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ABSTRACT

Large language models rely on Supervised Fine-Tuning (SFT) to specialize in
downstream tasks. Cross Entropy (CE) loss is the de facto choice in SFT. However,
CE often results in overfitting and limited output diversity due to its aggressive
distribution matching strategy, which forces the model’s generative distribution to
closely mimic the empirical data distribution. This paper aims to address these
issues by introducing the maximum entropy principle, encouraging models to
resist overfitting while preserving output diversity. Specifically, we develop a new
distribution matching method called GEM, which solves reverse Kullback-Leibler
divergence minimization with an entropy regularizer.
We demonstrate the effectiveness of GEM by fine-tuning pre-trained models rang-
ing from 3B to 70B in size. GEM consistently outperforms CE, reducing overfitting
as indicated by lower evaluation perplexity and improved instruction-following
performance. Moreover, GEM enhances output diversity, generating more varied
and creative responses in tasks such as poem and story writing. This increase
in diversity also translates into test-time performance gains. For instance, when
fine-tuning Llama-3-8B, GEM achieves a 5-point improvement in math reasoning
and a 8-point improvement in code generation tasks, leveraging majority voting
and best-of-n sampling strategies.

1 INTRODUCTION

Large Language Models (LLMs) (OpenAI, 2023; Touvron et al., 2023; Team et al., 2024) are powerful
generative models excelling in specialized tasks across various fields. Despite extensive pre-training,
LLMs often struggle to follow instructions and answer users’ queries effectively. To improve their
performance in these tasks, instruction tuning (Raffel et al., 2020; Wei et al., 2021; Chung et al.,
2024), also known as Supervised Fine-Tuning (SFT) (Ouyang et al., 2022; Bai et al., 2022), is
employed. This process involves using high-quality labeled data (i.e., prompt-response pairs) and
typically utilizes the Cross Entropy (CE) loss to maximize the likelihood of the labeled data.

SFT is the first stage of the post-training pipeline and plays a crucial role in future developments
(Burns et al., 2023; Tunstall et al., 2023; Liu et al., 2023). We expect models to generalize well by
providing accurate answers and hope these answers are diverse as well. While the importance of
generalization is clear, generation diversity is also important, especially with the trend of scaling
up test-time compute (Snell et al., 2024; Brown et al., 2024; Wu et al., 2024b). These emerging
studies have shown that scaling up test-time compute, by selecting the optimal response from multiple
generated options, can solve many complex mathematical reasoning tasks, with output diversity being
a key factor in this process (Wang et al., 2023). Additionally, many applications benefit from diverse
responses. For example, in creative writing, diverse outputs from generative models can inspire new
ideas (Colton & Wiggins, 2012). In chit-chat dialogues, users also appreciate having multiple options
to suit their preferences (Li et al., 2015). AI interfaces like ChatGPT and Claude AI address this need
by offering features such as regeneration buttons.

Unfortunately, using CE loss in SFT falls short of achieving the desired goals, because models
fine-tuned with CE often suffer from overfitting (Burns et al., 2023; Jain et al., 2023; Gekhman
et al., 2024) and lack of generation diversity (Padmakumar & He, 2023; O’Mahony et al., 2024).
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Figure 1: Illustration of the standard CE and the proposed method GEM for SFT of LLMs.

These limitations stem from the theoretical underpinnings of CE loss. In theory, optimizing CE
loss corresponds to minimizing the forward Kullback–Leibler (KL) divergence between the data
distribution and the generative distribution of the LLM.1 This process aggressively increases the
likelihood of training data while overlooking other possibilities, which in turn leads to overfitting. For
instance, CE-tuned models are often observed to over-memorize training data (Ge et al., 2023; Zeng
et al., 2023), latch onto spurious features (Burns et al., 2023), and lose in-context learning abilities
that already been acquired in the pre-training (a.k.a. alignment tax) (Ouyang et al., 2022; Bai et al.,
2022). Furthermore, the aggressive update of the generative model’s distribution to fit the training
data leads to reduced entropy, which in turn limits output diversity. Previous research has shown
that low-entropy distributions are associated with poor generalization performance (Pereyra et al.,
2017; Dubey et al., 2018), suggesting that these issues are interrelated. To address these concerns,
techniques like weight decay (Touvron et al., 2023; Burns et al., 2023) or noisy perturbations to
embeddings (Jain et al., 2023) are commonly applied alongside CE loss. However, they have their
own limitations (see discussion in Appendix D), highlighting the need for more principled solutions.

In this paper, we frame the SFT of LLMs as a distribution matching problem, introducing the
maximum entropy principle (Jaynes, 1982) to guide the process. This principle promptes the use of an
entropy regularizer to avoid over-assigning high probabilities to the training data, thereby preserving
output diversity, which is particularly important when working with limited data. We also propose
generative distribution matching, encouraging the model to learn not only from supervision but also
from its own generated errors, drawing inspiration from Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014). This approach contrasts with the passive imitation of supervised data
typical in CE loss, aligning more closely with the entropy regularizer (discussed further in the main
text). To implement these ideas, we develop the formulation of reverse KL divergence minimization
with entropy regularization. However, this formulation is technically challenging and may require
adversarial training techniques akin to those used in GANs. Our main technical contribution is the
development of a new training algorithm, referred to as GEM, which addresses the above challenge
and is as tractable as the CE loss. By adhering to the proposed principles, GEM favors distributions
that captures key patterns in the data and enjoy high entropy; see Figure 1.

We validate the effectiveness of GEM by fine-tuning pre-trained models ranging from 3B to 70B in
size, including Qwen2.5-3B (Team, 2024), Qwen2.5-7B (Team, 2024), Llama-3-8B (Dubey et al.,
2024), Gemma-2-9B (Team et al., 2024), and Llama-3.1-70B (Dubey et al., 2024). We find that GEM
consistently outperforms CE, reducing overfitting with lower evaluation perplexity and improved
instruction-following performance. GEM also mitigates the alignment tax issue by demonstrating
better in-context learning performance. Additionally, GEM enhances output diversity, generating
more varied and creative responses in tasks such as poem and story writing. This boost in diversity
translates into test-time performance gains. For example, when fine-tuning Llama-3-8B, GEM
achieves a 5-point improvement in math reasoning and a 8-point improvement in code generation
tasks, using majority voting and best-of-n strategies. Importantly, to match the performance of
baselines, GEM often requires only 0.5x the sampling budget.

To summarize, our contributions are threefold:

1The term forward KL arises from a technical distinction. We will later explore the concept of reverse KL.
The key difference between the two lies in how the loss is defined: forward KL measures the loss over the fixed
data distribution, while reverse KL defines the loss over the generative model’s distribution.
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• We introduce the framework of entropic distribution matching for SFT of LLMs to address the
issues of overfitting and limited diversity.

• We develop a new training method GEM that can solve a particular distribution matching problem
with reverse KL divergence minimization and maximum entropy regularization.

• We demonstrate that the improved generalization and diversity induced by our method can be
beneficial to test-time compute.

2 RELATED WORK

We review relevant work in the main text, with additional related work discussed in Appendix A.

Supervised Fine-tuning. SFT is the first stage of the post-training pipeline and plays an important
role in subsequent developments. As mentioned in the introduction, using CE loss during the SFT
stage often leads to overfitting and reduced output diversity. To address this, there is a line of research
in scaling up the synthetic data (see, e.g., (Yu et al., 2023; Wei et al., 2024; Zhang et al., 2024a)),
which, while effective, increases computational burden. Our work aims to develop training methods
that more effectively leverage supervised data to mitigate overfitting and to enhance output diversity.

Entropy Regularization. Dubey et al. (2018) proposed that achieving zero CE loss is not essential
for high accuracy. Instead, they suggested that a conditional probability distribution where the argmax
corresponds to the correct class is sufficient. This concept motivates our use of entropy regularization,
which allows for assigning probabilities to alternative options beyond the observed data. Prior to
our work, Pereyra et al. (2017) also explored entropy regularization in the context of neural network
training. Their method closely resembles the CE with entropy regularization that we investigate in
this paper, and they found that penalizing confident outputs improves generalization. It is important
to note that Pereyra et al. (2017) focused on image classification tasks, while our focus is on text
generation where data is sequential in nature and is more challenging. In the context of LLMs, Hu
et al. (2023) explored the maximum entropy regularization by using GFlowNet (Bengio et al., 2021),
but their methods require a reward function rather than supervised data.

3 PRELIMINARY

Large Language Models (LLMs). LLMs have a large vocabulary, denoted as [K] = {1, 2, . . . ,K}
and process text by splitting it into a series of tokens (x1, . . . , xT ), where each token xi ∈ [K] and T
represents the sequence length. Let f be the generative distribution modeled by the language model.
The notation f(·|x1, . . . , xt−1) specifies the categorical distribution conditioned on the context
(x1, . . . , xt−1). Typically, f is parameterized by a Transformer (Vaswani et al., 2017), with the
parameter θ. For the i-th token at time step t, its prediction probability is given by fθ(i|x1, . . . xt−1) =

softmax(zt) =
exp(zt[i])∑
i′ exp(zt[i

′]) , where zt ∈ RK is the logit output from the neural network given the
input (x1, . . . , xt−1), and zt[i] is i-th element of zt. This auto-regressive process specifies the joint
probability of a sequence of tokens as fθ(x1, . . . , xT ) =

∏T
t=1 fθ(xt|x1, . . . , xt−1).

Supervised Fine-Tuning. To specialize in downstream tasks, LLM relies on Supervised Fine-Tuning
(SFT) after pre-training. This process involves using a supervised dataset with high-quality prompt-
response pairs {(xi, yi)}Ni=1. The Cross Entropy (CE) loss is the de facto training objective for this
purpose: minθ

∑N
i=1− log fθ(y

i|xi). In theory, this corresponds to minimizing the forward KL
divergence between the data distribution p and the generative distribution fθ:

min
θ

DKL (p, fθ)⇐⇒ max
θ

Ex∼ρ(·)Ey∼p(·|x)[log fθ(y|x)],

where ρ is the prompt distribution, which is usually not modeled during the SFT stage. Thus, the
distribution ρ can be treated as a constant and we omit it when the context is clear. In practice,
many questions can correspond to multiple valid answers (either in different forms or based on
different reasoning), but it is nearly impossible to collect a comprehensive dataset that encompasses
all possibilities. As a result, the empirical data tends to be limited in size and often exhibits a
narrower distribution than desired. In such scenarios, the CE loss function aggressively maximizes
the likelihood of the available empirical data and overlooks other possibilities.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 ENTROPIC DISTRIBUTION MATCHING

In this paper, we explore principled approaches for SFT, presenting two core principles. The first
principle tackles the issues of overfitting and limited output diversity. We draw inspiration from
neuroscience, specifically the concept of avoiding over-memorization and achieving balanced learning.
In neuroscience, synaptic plasticity, particularly homeostatic plasticity, underscores the importance
of maintaining balance in learning processes (Turrigiano, 2008; 2012). Overly strengthening certain
neural connections can lead to rigid, maladaptive behaviors, analogous to how assigning excessively
high probabilities to observed tokens can result in over-memorization in models, thereby limiting
their ability to adapt and generalize. Based on these insights, we propose:

• Principle 1: The model should assign higher probabilities to the observed data while preventing
over-memorization.

The above principle can be realized by incorporating an entropy regularizer into the learning process.
Expanding on this, our second principle advocates for a generative approach to distribution matching.
This approach encourages the model to learn from its own generated data and mistakes, rather
than merely imitating supervised demonstrations. Unlike the traditional CE loss, which leads the
model to imitate training data labels passively, a generative approach involves learning through
self-generated mistakes. This principle is grounded in cognitive science (Schulz & Bonawitz, 2007;
Gweon et al., 2014), which demonstrates that children learn more effectively through exploration
and experimentation, adjusting their understanding based on discrepancies between expectations
and reality. Similarly, research on generative models (Goodfellow et al., 2014; Ho & Ermon, 2016)
supports this notion by showing how models can learn to produce realistic data through iterative
refinement. To summarize, we propose:

• Principle 2: The distribution matching approach should be “generative”, meaning the model learns
from both ground truth supervision and its own generated.

4.1 PROPOSED FORMULATION: RESERVE KL WITH ENTROPY REGULARIZATION

To implement the two principles outlined above, we propose studying the formulation of reverse KL
divergence minimization with maximum entropy regularization. The objective is defined as follows:

max
f

Ex

{
Ey∼f(·|x) [log p(y|x)]− Ey∼f(·|x)[log f(y|x)]︸ ︷︷ ︸

=−DKL(f,p)

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
H(f)

}
. (1)

The first term corresponds to the reverse KL divergence between the target distribution p and the
model distribution f . This term supports Principle 2 by encouraging the model to learn from its
generated data samples (as reflected in the expectation over y ∼ f(·|x)), similar to GANs (Goodfellow
et al., 2016).This contrasts with the passive learning in CE, where the expectation is taken over a
static data distribution. The second term, entropy regularization, aligns with Principle 1 by preventing
over-memorization. From a Bayesian perspective, this means placing a uniform distribution belief
when learning from data, so it ensures that the probabilities for labeled data do not become excessively
high. In addition, entropy regularization brings another benefit: the output diversity can be improved.
This means that the model is aware of other possible options, which is very important for scaling-up
test-time compute (Snell et al., 2024; Brown et al., 2024).

We note that the two terms in Equation (1) are well-aligned in the sense that both are defined over the
generative distribution f . In contrast, adding entropy regularization to the CE loss does not achieve
this. It has limitations in improper increasing tail probabilities of the distribution. For a more detailed
discussion, please refer to Appendix D.2.

While the objective defined in Equation (1) appears promising, it presents significant challenges in
practice. The main challenge is that we only have access to empirical data from the distribution p,
not its full probability density function, making the reverse KL term impossible to compute directly.
Additionally, calculating the expectation of the reverse KL across the model’s generative distribution
is not easy. This paper contributes a new algorithm to address these challenges.

4.2 PROPOSED ALGORITHM: GEM

In this section, we present a practical algorithm for solving the optimization problem of reverse KL
with entropy regularization. Our approach is inspired by Relativistic GANs (Jolicoeur-Martineau,
2018), where an auxiliary distribution q is introduced for distribution matching, and relative-pair
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comparisons are incorporated into the training objective. Specifically, our formulation is that:

max
f

Lq(f) ≜ ExEyreal∼p(·|x)Eygene∼q(·|x)
[
h
(
log f(yreal|x)− log f(ygene|x)

)]
(2)

s.t. q = argmax
π

ExEygene∼π(·|x) [log f(y
gene|x)] + 1/β · H(π(·|x)) = softmax(1/β ∗ log f)

Here we use yreal to denote the supervised label in the dataset and ygene to denote the model-
generated data for clarity. In addition, h is a monotonically increasing function (e.g., a linear
function). Moreover, q is an artificially introduced distribution that will discarded after training, and
π is an arbitrary distribution introduced for mathematical clarity. To interpret the formulation, we
optimize f such that log f is higher for real data and lower for generated data. In this context, log f
can be understood as the “energy” in an energy-based model (LeCun et al., 2006) (or the reward in
inverse reinforcement learning (Ho & Ermon, 2016)). Simultaneously, we update the distribution q
that maximizes the “energy” induced by log f , thereby aligning it with the data distribution. During
the optimization of q, an entropy regularizer is applied, which in turns guarantees the desired result.
Proposition 1. Assume that h is a linear function, then Lq(f) has a unique stationary point, and
this stationary point (with β = 1/(γ + 1) > 0) corresponds to the optimal solution of Problem (1).

Proposition 1 implies that solving the proposed problem in Equation (2) provides the optimal solution
of reverse KL with entropy regularization in Equation (1). In practice, we can implement f using a
Transformer (Vaswani et al., 2017) and optimize the parameters with gradient ascent. We outline such
a training procedure in Algorithm 1, referring to this approach as GEM, which stands for Generative
and Entropy-regularized Matching of distributions. We also note that Proposition 1 relies on β > 0,
meaning that GEM cannot solve the pure reverse KL minimization problem.

Algorithm 1 GEM

Input: Dataset D = {(xi, y
real
i )}

1: for iteration k = 1, . . . , do
2: Set qk = softmax(1/β ∗ log fθk)
3: Compute loss Lq(fθ) =

∑
i

∑
ygene q(y

gene|xi) ·h
([
log fθ(y

real
i |xi)− log fθ(y

gene|xi)
])

4: Update θk+1 = θk + η · ∇θLq(fθ) |θ=θk
Output: Generative model fθ

Scalability. We highlight two key computational advantages of GEM that enable efficient generative
distribution matching and its scalability to billion-parameter models:

• Single Model Optimization: GEM trains only a single model f by leveraging a closed-form solution
for q. This contrasts with GAN-style distribution matching methods (Goodfellow et al., 2014;
Jolicoeur-Martineau, 2018), which require the simultaneous optimization of two models (a generator
and a discriminator), complicating the tuning process and increasing computational difficulty.

• Accurate Gradient Estimation: GEM computes the loss function and gradients using the exact
expectation Eygene∼q(·|x)[·], ensuring stable training by minimizing gradient estimation variance.
This is feasible because q is a categorical distribution with finite elements in LLMs. In contrast,
GAN-style methods typically rely on inexact stochastic gradients obtained by sampling from the
generative distribution f , making training notoriously difficult.

Training Dynamics and Intuition. We provide an intuitive understanding of GEM by explaining
its training mechanism on a simple model: for a fixed x ∈ X , we model fθ(y|x) = softmax(θx)
with θx ∈ RK . Consider h as the linear function described in Proposition 1. For a paired sample
(yreal, ygene) = (i, j), we have the gradient for this sample:

∇θLq(fθ)[i, j] =

{
wijeij if i ̸= j

0 otherwise

Here wij = p(yreal|x)q(ygene|x) lies in [0, 1], and eij is the vector with i-th element being 1 and
the j-th element being −1 and 0 otherwise. Thus, the gradient of this paired data gives a direction for
moving the logit θx from j-th position to i-th position, with the weight wij .

Consider a numerical example where θx = [2, 1] with K = 2, so f = [0.73, 0.27]. For β = 0.7, we
have q = [0.81, 0.19], which is more compared with f . Given the data distribution p = [0.9, 0.1], the
gradient of GEM is 0.9 · 0.19 · [1,−1] + 0.1 · 0.81 · [−1, 1] = [0.09,−0.09], leading to a relative
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logit change of 0.18. In comparison, the CE’s gradient in this case is [0.17,−0.11], resulting in a
relative logit change of 0.28, which is 1.6 times larger then GEM. When converged, GEM would
give a flatter distribution [0.82, 0.18] due to the induced entropy regularization.

We have two remarks for the above analysis. First, we see that the distribution q determines the weights
of probability transportation. Generally, for 0 < β < 1, a narrowed distribution q, squeezed from f ,
prioritizes the high-probability regions in f for probability transportation, while low-probabilities
regions in f contributes less. This contrasts with CE, which would push probabilities of non-
labeled tokens towards the labeled ones, potentially causing overfitting. Second, we note that h also
determines how much probability is shifted. Specifically, we have wij = p(yreal|x)q(ygene|x)h′

for a general function h. For the linear function studied, h′ is always equal to 1. Another possible
choice for h is the log-sigmoid function h(u) = log sigmoid(u) = u− log(1 + exp(u)), which is
studied in previous research (Jolicoeur-Martineau, 2020). This function provides a weighting effect.
Since h′ = sigmoid(log f(ygene|x)− log f(yreal|x)) ∈ (0, 1), it results in a large weight when
yreal is not yet dominant in the probability distribution, and a small weight when yreal has already
become dominant. Later on, we will study this function in experiments.

Extension to Sequential Data. In the above part, we have derived the algorithm for the case y is
non-sequential. We note that optimization in the sequential case could be highly difficult. With a little
abuse of notations, let y = (y1, . . . , yT ) ≜ y1:T . Note that the prompt x should also be sequential in
general, but this does not affect our discussion as it serves the input to the conditional distribution.
Now, we can extend the formulation in Equation (2) to the following:

max
f

ExEyreal1:T ∼p(·|x)Eygene1:T ∼q(·|x)
[
h
(
log f(yreal1:T |x)− log f(ygene1:T |x)

)]
(3)

s.t. q = argmax
π

ExEygene1:T ∼π(·|x) [log f(y
gene
1:T |x)] + 1/β · H(π(·|x))

Here, we encounter a challenge: the joint distribution of y1:T , as a cascaded categorical distribution,
is quite complicated. This results in the expectation Eygene1:T

[·] cannot be easily calculated as before.
While Monte Carlo estimation, as used in (Chen et al., 2024; Li et al., 2024), might seem like a
potential solution—drawing samples to approximate the gradient—we found it does not work in our
setting. We believe the main reason is that the sample space is huge, and the pre-trained distribution
f is quite different from the data distribution p that we aim to learn.2 As a result, when we use
stochastic sampling to estimate the gradient, it does not provide effective feedback. Please refer to
Appendix D.3 for more detailed discussion.

To deal with the above challenges, we propose decomposing the multi-step sequential optimization
problem into multiple single-step optimization problems and solve each efficiently. This is inspired
by the data distribution “reset” trick introduced by (Ross et al., 2011) in imitation learning, where
the teacher first demonstrates a few actions, and the student completes the reset. For our problem,
we restrict the distribution matching to the case that the prefix samples up to time step t are drawn
from the data distribution p and solves the optimization problem at the t-th time step as before. Its
mathematical formulation is given below:

max
f
Lseqq (f) = Ex

{ T∑
t=1

Eyreal1:t−1∼p(·|x)Eyrealt ∼p(·|x,yreal1:t−1)
Eygenet ∼q(·|x,yreal1:t−1)

[∆]

}
(4)

where ∆ =
[
h
(
log f(yrealt |x, yreal1:t−1)− log f(ygenet |x, yreal1:t−1)

)]
,

The main advantage of this formulation is that for each sub-problem, we still have access to the
conditional distribution, allowing the previously discussed computational advantages to remain
applicable. The same idea applies to the training of distribution q, so we still have the closed-
form solution that q(·|x, yreal1:t−1) = softmax(1/β · log f(·|x, yreal1:t−1)). We outline the proposed
procedure for dealing with sequential data in Algorithm 2 and provide its PyTorch implementation
in Appendix B. Notably, thanks to the reset trick, GEM’s training requires nearly the same GPU
memory consumption and compute time as optimizing the CE loss; see Appendix B.

We acknowledge that our proposed solution approximates Equation (3) due to the use of the “reset”
trick and greedy optimization. While the exact gap introduced by this approximation is difficult to

2Specifically, pre-trained models cannot generate the EOS (end-of-sentence) token properly, resulting in
repetitive sequences, even with infinite length. But the supervised data has an EOS token and finite length.
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quantify, we expect it to be minimal when f closely matches p through distribution matching. In such
cases, sampling from the surrogate p effectively resembles sampling from the target distribution f . In
the next section, we demonstrate the practical effectiveness of GEM.

5 EXPERIMENTS

In this section, we present our numerical results from fine-tuning the pre-trained Llama-3-8B model,
a strong LLM, to demonstrate the effectiveness of the proposed method. Additionally, we have
explored other models ranging in size from 3B to 70B, with the corresponding results provided in
Appendix F.6. Detailed experimental settings are described in Appendix E.

5.1 INSTRUCTION FINE-TUNING

Set-up. We first develop an LLM that is capable of following instructions for various prompts. To
this end, we utilize the UltraFeedback dataset (Cui et al., 2024). This dataset contains prompts
from instruction datasets like Evol-Instruct and UltraChat, and responses generated by models such
as GPT-4 and Llama-2-7B/13B/70B-Chat. Following (Yu et al., 2023; Liu et al., 2023; Cui et al.,
2024), we set the learning rate to 2× 10−5, employing a cosine learning rate decay schedule, and
use a macro batch size of 128. The maximum sequence length, encompassing both the prompt and
response, is set to 2,048 tokens. Models are trained for three epochs.

As discussed, GEM has two variations: GEM-LS (h is the log-sigmoid function), and GE-Linear
(h is the linear function), each depending on the choice of the function h. We implement the proposed
GEM method with β = 0.7. Our primary baseline is the standard CE loss. Additionally, we explore
a variant incorporating a weight decay of 0.1, which has been commonly used in previous studies
(Ouyang et al., 2022; Bai et al., 2022). We refer to this approach as CE + WD. We also implement a
method called CE + Entropy, which adds an entropy regularization term of 0.1 to the CE loss. This
method aligns with the proposed Principle 1 but not Principle 2 (see Appendix D for more discussion).
The NEFT method (Jain et al., 2023), which perturbs the input embedding with random noise in
fine-tuning to mitigate overfitting, has also been implemented.

Instruction-Following. We first examine the model’s learned ability in terms of instruction-following
on the IFEval benchmark (Zhou et al., 2023), which includes 500 prompts from 25 types of
verifiable instructions. The model’s performance on this benchmark provides insight into potential
overfitting. There are four evaluation criteria: prompt-level strict accuracy, instruction-level strict
accuracy, prompt-level loose accuracy, and instruction-level loose accuracy. For all metrics, a higher
value indicates better performance.

Table 1: Performance of instruction-following on the benchmark IFEval (Zhou et al., 2023). For
all metrics, a higher value means a better instruction following ability. The best results are shown in
bold, with the second-best underlined.

Method
Instruction-Following

Strict Accuracy Strict Accuracy Loose Accuracy Loose Accuracy
(Prompt Level) (Instruction Level) (Prompt Level) (Instruction Level)

CE 36.23 46.76 40.85 50.96
CE+WD 37.89 47.48 42.88 52.52

CE+Entropy 36.78 47.60 40.66 51.08
NEFT 36.23 46.40 40.11 50.48

GEM-Linear 37.34 48.20 41.96 52.64
GEM-LS 37.52 47.60 42.14 52.04

We evaluate the trained models using greedy decoding and present the results in Table 1. We observe
that CE underperforms compared with regularization-based methods, suggesting that CE suffers from
overfitting. It is important to note that this overfitting is not due to over-optimization, as performance
continues to improve over three training epochs for CE (36.15 in epoch 1, 41.45 in epoch 2, and
43.70 in epoch 3). For NEFT, we do not observe clear advantages by injecting noise in training for
this task. On average across the four criteria, GEM-Linear and GEM-LS improve by 1.4 points (3.2%
relative) and 1.1 points (2.5% relative) compared with CE.

In addition to the evaluation above, we observe that GEM further mitigates overfitting in other aspects.
For one thing, GEM achieves a lower evaluation perplexity (3.16) compared with CE (3.48). For

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Evaluation of generation diversity in creative tasks of poem writing and story writing. For
all criterion, a higher value indicates greater diversity.

Method
Poem Writing Story Writing

N-gram Self-BLEU Sentence-BERT N-gram Self-BLEU Sentence-BERT

CE 48.50 72.50 21.79 48.74 72.77 21.94
CE+WD 48.58 71.29 21.80 48.85 71.73 21.79

CE+Entropy 53.74 75.82 23.80 53.86 76.11 23.94
NEFT 49.87 75.04 23.44 50.00 75.32 23.36

GEM-Linear 56.50 76.73 24.73 56.69 76.83 24.82
GEM-LS 56.55 76.31 24.63 56.82 76.61 24.68

another thing, GEM demonstrates reduced alignment tax, reflected in its superior in-context learning
ability, achieving 60.3 compared with CE’s 59.21. For more details, please refer to Appendix F.

Creative Writing. We continue to assess models’ output diversity in creative writing tasks: poem
writing and story writing. For poems, we use prompts from the poetry3 dataset, which includes 573
poems on themes such as love, and mythology. For stories, we design 500 prompts based on the ROC
story dataset (Mostafazadeh et al., 2016). In both cases, we prompt the models to write a poem or story
titled “[X]” with no more than 200 words, where [X] is a title from the respective dataset. Following
(Kirk et al., 2023), we use three criteria to evaluate diversity: 1) N-gram diversity: the proportion
of distinct n-grams in a single response (intra-diversity); 2) Self-BLEU diversity: calculated as 100
minus the Self-BLEU score (inter-diversity), where one response is treated as a reference among
multiple generated responses; 3) Sentence-BERT diversity: the cosine dissimilarity between pairs of
responses in the embedding space. All criteria range from 0 to 100 (with Sentence-BERT diversity
scaled by multiplying by 100), and higher values indicate greater diversity.

To calculate these metrics, we ask the trained models to generate 16 samples per question. The
evaluation results are presented in Table 2. In this task, we note that weight decay does not improve
generation diversity, although it has shown effectiveness in mitigating overfitting in previous examples.
On the other hand, entropy regularization, implemented to support Principle 1, brings the benefit of
output diversity. NEFT also improves output diversity, consistent with (Jain et al., 2023). Overall,
GEM significantly improves output diversity compared with the baselines. Furthermore, GEM
produces higher-quality writing, as detailed in the evaluation provided in Table 7 in the Appendix.

Next, we demonstrate the improved generation diversity and generalization of GEM in test-time
compute (Brown et al., 2024; Snell et al., 2024; Wu et al., 2024b). During the test stage, advanced
generation techniques such as Best-Of-N (BON) and Majority-Voting (MV) (Wang et al., 2023) are
utilized to identify superior solutions. To validate GEM’s effectiveness, we conduct three experiments
focusing on chatting, mathematical reasoning, and code generation. The overall performance is
summarized in Figure 2, with a detailed analysis provided below.

Chatting. We assess the model’s ability to generate human-preferred responses in chatting. We
prompt the trained models to answer 805 questions from the AlpacaEval dataset (Li et al., 2023).
For each question, the model generates 32 responses and a reward model is then used to select
the best responses. We employ the reward model FsfairX-LLaMA3-RM-v0.14, which has top
performance on RewardBench (Lambert et al., 2024), to select the best response among 32 samples.
We report the win rate over GPT-4’s generated response in Figure 2 (left column). The evaluation
shows that GEM-LS can achieve about 3 points improvement in the win rate compared with CE.
Among the baselines, NEFT demonstrates strong performance, partially due to its longer responses,
as noted in (Jain et al., 2023). We also conduct LLM-as-a-judge (Zheng et al., 2023) to evaluate the
response quality; please refer to the Appendix.

Math Reasoning. We evaluate performance on the GSM8K (Cobbe et al., 2021) benchmark, which
contains 1,319 test questions. We prompt LLMs with chain-of-thought (Wei et al., 2022) to generate
32 responses for each question. We assess answer accuracy using both Majority-Voting (MV) (Wang
et al., 2023) and Best-Of-N (BON) methods. Compared with CE, GEM-LS shows improvements
of up to 4.8 points (7.7% relative) with MV and 2.5 points (2.8% relative) with BON. The strong

3https://huggingface.co/datasets/merve/poetry
4https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

8

https://huggingface.co/datasets/merve/poetry
https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1


432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ac
cu

ra
cy

Pa
ss

 R
at

e

W
in

 R
at

e

Chatting  
(BON@32)

GSM8K 
(MV@32)

GSM8K 
(BON@32)

HumanEval 
(Pass@100)

MBPP 
(Pass@100)

Figure 2: Performance of using advanced generation strategies such as best-of-n and majority voting
in chatting (left), math reasoning (middle) and code generation (right) tasks.

performance of BON@32 indicates that while the model might know how to solve these questions, it
is uncertain about these solutions in generation.

2x efficiency

Figure 3: Pass rate on HumanEval.
GEM demonstrates a 2x improvement
in test-time computational efficiency.

Code Generation. We consider two benchmarks:
HumanEval (Chen et al., 2021) and MBPP (Austin et al.,
2021). In these scenarios, the trained models are asked to
generate Python codes, and the executor judges their correct-
ness. The common evaluation metric is the pass rate. We
ask the trained models to generate 200 samples to estimate
the pass@100. The generation configuration is the same
as for the chatting task. We find that weight decay does
not show significant improvement over CE, while GEM-LS
can achieve up to a 7.6-point (10.7% relative) improvement
over CE on HumanEval and a 6.4-point (9.0% relative)
improvement on MBPP for pass@100.

We have shown that GEM outperforms CE when using the
same sampling budget. Notably, GEM is highly efficient
in test-time scaling, requiring only about half the sampling
budget to achieve similar performance (see Figure 3). This efficiency is consistent across other tasks
as well (refer to Appendix F). Furthermore, such self-generated good samples generated by GEM
can be distilled back into the model through self-distillation, improving zero-shot performance. For
recent advances in this area, see (Sessa et al., 2024).

5.2 DOMAIN-SPECIFIC FINE-TUNING

In this section, we conduct experiments with domain-specific datasets. For math reasoning,
we use the dataset MetaMathQA (Yu et al., 2023). For code generation, we use the dataset
Magicoder-OSS-Instruct (Wei et al., 2024). The experiment setup, including training details
and hyperparameters, is the same as before, and the specifics are provided in the Appendix.

Math Reasoning. We consider two benchmarks: GSM8K and MATH (Hendrycks et al., 2021), which
is competition-level and more challenging; see Figure 4. Following the previous set-up, we evaluate
performance using Majority Voting over 32 samples (MV@32), and Best-Of-N over 32 samples
(BON@32). The greedy decoding performance is also reported. We observe that the weight decay
regularization performs well on GSM8K but shows no clear improvement on MATH. Furthermore,
NEFT does not show improvement, even though it previously performed well in instruction-following.
In contrast, GEM-LS outperforms CE on GSM8K by 1.2 points (1.7% relative), 2.9 points (3.8%
relative), and 2.6 points (2.9% relative) for greedy decoding, MV@32, and BON@32, respectively.
On the MATH benchmark, GEM-LS shows improvements of 1.9 points (8.0% relative), 1.7 points
(5.8% relative), and 1.6 points (2.7% relative) for the same methods. These improvements in greedy
decoding indicate that entropy regularization methods effectively mitigate overfitting, while the
enhancements in MV and BON suggest increased generation diversity.

Code Generation. Following the previous set-up, we report the pass rate over {1, 10, 100} on
two key benchmarks, HumanEval and MBPP, in Figure 5. We observe that weight decay and
NEFT do not achieve consistent improvement while entropy regularization does. Notably, GEM-LS
significantly enhances performance over CE: on HumanEval, it improves by 4.6 points (11.7%
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Figure 4: Performance on GSM8K (left) and MATH (right) when fine-tuning Llama-3-8B with the
MetaMathQA dataset.

relative) for Pass@1, 6.5 points (11.1% relative) for Pass@10, and 9.7 points (14.7% relative) for
Pass@100. On MBPP, GEM-LS achieves gains of 3.4 points (6.3% relative) for Pass@1, 6.8 points
(10.2% relative) for Pass@10, and 8.0 points (11.1% relative) for Pass@100. These results suggest
similar conclusions regarding overfitting and generation diversity as before.

HumanEval  
(Pass@1)

Pa
ss

 R
at

e

Pa
ss

 R
at

e

HumanEval  
(Pass@10)

HumanEval  
(Pass@100)

MBPP  
(Pass@1)

MBPP  
(Pass@10)

MBPP  
(Pass@100)

Figure 5: Performance on HumanEval (left) and MBPP (right) when fine-tuning Llama-3-8B with
the MagiCoder-OSS-Instruct dataset.

Discussion. Overall, our results show that GEM improves both accuracy and diversity. Readers
may wonder how this is possible. To address this, it is crucial to differentiate GEM from the ad-hoc
method of increasing temperature to enhance diversity. Temperature adjustment, applied at the
inference stage, reshapes the distribution by amplifying tail probabilities, often at the cost of reduced
generalization performance (see Appendix F.4). In contrast, GEM addresses these challenges during
training, leveraging supervision from the training data.

Readers may notice that CE with an entropy regularizer, as a training method, can also promote
diversity. However, it often improperly inflates tail probabilities, as analyzed in Appendix D.2.
In contrast, GEM adopts a generative learning approach, focusing on learning diverse responses
within the mode probability regions (see analysis in Section 4.2). By targeting these regions, GEM
can capture multiple valid responses that embody genuine diversity and generalization, rather than
generating a mix of correct and incorrect outputs to artificially enhance diversity. Visualizations of
the learned distributions are provided in Figure 7 in the Appendix for reference.

6 CONCLUSION

In this paper, we develop a method called GEM, as an alternative to the widely used CE loss, for the
SFT of LLMs to address the challenges of overfitting and limited generation diversity. This method
is designed within the framework of distribution matching with maximum entropy regularization.
Notably, GEM achieves good generalization performance, and the improved diversity also benefits
test-time computation in downstream tasks.

Our method has broader applicability to other research problems. Notably, the enhanced diversity
achieved by our approach can be beneficial in several contexts: it helps mitigate preference collapse
in preference alignment (Xiao et al., 2024), facilitates self-improvement through distillation with best-
of-n techniques (Sessa et al., 2024), and helps mitigate model collapse in synthetic data generation
(Shumailov et al., 2023; Wu et al., 2024a). Please see Appendix G for the discussion. We see the
potential of our method in these areas and plan to explore these topics in future work.
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ETHICS STATEMENT

Our work focuses on designing better algorithms for fine-tuning large language models, aiming to
enhance their effectiveness and broaden their applications. In particular, the entropy regularizer we
introduce for distribution matching encourages more diverse outputs from language models. We do
not foresee any direct negative impacts from this approach.

REPRODUCIBILITY STATEMENT

The proof of Proposition 1 is provided in Appendix C. The PyTorch’s implementation of Algorithm 2
is given in Appendix B. Experiment details to reproduce our numerical results can be found in
Appendix E. We intend to release our code and model checkpoints upon acceptance.
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A MORE RELATED WORK

Distribution matching forms the foundation of statistical machine learning (Murphy, 2012). The
seminal work GAN (Goodfellow et al., 2014) introduced the concept of generative distribution
matching in deep learning. A major challenge in this field is scalability (Brock, 2018), as these
methods typically require optimizing both a generator and a discriminator through adversarial training,
which is notoriously difficult and computationally expensive. In this paper, we contribute a stable
training algorithm for SFT of LLMs.

Closely related to our work, recent studies such as (Chen et al., 2024; Li et al., 2024) explored
improving CE-trained models using techniques like self-play. However, our approach differs in two
key ways. First, we focus on addressing the limitations of CE loss by designing methods that directly
improve pre-trained models, whereas their methods are applied post-SFT. Second, we introduce
the maximum entropy principle into distribution matching, while their work examines the standard
distribution matching framework.

Our work also relates to imitation learning (IL) (Argall et al., 2009; Osa et al., 2018), where a
learner makes decisions based on expert demonstrations. In fact, SFT can be reframed as IL with
deterministic transitions (Sun & van der Schaar, 2024; Li et al., 2024). Specifically, the cross-entropy
loss corresponds to behavior cloning (Pomerleau, 1991) in IL. Our framework is closely aligned
with the generative adversarial imitation learning approach in (Ho & Ermon, 2016), which usually
outperforms behavior cloning (Ke et al., 2019; Xu et al., 2020). A key aspect of this framework is
correcting mistakes by rolling out trajectories. As discussed in Section 4.2, our proposed algorithm
also supports this idea.
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B IMPLEMENTATION OF GEM

Algorithm 2 GEM for Sequential Data

Input: Dataset D = {(xi, y1, . . . , yT )}
1: Initialize D̃ = ∅
2: for sample index i do ▷ “Reset” data distribution
3: for timestep index t = 1, . . . , T do

x̃ = xi ⊕ (yreal1 , . . . yrealt−1 ), ỹ = yrealt

D̃ ← D̃ ∪ {(x̃, ỹ)}
4: fθ ← Call Algorithm 1 on D̃

Output: Generative model fθ

1 def gem_loss(logits, labels, beta=0.7, ignore_index=-100, h="linear"):
2

3 shift_logits = logits[..., :-1, :].contiguous()
4 shift_labels = labels[..., 1:].contiguous()
5

6 mask = shift_labels != ignore_index
7 shift_logits = shift_logits[mask]
8 shift_labels = shift_labels[mask]
9

10 with torch.no_grad():
11 logits_on_labels = torch.gather(
12 shift_logits, dim=-1, index=shift_labels.unsqueeze(-1)
13 ).squeeze(-1)
14

15 logits_diff = shift_logits - logits_on_labels.unsqueeze(-1)
16 if h == "linear":
17 weights = torch.ones_like(logits_diff)
18 elif h == "log_sigmoid":
19 weights = F.sigmoid(0.01 * logits_diff)
20 else:
21 raise ValueError(h)
22

23 gene_log_probs = F.log_softmax(shift_logits, dim=-1)
24 q_probs = torch.exp(
25 F.log_softmax(shift_logits / beta, dim=-1)
26 ).detach()
27

28 real_log_probs = torch.gather(
29 gene_log_probs, dim=-1, index=shift_labels.unsqueeze(-1)
30 ).squeeze(-1)
31

32 loss = -torch.sum(
33 q_probs * weights * (real_log_probs.unsqueeze(-1) -

gene_log_probs), dim=-1
34 ).mean()
35

36 return loss

Listing 1: Pytorch Code of GEM

To understand the above implementation, we note that we leverage the gradient analysis in Section 4.2:
first, we calculate the re-weighting term in Lines 9–20. Then, we calculate the difference in log-
probabilities in Lines 22–33. Note that we use a coefficient of 0.01 to scale the input in the
log-sigmoid function. This ensures that the function behaves nearly linearly.

Computational Complexity Analysis: We observe that the computational complexity of GEM is
nearly equivalent to that of optimizing CE loss. To clarify, the computational cost of CE involves
two primary steps: a forward pass through the Transformer to compute the distribution fθ, followed
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by calculating the likelihood log fθ(y|x). The forward pass, which entails multiple layers of matrix
multiplications, is the primary computational bottleneck.

Similarly, GEM requires one forward pass through the Transformer to compute the distributions q
and f , and then calculate the relative difference log fθ(y

real|x) − log fθ(y
gene|x). As with CE, the

forward pass is the main bottleneck in GEM. Backpropagation is performed in a comparable manner
for both methods, resulting in GEM achieving nearly the same training speed as CE.

In terms of memory consumption, GEM requires storing an additional distribution q, which occupies
the same amount of memory as f . For example, in our setup with a batch size of 4, a sequence length
of 2048, and a vocabulary size of 128k, q requires only about 2 GB of memory. This is negligible
compared with the memory consumed by other training components such as gradients, optimizer
states, and activation caches, which can collectively exceed 100 GB.

C PROOF

Proposition 2. For the entropy-regularized KL minimization problem in Equation (1), in the function
space, we have the optimal solution:

f⋆(y|x) = 1

Zx
p(y|x)1/(γ+1)

where Zx is a normalization constant
∑

y′ p(y′|x)1/(γ+1).

The proof is based on the optimality condition of constrained optimization. Its proof can be found
in the previous literature (see, e.g., (Vieillard et al., 2020, Appendix A)). We note that the above
closed-form solution cannot be applied in practice because we do not have access to the density
function of the data distribution p.

Proof of Proposition 1. When h is a linear function, we have that
Lq(f)

= ExEyreal∼p(·|x)Eygene∼q(·|x)
[
log f(yreal|x)− log f(ygene|x)

]
= ExEyreal∼p(·|x)Eygene∼q(·|x)

[
log f(yreal|x)

]
− ExEyreal∼p(·|x)Eygene∼q(·|x) [log f(y

gene|x)]
= ExEyreal∼p(·|x)

[
log f(yreal|x)

]
− ExEygene∼q(·|x) [log f(y

gene|x)]
For any x ∈ X , we have that

∂L
∂f

=
p− q

f
(5)

To calculate the stationary point of L, we require that p = q. Since q = softmax(1/β · log f),
the above equality requires that f = softmax(β · log p). As analyzed in Proposition 2, for
β = 1/(γ + 1), this corresponds to the the optimal solution of minimizing reverse KL with entropy
regularization.

D DISCUSSION

We discuss baseline strategies for mitigating overfitting in Appendix D.1 and Appendix D.2. Addi-
tionally, we emphasize the optimization challenges inherent in sequential data and the significance of
the reset trick introduced in GEM, as detailed in Appendix D.3.

D.1 CE WITH WEIGHT DECAY

Weight decay is a widely used technique for mitigating overfitting, particularly effective in training
convolutional neural networks (CNNs). However, we observed that it is not always effective when
applied to training generative models with Transformers. We hypothesize two primary reasons for
this discrepancy:
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• Architecture. The structural characteristics of CNNs make them more homogeneous in design,
resulting in a relatively uniform loss landscape across different parameter blocks within the network.
In contrast, Transformers exhibit heterogeneous properties, as noted in recent works (Zhang et al.,
2024b; Ormaniec et al., 2024), leading to significantly varied loss landscapes across parameter
blocks. As a result, a uniform weight decay applied to all parameters in Transformers may be
suboptimal, since different parameter blocks might require specialized weight decay strategies.

• Task. CNNs in classification tasks are designed to learn a predictor that outputs a unique prediction,
whereas generative models aim to learn a distribution. For generative models, directly regularizing
the distribution is preferable. Weight decay, which regularizes parameters indirectly, may not
effectively serve this purpose.

Based on these observations, we argue that entropy regularization is better suited for training
generative models with Transformers. Unlike weight decay, entropy regularization directly focuses on
the target distribution, and its influence can effectively backpropagate to specific parameters through
adaptive optimizers like Adam, accommodating the heterogeneity of Transformer architectures. A
more deeper exploration of this topic is left for future work.

D.2 CE WITH ENTROPY REGULARIZER

We discuss the formulation of forward KL with entropy regularization in this section:
max
f

Ex

{
Ey∼p(·|x)[log f(y|x)]︸ ︷︷ ︸
=−DKL(p,f)+constant

+γ · Ey∼f(·|x)[− log f(y|x)]︸ ︷︷ ︸
=H(f)

}
(6)

This formulation supports the proposed Principle 1 but not Principle 2. We find that this formulation
leads to an improper increase in tail probabilities when maximizing the entropy, as illustrated in
Figure 6. In the context of LLMs, this increase often translates into nonsensical tokens in the
vocabulary, leading to undesirable generation outputs. A concrete example is provided in Table 3, in
which we directly sample sentences.

The core issue of CE with an entropy regularizer arises because the gradient of the entropy
regularizer can dominate for tokens with low probabilities. Specifically, we have that

∂ −DKL(p, f)

∂f
= − p

f
,

∂H
∂f

= −(1 + log f).

where the division is element-wise. Consequently, for tokens with low probabilities in both f and p,
i.e., f(x) ≈ 0 and p(x) ≈ 0, the gradient from the forward KL divergence, −p(x)/f(x), could be of
constant order. In contrast, the gradient from the entropy regularizer, (−1 + log f(x)) → −∞ as
f(x)→ 0. This imbalance disproportionately increases the tail probabilities, leading to undesirable
effects.

In contrast, the proposed method, GEM, does not have this issue. This is because both distribution
matching and entropy regularization in GEM are defined jointly over the generative distribution f ,
rather than being applied separately to the data distribution p and generative distribution f . As shown
in the proof of Proposition 1, the gradient of GEM is given by:

∂ − L
∂f

=
−p+ q

f
= − p

f
+

q

f
,

where the first term, −p/f , is identical to that of CE with entropy regularization, but the second term
q/f , is unique to GEM. Since q = softmax(1/β ∗ log f), q is a more squeezed distribution than f .
Consequently, for f(x) ≈ 0, we have q(x)/f(x) < 1. This ensures that the gradient is not dominated
in the low-probability (tail) region, preventing improper increases in tail probabilities. Thus, GEM
achieves a more balanced optimization. This aligns with the analysis in Section 4.2, which shows that
GEM’s distribution matching activities are primarily focused on high-probability (mode) regions.
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Table 3: Examples of generated sentences for models trained with the UltraFeedback dataset.
The symbol “[...]” indicates good sentences that have been omitted to save space. This example
shows that CE with entropy regularization can generate nonsensical tokens (shown in red) due to the
increase in tail probabilities.

Prompt Whats the largest star in our galaxy?

CE Hello! Atlantis is a legendary city that was said to have existed in ancient Greece.
According to the story, it was a highly advanced and prosperous city that was
located on an island in the ocean. [...]

CE+Entropy Hello! Atlantis Documentary is a 2019 American documentaryéhoFLICT film
directed by Já oblı́k and produced by Werner Herzog. The film explores the history
and legacy of Atlantis, 2 an ancient Greek city-state that was said to have calendar
knowledge and advanced technology, through interviews with scholars and histori-
ans.ython

GEM-LS Hello there! As a helpful, respectful, and honest assistant, I’d be happy to help
you explore the fascinating topic of Atlantis! Atlantis is an ancient Greek myth
that tells the story of a legendary realm said to have existed in the Atlantic Ocean,
west of the Pillars of Hercules. [...]

D.3 GEM WITH SEQUENTIAL DATA

In this section, we extend the technical challenge in Section 4 regarding how to solve the problem in
Equation (3). To recap, the problem is that

max
f

ExEyreal1:T ∼p(·|x)Eygene1:T ∼q(·|x)
[
h
(
log f(yreal1:T |x)− log f(ygene1:T |x)

)]
s.t. q = argmax

π
ExEy1:T∼π(·|x) [log f(y1:T |x)] + 1/β · H(π(·|x))

A key challenge is that the expectation Egene
y1:T

[·] cannot be calculated as easily as before. Worse still,
Monte Carlo estimation as used in (Chen et al., 2024; Li et al., 2024), by drawing samples from
the distribution, does not provide an accurate gradient estimate. A fundamental difficulty in this
stochastic approximation arises from the distribution shift between the SFT data and the pre-trained
distribution. To better understand this, refer to examples provided in Table 4. We observe that SFT
data typically has finite-length sequences, while the pre-trained distribution produces samples that
are repetitive and can even be infinite in length.

This causes issues: assuming the probability of any token is lower-bounded by a small number
c ∈ (0, 1), this means that log f(ygene1:T |x) approaches to −∞ when T goes to infinite for pre-training
distribution data. While this might seem acceptable as the gradient would reduce the probability of
such samples, the challenge is that the sample size is vast: for the Llama-3-8B model, the vocabulary
size is 128k, and with a typical sequence length of 2048, the sample space size is 1280002048. This
makes it difficult for the model to find effective directions for improvement. To validate this claim,
we directly implemented the idea of stochastic approximation and found that training failed after
80 optimization steps (with 10k samples)5, and the model could not generate good responses; see
Table 4. In fact, techniques in (Chen et al., 2024; Li et al., 2024) are usually applied to models
after SFT, where the distribution shift between the model and data is smaller. This technical remark
is also discussed in the online forum https://github.com/uclaml/SPIN/issues/26#
issuecomment-2062926716.

E EXPERIMENT DETAILS

All experiments are conducted using A800-80GB GPUs with the DeepSpeed distributed training
framework, utilizing ZeRO-2 and gradient checkpointing without offloading. We use flash-attention-2
with deterministic backward for reproducibility. The experiments are based on the pretrained Llama-
3-8B model, using Adam as the optimizer with a global batch size of 128. Following (Yu et al.,

5This method is computationally slow due to sampling responses. In fact, these computational resources of
80 steps are actually more than those required for GEM for 1 epoch tuning of 60k samples.
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Table 4: Examples of generated sentences from pre-trained models. The symbol “[...]” indicates
sentences have been omitted to save space for the ground truth label, and the repetitive sentences
for the Llama-3-8B pretrained model. Examples illustrate the distribution shift between SFT data
and the pre-trained distribution. In SFT data, ground truth labels have a finite length (marked by
an explicit <EOS> in the example), whereas the pre-trained distribution often generates repetitive
sentences without a clear endpoint.

Prompt I would like to know more about Clyde Hill Washington...what can
you tell me?

Ground Truth Label Clyde Hill is a small, affluent city located in King County, Washington,
United States. It is situated on the eastern shore of Lake Washington,
north of Bellevue, and east of Kirkland. It is known for its stunning
views of the lake and the Cascade Mountains.
Clyde Hill was incorporated in the year 1953 and is home to ap-
proximately 2,800 residents. The city has a mix of residential and
commercial areas, with large estates and luxurious mansions, making
it one of the wealthiest ZIP codes in the United States. The median
household income is around $200,000, and the median home value is
roughly $1.6 million.
[...]
Overall, Clyde Hill, Washington, offers a unique and luxurious
lifestyle to its residents. The combination of picturesque scenery,
luxury living, and excellent amenities makes it a truly special place.
<EOS>

Llama-3-8B-Pretrained I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
I would like to know more about Clyde Hill Washington...what can
you tell me?
[...]

GEM without reset trick Thank you for reaching out with your queries on Clyde Hill Washing-
ton! As of 2021, the estimated median home value in Clyde Hill, Wash-
ington, is $3,750,000. [...] Thank you for trusting me with your queries
and I hope I was able to help. Stay in touch and talk to you soon!
Hexatrigesimalerusform(( ))stdexcepts každ [%://)́;?¿¡/stdexcept

GEM Clyde Hill is a small, affluent neighborhood located in the eastern part
of Washington, D.C., bordering the Potomac River. It is known for its
stunning views of the Washington Monument, the National Mall, and
the Potomac River. The area is home to a mix of embassies, diplomatic
missions, and luxury residential buildings.
Clyde Hill is also home to the historic Clyde Hill House, which was
built in 1929 and served as the official residence of the U.S. Am-
bassador to France from 1933 to 1946. The house is now a private
residence and is not open to the public.
[...]
Overall, Clyde Hill is a unique and beautiful neighborhood that offers
a glimpse into the history and elegance of Washington, D.C. <EOS>
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❎ ❎ ❎❎

Figure 6: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from top to bottom: CE, CE+Entropy, GEM-LS. The prompt is “Give me a
single-digit number”. The top 300 probabilities are shown with a subsampling rate of 20 for clear
visualization. A red dotted line indicates the probability threshold of 10−4. The figure demonstrates
that the CE+Entropy model has a longer tail with higher probabilities assigned to some nonsensical
tokens, marked with crosses.

2023; Liu et al., 2023; Cui et al., 2024), the learning rate is set to 2× 10−5, with a warm-up ratio of
0.03 and cosine learning rate decay. Training is performed over 3 epochs. All supervised datasets
are formatted into the chat format using the Llama-3-8B-Instruct’s tokenizer. When generation of
responses is required for evaluation, we use the vLLM to accelerate inference.

E.1 ULTRAFEEDBACK

We use the dataset filtered by HuggingfaceH4 team, which is available at https://huggingface.
co/datasets/HuggingFaceH4/ultrafeedback_binarized. The dataset contains
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61,135 training samples and 1,000 test samples. For training, we set the maximum sequence length
to 2,048, dropping longer sequences and padding shorter ones. To achieve a global batch size of 128,
we use a per-device batch size of 4, a gradient accumulation step of 8, and 4 GPUs. The training
times takes about 24 GPU hours for all methods. For the CE method, we have tuned hyperparameters
for weight decay and entropy regularization, selecting values from {0.1, 0.01, 0.001}. In both cases,
a value of 0.1 provided the best overall results. For NEFT, we use a noise scale hyperparameter of 5,
as recommended by (Jain et al., 2023).

Evaluation metrics, including perplexity, and entropy, are based on these 1,000 test samples. For
entropy calculation, we compute the conditional entropy, whose expectation can be calculated exactly,
and average over the sequence. For the instruction-following evaluation, we use the IFEval benchmark
from (Zhou et al., 2023). We apply greedy decoding with a maximum generation length of 1,024
tokens.

For the diversity evaluation in poem writing, we use prompts derived from the poetry dataset on
the Huggingface website, which includes 573 poems on themes like love, nature, and mythology
by poets such as William Shakespeare. We prompt the trained models with questions like, “Write
a poem titled ‘[X]’ with no more than 200 words,” where [X] is a title from the dataset. For story
writing, we create 500 prompts based on the ROC Story dataset (2017 winter) (Mostafazadeh et al.,
2016), asking models to “Write a story titled ‘[X]’ with no more than 200 words,” where [X] is a
title from the dataset. The maximum number of generation tokens is set to 512. The evaluation
script follows the methodology from previous work by (Kirk et al., 2023), using the script available
at https://github.com/facebookresearch/rlfh-gen-div. For each question, 16
samples with the generation configuration temperature=1.0, top k=50, top p=0.9 is used.
We highlight the top-k and top-p sampling strategies are important to address the tail probability issue
of CE + Entropy.

For the chat evaluation, we use the 805 test questions from the AlpacaEval dataset and employ
the reward model FsfairX-LLaMA3-RM-v0.1. The maximum generation sequence length is set
to 2048. For each question, 32 samples are generated with the configuration temperature=0.6,
top k=50, top p=0.9. To calculate the win rate, we use the Bradley-Terry model:

P(y ≻ y′ | x) = exp(r(x, y))

exp(r(x, y)) + exp(r(x, y′))
.

We use GPT-4 generated responses as a baseline for calculating the win rate, specifically the
gpt4 1106 preview6 version.

For the math reasoning task on GSM8K, we use the following prompt:

Your task is to answer the question below. Give step-by-step reasoning before you answer,
and when you’re ready to answer, please use the format ”The answer is: ...”.
Question: {question}

Answer extraction from the generated responses follows the approach from previous work (Yu et al.,
2023), using the script available at https://github.com/meta-math/MetaMath/blob/
main/eval_gsm8k.py. For each question, 32 responses are generated with the configuration
temperature=0.6, top k=50, top p=0.9. The reported accuracy is based on 1,319 test
questions.

For the code generation tasks on HumanEval and MBPP, there are 164 test questions for
HumanEval and 378 test questions for MBPP. We use the prompt from (Wei et al., 2024):

You are an exceptionally intelligent coding assistant that consistently delivers accurate and
reliable responses to user instructions.
@@ Instruction
{instruction}

6https://github.com/tatsu-lab/alpaca_eval/blob/main/results/gpt4_1106_
preview/model_outputs.json
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For each question, 200 responses are generated with the configuration temperature=0.6,
top k=50, top p=0.9 to estimate the pass rate. The evaluation scripts are from https://
github.com/ise-uiuc/magicoder/blob/main/experiments/text2code.py.

E.2 MAGICODER

We use the MagiCoder-OSS-Instruct dataset (Wei et al., 2024), which contains 74,197 training
samples and 1,000 test samples (randomly selected from the original training set). The maximum
sequence length for training is 1,024. To achieve a global batch size of 128, we use a per-device batch
size of 8, gradient accumulation steps of 2, and 8 GPUs. The training takes approximately 24 GPU
hours. The evaluation method is the same as previously described.

E.3 METAMATHQA

We use the MetaMathQA dataset (Yu et al., 2023). To make the code generation task manageable,
we select a subset of 79,000 samples for training and 1,000 samples for evaluation. The maximum
sequence length for training is set to 1,024. To achieve a global batch size of 128, we use a per-device
batch size of 8, gradient accumulation steps of 2, and 8 GPUs. Training takes approximately 24 GPU
hours. The evaluation method is as previously described. For the MATH task, the prompt is the same
as for the GSM8K task.

F ADDITIONAL RESULTS

F.1 GENERAL PURPOSE FINE-TUNING

Perplexity and Entropy. For trained models, we also examine two statistics: perplexity, and
entropy of the output distribution. We evaluate these two statistics on 1,000 test samples from the
Ultrafeedback dataset. Results are reported in Table 5. Using CE as a baseline, we make
several observations. First, weight decay does not significantly change the statistics. Second, directly
incorporating entropy regularization increases both perplexity and entropy considerably. Notably, this
increase is mainly due to relatively large tail probabilities. Third, GEM generally reduces perplexity
while increasing entropy.

Table 5: Evaluation perplexity and entropy. Models are trained with the UltraFeedback dataset.

Method UltraFeedback
Evaluation Perplexity Evaluation Entropy

CE 3.48 0.68
CE+WD 3.46 0.68

CE+Entropy 3.78 2.65
NEFT 3.22 0.78

GEM-LS 3.18 1.19
GEM-Linear 3.16 1.16

Next-Token Prediction Distributions. We demonstrate the distribution collapse issue associated
with the CE method using three simple prompts for the trained LLMs: 1) “Complete this sequence
with a single letter: A, B, C, ”; 2) “Give me a single-digit number”; and 3) “Tell me a type of
fruit”. All prompts are designed to have answers with 1 token for visualization.7 The distributions are
visualized in Figure 7. We see GEM-trained models produce flatter distributions, indicating support
for multiple possible answers.

In-Context Learning and Alignment Tax. We assess the alignment tax by examining the perfor-
mance drop in in-context learning abilities across six tasks: ARC, GSM8K, HellaSwag, MMLU,

7For the first prompt, while “D” is the most likely answer, “A” could also be a valid response due to the
pattern A, B, C, A, B, C, . . ..
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(c) Prompt: Tell me a type of fruit.

Figure 7: Distributions of next-token probabilities for trained models with the UltraFeedback
dataset, presented from left to right: CE, CE+WD, CE+Entropy, and GEM-Linear, and GEM-LS.
Only top-10 probabilities are visualized for clarity. These examples highlight the issue of limited
generation diversity in CE.

TruthfulQA, and WinoGrande, as listed in the OpenLLM leaderboard. For ARC, we use the arc-
challenge metric with 25 shots. HellaSwag is evaluated with 10 shots, while TruthfulQA is tested
with zero shots. MMLU, GSM8K, and WinoGrande are assessed using five shots each. Results
are reported in Table 6. We observe that all fine-tuned models suffer from forgetting acquired
in-context learning abilities. However, GEM-tuned models have the smallest alignment tax among
these baselines.

Table 6: Performance of in-context learning on the benchmark OpenLLMLeaderBoard. Models
are trained with the UltraFeedback dataset.

Method
Open LLM LeaderBoard

ARC GSM8K HellaSwag MMLU TruthfulQA WinoGrande Average
Pre-trained 58.36 50.64 82.14 65.18 43.86 77.58 62.96

CE 56.23 41.70 79.70 58.29 48.72 70.64 59.21
CE+WD 55.12 41.77 79.53 59.66 48.12 71.59 59.30

CE+Entropy 57.51 41.02 80.10 59.47 48.83 71.19 59.69
NEFT 55.29 38.21 77.90 56.17 49.46 72.38 58.24

GEM-Linear 57.68 41.02 81.60 59.08 47.59 73.32 60.05
GEM-LS 58.28 40.56 81.81 59.39 47.96 73.64 60.27

Creative Writing. In addition to the diversity evaluation in Section 5.1, we also evalu-
ated the writing quality of poems and stories using the LLM-as-a-judge framework (Zheng
et al., 2023). The LLM judge assessed responses based on five criteria: helpfulness,
relevance, accuracy, depth, and creativity, employing evaluation prompts from FastChat’s
judge prompts (https://github.com/lm-sys/FastChat/blob/main/fastchat/
llm_judge/data/judge_prompts.jsonl). Specifically, we use the “single-v1” version.
Each response was rated on a scale from 1 to 10. The evaluation encompassed 500 questions for
both poem and story writing, with 16 responses per question, resulting in 96,000 responses across six
methods. Scores were computed by calculating both the average and maximum scores across the
16 responses for each question, followed by averaging these scores across all 1,000 questions. To
optimize evaluation costs, we utilized the open-source Llama-3.1-70B-Instruct model, a strong LLM
suitable for assessing writing quality.
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Table 7: Evaluation of writing quality of poems and stories using the LLM-as-a-judge framework
(Zheng et al., 2023). Models are trained with the UltraFeedback dataset.

Method Poem Writing Story Writing
Average Score Best Score Average Score Best Score

CE 6.87 8.12 6.90 8.17
CE+WD 6.83 8.11 6.86 8.16

CE+Entropy 7.06 8.31 7.08 8.29
NEFT 7.06 8.31 7.08 8.29

GEM-Linear 7.17 8.42 7.18 8.40
GEM-LS 7.21 8.43 7.20 8.39

Results, shown in Table 7, indicate that GEM outperformed baseline methods in both poem and story
writing. This demonstrates that GEM not only enhances output diversity but also achieves strong
generalization in creative writing tasks.

Chatting. We provide the reward score and associated win rate across different sampling budget in
Table 8. We observe that even with less generation samples, GEM also shows better performance.

Table 8: Evaluation of reward and win rate on AlpacaEval dataset. Models are trained with the
UltraFeedback dataset.

Method Reward Win Rate
BON@4 BON@8 BON@16 BON@32 BON@4 BON@8 BON@16 BON@32

CE 1.06 1.43 1.86 2.39 26.59 31.35 37.43 46.61
CE+WD 1.09 1.47 1.85 2.41 27.17 32.00 37.59 46.98

CE+Entropy 1.11 1.48 1.89 2.46 26.86 31.83 37.84 47.69
NEFT 1.14 1.55 1.94 2.52 27.51 32.78 38.73 48.80

GEM-Linear 1.12 1.52 1.94 2.51 27.27 32.36 38.76 48.50
GEM-LS 1.11 1.52 1.96 2.56 26.98 32.53 39.18 49.46

In addition to utilizing the reward model as a judge, we also employ the LLM-as-a-judge approach
(Zheng et al., 2023). The evaluation method is the same with the approach used for assessing poetry
and story writing, as discussed earlier. The results, reported in Table 9, demonstrate that GEM
achieves a higher quality score. While the LLM-as-a-judge method provides valuable insights, we
acknowledge its limitations in distinguishing subtle differences between responses compared to the
reward model evaluation used in this study. Importantly, the reward model is specifically trained for
judgment tasks, making it a more robust and appropriate evaluation tool for our experiments.

Table 9: Evaluation of chatting response using the LLM-as-a-judge framework. Models are trained
with the UltraFeedback dataset.

CE CE+WD CE+Entropy NEFT GEM-Linear GEM-LS
Average Score 7.09 7.12 7.05 7.10 7.14 7.15

Best Score 8.36 8.43 8.41 8.38 8.47 8.46

Math Reasoning. We evaluate the performance of majority voting and best-of-n methods across
various sampling budgets, as reported in Table 10. The results demonstrate that GEM achieves
comparable performance with significantly lower sampling budgets when employing majority voting.
Notably, GEM shows strong consistency across votes: on average, the majority vote ratio across 32
responses is 52.6%, 53.4%, 53.3%, 53.3%, 53.0%, and 52.8% for CE, CE+WD, CE+Entropy, NEFT,
GEM-Linear, and GEM-LS, respectively. This highlights GEM’s ability to maintain consistency
across votes.
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Table 10: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
UltraFeedback dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 51.63 55.57 58.61 62.17 65.28 74.68 82.11 90.22
CE+WD 54.51 58.76 62.47 65.66 69.90 77.48 84.46 90.45

CE+Entropy 53.75 56.63 60.58 64.44 67.32 76.57 83.93 91.21
NEFT 55.12 61.18 65.13 66.72 70.36 80.67 86.96 92.12

GEM-Linear 53.68 58.07 62.77 65.58 69.83 79.30 86.50 91.96
GEM-LS 55.95 60.42 64.82 67.02 70.05 79.68 86.96 92.72

Code Generation. We present the pass rate performance across different sampling budgets in
Table 11. The results indicate that GEM achieves comparable performance with significantly lower
sampling budgets, often demonstrating a 2x improvement in efficiency.

Table 11: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the UltraFeedback dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.06 62.51 67.50 70.88 62.71 65.73 69.13 71.18
CE+WD 56.18 61.53 67.85 71.91 63.13 66.35 69.40 71.35

CE+Entropy 58.85 64.02 70.29 74.44 65.50 68.75 71.77 73.48
NEFT 52.62 59.47 67.08 71.65 64.58 67.88 71.82 74.51

GEM-Linear 60.34 66.12 73.12 77.97 64.54 68.57 72.30 74.33
GEM-LS 60.94 66.95 73.83 78.47 67.28 71.50 75.50 77.64

F.2 DOMAIN-SPECIFIC FINE-TUNING

We provide the detailed results in Tables 12 to 14. The results indicate that GEM outperforms CE
even with fewer generated samples.

Table 12: Evaluation of accuracy on the math reasoning task GSM8K. Models are trained with the
MetaMathQA dataset.

Method GSM8K
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 73.46 73.77 75.13 76.57 76.50 80.74 85.14 90.67
CE+WD 73.84 75.06 76.50 78.24 77.94 81.05 86.05 90.67

CE+Entropy 75.06 76.04 77.71 79.68 79.61 83.70 88.70 92.95
NEFT 72.71 74.53 75.82 76.88 78.77 83.40 87.19 92.65

GEM-Linear 74.83 75.82 78.09 78.77 81.43 85.60 89.69 93.56
GEM-LS 75.21 76.35 77.33 79.53 80.82 85.06 89.31 93.33
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Table 13: Evaluation of accuracy on the math reasoning task MATH. Models are trained with the
MetaMathQA dataset.

Method MATH
MV@4 MV@8 MV@16 MV@32 BON@4 BON@8 BON@16 BON@32

CE 26.40 27.04 28.30 29.34 33.20 39.98 48.20 58.46
CE+WD 26.20 27.02 28.38 29.56 33.22 39.32 47.54 57.10

CE+Entropy 28.06 29.26 30.34 31.20 35.58 41.84 50.66 59.64
NEFT 26.18 24.46 28.74 30.12 34.46 41.54 48.98 58.64

GEM-Linear 27.62 29.30 30.64 31.48 36.82 43.74 52.04 60.30
GEM-LS 27.46 28.88 29.92 31.00 36.00 42.98 50.96 60.12

Table 14: Performance of pass rate on the code generation tasks HumanEval and MBPP. Models are
trained with the MagiCoder-OSS-Instruct dataset.

Method HumanEval MBPP
Pass@10 Pass@20 Pass@50 Pass@100 Pass@10 Pass@20 Pass@50 Pass@100

CE 58.71 61.50 64.18 65.86 66.54 68.68 70.76 71.95
CE+WD 58.33 61.06 63.77 65.89 65.96 68.38 70.67 71.89

CE+Entropy 58.66 62.66 66.79 69.17 69.47 71.76 73.79 75.02
NEFT 55.86 59.45 63.01 65.12 66.53 69.06 71.29 72.32

GEM-Linear 58.69 62.39 67.16 70.64 72.00 74.54 76.74 78.08
GEM-LS 65.15 68.73 72.64 75.58 73.30 75.90 78.42 79.97

F.3 SENSITIVITY ANALYSIS OF β IN GEM

In this section, we conduct sensitivity analyses of the hyperparameter β in GEM. The typical range
for β is between 0 and 1. As discussed in Section 4.2, GEM approaches the scenario without
regularization as β → 1, while β → 0 represents a regime with strong entropy regularization. To
assess its impact, we evaluate β ∈ {0.6, 0.7, 0.8, 0.9, 1.0}.
Our analysis focuses on three key metrics for models trained on the UltraFeedback dataset: (1)
instruction-following performance on IFEval using greedy decoding, (2) reasoning performance
on GSM8K using greedy decoding, and (3) reasoning performance on GSM8K using majority voting
over 32 samples. The first two metrics reflect generalization performance, while the third highlights
the benefits of improved diversity. The results, summarized in Figure 8, demonstrate that GEM is
robust to variations in hyperparameter selection.
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Figure 8: Sensitivity analysis of the hyperparameter β in GEM.

F.4 COMPARISON WITH TEMPERATURE ADJUSTMENT FOR DIVERSITY

Increasing the temperature is often used as an ad-hoc trick to enhance diversity at the inference
stage. However, this approach can significantly increase tail probabilities, thereby raising the risk of
errors. To address this, we avoid post-training adjustments to the temperature. Instead, we focus on
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carefully considering diversity during training, where training samples provide valuable guidance for
achieving the desired level of diversity. An empirical analysis of temperature adjustment is presented
in Figure 9.
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Figure 9: Performance by adjusting the temperature during inference. The models are trained using
the UltraFeedback dataset.

From Figure 9, higher temperatures tend to degrade the performance of random sampling, while
improving the performance of majority voting (across 32 responses) and best-of-n (across 32 re-
sponses), which eventually plateau. Notably, GEM consistently outperforms CE across random
sampling, majority voting, and best-of-n, even when both methods are carefully tuned by adjusting
the temperature.

F.5 PERFORMANCE IN LOW-DATA REGIME

In this section, we present results from training models with varying data sizes, focusing on the
UltraFeedback dataset. Specifically, the dataset size is scaled from 5k, 10k to 20k, and 60k
(total). For clarity, we report results using three metrics: instruction-following performance on
IFeval with greedy decoding, and reasoning performance on GSM8K with both greedy decoding
and majority voting (across 32 responses). The first two metrics evaluate generalization, while the
third also assesses diversity. The results are summarized in Figure 10.
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Figure 10: Performance by adjusting the training data size. The models are trained using the
UltraFeedback dataset.

From Figure 10, we observe that GEM consistently outperforms CE across all data size configurations.
This suggests that GEM is more effective at leveraging additional data to enhance both generalization
and diversity.

F.6 RESULTS ON OTHER MODELS

In the main text, we presented numerical results on Llama-3-8B. Here, we extend our experiments to
other architectures, selecting four representative models: Qwen2.5-3B (Team, 2024), Qwen2.5-7B
(Team, 2024), Gemma-2-9B (Team et al., 2024), and Llama-3.1-70B (Dubey et al., 2024), all of which
are recognized as strong performers. We evaluated six methods, including baseline approaches and
our proposed techniques, by fine-tuning these pre-trained models on the UltraFeedback dataset.
For all models, we applied the same configuration described in Appendix E, with one exception:
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for Llama-3.1-70B, we used LoRA with a rank of 16 and a dataset size of 10,000 due to limited
computation resources.

For evaluation, we selected five criteria: (1) greedy decoding performance on IFEval for instruction
following, (2) greedy decoding performance on GSM8K for math reasoning, (3) best-of-n win rate in
chatting, (4) majority voting in GSM8K, and (5) pass rate in HumanEval for code generation. The
first two metrics focus on generalization, while the last three evaluate test-time scaling and diversity.
Except for Llama-3.1-70B, we use a smaller generation budget of 8 due to limited computational
resources, while elsewhere we use a generation budget of 32. Results are reported in Figure 11.

From Figure 11, we observe that GEM consistently outperforms CE across various models, while
baseline methods often fail to provide consistent improvements over CE. In particular, when fine-
tuning Llama-3.1-70B using NEFT (Jain et al., 2023), we observed extremely poor performance,
likely caused by noise introduced in the embeddings. We hypothesize that this failure occurs because
the embedding layer is not trainable under the LoRA configuration. Consequently, we have excluded
its performance results from Figure 11. In many cases, GEM also exceeds the performance of
the baseline methods. Notably, GEM achieves significant gains on specific tasks; for instance, on
Qwen2.5-3B, the MV@32 performance on GSM8K improves by an impressive 17.7 points.

G FUTURE WORK

Our formulation of entropic distribution matching, along with the practical GEM algorithm, extends
its applicability beyond SFT. Below, we explore its broader potential and provide detailed discussions
on its poential applications.

Preference Collapse in RLHF. SFT-trained models can be refined through Reinforcement Learning
from Human Feedback (RLHF) to better align with human values (Ouyang et al., 2022; Bai et al.,
2022). In this context, Xiao et al. (2024) studied the impact of SFT models on preference learning in
RLHF, demonstrating that if an SFT model collapses (i.e., becomes biased toward certain outputs
with near-certain probability), it can further lead to preference collapse in alignment. Their findings
underscore the importance of addressing collapse during the SFT stage.

Synthetic Data Generation. SFT-trained models are often used as synthetic data generators for self-
improvement (see, e.g., (Adler et al., 2024; Dubey et al., 2024)). In this context, maintaining output
diversity is essential. By generating a wide range of diverse outputs, models can explore various
potential solutions, reducing the risk of overfitting and uncovering better-performing strategies. Our
experiments about best-of-n against a reward model Section 5 is inline of this topic.

Mode Collapse. When models are repeatedly fine-tuned on text generated by their predecessors,
linguistic diversity gradually erodes. This recursive process amplifies existing errors and biases, with
each successive generation inheriting the limitations of its predecessors. This phenomenon, known
as mode collapse, has been extensively documented in prior studies (Guo et al., 2023; Shumailov
et al., 2023). By introducing entropy regularizer, we expect to help mitigate mode collapse in the
self-improvement.
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(c) Gemma-2-9B.
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(d) Llama-3.1-70B.

Figure 11: Performance across different architectures. The models are trained using the
UltraFeedback dataset.
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