior imposed by our deterministic encoder leads to a highly structured represen-
tation space made up of low frequency TL patches of images. In order to generate from NSB-
GAN-W, one must be able to draw samples from this space. We posit that, compared to sampling
from equivalently-sized representation spaces for AE and VAEs, it is easier to sample from a low-
dimensional, image-like latent space using generative methods such as GANs, as they repeatedly
have been shown to excel in learning to samples from image distributions. Therefore, we train a
BigGAN sampler on this representation space. As the dimensionality is considerably lower than
the original image, it only takes a single week and two Tesla V100 GPUs to to train the sampler.
Since the values of the TL patch may not lie in the [0, 1], range, care needs to be taken in order to
normalize the encoded samplers properly as failing to do so prevents the BigGAN sampler to learn
the correct distribution.

Pre-trained Sampler. It is possible to use a pre-trained BigGAN model at a lower resolution
within NSB-GAN-W to generate higher resolution images. Consider a pre-trained BigGAN model
that can generate 128×128 samples in the pixel-space. By simply projecting the samples into the
frequency-space using our deterministic encoder (down to 64 × 64) and then up-scaling it through
our decoder network, one can generate samples at 256×256 without any significant loss in quality.
In fact, these samplers can outperform the end-to-end baseline BigGAN model not only in compute
requirement, but also in terms of the FID at 512×512 resolution.

3.2 NSB-GAN-P

NSB-GAN-P is the pixel counterpart of NSB-GAN-W. Instead of encoding, generating, and decod-
ing in the wavelet space, it operates in the pixel space. The deterministic encoder sub-samples the
original image in the pixel space to generate a low-resolution latent representation. Specifically, we
realize the sub-sampling as smoothing with a Gaussian filter and sub-sampling with respect to the
upscaling factor r (Jo et al., 2018). For the NSB-GAN-P decoder, we use the ESRGAN model with
the generator replaced with SRResNet without batch normalization, as in NSB-GAN-W, which we
refer to as ESRGAN-P and the BigGAN model on low-dimensional space for the prior network. The
training procedure is same as in ESRGAN-W, where first we pre-train SRResNet with only L1 loss
(namely, ResNet-P) and then start adversarial training. Similar to the NSB-GAN-W model, we also
have a UNet-version of the decoder but it reconstructs directly in the original data dimensionality
like the ESRGAN based decoder. Further details are in Appendix C.2.

3.3 TRAINING

As before, let X be the dataset of high-dimensional natural images. The NSB-GAN encoder can
be defined as a deterministic function E : RD 7→ RK that uses the WT to produce Z = {zj |∀j ∈
{1, . . . N}, zj ∈ RK}. Using this paired dataset {X,Z}, we treat NSB-GAN as a fully observable
model and train the decoder function Dθ : RK 7→ RD to reconstruct X from Z by minimizing
the negative log-likelihood (NLL) −Ep(x,z)[log pθ(x|z)] of the conditional probability distribution
that it parameterizes. Learning of the generator function Gφ : RK 7→ RK which is referred to as
learning the prior in previous literature (Razavi et al., 2019; De Fauw et al., 2019), is essentially
fitting a generative model to the marginal distribution of Z, i.e. p(z). While we could use a sim-
ilar approach as above and fit Gφ that parameterizes the model distribution pφ(z) by minimizing
−Ep(z)[log pφ(z)], we chose to instead use a BigGAN model to directly minimize the (variational
lower-bound to the) f -divergence Df [p(z)‖pφ(z)] (Nowozin et al., 2016) between the true marginal
distribution p(z) and the model distribution as it provides a better fit for natural-image like distribu-
tions compared to other approaches. All together, NSB-GAN simply specifies a generative model
over X and Z jointly and is, therefore, trained by minimising the NLL,

− Ep(x,z)[log pθ,φ(x, z)] = −Ep(x,z)[log pθ(x|z)]− Ep(z)[log pφ(z)]. (3)
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Sampler Decoder Resolution min FID/IS Compute Budget
Learned-P-64 ESRGAN-P 256 32.66 / 89.81 8 days on 4 × V100 GPUs

Learned-W-64 ESRGAN-W 256 21.82 / 119.8 7 days on 4 × V100 GPUs
Learned Baseline None 256 > 200 / < 10 7 days on 8 × V100 GPUs

Table 1: The learned samplers above are all realized with BigGAN/BigGAN-deep architecture. On
a small compute budget, it is not only possible to train the Learned-W-64 sampler well, but also
the NSB-GAN-W model (with Learned-W-64 sampler) beats the state-of-the-art VQVAE-2 model
(before truncation/rejection sampling), which has an extremely high cost of training similar to that
of the BigGAN model. We defer a more detailed discussion about truncation and rejection sampling
in Appendix B.1 and showcase a more detailed set of results in Table 4 in the Appendix B.1.

4 EXPERIMENTS

In this section, we quantitatively and qualitatively evaluate the training efficiency of the NSB-GAN
approach against the end-to-end training approach of the BigGAN model by benchmarking the com-
pute budget required vs. the quality of the generated samples. While quantifying image quality re-
mains a challenging problem (Borji, 2019), we report the Frechet Inception Distance (FID) (Heusel
et al., 2017) and Inception Score (IS) (Salimans et al., 2016) as proxy measures to allow for direct
comparison with BigGAN. All results are reported on the ImageNet dataset (Deng et al., 2009) at
two different resolutions, 256×256 and 512×512.

Compute Budget. For our main experiments on training efficiency, depending on the sampler
used, we define two different compute budgets. For the learned samplers, we train the NSB-GAN-
W and NSB-GAN-P models for a total of 168 hours (7 full days). Our training is performed on a
single machine with four Telsa V100 GPUs with 16GB of VRAM each. We found that training the
baseline model (BigGAN) at 256x with only 4 GPUs in 7 days is not possible on the default setting,
so we allow a total of 8 GPUs for the baseline training. Since the training of these BigGAN-based
samplers are highly unstable (Zhao et al., 2020), we train 5 instances in total (3 BigGAN-deep and 2
BigGAN samplers) and report results using the instance with the best FID score. For the pre-trained
sampelrs, the compute budget is computed in terms of the TPUs used in their original training and
does not include the decoder training. This is because the compute budget required to train the
decoder is negligible compared to that of the sampler.

Hyperparameters and Setup. For the deterministic encoder using wavelet transformation, we
instantiate it with biorthogonal 2.2 wavelet. For the NSB-GAN sampler, we use a batch size of 512
and learning rates of 10−4 and 4×104 for the generator and discriminator, respectively. For the pre-
training of ESRGAN-W and ESRGAN-P with L1 loss, we use a batch size of 32, and the learning
rate is initialized 1 × 10−4 and decayed by a factor of 2 every 2 × 105 mini-batch updates. During
adversarial training of ESRGAN-W and ESRGAN-P, the learning rate is set to 1× 10−4 and halved
at [50k, 100k] iterations. In the case of the UNet-decoders, for the first-level decoder, we use a batch
size of 128 and a learning rate of 10−4. For the second-level decoder, we use the same learning rate
as the first-level decoder, but a smaller batch size of 64. We allocate two GPUs to the NSB-GAN
sampler, and the other two for the decoders. For the UNet-decoder, this implies one GPU per level.
Each component is trained in parallel and independently from each other. To train the BigGAN
baseline model at the native resolution of 256× 256, we use the same learning rates as for the NSB-
GAN sampler and a recommended batch size of 2048 (Brock et al., 2018). The baseline model trains
with eight GPUs, instead of four like with NSB-GAN, to meet its large memory requirement, given
the batch size and resolution of the image. We provide training and evaluation code for NSB-GAN
sampler and the other models, respectively here: https://anonymous.4open.science/r/
ca7a3f2e-5c27-48bd-a3bc-2dceadc138c1/.
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4.1 RESULTS

4.1.1 LEARNED SAMPLERS

To establish the training efficiency and competitive image quality of our NSB-GAN approach, we
compare the FID and IS that the NSB-GAN-W, NSB-GAN-P and baseline BigGAN models reach in
the compute budget of 7 days with four (8 for the baseline) Tesla V100 GPUs in Table 1. Both NSB-
GAN-P and NSB-GAN-W models reach very competitive FIDs of 32.66 and 21.82, respectively.
To put these results in perspective, even SAGAN (Zhang et al., 2018a), which requires twice the
compute and operates on half the resolution (128 × 128), reaches an FID of ∼19. Furthermore, in
the same amount of time but twice the compute, the baseline BigGAN model fails to generate any
meaningful samples across all five runs. This illustrates that, compared to end-to-end models, the
NSB-GAN models are significantly more compute efficient and can reach competitive image quality.

In the aforementioned models, we use the public PyTorch implementation of BigGAN (kindly pro-
vided by the authors) to provide fair comparisons between the NSB-GAN models and the baselines.
It is important to note, however, that the Pytorch implementation is not optimal as it does not use
Sync-BatchNorm (SBN) which is essential for large mini-batch training. This implementation has
been reported to not reach the FID and IS reported in the original paper (ajbrock, 2018).

When the sampler is trained in the low-dimensional space of 64 × 64, NSB-GAN-W clearly out-
performs NSB-GAN-P. We posit that this sharp difference in FID stems from the difference in the
loss of structural information using the two down-sampling methods: pixel-based interpolation and
wavelet-space encoding (Sekar et al., 2014). As illustrated in Figure 2 in Appendix A, WT encod-
ing seems to preserve more structural information than pixel-based interpolation which misses key
features of the image due to arbitrary sub-sampling. This finding suggests that the down-sampled
distribution at 64 × 64 becomes sufficiently different from the original distribution at 256 × 256
such that when trained on the down-sampled distribution, NSB-GAN-P sampler fails to sufficiently
approximate the structure in the original data distribution. If this were true, the NSB-GAN-P per-
formance should improve as the level of down-sampling is decreased. With the following set of
experiments with pre-trained samplers, we test this hypothesis and demonstrate that NSB-GAN
framework can also be used with pre-trained samplers to make image generation at high resolution
(256× 256, 512× 512) efficient and even beat the BigGAN baseline model in some cases.

4.1.2 PRE-TRAINED SAMPLERS

We consider two pairs of pre-trained BigGAN samplers combined with our NSB-GAN models to ul-
timately generate at two different resolutions of 256×256 and 512×512. To clarify, our pre-trained
samplers are simply a serial combination of pre-trained BigGAN models 1 and our encoders. For ex-
ample, Pretrained-128-64 is created by generating samples from a pre-trained sampler at 128× 128
and then applying a down-sampling operation (pixel or wavelet) to obtain 64 × 64 samples. Then,
our decoders up-scale the low-resolution image four times to 256×256. We report the FID/IS scores
for all the samplers and compare to the baseline BigGAN models pre-trained at the respective reso-
lutions in Table 2. First, notice that NSB-GAN-P performance increases drastically, supporting our
hypothesis. Next, both NSB-GAN-W and NSB-GAN-P models require significantly less compute
(up to 4 times less TPU-v3 cores, as shown in the last row of Table 2) to train. Most importantly,
note how approach outperforms the original BigGAN model in terms of FID at 512×512 resolution,
despite using exactly half the original compute budget. We hypothesize that this is partly due to the
way in which ImageNet 512×512 dataset is generated, but defer this discussion to Appendix H.

Furthermore, note that we did not have to re-train the decoders when applying to different resolutions
and samplers. All results in this experiment are done with the decoders from the previous experiment
that were only trained to up-scale images from 64 × 64 to 256 × 256. They evidently generalize
well across different resolutions. This amortization of training across resolutions further reduces the
training cost when more than one generator is trained.

UNet-Decoders As shown in Table 4 of the Appendix B.1, our ESRGAN-based decoders clearly
outperform our UNet-decoders on FID and IS. It is important to note, however, that this difference
is primarily because the ESRGAN decoders employ adversarial training which has been shown
to drastically improve image quality as measured by FID. As shown in Table 3, not considering

1We use the pre-trained models from huggingface’s PyTorch re-implementation of BigGAN model.
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Sampler Decoder Resolution min FID / IS Compute
BigGAN-128 None 128 10.58 / 43.72 128 TPUs

BigGAN-256 None 256 10.68 / 52.16 256 TPUs

Pretrained-128-64 ESRGAN-P 256 12.28 / 46.06 128 TPUs

Pretrained-128-64 ESRGAN-W 256 12.66 / 45.54 128 TPUs

BigGAN-512 None 512 11.32 / 49.37 512 TPUs

Pretrained-256-128 ESRGAN-P 512 10.30 / 213.4 256 TPUs
Pretrained-256-128 ESRGAN-W 512 10.59 / 52.14 256 TPUs

Pretrained-128 ESRGAN-P 512 13.55 / 47.70 128 TPUs

Table 2: All pretrained samplers above are realized with BigGAN. In higher dimensions, compared
to the baseline BigGAN models at the respective resolutions, NSB-GAN models reduce the training
compute budget by up to four times (last row) while suffering only a minor increase in FID. All
pre-trained samplers above are trained for approximately two days on the compute described. Note
that the decoder is only trained once, but generalizes across all the resolutions. This amortization
further reduces the training cost drastically. Pretrained-128-64, for example, indicates that the model
generates at 128 × 128 resolution and we down-sample it to 64 × 64 resolution with our encoders
for NSB-GAN models. As empirically tested and confirmed by Razavi et al. (2019), IS is highly
sensitive to slight blurs and perturbations. Therefore, we include an expanded set of quantitative
results with various truncation and rejection sampling levels in Table 5 in the Appendix B.2.

UNet-P UNet-W VQVAE-2
Train MSE 0.0061 0.0045 0.0047

Valid MSE 0.0074 0.0049 0.0050

Table 3: MSE on training and validation set for UNet-P, UNet-W,and VQVAE-2 models. Small
difference between the training and validation error suggests that the models generalize well.

adversarial decoder, our UNet-W decoder leads to the best reconstruction error compared to the
pixel-space decoder, including the state-of-the-art VQVAE-2 model.

Evaluation on LSUN Church with StyleGAN-2-W The NSB-GAN approach can be imple-
mented with models other than BigGAN. To demonstrate this, we replace the BigGAN sampler ar-
chitecture in our model with the StyleGAN-2 architecture and re-run the experiments on the LSUN-
Church dataset. The results in Table 10 of the Appendix E demonstrate that our NSB-GAN models
can generalize to different samplers and datasets.

Qualitative Results. Due to space limitations, we have deferred all qualitative results to the Ap-
pendix. Please see the Appendix A.1, A.2, A.3, and A.4 for a detailed qualitative comparison of all
the models.

5 CONCLUSION

In this work, we present a new genre of compute-efficient generative models, NOT-SO-BIG-GAN,
that achieve comparable image quality to the current SoTA DGM (BigGAN) with a dramatically
lower compute budget. Surprisingly, NOT-SO-BIG-GAN is even able to outperform BigGAN in
image quality at 512×512 resolution. Overall, we hope that our work inspires others to develop low-
compute generative models that can be utilized and iterated on by the wider research community.
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A APPENDIX

A.1 NSB-GAN SAMPLES WITH LEARNED SAMPLER

Refer to Figure 3 for samples from NSB-GAN models.

A.2 NSB-GAN SAMPLES WITH PRE-TRAINED SAMPLER

Refer to Figures 4b and 4a for class-conditional samples from NSB-GAN-P and NSB-GAN-W
models at 256× 256, respectively. Refer to Figures 7a, 8a, 5a, and 6a for class-conditional samples
from NSB-GAN-P and NSB-GAN-W models at 512 × 512. Samples from BigGAN models at
256×256 and 512×512 are also included in 9, 10, and 11 for comparison. We intentionally include
random samples from the same classes for all the models to allow for direct and easy comparison.

A.3 FULL RESOLUTION SAMPLES FROM NSB-GAN-W WITH PRE-TRAINED SAMPLER

Refer to Figures 12, 13, 14, and 15 for full resolution samples from NSB-GAN-W at 256× 256.

Refer to Figures 16, 17, 18, and 19 for 512× 512. These samples are fitted to the page.
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Figure 2: The above images are the original, down-sampled version using wavelet encoding, and
down-sampled version using pixel-based interpolation (bilinear) in the column-wise order. Please
note that the pixel-based interpolation loses key structural information in the images – face of the
person, structure of the boat, and accordion keyboard – whereas wavelet encoding does not.

Sampler Decoder Resolution min FID / IS FID / max IS
Learned-P-64 ESRGAN-P 256 32.66 / 89.81 33.61 / 96.12

Learned-W-64 ESRGAN-W 256 21.82 / 119.75 27.52 / 219.4

Learned-P-64 UNet-W 256 35.60 / 84.68 38.58 / 129.4

Table 4: Minimum FID / IS (column 4) and FID / Minimum IS (column 5) attained with different
levels of truncation [1.0, 0.8, 0.6, 0.4, 0.2, 0.1] and rejection sampling [0.70, 0.80, 0.90, 0.95].

A.4 FULL RESOLUTION SAMPLES FROM NSB-GAN-P WITH PRE-TRAINED SAMPLER

Refer to Figures 20, 21, 22, and 23 for full resolution samples from NSB-GAN-W at 256× 256.

Refer to Figures 24, 25, 26, and 27 for 512× 512. These samples are fitted to the page.

B RESULTS WITH TRUNCATION AND REJECTION SAMPLING

B.1 LEARNED SAMPLERS

For a more thorough analysis of our NSB-GAN models with learned samplers, we apply trun-
cation and rejection sampling to study their effects on FID and IS. We apply truncation at
[1.0, 0.8, 0.6, 0.4, 0.2, 0.1], and, given the truncation level at which the model outputs the best FID,
we apply rejection sampling with a pre-trained Inception V3 model on ImageNet. We test rejection
sampling thresholds at 0.70, 0.80, 0.90, and 0.95. Refer to Table 4 for quantitative results on FID
and IS. We also include FID and IS results for UNet-W decoder that was only trained with a MSE
loss.
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(a) NSB-GAN-P with learned sampler (b) NSB-GAN-W with learned sampler

Figure 3: Class-conditional random samples at 256 × 256 from NSB-GAN models with learned
samplers. Classes from the top row: 12 house finch, 129 spoonbill, 200 Tibetan terrier, 323 monarch
butterfly, 493 chiffonier, 727 planetarium, 780 schooner, 853 thatch, 970 alp, and 992 agaric.

Sampler Decoder Resolution min FID / IS FID / max IS
Pretrained-128-64 ESRGAN-P 256 12.28 / 46.06 13.85 / 229.6

Pretrained-128-64 ESRGAN-W 256 12.66 / 45.54 20.44 / 285.5

Pretrained-256-128 ESRGAN-P 512 10.30 / 213.35 21.85 / 338.4

Pretrained-256-128 ESRGAN-W 512 10.59 / 52.14 22.26 / 332.7

Table 5: Minimum FID / IS (column 4) and FID / Minimum IS (column 5) attained with different
levels of truncation [1.0, 0.8, 0.6, 0.4, 0.2, 0.1] and rejection sampling [0.70, 0.80, 0.90, 0.95].

B.2 PRE-TRAINED SAMPLERS

We conduct the same detailed analysis for our NSB-GAN models with pre-trained samplers as the
above. Refer to Table 5 for quantitative results on FID and IS.
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(a) NSB-GAN-W with pre-trained sampler (b) NSB-GAN-P with pre-trained sampler

Figure 4: Class-conditional random samples at 256× 256 from NSB-GAN models with pre-trained
samplers. Classes from the top row: 12 house finch, 129 spoonbill, 200 Tibetan terrier, 323 monarch
butterfly, 493 chiffonier, 727 planetarium, 780 schooner, 853 thatch, 970 alp, and 992 agaric.

C ARCHITECTURE, HYPERPARAMETERS, AND TRAINING DETAILS

C.1 SAMPLER

Refer to 6 for details about the architecture and hyperparameters of the learned samplers (Learned-
P-64 and Learned-W-64). We attempted to train the sampler with both BigGAN and BigGAN-deep
architectures and report on the models that achieved the best FID for each. Empirically, we found
the models trained on the pixel-space much more unstable than on the wavelet-space, with four out
of five models diverging.

C.2 NSB-GAN DECODERS

ESRGAN-W and ESRGAN-P A similar training procedure in ESRGAN is conducted for both of
our decoders, ESRGAN-W and ESRGAN-P. First, SRResNet, with batch normalization removed,
is trained with L1 loss: L1 = Exi ||G(xi) − y||1, where xi is the down-sampled image and y is the
target image. After training with this L1 loss for 150k iterations, the GAN is trained with perceptual
and adversarial losses added. Therefore, the total loss for the generator becomes:

Ltotal = Lpercep + λLG + ηL1 (4)

14



Under review as a conference paper at ICLR 2021

(a) NSB-GAN-W with pre-trained sampler

Figure 5: Class-conditional random samples at 512 × 512 from NSB-GAN-W model with pre-
trained sampler. Classes from the top row: 12 house finch, 129 spoonbill, 200 Tibetan terrier, 323
monarch butterfly, and 493 chiffonier.

Perceptual loss is implemented with a pre-trained VGG-19 model on ImageNet and we use the
features of the fourth layer before the fifth max-pooling layer. This GAN model is then trained for
another 150k iterations.

As in the training for the learned sampler in wavelet domain, because the wavelet-encoded input
image does not lie in the standard [0, 1] range for ESRGAN-W, a normalization step is applied
to transform the range into [0, 1]. By using the minimum and maximum values of the wavelet-
encoded input images, pre-calculated in the pre-processing step, we use the following normalization
technique: xinorm

= xi+d|minx|e
dmaxxe , where xi is the wavelet-encoded input and minx and maxx are

the pre-calculated minimum and maximum values of the wavelet-encoded input images.

Both ESRGAN-W and ESRGAN-P share the same architecture design, except for how the input is
up-scaled and added to the learned features in order to induce the residual learning paradigm. Refer
to Table 7 for specific details of the architecture and hyperparameters.

C.3 UNET

UNet in Wavelet Domain After a wavelet transform, the original image can be deterministically
recovered from the TL, TR, BL, and BR patches using IWT. NSB-GAN-W, however, discards the
high-frequency patches (TR, BL, and BR) during its encoding step, rendering a fully deterministic
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(a) NSB-GAN-W with pre-trained sampler

Figure 6: Additional class-conditional random samples at 512×512 from NSB-GAN-W model with
pre-trained sampler. Classes from the top row: 727 planetarium, 780 schooner, 853 thatch, 970 alp,
and 992 agaric.

decoding impossible. To resolve this, the NSB-GAN decoder first learns to recover the missing
high-frequency patches (using a neural network) and then deterministically combines them using
IWT to reconstruct the original input.

Since NSB-GAN’s encoding operation recursively applies wavelet transforms and discards the high-
frequency components at each of the L encoding levels, we train L decoder networks to reconstruct
the missing frequencies at each corresponding level of decoding. To parallelize the training of these
decoder networks, we perform multiple wavelet transforms to the original high-resolution dataset,
generating L training sets of TL, TR, BL and BR patches. This allows us to independently train
each of the decoder networks (in a supervised manner) to reconstruct the missing high-frequency
patches conditioned on the corresponding TL. This parallelization boosts the convergence rate of
NSB-GAN, allowing for a fully trained decoder in under 48 hours.

Again with a slight abuse of notation, let W l
1,1 be the TL patch at level l and IWT = WT−1. We can

write the decoder for level l as

Dl(W
l
1,1; Θ) = IWT

([
W l

1,1 f lθ1,2(W l
1,1)

f lθ2,1(W l
1,1) f lθ2,2(W l

1,1)

])
for 1 ≤ l ≤ L. (5)
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(a) NSB-GAN-W with pre-trained sampler

Figure 7: Class-conditional random samples at 512×512 from NSB-GAN-P model with pre-trained
sampler. Classes from the top row: 12 house finch, 129 spoonbill, 200 Tibetan terrier, 323 monarch
butterfly, and 493 chiffonier.

Here, each f l is a deep neural network that is trained to reconstruct one of the TR, BL, or BR patches
at level l, conditioned on the TL patch (W l

1,1).

The main challenge in high-resolution image generation lies in overcoming the curse of dimension-
ality. But by leveraging IWT, the original dimensionality of the image is completely bypassed in
the NSB-GAN decoder. Therefore, in practice, at each level, we further divide the TR, BL and BR
patches by applying WT until we reach the patch dimensionality of 32x32. This can be done irre-
spective of the original dimensionality of the image. We then reconstruct these patches in parallel
and recover the patches and the original image by recursively applying IWT. This ability of NSB-
GAN to bypass the original dimensionality of the input separates it from all other SR methods that
operate in the pixel space.

Refer to Figure 28a and Table 8 for architecture details and hyperparameters of the UNet decoder
for the wavelet-space.

Refer to Figure 30 for the training schematic with the UNet decoders in the wavelet-space.

Architecture We realize each of the L decoder neural networks fθl with a slightly modified ver-
sion of the UNet architecture (Ronneberger et al., 2015) rather than the commonly used transposed-
convolution based architecture. UNet is typically used for image segmentation and object detection
tasks. As shown in Figure 28, UNet is an autoencoder architecture that has skip-connections from
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(a) NSB-GAN-W with pre-trained sampler

Figure 8: Additional class-conditional random samples at 512× 512 from NSB-GAN-P model with
pre-trained sampler. Classes from the top row: 12 house finch, 129 spoonbill, 200 Tibetan terrier,
323 monarch butterfly, and 493 chiffonier.

each encoding layer to its corresponding decoding layer. These skip connections copy and paste the
encoding layer’s output into the decoding layer, allowing the decoder to exclusively focus on recon-
structing only the missing, residual information. This architectural design makes it a compelling fit
for decoding in NSB-GAN. We modify the UNet architecture by appending three shallow networks
to its output with each one reconstructing one of the three high-frequency patches. This setup allows
us to capture the dependencies between the high-frequency patches while also allowing sufficient
capacity to capture to their individual differences.

UNet in Pixel Domain The UNet-P decoder is also a partly-learned function that uses a mod-
ified UNet-based architecture. First, the encoded image is deterministically upsampled using an
interpolation-based method. This leads to a low-quality, blurry image at the same size as the origi-
nal image. We then train a UNet to fill in the missing details in a similar approach to image super-
resolution methods (Hu et al., 2019). Unlike the NSB-GAN decoder that circumvents the CoD by
avoiding reconstructions in the original data dimensionality, the NSB-GAN-P decoder still has to
operate on the full image size, resulting in a larger decoder.

Refer to Figure 28b and Table 9 for architecture details and hyperparameters of the UNet decoder
for the pixel-space.
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Figure 9: Class-conditional random samples at 256 × 256 from BigGAN. Classes from the top
row: 12 house finch, 129 spoonbill, 200 Tibetan terrier, 323 monarch butterfly, 493 chiffonier, 727
planetarium, 780 schooner, 853 thatch, 970 alp, and 992 agaric.

D NSB-GAN VS NSB-GAN-P INFORMATION CONTENT

As we show in Figure 2, the information content in the latent embedding of NSB-GAN and NSB-
GAN-P are drastically different. The TL patches from NSB-GAN preserve more structural infor-
mation in the image than the down-sampled image from NSB-GAN-P. It is evident in the figure
that pixel-based down-sampling method misses key structures and features, such as the face of the
person, structure of the boat, and structure of the accordion keyboard, whereas wavelet encoding
does not.
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Figure 10: Class-conditional random samples at 512 × 512. Classes from the top row: 12 house
finch, 129 spoonbill, 200 Tibetan terrier, 323 monarch butterfly, and 493 chiffonier.

Learned-W-64 Learned-P-64
Best model type BigGAN-deep BigGAN

Batch size 512 512

Learning rate of generator 1e-4 1e-4

Learning rate of discriminator 4e-4 4e-4

Attention resolution 128 120

Dimension of random noise (z dim) 32 32

Number of resblocks per stage in
generator/discriminator 2 1

Adam optimizer β1 0 0

Adam optimizer β2 0.999 0.999

Adam optimizer ε 1e-8 1e-8

Training iterations 250000 250000

Table 6: Hyperparameters of learned samplers (wavelet and pixel)
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Figure 11: Additional class-conditional random samples at 512 × 512. Classes from the top row:
727 planetarium, 780 schooner, 853 thatch, 970 alp, and 992 agaric.

ESRGAN-W / ESRGAN-P
Input size 64 × 64

Batch size 32

Learning rate 1e-4

Number of residual blocks 16

Conv filter size 3

Adam optimizer β1 0.9

Adam optimizer β2 0.99

L1 loss weight (η) 1e-2

LG loss weight (λ) 5e-3

Training iterations 150000

Table 7: Hyperparameters of ESRGAN decoders
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Figure 12: Full 256× 256 resolution sample from NSB-GAN-W with pre-trained sampler.

Figure 13: Full 256× 256 resolution sample from NSB-GAN-W with pre-trained sampler.

E EVALUATION ON LSUN CHURCH WITH STYLEGAN-2

To demonstrate that the NSB-GAN paradigm can be different samplers and that our decoder trained
on ImageNet generalizes fairly well to an unseen dataset, we conduct a set of experiments with
the BigGAN sampler replaced with a StyleGAN-2 sampler. We test the StyleGAN-2 sampler with
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Figure 14: Full 256× 256 resolution sample from NSB-GAN-W with pre-trained sampler.

Figure 15: Full 256× 256 resolution sample from NSB-GAN-W with pre-trained sampler.

two decoders: one trained on ImageNet and another trained on LSUN Church. Illustrated in 10, as
expected, the decoder that was only trained on the LSUN Church dataset outperforms our decoder
trained on ImageNet. However, even with our decoder, we reach a very competitive FID of 13.53,
beating other recent two-step approaches, such as (Liu et al., 2019a).
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Figure 16: Full 512× 512 resolution sample from NSB-GAN-W with pre-trained sampler.

Level 1 Decoder Level 2 Decoder
Input size 32 × 32 32 × 32

Batch size 128 64

Learning rate 1e-4 1e-4

Layers 16 16

Conv filter size 3 3

Number of added shallow networks 12 48

Adam optimizer β1 0.9 0.9

Adam optimizer β2 0.999 0.999

Adam optimizer ε 1e-8 1e-8

Training iterations 288000 232000

Table 8: Hyperparameters of UNet-W decoders (level 1 and level 2)
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Figure 17: Full 512× 512 resolution sample from NSB-GAN-W with pre-trained sampler.

Level 1 Decoder Level 2 Decoder
Input size 64 × 64 128 × 128

Batch size 64 64

Learning rate 1e-4 1e-4

Layers 19 19

Conv filter size 3 3

Adam optimizer β1 0.9 0.9

Adam optimizer β2 0.999 0.999

Adam optimizer ε 1e-8 1e-8

Training iterations 615000 178000

Table 9: Hyperparameters of UNet-P decoders (level 1 and level 2)
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Figure 18: Full 512× 512 resolution sample from NSB-GAN-W with pre-trained sampler.

Sampler Decoder Resolution FID IS
Pretrained-256-64 ESRGAN-W 256 13.53 3.182

Pretrained-256-64 ESRGAN-W (Church) 256 7.886 2.784

Table 10: The above pre-trained samplers are StyleGAN-2 model trained on LSUN Church dataset.
Even our decoder trained only on ImageNet reaches a competitive FID of 13.53, but evidently can
be improved by training a new decoder on LSUN Church dataset. These results show that our NSB-
GAN models can work with different samplers than BigGAN and that our decoder generalizes fairly
well to unseen dataset. Therefore, we do not go about proving the compute efficiency in this case.

F SLICING

Figure 32b, shows the difference between the slicing operations of SPN and NSB-GAN. SPN slices
the images across the spatial dimensions thus introducing long-term dependencies. In contrast, NSB-
GAN decomposes the image along different frequency bands that preserves the global structure of
the image in each of the patches.
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Figure 19: Full 512× 512 resolution sample from NSB-GAN-W with pre-trained sampler.

G WAVELET TRANSFORM.

Wavelet transformation of an image (illustrated in Figure 1) is a two-step recursive process that
splits the original image into four equal-sized patches, each a representation of the entire image in
different frequency bands. In the first step, a low-pass filter (LPF) and a high pass-filter (HPF) are
applied to the original image. This produces two patches of the same size as the original image.
Since the application of LPF and HPF leads to redundancy, we can apply Shannon-Nyquist theo-
rem to downsample these patches by half without losing any information. In step two, the same
process is repeated on the output of step one, splitting the original image into four equally-sized
patches (TL, TR, BL and BR). TR, BL and BR contain increasingly higher frequencies of the input
image, preserving horizontal, vertical and diagonal edge information, respectively (contributing to
the sharpness of the image).

H NSB-GAN AT 512×512

At 512 × 512 resolution, our model outperforms the BigGAN model. We believe this to be the
case mainly because of how the 512×512 training data is generated. The ImageNet dataset is na-
tively at 256×256 (approximately). When training the BigGAN model to generate 512×512, an
interpolation-based method is used to upsample ImageNet images to 512×512, resulting in noise
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Figure 20: Full 256× 256 resolution sample from NSB-GAN-P with pre-trained sampler.

Figure 21: Full 256× 256 resolution sample from NSB-GAN-P with pre-trained sampler.

and blurriness in the upsampled images. In comparison, our method takes samples at 128×128 and
upsamples them using a learned SISR model. This leads to substantially sharper images and there-
fore better FID scores. In fact, based on our study, it is better to use our model over an end-to-end
DGM when learning to generate samples beyond the native resolution of the dataset. To clearly
demonstrate this difference, we show samples from the bilinearly interpolated 512×512 ImageNet
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Figure 22: Full 256× 256 resolution sample from NSB-GAN-P with pre-trained sampler.

Figure 23: Full 256× 256 resolution sample from NSB-GAN-P with pre-trained sampler.

data and super-resolved version of the same samples with our decoder in Figure 31. Clearly, inter-
polated images are blurrier than super-resolved images. Since BigGAN is trained to generate this
blurry data, compared to our NSB-GAN approach, it performs sub-optimally.
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Figure 24: Full 512× 512 resolution sample from NSB-GAN-P with pre-trained sampler.

NSB-GAN beats the BigGAN baseline model on FID at 512×512 resolution. We hypothesize that
this difference in performance is due to the fact that ImageNet dataset at 512 × 512 is generated by
using pixel-based interpolation up-sampling of the original data.

I OFFICIALLY PRE-TRAINED ESRGAN

Applying an officially pre-trained ESRGAN does not perform as well as the ESRGAN-P and -
W models. Specifically at 512×512 resolution, it suffers a slight increase in FID (10.73) and a
substantial decrease (>100) in IS (52.25).

J SAMPLING TIME

Sampling from NSB-GAN takes 0.039 s / image, whereas sampling from the BigGAN model takes
0.029 s / image, at 512×512 resolution. Therefore, the overhead of upsampling (ESRGAN) is
relatively small (0.010 s / image).
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Figure 25: Full 512× 512 resolution sample from NSB-GAN-P with pre-trained sampler.

K FINETUNING NSB-GAN-W USING PRE-TRAINED BIGGAN

Since the decoders are trained with real samples from the ImageNet dataset and tested on generated
samples from our BigGAN models (learned and pre-trained), our up-sampled outputs could have
visual artifacts due to the distribution mismatch. Therefore, we tried finetuning NSB-GAN-W end-
to-end with pre-trained BigGAN samples at 256×256 resolution. We found end-to-end finetuning to
increase high-frequency artifacts in the up-sampled images and showcase a few examples in Figure
32. Finetuning also results in worse FID and IS scores of 13.73 and 44.02, respectively. Note that
finetuning our model end-to-end requires ground truth samples from an already trained BigGAN
at the target resolution. This somewhat defeats the purpose of our approach, which tries to avoid
training a BigGAN at the target resolution to begin with.
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Figure 26: Full 512× 512 resolution sample from NSB-GAN-P with pre-trained sampler.
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Figure 27: Full 512× 512 resolution sample from NSB-GAN-P with pre-trained sampler.

(a) NSB-GAN (b) NSB-GAN-P

Figure 28: UNet-based decoding architecture for NSB-GAN and NSB-GAN-P models.
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(a) SPN Slicing Operation (b) NSB-GAN Slicing Operation

Figure 29: Unlike SPN, NSB-GAN slices the images in the frequency domain. As a result each
patch contains the entire global structure of the input image. This helps alleviate any long-term
dependency issues.

= Learned

= DiscardedWT IWT

Level 2

Level 1

(a) Training (b) Reconstruction (c) Sampling

IWTWT

Level 2

Level 1

Figure 30: NSB-GAN schematic for (a) training, (b) reconstruction and (c) sampling.
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Figure 31: The left column consists of images from the ImageNet dataset at 512× 512 and the right
column consists of super-resolved version of the same images using our decoder (from 128 × 128
to 512 × 512. Clearly, the ImageNet dataset at 512 × 512 is blurrier than super-resolved images.
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(a) Sample 1 (b) Sample 2

Figure 32: Generated samples at 256 × 256 after end-to-end finetuning of NSB-GAN-W with pre-
trained BigGAN-256. After finetuning, high frequency noise (e.g., checkerboard-like patterns) can
be observed in the images.
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