
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENTROPIC DISTRIBUTION MATCHING FOR SUPERVISED
FINE-TUNING OF LLMS: LESS OVERFITTING AND BET-
TER DIVERSITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models rely on Supervised Fine-Tuning (SFT) to specialize in
downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT. However,
CE often results in overfitting and limited output diversity due to its aggressive
distribution matching strategy, which forces the model’s generative distribution to
closely mimic the empirical data distribution. This paper aims to address these
issues by introducing the maximum entropy principle, encouraging models to
resist overfitting while preserving output diversity. Specifically, we develop a new
distribution matching method called GEM, which solves reverse Kullback-Leibler
divergence minimization with an entropy regularizer.
We demonstrate the effectiveness of GEM by fine-tuning pre-trained models rang-
ing from 3B to 70B in size. GEM consistently outperforms CE, reducing overfitting
as indicated by lower evaluation perplexity and improved instruction-following
performance. Moreover, GEM enhances output diversity, generating more varied
and creative responses in tasks such as poem and story writing. This increase
in diversity also translates into test-time performance gains. For instance, when
fine-tuning Llama-3-8B, GEM achieves a 5-point improvement in math reasoning
and a 8-point improvement in code generation tasks, leveraging majority voting
and best-of-n sampling strategies.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Team et al., 2024) are powerful
generative models excelling in specialized tasks across various fields. Despite extensive pre-training,
LLMs often struggle to follow instructions and answer users’ queries effectively. To improve their
performance in these tasks, instruction tuning (Raffel et al., 2020; Wei et al., 2021; Chung et al.,
2024), also known as Supervised Fine-Tuning (SFT) (Ouyang et al., 2022; Bai et al., 2022), is
employed. This process involves using high-quality labeled data (i.e., prompt-response pairs) and
typically utilizes the Cross Entropy (CE) loss to maximize the likelihood of the labeled data.

SFT is the first stage of the post-training pipeline and plays a crucial role in future developments
(Burns et al., 2023; Tunstall et al., 2023; Liu et al., 2023). We expect models to generalize well by
providing accurate answers and hope these answers are diverse as well. While the importance of
generalization is clear, generation diversity is also important, especially with the trend of scaling
up test-time compute (Snell et al., 2024; Brown et al., 2024; Wu et al., 2024b). These emerging
studies have shown that scaling up test-time compute, by selecting the optimal response from multiple
generated options, can solve many complex mathematical reasoning tasks, with output diversity being
a key factor in this process (Wang et al., 2023). Additionally, many applications benefit from diverse
responses. For example, in creative writing, diverse outputs from generative models can inspire new
ideas (Colton & Wiggins, 2012). In chit-chat dialogues, users also appreciate having multiple options
to suit their preferences (Li et al., 2015). AI interfaces like ChatGPT and Claude AI address this need
by offering features such as regeneration buttons.

Unfortunately, using CE loss in SFT falls short of achieving the desired goals, because models
fine-tuned with CE often suffer from overfitting (Burns et al., 2023; Jain et al., 2023; Gekhman
et al., 2024) and lack of generation diversity (Padmakumar & He, 2023; O’Mahony et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Forward KL

Next-token Distribution

Overfitting

Supervised Data

Pre-trained LLM

Limited Diversity

Diverse Outputs

Good GeneralizationReverse KL

Supervised Data

Pre-trained LLM

Entropy Regularizer

Next-token Distribution

CE

GEM

Figure 1: Illustration of the standard CE and the proposed method GEM for SFT of LLMs.

These limitations stem from the theoretical underpinnings of CE loss. In theory, optimizing CE
loss corresponds to minimizing the forward Kullback–Leibler (KL) divergence between the data
distribution and the generative distribution of the LLM.1 This process aggressively increases the
likelihood of training data while overlooking other possibilities, which in turn leads to overfitting. For
instance, CE-tuned models are often observed to over-memorize training data (Ge et al., 2023; Zeng
et al., 2023), latch onto spurious features (Burns et al., 2023), and lose in-context learning abilities
that already been acquired in the pre-training (a.k.a. alignment tax) (Ouyang et al., 2022; Bai et al.,
2022). Furthermore, the aggressive update of the generative model’s distribution to fit the training
data leads to reduced entropy, which in turn limits output diversity. Previous research has shown
that low-entropy distributions are associated with poor generalization performance (Pereyra et al.,
2017; Dubey et al., 2018), suggesting that these issues are interrelated. To address these concerns,
techniques like weight decay (Touvron et al., 2023; Burns et al., 2023) or noisy perturbations to
embeddings (Jain et al., 2023) are commonly applied alongside CE loss. However, they have their
own limitations (see discussion in Appendix D), highlighting the need for more principled solutions.

In this paper, we frame the SFT of LLMs as a distribution matching problem, introducing the
maximum entropy principle (Jaynes, 1982) to guide the process. This principle promptes the use of an
entropy regularizer to avoid over-assigning high probabilities to the training data, thereby preserving
output diversity, which is particularly important when working with limited data. We also propose
generative distribution matching, encouraging the model to learn not only from supervision but also
from its own generated errors, drawing inspiration from Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014). This approach contrasts with the passive imitation of supervised data
typical in CE loss, aligning more closely with the entropy regularizer (discussed further in the main
text). To implement these ideas, we develop the formulation of reverse KL divergence minimization
with entropy regularization. However, this formulation is technically challenging and may require
adversarial training techniques akin to those used in GANs. Our main technical contribution is the
development of a new training algorithm, referred to as GEM, which addresses the above challenge
and is as tractable as the CE loss. By adhering to the proposed principles, GEM favors distributions
that captures key patterns in the data and enjoy high entropy; see Figure 1.

We validate the effectiveness of GEM by fine-tuning pre-trained models ranging from 3B to 70B in
size, including Qwen2.5-3B (Team, 2024), Qwen2.5-7B (Team, 2024), Llama-3-8B (Dubey et al.,
2024), Gemma-2-9B (Team et al., 2024), and Llama-3.1-70B (Dubey et al., 2024). We find that GEM
consistently outperforms CE, reducing overfitting with lower evaluation perplexity and improved
instruction-following performance. GEM also mitigates the alignment tax issue by demonstrating
better in-context learning performance. Additionally, GEM enhances output diversity, generating
more varied and creative responses in tasks such as poem and story writing. This boost in diversity
translates into test-time performance gains. For example, when fine-tuning Llama-3-8B, GEM
achieves a 5-point improvement in math reasoning and a 8-point improvement in code generation
tasks, using majority voting and best-of-n strategies. Importantly, to match the performance of
baselines, GEM often requires only 0.5x the sampling budget.

To summarize, our contributions are threefold:

1The term forward KL arises from a technical distinction. We will later explore the concept of reverse KL.
The key difference between the two lies in how the loss is defined: forward KL measures the loss over the fixed
data distribution, while reverse KL defines the loss over the generative model’s distribution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We introduce the framework of entropic distribution matching for SFT of LLMs to address the
issues of overfitting and limited diversity.

• We develop a new training method GEM that can solve a particular distribution matching problem
with reverse KL divergence minimization and maximum entropy regularization.

• We demonstrate that the improved generalization and diversity induced by our method can be
beneficial to test-time compute.

2 RELATED WORK

We review relevant work in the main text, with additional related work discussed in Appendix A.

Supervised Fine-tuning. SFT is the first stage of the post-training pipeline and plays an important
role in subsequent developments. As mentioned in the introduction, using CE loss during the SFT
stage often leads to overfitting and reduced output diversity. To address this, there is a line of research
in scaling up the synthetic data (see, e.g., (Yu et al., 2023; Wei et al., 2024; Zhang et al., 2024a)),
which, while effective, increases computational burden. Our work aims to develop training methods
that more effectively leverage supervised data to mitigate overfitting and to enhance output diversity.

Entropy Regularization. Dubey et al. (2018) proposed that achieving zero CE loss is not essential
for high accuracy. Instead, they suggested that a conditional probability distribution where the argmax
corresponds to the correct class is sufficient. This concept motivates our use of entropy regularization,
which allows for assigning probabilities to alternative options beyond the observed data. Prior to
our work, Pereyra et al. (2017) also explored entropy regularization in the context of neural network
training. Their method closely resembles the CE with entropy regularization that we investigate in
this paper, and they found that penalizing confident outputs improves generalization. It is important
to note that Pereyra et al. (2017) focused on image classification tasks, while our focus is on text
generation where data is sequential in nature and is more challenging. In the context of LLMs, Hu
et al. (2023) explored the maximum entropy regularization by using GFlowNet (Bengio et al., 2021),
but their methods require a reward function rather than supervised data.

3 PRELIMINARY

Large Language Models (LLMs). LLMs have a large vocabulary, denoted as [K] = {1, 2, . . . ,K}
and process text by splitting it into a series of tokens (x1, . . . , xT), where each token xi ∈ [K] and T
represents the sequence length. Let f be the generative distribution modeled by the language model.
The notation f(·|x1, . . . , xt−1) specifies the categorical distribution conditioned on the context
(x1, . . . , xt−1). Typically, f is parameterized by a Transformer (Vaswani et al., 2017), with the
parameter θ. For the i-th token at time step t, its prediction probability is given by fθ(i|x1, . . . xt−1) =

softmax(zt) =
exp(zt[i])∑
i′ exp(zt[i

′]) , where zt ∈ RK is the logit output from the neural network given the
input (x1, . . . , xt−1), and zt[i] is i-th element of zt. This auto-regressive process specifies the joint
probability of a sequence of tokens as fθ(x1, . . . , xT) =

∏T
t=1 fθ(xt|x1, . . . , xt−1).

Supervised Fine-Tuning. To specialize in downstream tasks, LLM relies on Supervised Fine-Tuning
(SFT) after pre-training. This process involves using a supervised dataset with high-quality prompt-
response pairs {(xi, yi)}Ni=1. The Cross Entropy (CE) loss is the de facto training objective for this
purpose: minθ

∑N
i=1− log fθ(y

i|xi). In theory, this corresponds to minimizing the forward KL
divergence between the data distribution p and the generative distribution fθ:

min
θ

DKL (p, fθ)⇐⇒ max
θ

Ex∼ρ(·)Ey∼p(·|x)[log fθ(y|x)],

where ρ is the prompt distribution, which is usually not modeled during the SFT stage. Thus, the
distribution ρ can be treated as a constant and we omit it when the context is clear. In practice,
many questions can correspond to multiple valid answers (either in different forms or based on
different reasoning), but it is nearly impossible to collect a comprehensive dataset that encompasses
all possibilities. As a result, the empirical data tends to be limited in size and often exhibits a
narrower distribution than desired. In such scenarios, the CE loss function aggressively maximizes
the likelihood of the available empirical data and overlooks other possibilities.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 ENTROPIC DISTRIBUTION MATCHING

In this paper, we explore principled approaches for SFT, presenting two core principles. The first
principle tackles the issues of overfitting and limited output diversity. We draw inspiration from
neuroscience, specifically the concept of avoiding over-memorization and achieving balanced learning.
In neuroscience, synaptic plasticity, particularly homeostatic plasticity, underscores the importance
of maintaining balance in learning processes (Turrigiano, 2008; 2012). Overly strengthening certain
neural connections can lead to rigid, maladaptive behaviors, analogous to how assigning excessively
high probabilities to observed tokens can result in over-memorization in models, thereby limiting
their ability to adapt and generalize. Based on these insights, we propose:

• Principle 1: The model should assign higher probabilities to the observed data while preventing
over-memorization.

The above principle can be realized by incorporating an entropy regularizer into the learning process.
Expanding on this, our second principle advocates for a generative approach to distribution matching.
This approach encourages the model to learn from its own generated data and mistakes, rather
than merely imitating supervised demonstrations. Unlike the traditional CE loss, which leads the
model to imitate training data labels passively, a generative approach involves learning through
self-generated mistakes. This principle is grounded in cognitive science (Schulz & Bonawitz, 2007;
Gweon et al., 2014), which demonstrates that children learn more effectively through exploration
and experimentation, adjusting their understanding based on discrepancies between expectations
and reality. Similarly, research on generative models (Goodfellow et al., 2014; Ho & Ermon, 2016)
supports this notion by showing how models can learn to produce realistic data through iterative
refinement. To summarize, we propose:

• Principle 2: The distribution matching approach should be “generative”, meaning the model learns
from both ground truth supervision and its own generated.

4.1 PROPOSED FORMULATION: RESERVE KL WITH ENTROPY REGULARIZATION

To implement the two principles outlined above, we propose studying the formulation of reverse KL
divergence minimization with maximum entropy regularization. The objective is defined as follows:

max
f

Ex

{
Ey∼f(·|x) [log p(y|x)]− Ey∼f(·|x)[log f(y|x)]︸ ︷︷ ︸

=−DKL(f,p)

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
H(f)

}
. (1)

The first term corresponds to the reverse KL divergence between the target distribution p and the
model distribution f . This term supports Principle 2 by encouraging the model to learn from its
generated data samples (as reflected in the expectation over y ∼ f(·|x)), similar to GANs (Goodfellow
et al., 2016).This contrasts with the passive learning in CE, where the expectation is taken over a
static data distribution. The second term, entropy regularization, aligns with Principle 1 by preventing
over-memorization. From a Bayesian perspective, this means placing a uniform distribution belief
when learning from data, so it ensures that the probabilities for labeled data do not become excessively
high. In addition, entropy regularization brings another benefit: the output diversity can be improved.
This means that the model is aware of other possible options, which is very important for scaling-up
test-time compute (Snell et al., 2024; Brown et al., 2024).

We note that the two terms in Equation (1) are well-aligned in the sense that both are defined over the
generative distribution f . In contrast, adding entropy regularization to the CE loss does not achieve
this. It has limitations in improper increasing tail probabilities of the distribution. For a more detailed
discussion, please refer to Appendix D.2.

While the objective defined in Equation (1) appears promising, it presents significant challenges in
practice. The main challenge is that we only have access to empirical data from the distribution p,
not its full probability density function, making the reverse KL term impossible to compute directly.
Additionally, calculating the expectation of the reverse KL across the model’s generative distribution
is not easy. This paper contributes a new algorithm to address these challenges.

4.2 PROPOSED ALGORITHM: GEM

In this section, we present a practical algorithm for solving the optimization problem of reverse KL
with entropy regularization. Our approach is inspired by Relativistic GANs (Jolicoeur-Martineau,
2018), where an auxiliary distribution q is introduced for distribution matching, and relative-pair

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

comparisons are incorporated into the training objective. Specifically, our formulation is that:

max
f

Lq(f) ≜ ExEyreal∼p(·|x)Eygene∼q(·|x)
[
h
(
log f(yreal|x)− log f(ygene|x)

)]
(2)

s.t. q = argmax
π

ExEygene∼π(·|x) [log f(y
gene|x)] + 1/β · H(π(·|x)) = softmax(1/β ∗ log f)

Here we use yreal to denote the supervised label in the dataset and ygene to denote the model-
generated data for clarity. In addition, h is a monotonically increasing function (e.g., a linear
function). Moreover, q is an artificially introduced distribution that will discarded after training, and
π is an arbitrary distribution introduced for mathematical clarity. To interpret the formulation, we
optimize f such that log f is higher for real data and lower for generated data. In this context, log f
can be understood as the “energy” in an energy-based model (LeCun et al., 2006) (or the reward in
inverse reinforcement learning (Ho & Ermon, 2016)). Simultaneously, we update the distribution q
that maximizes the “energy” induced by log f , thereby aligning it with the data distribution. During
the optimization of q, an entropy regularizer is applied, which in turns guarantees the desired result.
Proposition 1. Assume that h is a linear function, then Lq(f) has a unique stationary point, and
this stationary point (with β = 1/(γ + 1) > 0) corresponds to the optimal solution of Problem (1).

Proposition 1 implies that solving the proposed problem in Equation (2) provides the optimal solution
of reverse KL with entropy regularization in Equation (1). In practice, we can implement f using a
Transformer (Vaswani et al., 2017) and optimize the parameters with gradient ascent. We outline such
a training procedure in Algorithm 1, referring to this approach as GEM, which stands for Generative
and Entropy-regularized Matching of distributions. We also note that Proposition 1 relies on β > 0,
meaning that GEM cannot solve the pure reverse KL minimization problem.

Algorithm 1 GEM

Input: Dataset D = {(xi, y
real
i)}

1: for iteration k = 1, . . . , do
2: Set qk = softmax(1/β ∗ log fθk)
3: Compute loss Lq(fθ) =

∑
i

∑
ygene q(y

gene|xi) ·h
([
log fθ(y

real
i |xi)− log fθ(y

gene|xi)
])

4: Update θk+1 = θk + η · ∇θLq(fθ) |θ=θk
Output: Generative model fθ

Scalability. We highlight two key computational advantages of GEM that enable efficient generative
distribution matching and its scalability to billion-parameter models:

• Single Model Optimization: GEM trains only a single model f by leveraging a closed-form solution
for q. This contrasts with GAN-style distribution matching methods (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2018), which require the simultaneous optimization of two models (a generator
and a discriminator), complicating the tuning process and increasing computational difficulty.

• Accurate Gradient Estimation: GEM computes the loss function and gradients using the exact
expectation Eygene∼q(·|x)[·], ensuring stable training by minimizing gradient estimation variance.
This is feasible because q is a categorical distribution with finite elements in LLMs. In contrast,
GAN-style methods typically rely on inexact stochastic gradients obtained by sampling from the
generative distribution f , making training notoriously difficult.

Training Dynamics and Intuition. We provide an intuitive understanding of GEM by explaining
its training mechanism on a simple model: for a fixed x ∈ X , we model fθ(y|x) = softmax(θx)
with θx ∈ RK . Consider h as the linear function described in Proposition 1. For a paired sample
(yreal, ygene) = (i, j), we have the gradient for this sample:

∇θLq(fθ)[i, j] =

{
wijeij if i ̸= j

0 otherwise

Here wij = p(yreal|x)q(ygene|x) lies in [0, 1], and eij is the vector with i-th element being 1 and
the j-th element being −1 and 0 otherwise. Thus, the gradient of this paired data gives a direction for
moving the logit θx from j-th position to i-th position, with the weight wij .

Consider a numerical example where θx = [2, 1] with K = 2, so f = [0.73, 0.27]. For β = 0.7, we
have q = [0.81, 0.19], which is more compared with f . Given the data distribution p = [0.9, 0.1], the
gradient of GEM is 0.9 · 0.19 · [1,−1] + 0.1 · 0.81 · [−1, 1] = [0.09,−0.09], leading to a relative

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

logit change of 0.18. In comparison, the CE’s gradient in this case is [0.17,−0.11], resulting in a
relative logit change of 0.28, which is 1.6 times larger then GEM. When converged, GEM would
give a flatter distribution [0.82, 0.18] due to the induced entropy regularization.

We have two remarks for the above analysis. First, we see that the distribution q determines the weights
of probability transportation. Generally, for 0 < β < 1, a narrowed distribution q, squeezed from f ,
prioritizes the high-probability regions in f for probability transportation, while low-probabilities
regions in f contributes less. This contrasts with CE, which would push probabilities of non-
labeled tokens towards the labeled ones, potentially causing overfitting. Second, we note that h also
determines how much probability is shifted. Specifically, we have wij = p(yreal|x)q(ygene|x)h′

for a general function h. For the linear function studied, h′ is always equal to 1. Another possible
choice for h is the log-sigmoid function h(u) = log sigmoid(u) = u− log(1 + exp(u)), which is
studied in previous research (Jolicoeur-Martineau, 2020). This function provides a weighting effect.
Since h′ = sigmoid(log f(ygene|x)− log f(yreal|x)) ∈ (0, 1), it results in a large weight when
yreal is not yet dominant in the probability distribution, and a small weight when yreal has already
become dominant. Later on, we will study this function in experiments.

Extension to Sequential Data. In the above part, we have derived the algorithm for the case y is
non-sequential. We note that optimization in the sequential case could be highly difficult. With a little
abuse of notations, let y = (y1, . . . , yT) ≜ y1:T . Note that the prompt x should also be sequential in
general, but this does not affect our discussion as it serves the input to the conditional distribution.
Now, we can extend the formulation in Equation (2) to the following:

max
f

ExEyreal1:T ∼p(·|x)Eygene1:T ∼q(·|x)
[
h
(
log f(yreal1:T |x)− log f(ygene1:T |x)

)]
(3)

s.t. q = argmax
π

ExEygene1:T ∼π(·|x) [log f(y
gene
1:T |x)] + 1/β · H(π(·|x))

Here, we encounter a challenge: the joint distribution of y1:T , as a cascaded categorical distribution,
is quite complicated. This results in the expectation Eygene1:T

[·] cannot be easily calculated as before.
While Monte Carlo estimation, as used in (Chen et al., 2024; Li et al., 2024), might seem like a
potential solution—drawing samples to approximate the gradient—we found it does not work in our
setting. We believe the main reason is that the sample space is huge, and the pre-trained distribution
f is quite different from the data distribution p that we aim to learn.2 As a result, when we use
stochastic sampling to estimate the gradient, it does not provide effective feedback. Please refer to
Appendix D.3 for more detailed discussion.

To deal with the above challenges, we propose decomposing the multi-step sequential optimization
problem into multiple single-step optimization problems and solve each efficiently. This is inspired
by the data distribution “reset” trick introduced by (Ross et al., 2011) in imitation learning, where
the teacher first demonstrates a few actions, and the student completes the reset. For our problem,
we restrict the distribution matching to the case that the prefix samples up to time step t are drawn
from the data distribution p and solves the optimization problem at the t-th time step as before. Its
mathematical formulation is given below:

max
f
Lseqq (f) = Ex

{ T∑
t=1

Eyreal1:t−1∼p(·|x)Eyrealt ∼p(·|x,yreal1:t−1)
Eygenet ∼q(·|x,yreal1:t−1)

[∆]

}
(4)

where ∆ =
[
h
(
log f(yrealt |x, yreal1:t−1)− log f(ygenet |x, yreal1:t−1)

)]
,

The main advantage of this formulation is that for each sub-problem, we still have access to the
conditional distribution, allowing the previously discussed computational advantages to remain
applicable. The same idea applies to the training of distribution q, so we still have the closed-
form solution that q(·|x, yreal1:t−1) = softmax(1/β · log f(·|x, yreal1:t−1)). We outline the proposed
procedure for dealing with sequential data in Algorithm 2 and provide its PyTorch implementation
in Appendix B. Notably, thanks to the reset trick, GEM’s training requires nearly the same GPU
memory consumption and compute time as optimizing the CE loss; see Appendix B.

We acknowledge that our proposed solution approximates Equation (3) due to the use of the “reset”
trick and greedy optimization. While the exact gap introduced by this approximation is difficult to

2Specifically, pre-trained models cannot generate the EOS (end-of-sentence) token properly, resulting in
repetitive sequences, even with infinite length. But the supervised data has an EOS token and finite length.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

quantify, we expect it to be minimal when f closely matches p through distribution matching. In such
cases, sampling from the surrogate p effectively resembles sampling from the target distribution f . In
the next section, we demonstrate the practical effectiveness of GEM.

5 EXPERIMENTS

In this section, we present our numerical results from fine-tuning the pre-trained Llama-3-8B model,
a strong LLM, to demonstrate the effectiveness of the proposed method. Additionally, we have
explored other models ranging in size from 3B to 70B, with the corresponding results provided in
Appendix F.6. Detailed experimental settings are described in Appendix E.

5.1 INSTRUCTION FINE-TUNING

Set-up. We first develop an LLM that is capable of following instructions for various prompts. To
this end, we utilize the UltraFeedback dataset (Cui et al., 2024). This dataset contains prompts
from instruction datasets like Evol-Instruct and UltraChat, and responses generated by models such
as GPT-4 and Llama-2-7B/13B/70B-Chat. Following (Yu et al., 2023; Liu et al., 2023; Cui et al.,
2024), we set the learning rate to 2× 10−5, employing a cosine learning rate decay schedule, and
use a macro batch size of 128. The maximum sequence length, encompassing both the prompt and
response, is set to 2,048 tokens. Models are trained for three epochs.

As discussed, GEM has two variations: GEM-LS (h is the log-sigmoid function), and GE-Linear
(h is the linear function), each depending on the choice of the function h. We implement the proposed
GEM method with β = 0.7. Our primary baseline is the standard CE loss. Additionally, we explore
a variant incorporating a weight decay of 0.1, which has been commonly used in previous studies
(Ouyang et al., 2022; Bai et al., 2022). We refer to this approach as CE + WD. We also implement a
method called CE + Entropy, which adds an entropy regularization term of 0.1 to the CE loss. This
method aligns with the proposed Principle 1 but not Principle 2 (see Appendix D for more discussion).
The NEFT method (Jain et al., 2023), which perturbs the input embedding with random noise in
fine-tuning to mitigate overfitting, has also been implemented.

Instruction-Following. We first examine the model’s learned ability in terms of instruction-following
on the IFEval benchmark (Zhou et al., 2023), which includes 500 prompts from 25 types of
verifiable instructions. The model’s performance on this benchmark provides insight into potential
overfitting. There are four evaluation criteria: prompt-level strict accuracy, instruction-level strict
accuracy, prompt-level loose accuracy, and instruction-level loose accuracy. For all metrics, a higher
value indicates better performance.

Table 1: Performance of instruction-following on the benchmark IFEval (Zhou et al., 2023). For
all metrics, a higher value means a better instruction following ability. The best results are shown in
bold, with the second-best underlined.

Method
Instruction-Following

Strict Accuracy Strict Accuracy Loose Accuracy Loose Accuracy
(Prompt Level) (Instruction Level) (Prompt Level) (Instruction Level)

CE 36.23 46.76 40.85 50.96
CE+WD 37.89 47.48 42.88 52.52

CE+Entropy 36.78 47.60 40.66 51.08
NEFT 36.23 46.40 40.11 50.48

GEM-Linear 37.34 48.20 41.96 52.64
GEM-LS 37.52 47.60 42.14 52.04

We evaluate the trained models using greedy decoding and present the results in Table 1. We observe
that CE underperforms compared with regularization-based methods, suggesting that CE suffers from
overfitting. It is important to note that this overfitting is not due to over-optimization, as performance
continues to improve over three training epochs for CE (36.15 in epoch 1, 41.45 in epoch 2, and
43.70 in epoch 3). For NEFT, we do not observe clear advantages by injecting noise in training for
this task. On average across the four criteria, GEM-Linear and GEM-LS improve by 1.4 points (3.2%
relative) and 1.1 points (2.5% relative) compared with CE.

In addition to the evaluation above, we observe that GEM further mitigates overfitting in other aspects.
For one thing, GEM achieves a lower evaluation perplexity (3.16) compared with CE (3.48). For

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of generation diversity in creative tasks of poem writing and story writing. For
all criterion, a higher value indicates greater diversity.

Method
Poem Writing Story Writing

N-gram Self-BLEU Sentence-BERT N-gram Self-BLEU Sentence-BERT

CE 48.50 72.50 21.79 48.74 72.77 21.94
CE+WD 48.58 71.29 21.80 48.85 71.73 21.79

CE+Entropy 53.74 75.82 23.80 53.86 76.11 23.94
NEFT 49.87 75.04 23.44 50.00 75.32 23.36

GEM-Linear 56.50 76.73 24.73 56.69 76.83 24.82
GEM-LS 56.55 76.31 24.63 56.82 76.61 24.68

another thing, GEM demonstrates reduced alignment tax, reflected in its superior in-context learning
ability, achieving 60.3 compared with CE’s 59.21. For more details, please refer to Appendix F.

Creative Writing. We continue to assess models’ output diversity in creative writing tasks: poem
writing and story writing. For poems, we use prompts from the poetry3 dataset, which includes 573
poems on themes such as love, and mythology. For stories, we design 500 prompts based on the ROC
story dataset (Mostafazadeh et al., 2016). In both cases, we prompt the models to write a poem or story
titled “[X]” with no more than 200 words, where [X] is a title from the respective dataset. Following
(Kirk et al., 2023), we use three criteria to evaluate diversity: 1) N-gram diversity: the proportion
of distinct n-grams in a single response (intra-diversity); 2) Self-BLEU diversity: calculated as 100
minus the Self-BLEU score (inter-diversity), where one response is treated as a reference among
multiple generated responses; 3) Sentence-BERT diversity: the cosine dissimilarity between pairs of
responses in the embedding space. All criteria range from 0 to 100 (with Sentence-BERT diversity
scaled by multiplying by 100), and higher values indicate greater diversity.

To calculate these metrics, we ask the trained models to generate 16 samples per question. The
evaluation results are presented in Table 2. In this task, we note that weight decay does not improve
generation diversity, although it has shown effectiveness in mitigating overfitting in previous examples.
On the other hand, entropy regularization, implemented to support Principle 1, brings the benefit of
output diversity. NEFT also improves output diversity, consistent with (Jain et al., 2023). Overall,
GEM significantly improves output diversity compared with the baselines. Furthermore, GEM
produces higher-quality writing, as detailed in the evaluation provided in Table 7 in the Appendix.

Next, we demonstrate the improved generation diversity and generalization of GEM in test-time
compute (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024b). During the test stage, advanced
generation techniques such as Best-Of-N (BON) and Majority-Voting (MV) (Wang et al., 2023) are
utilized to identify superior solutions. To validate GEM’s effectiveness, we conduct three experiments
focusing on chatting, mathematical reasoning, and code generation. The overall performance is
summarized in Figure 2, with a detailed analysis provided below.

Chatting. We assess the model’s ability to generate human-preferred responses in chatting. We
prompt the trained models to answer 805 questions from the AlpacaEval dataset (Li et al., 2023).
For each question, the model generates 32 responses and a reward model is then used to select
the best responses. We employ the reward model FsfairX-LLaMA3-RM-v0.14, which has top
performance on RewardBench (Lambert et al., 2024), to select the best response among 32 samples.
We report the win rate over GPT-4’s generated response in Figure 2 (left column). The evaluation
shows that GEM-LS can achieve about 3 points improvement in the win rate compared with CE.
Among the baselines, NEFT demonstrates strong performance, partially due to its longer responses,
as noted in (Jain et al., 2023). We also conduct LLM-as-a-judge (Zheng et al., 2023) to evaluate the
response quality; please refer to the Appendix.

Math Reasoning. We evaluate performance on the GSM8K (Cobbe et al., 2021) benchmark, which
contains 1,319 test questions. We prompt LLMs with chain-of-thought (Wei et al., 2022) to generate
32 responses for each question. We assess answer accuracy using both Majority-Voting (MV) (Wang
et al., 2023) and Best-Of-N (BON) methods. Compared with CE, GEM-LS shows improvements
of up to 4.8 points (7.7% relative) with MV and 2.5 points (2.8% relative) with BON. The strong

3https://huggingface.co/datasets/merve/poetry
4https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

8

https://huggingface.co/datasets/merve/poetry
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ac
cu

ra
cy

Pa
ss

 R
at

e

W
in

 R
at

e

Chatting
(BON@32)

GSM8K
(MV@32)

GSM8K
(BON@32)

HumanEval
(Pass@100)

MBPP
(Pass@100)

Figure 2: Performance of using advanced generation strategies such as best-of-n and majority voting
in chatting (left), math reasoning (middle) and code generation (right) tasks.

performance of BON@32 indicates that while the model might know how to solve these questions, it
is uncertain about these solutions in generation.

2x efficiency

Figure 3: Pass rate on HumanEval.
GEM demonstrates a 2x improvement
in test-time computational efficiency.

Code Generation. We consider two benchmarks:
HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021). In these scenarios, the trained models are asked to
generate Python codes, and the executor judges their correct-
ness. The common evaluation metric is the pass rate. We
ask the trained models to generate 200 samples to estimate
the pass@100. The generation configuration is the same
as for the chatting task. We find that weight decay does
not show significant improvement over CE, while GEM-LS
can achieve up to a 7.6-point (10.7% relative) improvement
over CE on HumanEval and a 6.4-point (9.0% relative)
improvement on MBPP for pass@100.

We have shown that GEM outperforms CE when using the
same sampling budget. Notably, GEM is highly efficient
in test-time scaling, requiring only about half the sampling
budget to achieve similar performance (see Figure 3). This efficiency is consistent across other tasks
as well (refer to Appendix F). Furthermore, such self-generated good samples generated by GEM
can be distilled back into the model through self-distillation, improving zero-shot performance. For
recent advances in this area, see (Sessa et al., 2024).

5.2 DOMAIN-SPECIFIC FINE-TUNING

In this section, we conduct experiments with domain-specific datasets. For math reasoning,
we use the dataset MetaMathQA (Yu et al., 2023). For code generation, we use the dataset
Magicoder-OSS-Instruct (Wei et al., 2024). The experiment setup, including training details
and hyperparameters, is the same as before, and the specifics are provided in the Appendix.

Math Reasoning. We consider two benchmarks: GSM8K and MATH (Hendrycks et al., 2021), which
is competition-level and more challenging; see Figure 4. Following the previous set-up, we evaluate
performance using Majority Voting over 32 samples (MV@32), and Best-Of-N over 32 samples
(BON@32). The greedy decoding performance is also reported. We observe that the weight decay
regularization performs well on GSM8K but shows no clear improvement on MATH. Furthermore,
NEFT does not show improvement, even though it previously performed well in instruction-following.
In contrast, GEM-LS outperforms CE on GSM8K by 1.2 points (1.7% relative), 2.9 points (3.8%
relative), and 2.6 points (2.9% relative) for greedy decoding, MV@32, and BON@32, respectively.
On the MATH benchmark, GEM-LS shows improvements of 1.9 points (8.0% relative), 1.7 points
(5.8% relative), and 1.6 points (2.7% relative) for the same methods. These improvements in greedy
decoding indicate that entropy regularization methods effectively mitigate overfitting, while the
enhancements in MV and BON suggest increased generation diversity.

Code Generation. Following the previous set-up, we report the pass rate over {1, 10, 100} on
two key benchmarks, HumanEval and MBPP, in Figure 5. We observe that weight decay and
NEFT do not achieve consistent improvement while entropy regularization does. Notably, GEM-LS
significantly enhances performance over CE: on HumanEval, it improves by 4.6 points (11.7%

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

GSM8K
(Greedy)

GSM8K
(MV@32)

GSM8K
(BON@32)

MATH
(Greedy)

MATH
(MV@32)

MATH
(BON@32)

Ac
cu

ra
cy

Ac
cu

ra
cy

Figure 4: Performance on GSM8K (left) and MATH (right) when fine-tuning Llama-3-8B with the
MetaMathQA dataset.

relative) for Pass@1, 6.5 points (11.1% relative) for Pass@10, and 9.7 points (14.7% relative) for
Pass@100. On MBPP, GEM-LS achieves gains of 3.4 points (6.3% relative) for Pass@1, 6.8 points
(10.2% relative) for Pass@10, and 8.0 points (11.1% relative) for Pass@100. These results suggest
similar conclusions regarding overfitting and generation diversity as before.

HumanEval
(Pass@1)

Pa
ss

 R
at

e

Pa
ss

 R
at

e

HumanEval
(Pass@10)

HumanEval
(Pass@100)

MBPP
(Pass@1)

MBPP
(Pass@10)

MBPP
(Pass@100)

Figure 5: Performance on HumanEval (left) and MBPP (right) when fine-tuning Llama-3-8B with
the MagiCoder-OSS-Instruct dataset.

Discussion. Overall, our results show that GEM improves both accuracy and diversity. Readers
may wonder how this is possible. To address this, it is crucial to differentiate GEM from the ad-hoc
method of increasing temperature to enhance diversity. Temperature adjustment, applied at the
inference stage, reshapes the distribution by amplifying tail probabilities, often at the cost of reduced
generalization performance (see Appendix F.4). In contrast, GEM addresses these challenges during
training, leveraging supervision from the training data.

Readers may notice that CE with an entropy regularizer, as a training method, can also promote
diversity. However, it often improperly inflates tail probabilities, as analyzed in Appendix D.2.
In contrast, GEM adopts a generative learning approach, focusing on learning diverse responses
within the mode probability regions (see analysis in Section 4.2). By targeting these regions, GEM
can capture multiple valid responses that embody genuine diversity and generalization, rather than
generating a mix of correct and incorrect outputs to artificially enhance diversity. Visualizations of
the learned distributions are provided in Figure 7 in the Appendix for reference.

6 CONCLUSION

In this paper, we develop a method called GEM, as an alternative to the widely used CE loss, for the
SFT of LLMs to address the challenges of overfitting and limited generation diversity. This method
is designed within the framework of distribution matching with maximum entropy regularization.
Notably, GEM achieves good generalization performance, and the improved diversity also benefits
test-time computation in downstream tasks.

Our method has broader applicability to other research problems. Notably, the enhanced diversity
achieved by our approach can be beneficial in several contexts: it helps mitigate preference collapse
in preference alignment (Xiao et al., 2024), facilitates self-improvement through distillation with best-
of-n techniques (Sessa et al., 2024), and helps mitigate model collapse in synthetic data generation
(Shumailov et al., 2023; Wu et al., 2024a). Please see Appendix G for the discussion. We see the
potential of our method in these areas and plan to explore these topics in future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

Our work focuses on designing better algorithms for fine-tuning large language models, aiming to
enhance their effectiveness and broaden their applications. In particular, the entropy regularizer we
introduce for distribution matching encourages more diverse outputs from language models. We do
not foresee any direct negative impacts from this approach.

REPRODUCIBILITY STATEMENT

The proof of Proposition 1 is provided in Appendix C. The PyTorch’s implementation of Algorithm 2
is given in Appendix B. Experiment details to reproduce our numerical results can be found in
Appendix E. We intend to release our code and model checkpoints upon acceptance.

REFERENCES

Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H Anh, Pallab Bhattacharya, Annika Brundyn,
Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, et al. Nemotron-4 340b technical
report. arXiv preprint arXiv:2406.11704, 2024.

Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and autonomous systems, 57(5):469–483, 2009.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Andrew Brock. Large scale gan training for high fidelity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li,
Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language
models. Journal of Machine Learning Research, 25(70):1–53, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Simon Colton and Geraint A Wiggins. Computational creativity: The final frontier? In ECAI 2012,
pp. 21–26. IOS Press, 2012.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Bingxiang He, Wei Zhu, Yuan Ni, Guotong Xie,
Ruobing Xie, Yankai Lin, et al. Ultrafeedback: Boosting language models with scaled ai feedback.
In Forty-first International Conference on Machine Learning, 2024.

Abhimanyu Dubey, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Maximum-entropy fine grained
classification. Advances in neural information processing systems, 31, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yubin Ge, Devamanyu Hazarika, Yang Liu, and Mahdi Namazifar. Supervised fine-tuning of large
language models on human demonstrations through the lens of memorization. In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Following, 2023.

Zorik Gekhman, Gal Yona, Roee Aharoni, Matan Eyal, Amir Feder, Roi Reichart, and Jonathan
Herzig. Does fine-tuning llms on new knowledge encourage hallucinations? arXiv preprint
arXiv:2405.05904, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

Yanzhu Guo, Guokan Shang, Michalis Vazirgiannis, and Chloé Clavel. The curious decline of
linguistic diversity: Training language models on synthetic text. arXiv preprint arXiv:2311.09807,
2023.

Hyowon Gweon, Hannah Pelton, Jaclyn A Konopka, and Laura E Schulz. Sins of omission: Children
selectively explore when teachers are under-informative. Cognition, 132(3):335–341, 2014.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems 29, pp. 4565–4573, 2016.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Neel Jain, Ping-yeh Chiang, Yuxin Wen, John Kirchenbauer, Hong-Min Chu, Gowthami Somepalli,
Brian R Bartoldson, Bhavya Kailkhura, Avi Schwarzschild, Aniruddha Saha, et al. Neftune: Noisy
embeddings improve instruction finetuning. arXiv preprint arXiv:2310.05914, 2023.

Edwin T Jaynes. On the rationale of maximum-entropy methods. Proceedings of the IEEE, 70(9):
939–952, 1982.

Alexia Jolicoeur-Martineau. The relativistic discriminator: a key element missing from standard gan.
arXiv preprint arXiv:1807.00734, 2018.

Alexia Jolicoeur-Martineau. On relativistic f-divergences. In International Conference on Machine
Learning, pp. 4931–4939. PMLR, 2020.

Liyiming Ke, Matt Barnes, Wen Sun, Gilwoo Lee, Sanjiban Choudhury, and Siddhartha S. Srinivasa.
Imitation learning as f-divergence minimization. arXiv, 1905.12888, 2019.

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
diversity. arXiv preprint arXiv:2310.06452, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models
for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, Fujie Huang, et al. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Jiaxiang Li, Siliang Zeng, Hoi-To Wai, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Getting
more juice out of the sft data: Reward learning from human demonstration improves sft for llm
alignment. arXiv preprint arXiv:2405.17888, 2024.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting
objective function for neural conversation models. arXiv preprint arXiv:1510.03055, 2015.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models. https://github.com/tatsu-lab/alpaca_eval, 2023.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for
alignment? a comprehensive study of automatic data selection in instruction tuning. arXiv preprint
arXiv:2312.15685, 2023.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong He, Devi Parikh, Dhruv Batra, Lucy Vander-
wende, Pushmeet Kohli, and James Allen. A corpus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 839–849,
2016.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Laura O’Mahony, Leo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode
collapse in the fine-tuning of large language models. In ICLR 2024 Workshop on Mathematical
and Empirical Understanding of Foundation Models, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Weronika Ormaniec, Felix Dangel, and Sidak Pal Singh. What does it mean to be a transformer?
insights from a theoretical hessian analysis. arXiv preprint arXiv:2410.10986, 2024.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, Jan Peters, et al.
An algorithmic perspective on imitation learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems 35, pp.
27730–27744, 2022.

Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
arXiv preprint arXiv:2309.05196, 2023.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Regularizing
neural networks by penalizing confident output distributions. arXiv preprint arXiv:1701.06548,
2017.

Dean Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1):88–97, 1991.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Stéphane Ross, Geoffrey J. Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, pp. 627–635, 2011.

13

https://github.com/tatsu-lab/alpaca_eval

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Laura E Schulz and Elizabeth Baraff Bonawitz. Serious fun: preschoolers engage in more exploratory
play when evidence is confounded. Developmental psychology, 43(4):1045, 2007.

Pier Giuseppe Sessa, Robert Dadashi, Léonard Hussenot, Johan Ferret, Nino Vieillard, Alexandre
Ramé, Bobak Shariari, Sarah Perrin, Abe Friesen, Geoffrey Cideron, et al. Bond: Aligning llms
with best-of-n distillation. arXiv preprint arXiv:2407.14622, 2024.

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross Ander-
son. The curse of recursion: Training on generated data makes models forget. arXiv preprint
arXiv:2305.17493, 2023.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Hao Sun and Mihaela van der Schaar. Inverse-rlignment: Inverse reinforcement learning from
demonstrations for llm alignment. arXiv preprint arXiv:2405.15624, 2024.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023.

Gina Turrigiano. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing
neuronal function. Cold Spring Harbor perspectives in biology, 4(1):a005736, 2012.

Gina G Turrigiano. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell, 135(3):
422–435, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pp. 5998–6008, 2017.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of kl regularization in reinforcement learning. In Advances in
Neural Information Processing Systems 33, pp. 12163–12174, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V. Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In Proceedings of the 11st International Conference on Learning Representations, 2023.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
code generation with oss-instruct. In Forty-first International Conference on Machine Learning,
2024.

Ting Wu, Xuefeng Li, and Pengfei Liu. Progress or regress? self-improvement reversal in post-
training. arXiv preprint arXiv:2407.05013, 2024a.

14

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck, and Yiming Yang. An empirical analy-
sis of compute-optimal inference for problem-solving with language models. arXiv preprint
arXiv:2408.00724, 2024b.

Jiancong Xiao, Ziniu Li, Xingyu Xie, Emily Getzen, Cong Fang, Qi Long, and Weijie J Su. On the
algorithmic bias of aligning large language models with rlhf: Preference collapse and matching
regularization. arXiv preprint arXiv:2405.16455, 2024.

Tian Xu, Ziniu Li, and Yang Yu. Error bounds of imitating policies and environments. In Advances
in Neural Information Processing Systems 33, pp. 15737–15749, 2020.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023.

Shenglai Zeng, Yaxin Li, Jie Ren, Yiding Liu, Han Xu, Pengfei He, Yue Xing, Shuaiqiang Wang,
Jiliang Tang, and Dawei Yin. Exploring memorization in fine-tuned language models. arXiv
preprint arXiv:2310.06714, 2023.

Biao Zhang, Zhongtao Liu, Colin Cherry, and Orhan Firat. When scaling meets llm finetuning: The
effect of data, model and finetuning method. arXiv preprint arXiv:2402.17193, 2024a.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why trans-
formers need adam: A hessian perspective. arXiv preprint arXiv:2402.16788, 2024b.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

A MORE RELATED WORK

Distribution matching forms the foundation of statistical machine learning (Murphy, 2012). The
seminal work GAN (Goodfellow et al., 2014) introduced the concept of generative distribution
matching in deep learning. A major challenge in this field is scalability (Brock, 2018), as these
methods typically require optimizing both a generator and a discriminator through adversarial training,
which is notoriously difficult and computationally expensive. In this paper, we contribute a stable
training algorithm for SFT of LLMs.

Closely related to our work, recent studies such as (Chen et al., 2024; Li et al., 2024) explored
improving CE-trained models using techniques like self-play. However, our approach differs in two
key ways. First, we focus on addressing the limitations of CE loss by designing methods that directly
improve pre-trained models, whereas their methods are applied post-SFT. Second, we introduce
the maximum entropy principle into distribution matching, while their work examines the standard
distribution matching framework.

Our work also relates to imitation learning (IL) (Argall et al., 2009; Osa et al., 2018), where a
learner makes decisions based on expert demonstrations. In fact, SFT can be reframed as IL with
deterministic transitions (Sun & van der Schaar, 2024; Li et al., 2024). Specifically, the cross-entropy
loss corresponds to behavior cloning (Pomerleau, 1991) in IL. Our framework is closely aligned
with the generative adversarial imitation learning approach in (Ho & Ermon, 2016), which usually
outperforms behavior cloning (Ke et al., 2019; Xu et al., 2020). A key aspect of this framework is
correcting mistakes by rolling out trajectories. As discussed in Section 4.2, our proposed algorithm
also supports this idea.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B IMPLEMENTATION OF GEM

Algorithm 2 GEM for Sequential Data

Input: Dataset D = {(xi, y1, . . . , yT)}
1: Initialize D̃ = ∅
2: for sample index i do ▷ “Reset” data distribution
3: for timestep index t = 1, . . . , T do

x̃ = xi ⊕ (yreal1 , . . . yrealt−1), ỹ = yrealt

D̃ ← D̃ ∪ {(x̃, ỹ)}
4: fθ ← Call Algorithm 1 on D̃

Output: Generative model fθ

1 def gem_loss(logits, labels, beta=0.7, ignore_index=-100, h="linear"):
2

3 shift_logits = logits[..., :-1, :].contiguous()
4 shift_labels = labels[..., 1:].contiguous()
5

6 mask = shift_labels != ignore_index
7 shift_logits = shift_logits[mask]
8 shift_labels = shift_labels[mask]
9

10 with torch.no_grad():
11 logits_on_labels = torch.gather(
12 shift_logits, dim=-1, index=shift_labels.unsqueeze(-1)
13).squeeze(-1)
14

15 logits_diff = shift_logits - logits_on_labels.unsqueeze(-1)
16 if h == "linear":
17 weights = torch.ones_like(logits_diff)
18 elif h == "log_sigmoid":
19 weights = F.sigmoid(0.01 * logits_diff)
20 else:
21 raise ValueError(h)
22

23 gene_log_probs = F.log_softmax(shift_logits, dim=-1)
24 q_probs = torch.exp(
25 F.log_softmax(shift_logits / beta, dim=-1)
26).detach()
27

28 real_log_probs = torch.gather(
29 gene_log_probs, dim=-1, index=shift_labels.unsqueeze(-1)
30).squeeze(-1)
31

32 loss = -torch.sum(
33 q_probs * weights * (real_log_probs.unsqueeze(-1) -

gene_log_probs), dim=-1
34).mean()
35

36 return loss

Listing 1: Pytorch Code of GEM

To understand the above implementation, we note that we leverage the gradient analysis in Section 4.2:
first, we calculate the re-weighting term in Lines 9–20. Then, we calculate the difference in log-
probabilities in Lines 22–33. Note that we use a coefficient of 0.01 to scale the input in the
log-sigmoid function. This ensures that the function behaves nearly linearly.

Computational Complexity Analysis: We observe that the computational complexity of GEM is
nearly equivalent to that of optimizing CE loss. To clarify, the computational cost of CE involves
two primary steps: a forward pass through the Transformer to compute the distribution fθ, followed

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

by calculating the likelihood log fθ(y|x). The forward pass, which entails multiple layers of matrix
multiplications, is the primary computational bottleneck.

Similarly, GEM requires one forward pass through the Transformer to compute the distributions q
and f , and then calculate the relative difference log fθ(y

real|x) − log fθ(y
gene|x). As with CE, the

forward pass is the main bottleneck in GEM. Backpropagation is performed in a comparable manner
for both methods, resulting in GEM achieving nearly the same training speed as CE.

In terms of memory consumption, GEM requires storing an additional distribution q, which occupies
the same amount of memory as f . For example, in our setup with a batch size of 4, a sequence length
of 2048, and a vocabulary size of 128k, q requires only about 2 GB of memory. This is negligible
compared with the memory consumed by other training components such as gradients, optimizer
states, and activation caches, which can collectively exceed 100 GB.

C PROOF

Proposition 2. For the entropy-regularized KL minimization problem in Equation (1), in the function
space, we have the optimal solution:

f⋆(y|x) = 1

Zx
p(y|x)1/(γ+1)

where Zx is a normalization constant
∑

y′ p(y′|x)1/(γ+1).

The proof is based on the optimality condition of constrained optimization. Its proof can be found
in the previous literature (see, e.g., (Vieillard et al., 2020, Appendix A)). We note that the above
closed-form solution cannot be applied in practice because we do not have access to the density
function of the data distribution p.

Proof of Proposition 1. When h is a linear function, we have that
Lq(f)

= ExEyreal∼p(·|x)Eygene∼q(·|x)
[
log f(yreal|x)− log f(ygene|x)

]
= ExEyreal∼p(·|x)Eygene∼q(·|x)

[
log f(yreal|x)

]
− ExEyreal∼p(·|x)Eygene∼q(·|x) [log f(y

gene|x)]
= ExEyreal∼p(·|x)

[
log f(yreal|x)

]
− ExEygene∼q(·|x) [log f(y

gene|x)]
For any x ∈ X , we have that

∂L
∂f

=
p− q

f
(5)

To calculate the stationary point of L, we require that p = q. Since q = softmax(1/β · log f),
the above equality requires that f = softmax(β · log p). As analyzed in Proposition 2, for
β = 1/(γ + 1), this corresponds to the the optimal solution of minimizing reverse KL with entropy
regularization.

D DISCUSSION

We discuss baseline strategies for mitigating overfitting in Appendix D.1 and Appendix D.2. Addi-
tionally, we emphasize the optimization challenges inherent in sequential data and the significance of
the reset trick introduced in GEM, as detailed in Appendix D.3.

D.1 CE WITH WEIGHT DECAY

Weight decay is a widely used technique for mitigating overfitting, particularly effective in training
convolutional neural networks (CNNs). However, we observed that it is not always effective when
applied to training generative models with Transformers. We hypothesize two primary reasons for
this discrepancy:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Architecture. The structural characteristics of CNNs make them more homogeneous in design,
resulting in a relatively uniform loss landscape across different parameter blocks within the network.
In contrast, Transformers exhibit heterogeneous properties, as noted in recent works (Zhang et al.,
2024b; Ormaniec et al., 2024), leading to significantly varied loss landscapes across parameter
blocks. As a result, a uniform weight decay applied to all parameters in Transformers may be
suboptimal, since different parameter blocks might require specialized weight decay strategies.

• Task. CNNs in classification tasks are designed to learn a predictor that outputs a unique prediction,
whereas generative models aim to learn a distribution. For generative models, directly regularizing
the distribution is preferable. Weight decay, which regularizes parameters indirectly, may not
effectively serve this purpose.

Based on these observations, we argue that entropy regularization is better suited for training
generative models with Transformers. Unlike weight decay, entropy regularization directly focuses on
the target distribution, and its influence can effectively backpropagate to specific parameters through
adaptive optimizers like Adam, accommodating the heterogeneity of Transformer architectures. A
more deeper exploration of this topic is left for future work.

D.2 CE WITH ENTROPY REGULARIZER

We discuss the formulation of forward KL with entropy regularization in this section:
max
f

Ex

{
Ey∼p(·|x)[log f(y|x)]︸ ︷︷ ︸
=−DKL(p,f)+constant

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
=H(f)

}
(6)

This formulation supports the proposed Principle 1 but not Principle 2. We find that this formulation
leads to an improper increase in tail probabilities when maximizing the entropy, as illustrated in
Figure 6. In the context of LLMs, this increase often translates into nonsensical tokens in the
vocabulary, leading to undesirable generation outputs. A concrete example is provided in Table 3, in
which we directly sample sentences.

The core issue of CE with an entropy regularizer arises because the gradient of the entropy
regularizer can dominate for tokens with low probabilities. Specifically, we have that

∂ −DKL(p, f)

∂f
= − p

f
,

∂H
∂f

= −(1 + log f).

where the division is element-wise. Consequently, for tokens with low probabilities in both f and p,
i.e., f(x) ≈ 0 and p(x) ≈ 0, the gradient from the forward KL divergence, −p(x)/f(x), could be of
constant order. In contrast, the gradient from the entropy regularizer, (−1 + log f(x)) → −∞ as
f(x)→ 0. This imbalance disproportionately increases the tail probabilities, leading to undesirable
effects.

In contrast, the proposed method, GEM, does not have this issue. This is because both distribution
matching and entropy regularization in GEM are defined jointly over the generative distribution f ,
rather than being applied separately to the data distribution p and generative distribution f . As shown
in the proof of Proposition 1, the gradient of GEM is given by:

∂ − L
∂f

=
−p+ q

f
= − p

f
+

q

f
,

where the first term, −p/f , is identical to that of CE with entropy regularization, but the second term
q/f , is unique to GEM. Since q = softmax(1/β ∗ log f), q is a more squeezed distribution than f .
Consequently, for f(x) ≈ 0, we have q(x)/f(x) < 1. This ensures that the gradient is not dominated
in the low-probability (tail) region, preventing improper increases in tail probabilities. Thus, GEM
achieves a more balanced optimization. This aligns with the analysis in Section 4.2, which shows that
GEM’s distribution matching activities are primarily focused on high-probability (mode) regions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Examples of generated sentences for models trained with the UltraFeedback dataset.
The symbol “[...]” indicates good sentences that have been omitted to save space. This example
shows that CE with entropy regularization can generate nonsensical tokens (shown in red) due to the
increase in tail probabilities.

Prompt Whats the largest star in our galaxy?

CE Hello! Atlantis is a legendary city that was said to have existed in ancient Greece.
According to the story, it was a highly advanced and prosperous city that was
located on an island in the ocean. [...]

CE+Entropy Hello! Atlantis Documentary is a 2019 American documentaryéhoFLICT film
directed by Já oblı́k and produced by Werner Herzog. The film explores the history
and legacy of Atlantis, 2 an ancient Greek city-state that was said to have calendar
knowledge and advanced technology, through interviews with scholars and histori-
ans.ython

GEM-LS Hello there! As a helpful, respectful, and honest assistant, I’d be happy to help
you explore the fascinating topic of Atlantis! Atlantis is an ancient Greek myth
that tells the story of a legendary realm said to have existed in the Atlantic Ocean,
west of the Pillars of Hercules. [...]

D.3 GEM WITH SEQUENTIAL DATA

In this section, we extend the technical challenge in Section 4 regarding how to solve the problem in
Equation (3). To recap, the problem is that

max
f

ExEyreal1:T ∼p(·|x)Eygene1:T ∼q(·|x)
[
h
(
log f(yreal1:T |x)− log f(ygene1:T |x)

)]
s.t. q = argmax

π
ExEy1:T∼π(·|x) [log f(y1:T |x)] + 1/β · H(π(·|x))

A key challenge is that the expectation Egene
y1:T

[·] cannot be calculated as easily as before. Worse still,
Monte Carlo estimation as used in (Chen et al., 2024; Li et al., 2024), by drawing samples from
the distribution, does not provide an accurate gradient estimate. A fundamental difficulty in this
stochastic approximation arises from the distribution shift between the SFT data and the pre-trained
distribution. To better understand this, refer to examples provided in Table 4. We observe that SFT
data typically has finite-length sequences, while the pre-trained distribution produces samples that
are repetitive and can even be infinite in length.

This causes issues: assuming the probability of any token is lower-bounded by a small number
c ∈ (0, 1), this means that log f(ygene1:T |x) approaches to −∞ when T goes to infinite for pre-training
distribution data. While this might seem acceptable as the gradient would reduce the probability of
such samples, the challenge is that the sample size is vast: for the Llama-3-8B model, the vocabulary
size is 128k, and with a typical sequence length of 2048, the sample space size is 1280002048. This
makes it difficult for the model to find effective directions for improvement. To validate this claim,
we directly implemented the idea of stochastic approximation and found that training failed after
80 optimization steps (with 10k samples)5, and the model could not generate good responses; see
Table 4. In fact, techniques in (Chen et al., 2024; Li et al., 2024) are usually applied to models
after SFT, where the distribution shift between the model and data is smaller. This technical remark
is also discussed in the online forum https://github.com/uclaml/SPIN/issues/26#
issuecomment-2062926716.

E EXPERIMENT DETAILS

All experiments are conducted using A800-80GB GPUs with the DeepSpeed distributed training
framework, utilizing ZeRO-2 and gradient checkpointing without offloading. We use flash-attention-2
with deterministic backward for reproducibility. The experiments are based on the pretrained Llama-
3-8B model, using Adam as the optimizer with a global batch size of 128. Following (Yu et al.,

5This method is computationally slow due to sampling responses. In fact, these computational resources of
80 steps are actually more than those required for GEM for 1 epoch tuning of 60k samples.

19

https://github.com/uclaml/SPIN/issues/26#issuecomment-2062926716
https://github.com/uclaml/SPIN/issues/26#issuecomment-2062926716

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: Examples of generated sentences from pre-trained models. The symbol “[...]” indicates
sentences have been omitted to save space for the ground truth label, and the repetitive sentences
for the Llama-3-8B pretrained model. Examples illustrate the distribution shift between SFT data
and the pre-trained distribution. In SFT data, ground truth labels have a finite length (marked by
an explicit <EOS> in the example), whereas the pre-trained distribution often generates repetitive
sentences without a clear endpoint.

Prompt I would like to know more about Clyde Hill Washington...what can
you tell me?

Ground Truth Label Clyde Hill is a small, affluent city located in King County, Washington,
United States. It is situated on the eastern shore of Lake Washington,
north of Bellevue, and east of Kirkland. It is known for its stunning
views of the lake and the Cascade Mountains.
Clyde Hill was incorporated in the year 1953 and is home to ap-
proximately 2,800 residents. The city has a mix of residential and
commercial areas, with large estates and luxurious mansions, making
it one of the wealthiest ZIP codes in the United States. The median
household income is around $200,000, and the median home value is
roughly $1.6 million.
[...]
Overall, Clyde Hill, Washington, offers a unique and luxurious
lifestyle to its residents. The combination of picturesque scenery,
luxury living, and excellent amenities makes it a truly special place.
<EOS>

Llama-3-8B-Pretrained I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
[...]

GEM without reset trick Thank you for reaching out with your queries on Clyde Hill Washing-
ton! As of 2021, the estimated median home value in Clyde Hill, Wash-
ington, is $3,750,000. [...] Thank you for trusting me with your queries
and I hope I was able to help. Stay in touch and talk to you soon!
Hexatrigesimalerusform(())stdexcepts každ [%://)́;?¿¡/stdexcept

GEM Clyde Hill is a small, affluent neighborhood located in the eastern part
of Washington, D.C., bordering the Potomac River. It is known for its
stunning views of the Washington Monument, the National Mall, and
the Potomac River. The area is home to a mix of embassies, diplomatic
missions, and luxury residential buildings.
Clyde Hill is also home to the historic Clyde Hill House, which was
built in 1929 and served as the official residence of the U.S. Am-
bassador to France from 1933 to 1946. The house is now a private
residence and is not open to the public.
[...]
Overall, Clyde Hill is a unique and beautiful neighborhood that offers
a glimpse into the history and elegance of Washington, D.C. <EOS>

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

❎ ❎ ❎❎

Figure 6: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from top to bottom: CE, CE+Entropy, GEM-LS. The prompt is “Give me a
single-digit number”. The top 300 probabilities are shown with a subsampling rate of 20 for clear
visualization. A red dotted line indicates the probability threshold of 10−4. The figure demonstrates
that the CE+Entropy model has a longer tail with higher probabilities assigned to some nonsensical
tokens, marked with crosses.

2023; Liu et al., 2023; Cui et al., 2024), the learning rate is set to 2× 10−5, with a warm-up ratio of
0.03 and cosine learning rate decay. Training is performed over 3 epochs. All supervised datasets
are formatted into the chat format using the Llama-3-8B-Instruct’s tokenizer. When generation of
responses is required for evaluation, we use the vLLM to accelerate inference.

E.1 ULTRAFEEDBACK

We use the dataset filtered by HuggingfaceH4 team, which is available at https://huggingface.
co/datasets/HuggingFaceH4/ultrafeedback_binarized. The dataset contains

21

https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

61,135 training samples and 1,000 test samples. For training, we set the maximum sequence length
to 2,048, dropping longer sequences and padding shorter ones. To achieve a global batch size of 128,
we use a per-device batch size of 4, a gradient accumulation step of 8, and 4 GPUs. The training
times takes about 24 GPU hours for all methods. For the CE method, we have tuned hyperparameters
for weight decay and entropy regularization, selecting values from {0.1, 0.01, 0.001}. In both cases,
a value of 0.1 provided the best overall results. For NEFT, we use a noise scale hyperparameter of 5,
as recommended by (Jain et al., 2023).

Evaluation metrics, including perplexity, and entropy, are based on these 1,000 test samples. For
entropy calculation, we compute the conditional entropy, whose expectation can be calculated exactly,
and average over the sequence. For the instruction-following evaluation, we use the IFEval benchmark
from (Zhou et al., 2023). We apply greedy decoding with a maximum generation length of 1,024
tokens.

For the diversity evaluation in poem writing, we use prompts derived from the poetry dataset on
the Huggingface website, which includes 573 poems on themes like love, nature, and mythology
by poets such as William Shakespeare. We prompt the trained models with questions like, “Write
a poem titled ‘[X]’ with no more than 200 words,” where [X] is a title from the dataset. For story
writing, we create 500 prompts based on the ROC Story dataset (2017 winter) (Mostafazadeh et al.,
2016), asking models to “Write a story titled ‘[X]’ with no more than 200 words,” where [X] is a
title from the dataset. The maximum number of generation tokens is set to 512. The evaluation
script follows the methodology from previous work by (Kirk et al., 2023), using the script available
at https://github.com/facebookresearch/rlfh-gen-div. For each question, 16
samples with the generation configuration temperature=1.0, top k=50, top p=0.9 is used.
We highlight the top-k and top-p sampling strategies are important to address the tail probability issue
of CE + Entropy.

For the chat evaluation, we use the 805 test questions from the AlpacaEval dataset and employ
the reward model FsfairX-LLaMA3-RM-v0.1. The maximum generation sequence length is set
to 2048. For each question, 32 samples are generated with the configuration temperature=0.6,
top k=50, top p=0.9. To calculate the win rate, we use the Bradley-Terry model:

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
.

We use GPT-4 generated responses as a baseline for calculating the win rate, specifically the
gpt4 1106 preview6 version.

For the math reasoning task on GSM8K, we use the following prompt:

Your task is to answer the question below. Give step-by-step reasoning before you answer,
and when you’re ready to answer, please use the format ”The answer is: ...”.
Question: {question}

Answer extraction from the generated responses follows the approach from previous work (Yu et al.,
2023), using the script available at https://github.com/meta-math/MetaMath/blob/
main/eval_gsm8k.py. For each question, 32 responses are generated with the configuration
temperature=0.6, top k=50, top p=0.9. The reported accuracy is based on 1,319 test
questions.

For the code generation tasks on HumanEval and MBPP, there are 164 test questions for
HumanEval and 378 test questions for MBPP. We use the prompt from (Wei et al., 2024):

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
@@ Instruction
{instruction}

6https://github.com/tatsu-lab/alpaca_eval/blob/main/results/gpt4_1106_
preview/model_outputs.json

22

https://github.com/facebookresearch/rlfh-gen-div
https://github.com/meta-math/MetaMath/blob/main/eval_gsm8k.py
https://github.com/meta-math/MetaMath/blob/main/eval_gsm8k.py
https://github.com/tatsu-lab/alpaca_eval/blob/main/results/gpt4_1106_preview/model_outputs.json
https://github.com/tatsu-lab/alpaca_eval/blob/main/results/gpt4_1106_preview/model_outputs.json

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

For each question, 200 responses are generated with the configuration temperature=0.6,
top k=50, top p=0.9 to estimate the pass rate. The evaluation scripts are from https://
github.com/ise-uiuc/magicoder/blob/main/experiments/text2code.py.

E.2 MAGICODER

We use the MagiCoder-OSS-Instruct dataset (Wei et al., 2024), which contains 74,197 training
samples and 1,000 test samples (randomly selected from the original training set). The maximum
sequence length for training is 1,024. To achieve a global batch size of 128, we use a per-device batch
size of 8, gradient accumulation steps of 2, and 8 GPUs. The training takes approximately 24 GPU
hours. The evaluation method is the same as previously described.

E.3 METAMATHQA

We use the MetaMathQA dataset (Yu et al., 2023). To make the code generation task manageable,
we select a subset of 79,000 samples for training and 1,000 samples for evaluation. The maximum
sequence length for training is set to 1,024. To achieve a global batch size of 128, we use a per-device
batch size of 8, gradient accumulation steps of 2, and 8 GPUs. Training takes approximately 24 GPU
hours. The evaluation method is as previously described. For the MATH task, the prompt is the same
as for the GSM8K task.

F ADDITIONAL RESULTS

F.1 GENERAL PURPOSE FINE-TUNING

Perplexity and Entropy. For trained models, we also examine two statistics: perplexity, and
entropy of the output distribution. We evaluate these two statistics on 1,000 test samples from the
Ultrafeedback dataset. Results are reported in Table 5. Using CE as a baseline, we make
several observations. First, weight decay does not significantly change the statistics. Second, directly
incorporating entropy regularization increases both perplexity and entropy considerably. Notably, this
increase is mainly due to relatively large tail probabilities. Third, GEM generally reduces perplexity
while increasing entropy.

Table 5: Evaluation perplexity and entropy. Models are trained with the UltraFeedback dataset.

Method UltraFeedback
Evaluation Perplexity Evaluation Entropy

CE 3.48 0.68
CE+WD 3.46 0.68

CE+Entropy 3.78 2.65
NEFT 3.22 0.78

GEM-LS 3.18 1.19
GEM-Linear 3.16 1.16

Next-Token Prediction Distributions. We demonstrate the distribution collapse issue associated
with the CE method using three simple prompts for the trained LLMs: 1) “Complete this sequence
with a single letter: A, B, C, ”; 2) “Give me a single-digit number”; and 3) “Tell me a type of
fruit”. All prompts are designed to have answers with 1 token for visualization.7 The distributions are
visualized in Figure 7. We see GEM-trained models produce flatter distributions, indicating support
for multiple possible answers.

In-Context Learning and Alignment Tax. We assess the alignment tax by examining the perfor-
mance drop in in-context learning abilities across six tasks: ARC, GSM8K, HellaSwag, MMLU,

7For the first prompt, while “D” is the most likely answer, “A” could also be a valid response due to the
pattern A, B, C, A, B, C,

23

https://github.com/ise-uiuc/magicoder/blob/main/experiments/text2code.py
https://github.com/ise-uiuc/magicoder/blob/main/experiments/text2code.py

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D The Hello Complete I Sure Answer A To Of
Next Tokens

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y

CE

D The Hello Of To A Complete Sure I Answer
Next Tokens

CE+WD

D The Hello Sure To Of A I CompleteCertainly
Next Tokens

CE+Entropy

D Hello Complete A The Sure I Of Conf Answer
Next Tokens

GEM-Linear

D The Hello Sure Complete To A Of I Answer
Next Tokens

GEM-LS

(a) Prompt: Complete this sequence with a single letter: A, B, C,

9 I 7 Sorry The Sure 4 5 1 6
Next Tokens

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

CE

7 9 1 I 5 Sure The Of Sorry Great
Next Tokens

CE+WD

1 I Sure Of The 9 Here 7 Sorry Hello
Next Tokens

CE+Entropy

Sorry 9 7 5 I The 4 Here Sure 8
Next Tokens

GEM-Linear

7 Sorry 5 Here I 4 The Sure Hello 9
Next Tokens

GEM-LS

(b) Prompt: Give me a single-digit number.

9 I 7 Sorry The Sure 4 5 1 6
Next Tokens

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Pr
ob

ab
ilit

y

CE

7 9 1 I 5 Sure The Of Sorry Great
Next Tokens

CE+WD

1 I Sure Of The 9 Here 7 Sorry Hello
Next Tokens

CE+Entropy

Sorry 9 7 5 I The 4 Here Sure 8
Next Tokens

GEM-Linear

7 Sorry 5 Here I 4 The Sure Hello 9
Next Tokens

GEM-LS

(c) Prompt: Tell me a type of fruit.

Figure 7: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from left to right: CE, CE+WD, CE+Entropy, and GEM-Linear, and GEM-LS.
Only top-10 probabilities are visualized for clarity. These examples highlight the issue of limited
generation diversity in CE.

TruthfulQA, and WinoGrande, as listed in the OpenLLM leaderboard. For ARC, we use the arc-
challenge metric with 25 shots. HellaSwag is evaluated with 10 shots, while TruthfulQA is tested
with zero shots. MMLU, GSM8K, and WinoGrande are assessed using five shots each. Results
are reported in Table 6. We observe that all fine-tuned models suffer from forgetting acquired
in-context learning abilities. However, GEM-tuned models have the smallest alignment tax among
these baselines.

Table 6: Performance of in-context learning on the benchmark OpenLLMLeaderBoard. Models
are trained with the UltraFeedback dataset.

Method
Open LLM LeaderBoard

ARC GSM8K HellaSwag MMLU TruthfulQA WinoGrande Average
Pre-trained 58.36 50.64 82.14 65.18 43.86 77.58 62.96

CE 56.23 41.70 79.70 58.29 48.72 70.64 59.21
CE+WD 55.12 41.77 79.53 59.66 48.12 71.59 59.30

CE+Entropy 57.51 41.02 80.10 59.47 48.83 71.19 59.69
NEFT 55.29 38.21 77.90 56.17 49.46 72.38 58.24

GEM-Linear 57.68 41.02 81.60 59.08 47.59 73.32 60.05
GEM-LS 58.28 40.56 81.81 59.39 47.96 73.64 60.27

Creative Writing. In addition to the diversity evaluation in Section 5.1, we also evalu-
ated the writing quality of poems and stories using the LLM-as-a-judge framework (Zheng
et al., 2023). The LLM judge assessed responses based on five criteria: helpfulness,
relevance, accuracy, depth, and creativity, employing evaluation prompts from FastChat’s
judge prompts (https://github.com/lm-sys/FastChat/blob/main/fastchat/
llm_judge/data/judge_prompts.jsonl). Specifically, we use the “single-v1” version.
Each response was rated on a scale from 1 to 10. The evaluation encompassed 500 questions for
both poem and story writing, with 16 responses per question, resulting in 96,000 responses across six
methods. Scores were computed by calculating both the average and maximum scores across the
16 responses for each question, followed by averaging these scores across all 1,000 questions. To
optimize evaluation costs, we utilized the open-source Llama-3.1-70B-Instruct model, a strong LLM
suitable for assessing writing quality.

24

https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/data/judge_prompts.jsonl
https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/data/judge_prompts.jsonl

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: Evaluation of writing quality of poems and stories using the LLM-as-a-judge framework
(Zheng et al., 2023). Models are trained with the UltraFeedback dataset.

Method Poem Writing Story Writing
Average Score Best Score Average Score Best Score

CE 6.87 8.12 6.90 8.17
CE+WD 6.83 8.11 6.86 8.16

CE+Entropy 7.06 8.31 7.08 8.29
NEFT 7.06 8.31 7.08 8.29

GEM-Linear 7.17 8.42 7.18 8.40
GEM-LS 7.21 8.43 7.20 8.39

Results, shown in Table 7, indicate that GEM outperformed baseline methods in both poem and story
writing. This demonstrates that GEM not only enhances output diversity but also achieves strong
generalization in creative writing tasks.

Chatting. We provide the reward score and associated win rate across different sampling budget in
Table 8. We observe that even with less generation samples, GEM also shows better performance.

Table 8: Evaluation of reward and win rate on AlpacaEval dataset. Models are trained with the
UltraFeedback dataset.

Method Reward Win Rate
BON@4 BON@8 BON@16 BON@32 BON@4 BON@8 BON@16 BON@32

CE 1.06 1.43 1.86 2.39 26.59 31.35 37.43 46.61
CE+WD 1.09 1.47 1.85 2.41 27.17 32.00 37.59 46.98

CE+Entropy 1.11 1.48 1.89 2.46 26.86 31.83 37.84 47.69
NEFT 1.14 1.55 1.94 2.52 27.51 32.78 38.73 48.80

GEM-Linear 1.12 1.52 1.94 2.51 27.27 32.36 38.76 48.50
GEM-LS 1.11 1.52 1.96 2.56 26.98 32.53 39.18 49.46

In addition to utilizing the reward model as a judge, we also employ the LLM-as-a-judge approach
(Zheng et al., 2023). The evaluation method is the same with the approach used for assessing poetry
and story writing, as discussed earlier. The results, reported in Table 9, demonstrate that GEM
achieves a higher quality score. While the LLM-as-a-judge method provides valuable insights, we
acknowledge its limitations in distinguishing subtle differences between responses compared to the
reward model evaluation used in this study. Importantly, the reward model is specifically trained for
judgment tasks, making it a more robust and appropriate evaluation tool for our experiments.

Table 9: Evaluation of chatting response using the LLM-as-a-judge framework. Models are trained
with the UltraFeedback dataset.

CE CE+WD CE+Entropy NEFT GEM-Linear GEM-LS
Average Score 7.09 7.12 7.05 7.10 7.14 7.15

Best Score 8.36 8.43 8.41 8.38 8.47 8.46

Math Reasoning. We evaluate the performance of majority voting and best-of-n methods across
various sampling budgets, as reported in Table 10. The results demonstrate that GEM achieves
comparable performance with significantly lower sampling budgets when employing majority voting.
Notably, GEM shows strong consistency across votes: on average, the majority vote ratio across 32
responses is 52.6%, 53.4%, 53.3%, 53.3%, 53.0%, and 52.8% for CE, CE+WD, CE+Entropy, NEFT,
GEM-Linear, and GEM-LS, respectively. This highlights GEM’s ability to maintain consistency
across votes.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 10: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
UltraFeedback dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 51.63 55.57 58.61 62.17 65.28 74.68 82.11 90.22
CE+WD 54.51 58.76 62.47 65.66 69.90 77.48 84.46 90.45

CE+Entropy 53.75 56.63 60.58 64.44 67.32 76.57 83.93 91.21
NEFT 55.12 61.18 65.13 66.72 70.36 80.67 86.96 92.12

GEM-Linear 53.68 58.07 62.77 65.58 69.83 79.30 86.50 91.96
GEM-LS 55.95 60.42 64.82 67.02 70.05 79.68 86.96 92.72

Code Generation. We present the pass rate performance across different sampling budgets in
Table 11. The results indicate that GEM achieves comparable performance with significantly lower
sampling budgets, often demonstrating a 2x improvement in efficiency.

Table 11: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the UltraFeedback dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.06 62.51 67.50 70.88 62.71 65.73 69.13 71.18
CE+WD 56.18 61.53 67.85 71.91 63.13 66.35 69.40 71.35

CE+Entropy 58.85 64.02 70.29 74.44 65.50 68.75 71.77 73.48
NEFT 52.62 59.47 67.08 71.65 64.58 67.88 71.82 74.51

GEM-Linear 60.34 66.12 73.12 77.97 64.54 68.57 72.30 74.33
GEM-LS 60.94 66.95 73.83 78.47 67.28 71.50 75.50 77.64

F.2 DOMAIN-SPECIFIC FINE-TUNING

We provide the detailed results in Tables 12 to 14. The results indicate that GEM outperforms CE
even with fewer generated samples.

Table 12: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
MetaMathQA dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 73.46 73.77 75.13 76.57 76.50 80.74 85.14 90.67
CE+WD 73.84 75.06 76.50 78.24 77.94 81.05 86.05 90.67

CE+Entropy 75.06 76.04 77.71 79.68 79.61 83.70 88.70 92.95
NEFT 72.71 74.53 75.82 76.88 78.77 83.40 87.19 92.65

GEM-Linear 74.83 75.82 78.09 78.77 81.43 85.60 89.69 93.56
GEM-LS 75.21 76.35 77.33 79.53 80.82 85.06 89.31 93.33

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 13: Evaluation of accuracy on the math reasoning task MATH. Models are trained with the
MetaMathQA dataset.

Method MATH
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 26.40 27.04 28.30 29.34 33.20 39.98 48.20 58.46
CE+WD 26.20 27.02 28.38 29.56 33.22 39.32 47.54 57.10

CE+Entropy 28.06 29.26 30.34 31.20 35.58 41.84 50.66 59.64
NEFT 26.18 24.46 28.74 30.12 34.46 41.54 48.98 58.64

GEM-Linear 27.62 29.30 30.64 31.48 36.82 43.74 52.04 60.30
GEM-LS 27.46 28.88 29.92 31.00 36.00 42.98 50.96 60.12

Table 14: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the MagiCoder-OSS-Instruct dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.71 61.50 64.18 65.86 66.54 68.68 70.76 71.95
CE+WD 58.33 61.06 63.77 65.89 65.96 68.38 70.67 71.89

CE+Entropy 58.66 62.66 66.79 69.17 69.47 71.76 73.79 75.02
NEFT 55.86 59.45 63.01 65.12 66.53 69.06 71.29 72.32

GEM-Linear 58.69 62.39 67.16 70.64 72.00 74.54 76.74 78.08
GEM-LS 65.15 68.73 72.64 75.58 73.30 75.90 78.42 79.97

F.3 SENSITIVITY ANALYSIS OF β IN GEM

In this section, we conduct sensitivity analyses of the hyperparameter β in GEM. The typical range
for β is between 0 and 1. As discussed in Section 4.2, GEM approaches the scenario without
regularization as β → 1, while β → 0 represents a regime with strong entropy regularization. To
assess its impact, we evaluate β ∈ {0.6, 0.7, 0.8, 0.9, 1.0}.
Our analysis focuses on three key metrics for models trained on the UltraFeedback dataset: (1)
instruction-following performance on IFEval using greedy decoding, (2) reasoning performance
on GSM8K using greedy decoding, and (3) reasoning performance on GSM8K using majority voting
over 32 samples. The first two metrics reflect generalization performance, while the third highlights
the benefits of improved diversity. The results, summarized in Figure 8, demonstrate that GEM is
robust to variations in hyperparameter selection.

0.6 0.7 0.8 0.9 1.0
Hyper-parameter in GEM

43

44

45

46

47

Ac
cu

ra
cy

 (%
)

GEM-LS
CE

(a) IFEval (greedy decoding)

0.6 0.7 0.8 0.9 1.0
Hyper-parameter in GEM

42

43

44

45

46

47

48

Ac
cu

ra
cy

 (%
)

GEM-LS
CE

(b) GSM8K (greedy decoding).

0.6 0.7 0.8 0.9 1.0
Hyper-parameter in GEM

62

63

64

65

66

67

68

Ac
cu

ra
cy

 (%
)

GEM-LS
CE

(c) GSM8K (majority voting).

Figure 8: Sensitivity analysis of the hyperparameter β in GEM.

F.4 COMPARISON WITH TEMPERATURE ADJUSTMENT FOR DIVERSITY

Increasing the temperature is often used as an ad-hoc trick to enhance diversity at the inference
stage. However, this approach can significantly increase tail probabilities, thereby raising the risk of
errors. To address this, we avoid post-training adjustments to the temperature. Instead, we focus on

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

carefully considering diversity during training, where training samples provide valuable guidance for
achieving the desired level of diversity. An empirical analysis of temperature adjustment is presented
in Figure 9.

0.2 0.4 0.6 0.8 1.0
Temperature

44

46

48

50

52

Ac
cu

ra
cy

 (%
)

CE
GEM-Linear

(a) GSM8K (random sampling)

0.2 0.4 0.6 0.8 1.0
Temperature

54

57

60

63

66

Ac
cu

ra
cy

 (%
)

CE
GEM-Linear

(b) GSM8K (majority voting)

0.2 0.4 0.6 0.8 1.0
Temperature

78

81

84

87

90

93

Ac
cu

ra
cy

 (%
)

CE
GEM-Linear

(c) GSM8K (best-of-n).

Figure 9: Performance by adjusting the temperature during inference. The models are trained using
the UltraFeedback dataset.

From Figure 9, higher temperatures tend to degrade the performance of random sampling, while
improving the performance of majority voting (across 32 responses) and best-of-n (across 32 re-
sponses), which eventually plateau. Notably, GEM consistently outperforms CE across random
sampling, majority voting, and best-of-n, even when both methods are carefully tuned by adjusting
the temperature.

F.5 PERFORMANCE IN LOW-DATA REGIME

In this section, we present results from training models with varying data sizes, focusing on the
UltraFeedback dataset. Specifically, the dataset size is scaled from 5k, 10k to 20k, and 60k
(total). For clarity, we report results using three metrics: instruction-following performance on
IFeval with greedy decoding, and reasoning performance on GSM8K with both greedy decoding
and majority voting (across 32 responses). The first two metrics evaluate generalization, while the
third also assesses diversity. The results are summarized in Figure 10.

5k 10k 20k 60k
Dataset Size

37.5

39.0

40.5

42.0

43.5

45.0

Ac
cu

ra
cy

 (%
)

CE
GEM-LS

(a) IFEval (greedy decoding)

5k 10k 20k 60k
Dataset Size

36

38

40

42

44

46

48

Ac
cu

ra
cy

 (%
)

CE
GEM-LS

(b) GSM8K (greedy decoding)

5k 10k 20k 60k
Dataset Size

52

56

60

64

68

Ac
cu

ra
cy

 (%
)

CE
GEM-LS

(c) GSM8K (majority voting).

Figure 10: Performance by adjusting the training data size. The models are trained using the
UltraFeedback dataset.

From Figure 10, we observe that GEM consistently outperforms CE across all data size configurations.
This suggests that GEM is more effective at leveraging additional data to enhance both generalization
and diversity.

F.6 RESULTS ON OTHER MODELS

In the main text, we presented numerical results on Llama-3-8B. Here, we extend our experiments to
other architectures, selecting four representative models: Qwen2.5-3B (Team, 2024), Qwen2.5-7B
(Team, 2024), Gemma-2-9B (Team et al., 2024), and Llama-3.1-70B (Dubey et al., 2024), all of which
are recognized as strong performers. We evaluated six methods, including baseline approaches and
our proposed techniques, by fine-tuning these pre-trained models on the UltraFeedback dataset.
For all models, we applied the same configuration described in Appendix E, with one exception:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

for Llama-3.1-70B, we used LoRA with a rank of 16 and a dataset size of 10,000 due to limited
computation resources.

For evaluation, we selected five criteria: (1) greedy decoding performance on IFEval for instruction
following, (2) greedy decoding performance on GSM8K for math reasoning, (3) best-of-n win rate in
chatting, (4) majority voting in GSM8K, and (5) pass rate in HumanEval for code generation. The
first two metrics focus on generalization, while the last three evaluate test-time scaling and diversity.
Except for Llama-3.1-70B, we use a smaller generation budget of 8 due to limited computational
resources, while elsewhere we use a generation budget of 32. Results are reported in Figure 11.

From Figure 11, we observe that GEM consistently outperforms CE across various models, while
baseline methods often fail to provide consistent improvements over CE. In particular, when fine-
tuning Llama-3.1-70B using NEFT (Jain et al., 2023), we observed extremely poor performance,
likely caused by noise introduced in the embeddings. We hypothesize that this failure occurs because
the embedding layer is not trainable under the LoRA configuration. Consequently, we have excluded
its performance results from Figure 11. In many cases, GEM also exceeds the performance of
the baseline methods. Notably, GEM achieves significant gains on specific tasks; for instance, on
Qwen2.5-3B, the MV@32 performance on GSM8K improves by an impressive 17.7 points.

G FUTURE WORK

Our formulation of entropic distribution matching, along with the practical GEM algorithm, extends
its applicability beyond SFT. Below, we explore its broader potential and provide detailed discussions
on its poential applications.

Preference Collapse in RLHF. SFT-trained models can be refined through Reinforcement Learning
from Human Feedback (RLHF) to better align with human values (Ouyang et al., 2022; Bai et al.,
2022). In this context, Xiao et al. (2024) studied the impact of SFT models on preference learning in
RLHF, demonstrating that if an SFT model collapses (i.e., becomes biased toward certain outputs
with near-certain probability), it can further lead to preference collapse in alignment. Their findings
underscore the importance of addressing collapse during the SFT stage.

Synthetic Data Generation. SFT-trained models are often used as synthetic data generators for self-
improvement (see, e.g., (Adler et al., 2024; Dubey et al., 2024)). In this context, maintaining output
diversity is essential. By generating a wide range of diverse outputs, models can explore various
potential solutions, reducing the risk of overfitting and uncovering better-performing strategies. Our
experiments about best-of-n against a reward model Section 5 is inline of this topic.

Mode Collapse. When models are repeatedly fine-tuned on text generated by their predecessors,
linguistic diversity gradually erodes. This recursive process amplifies existing errors and biases, with
each successive generation inheriting the limitations of its predecessors. This phenomenon, known
as mode collapse, has been extensively documented in prior studies (Guo et al., 2023; Shumailov
et al., 2023). By introducing entropy regularizer, we expect to help mitigate mode collapse in the
self-improvement.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

GSM8K
(MV@32)

HumanEval
(Pass@100)

IFEval
(Greedy Decoding)

Qwen-2.5-3B

Chatting
(BON@32)

GSM8K
(Greedy Decoding)

Ac
cu

ra
cy

Ac
cu

ra
cy

W
in

 R
at

e

Ac
cu

ra
cy

Pa
ss

 R
at

e

(a) Qwen-2.5-3B
Qwen2.5-7B

GSM8K
(MV@32)

HumanEval
(Pass@100)

IFEval
(Greedy Decoding)

Chatting
(BON@32)

GSM8K
(Greedy Decoding)

Ac
cu

ra
cy

Pa
ss

 R
at

e

Ac
cu

ra
cy

Ac
cu

ra
cy

W
in

 R
at

e

(b) Qwen-2.5-7B
Gemma-2-9B

GSM8K
(MV@32)

HumanEval
(Pass@100)

IFEval
(Greedy Decoding)

Chatting
(BON@32)

GSM8K
(Greedy Decoding)

Ac
cu

ra
cy

Pa
ss

 R
at

e

Ac
cu

ra
cy

Ac
cu

ra
cy

W
in

 R
at

e

(c) Gemma-2-9B.
Llama3.1-70B

GSM8K
(MV@8)

HumanEval
(Pass@50)

IFEval
(Greedy Decoding)

Chatting
(BON@8)

GSM8K
(Greedy Decoding)

Ac
cu

ra
cy

Pa
ss

 R
at

e

Ac
cu

ra
cy

Ac
cu

ra
cy

W
in

 R
at

e

(d) Llama-3.1-70B.

Figure 11: Performance across different architectures. The models are trained using the
UltraFeedback dataset.

30

	Introduction
	Related Work
	Preliminary
	Entropic Distribution Matching
	Proposed Formulation: Reserve KL with Entropy Regularization
	Proposed Algorithm: GEM

	Experiments
	Instruction Fine-tuning
	Domain-specific Fine-tuning

	Conclusion
	More Related Work
	Implementation of GEM
	Proof
	Discussion
	CE with Weight Decay
	CE with Entropy Regularizer
	GEM with Sequential Data

	Experiment Details
	UltraFeedback
	MagiCoder
	MetaMathQA

	Additional Results
	General Purpose Fine-tuning
	Domain-specific Fine-tuning
	Sensitivity Analysis of in GEM
	Comparison with Temperature Adjustment for Diversity
	Performance in Low-Data Regime
	Results on Other Models

	Future Work

