
Under review as a conference paper at ICLR 2023

WINOGRAD STRUCTURED PRUNING FOR
FAST WINOGRAD CONVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Convolutional Neural Networks (CNNs) are computationally intensive, which
limits deployment into mobile devices. To minimize operation counts in CNNs,
pruning optimization techniques and Winograd’s minimal filtering algorithm are
widely used; however, the benefit of pruning disappears when both optimizations
are simply applied together in CNN. To take full advantage of both approaches,
two previous pruning methods were proposed: one is to apply pruning after kernel
transformation, and the other is applying filter pruning on Winograd convolution.
Unfortunately, the first method is hardware-unfriendly and the second approach
suffers from a significant loss of accuracy. Thus, we propose structured prun-
ing method specialized for Winograd convolution, that maximizes the hardware
utilization by considering the conversion algorithm of parallel processors. We
analyze the conversion algorithm of Winograd convolution on parallel process-
ing units; then, we prune the weights in the Winograd-domain in a structured
form with optimized pruning unit size, which maximizes the parallelism of the
hardware while minimizing the loss of accuracy. For VGG-16 on the ImageNet
dataset, the inference time of our method is 1.84 and 2.89 times better than previ-
ous two pruning methods with less than 1% accuracy loss.

1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) achieve high accuracy, significantly affecting com-
puter vision (Krizhevsky et al., 2012; Simonyan & Zisserman, 2015). Unfortunately, CNN infer-
ence is known to require a large number of computing resources to meet the target computing time
constraints, as CNNs are composed of a huge number of layers to ensure high representation ca-
pabilities. Therefore, many prior works proposed methods to minimize the computations, leading
to fewer computing resources to meet the target time (Han et al., 2016b). Especially pruning (Han
et al., 2015) and Winograd Convolution (WC) (Lavin & Gray, 2016) have the most powerful results
even in NVIDIA GPU and Intel CPU, which are the most frequently used general-purpose comput-
ing devices (Chetlur et al., 2014; Choquette & Gandhi, 2020; oneDNN, 2021). First, the pruning
method speeds up CNN by eliminating redundant parameters (zero value), mitigating high memory
usage and a large number of computations (Han et al., 2015). Second, to accelerate inference time,
WC reduces the number of multiplications of Standard Convolution (SC) by applying Winograd’s
minimal algorithm (Winograd, 1980). The inference time of WC is 1.4 times faster on average
compared to SC in ResNet-18 with negligible accuracy drop (Yan et al., 2020).

Even though the pruning and WC have significant performance gains respectively, some fine-
grained pruning methods are challenging to combine with WC. To be specific, if the pruning unit
size is smaller than the size of filter transformation (FTrans), FTrans removes the weight sparsity
gained from pruning (Liu et al., 2018). To overcome the above problem, Winograd Weight Prun-
ing (WWP) (Liu et al., 2018; 2017) suggests applying element-wise pruning after FTrans, leading
to low accuracy drops even in high pruning ratio. Nevertheless, the previous research imposes
two limitations: irregular data access patterns and no customized hardware kernels. First, WWP
produces irregular data access patterns, which is inappropriate in parallel processors. Irregular
data access patterns bring significant index computation overhead to parallel processors (Yu et al.,
2017). Therefore, pruned models with irregular data access patterns are slower than dense models
in GPUs (Greathouse & Daga, 2014). Second, WWP is hard to accelerate inference in GPUs since
there is no customized hardware kernel for WWP acceleration.
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Whereas, Filter Pruning (FP) (Li et al., 2016; He et al., 2018), which prunes filter unit in SC, has no
side effect of eliminating sparsity when being applied after FTrans since the pruning unit size of FP
is bigger than FTrans process unit. Therefore, FP can be directly combined with WC without modi-
fying the algorithm, unlike WWP. FP brings regular weight data patterns in both SC and WC. This
structured form can be executed using existing well-optimized hardware kernels without additional
index computation in parallel processors, thus FP can speed up inference time in proportion to the
pruning ratio. However, the pruning unit size of FP is too large, depending on the layer, causing
a loss of representation ability on a high pruning ratio (Mao et al., 2017). As a result, FP drops
accuracy since FP simultaneously eliminates a bunch of parameters, which indicates FP is not the
appropriate approach for high pruning ratio.

The two previous pruning methods limit to accelerate WC with minimizing accuracy drop. To
accelerate WC with tolerable accuracy drop by pruning, two conditions need to be satisfied: main-
taining regular data access pattern and minimizing pruning unit size. First, the pruning needs to
result in a regular data pattern that is suitable for parallel hardware execution. Second, to mini-
mize the accuracy drop on high pruning ratio, the pruning unit size should be as small as possible
while maintaining regular form of the pruned model (Mao et al., 2017). However, FP and WWP
are biased to satisfy either side of the conditions. We analyze the computational properties (i.e.
conversion algorithm (Yan et al., 2020; Jia et al., 2020)) of WC on the parallel processor to propose
novel pruning that satisfies both conditions. The conversion algorithm is a process of converting
the hardware-unfriendly computation part of WC, which has low data reuse, to Batched General
Matrix Multiplication (BGEMM). We propose a Winograd Structured Pruning (WSP), which ap-
plies structured pruning to BGEMM matrices individually. The WSP pruned model has a structural
form for each matrix of BGEMM. Also, the height and width sizes of the BGEMM matrix are the
number of channels or filters on the convolutional layer, respectively. Therefore, the pruning unit
size of the WSP is significantly smaller than FP’s, resulting in high accuracy. Moreover, our WSP
is scalable and can be directly adopted to current neural network eco-system, without any hardware
modification.

Our proposed WSP can be divided into WSP-R and WSP-C according to row-wise or column-wise
pruning. We conduct various experiments on WSP-R and WSP-C in the experiments section. The
pruning unit size of WSP-R is twice as small or equal to WSP-C, so WSP-R has less accuracy drop
than WSP-C at the same pruning ratio. Unlike WSP-C, WSP-R does not require index computation.
Therefore, we conclude that WSP-R is better than WSP-C in accelerating CNN inference on parallel
processors. Additionally, we experiment with NVIDIA GPU for further precise comparisons with
WSP. While maintaining representation ability (∼ 1%) in VGG-16 on ImageNet, WSP-R is 2.89×
and 1.84× faster than WWP and FP, respectively, on GPU.

2 PRELIMINARY: WINOGRAD CONVOLUTION

Prerequisites Given n filters of lth convolution layer as F (l) ∈ Rn×c×kh×kw , where n, c, kh, and
kw are the number of filters, the number of channels, height, and width of the filters, respectively.
The H and W denotes the height and width of the input feature map.

2.1 PROCESS OF WINOGRAD CONVOLUTION

As shown in Figure 1 and equation (1), there are five steps in WC: Input Transformation (ITrans),
Filter Transformation (FTrans), Element-Wise Matrix Multiplcation (EWMM), Channel-wise Sum-
mation (CS), and Output Transformation (OTrans). The p × p input patch (d), which is the basic
block of WC, is extracted with stride of (p - 2)× (p - 2) from input feature map. The input feature
map has ip number of input patches. Considering of padding, the p × p input patch is convolved
with a 3 filter (g) to produce an (p - 2)× (p - 2) output patch (S) (Liu et al., 2018).

ITrans and FTrans transform spatial-domain input patch (d) and filter (g) to Winograd-domain input
patch (BT dB) and filter (GgGT ) using matrices B and G, respectively. After ITrans and FTrans,
there is EWMM (⊙) between BT dB and GgGT . CS performs channel-by-channel summation to
reduce the channel of EWMM output. OTrans transforms from Winograd-domain output patch
to spatial-domain output patch S by using matrix A. The output patches are assembled into an
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Figure 1: Overview of Winograd Convolution and Conversion from EWMM to BGEMM. (a) Pro-
cess of Winograd convolution. (b) EWMM and CS. (C) BGEMM. SM denotes NVIDIA GPU SM,
which is processing module.

output feature map. The matrices B, G and A used in ITrans, FTrans, and OTrans are made from
Winograd’s minimal algorithm.

S = AT [(GgGT )⊙ (BT dB)]A (1)

2.2 CONVERSION FOR WINOGRAD CONVOLUTION

Inefficient process of Winograd convolution According to ARM, EWMM accounts for most of
the inference time of WC, so EWMM is a target for acceleration. However, since the EWMM results
in an inefficient operation on the GPU, the parallel acceleration of the WC is not sufficient. GPU
consists of dozens of independent functional modules called Streaming Multiprocessors (SMs) for
parallel processing, and during EWMM on GPUs, 3D input patch (BT dB) and a 3D filter (GgGT )
are loaded and processed in a single SM. As illustrated in Figure 1, to calculate filter GgGT #1 and
input BT dB #a, element #1 of filter GgGT #1 is calculated only once with element #a of input
patch BT dB #a and is never used again in the SM. Element #1 of filter GgGT #1 is not reused
within the SM, so the required data (element #k of input patch BT dB #b) must be obtained from
another SM. However, overhead occurs when the SMs exchange data because the memory of each
SM is independent.
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(a) Winograd Weight Pruning (b) Filter Pruning on Winograd-domain

Figure 2: Previous pruning methods for Winograd convolution.

Efficient Winograd convolution on parallel processors In order to solve the low computing in-
tensity and frequent memory access overhead of EWMM, NVIDIA and ARM convert and process
WC’s EWMM and CS with BGEMM operations. The BGEMM operation is a structure that maxi-
mizes the data reuse of the GPUs. We call this covert process as EC2B (Conversion from EWMM
and CS to BGEMM). As shown in Figure 1, BGEMM consists of a total of p2 with GEMM op-
erations with the same shape. The GEMM of BGEMM is a matrix product operation between the
weight matrix of (Rn×c) shape and the input matrix of (Rc×k) shape. For parallelism, one GEMM is
assigned to each SM. In GEMM#1, the weight vector (#1 ∼ #5) and the input vector (#a ∼ #e)
generate output elements (#A) by performing MAC operations at once. The BGEMM rearranges
the weight vectors (#11 ∼ #15) just below the weight vectors (#1 ∼ #5) in the same GEMM#1
to increase the reuse of the input vectors (#a ∼ #e). Thus, as shown in Figure 1, the input vector
and weight vector are converted from EWMM to BGEMM so that they can be reused as much as
possible within one SM.

3 RELATED WORK

Winograd Convolution and Pruning are challenging to be compatible, but the following two previous
pruning methods are compatible: Winograd weight pruning and filter pruning.

Winograd Weight Pruning (WWP) Winograd Weight Pruning (WWP) removes redundant
Winograd-domain weight by element to reduce the parameters of Winograd Convolutional Neu-
ral Networks (Figure 2(a)). Liu et al. (2017) proposed a pruning and re-training approach in the
Winograd-domain for the first time. Li et al. (2017) presents the 90.0% sparsity for AlexNet’s
Winograd parameters with less than 0.1% accuracy loss in the large dataset. Winograd-ReLU CNN
Pruning (Liu et al., 2018) also exploits dynamic sparsity due to activation function as well as spar-
sity due to weight pruning in Winograd-domain. Unfortunately, according to the Yu et al. (2019),
Winograd-domain dynamic sparsity of Winograd-ReLU CNN pruning (Liu et al., 2018) requires ad-
ditional changes in the network structure. All the WWP methods are element-level pruning, which
creates an irregular data pattern in Winograd-domain. The irregular data pattern requires significant
index computation when accessing the pruned weights. Multiple indices cause a low throughput
of the GPU owing to the memory divergence (Kloosterman et al., 2015), which makes WWP re-
quire specialized hardware kernel, or a dedicated accelerator (Han et al., 2017; 2016a; Parashar
et al., 2017) for practical use. Therefore, we apply hardware efficient sparsity scheme in Winograd
Convolutional Neural Networks to reduce the overhead of index computation.

Filter Pruning (FP) on Winograd-domain Structured pruning typically removes rows (filter
pruning) or columns (group pruning) in lowered weight matrices. According to the Yu et al. (2019),
the pruning unit size of filter pruning (FP) is the entire 3D filter, so the sparsity of FP is not re-
moved by Filter Transformation progressing in 2D units in Winograd Convolution (Figure 2(b)). Li
et al. (2016) and Yu et al. (2018) also adopt l1-norm criterion that prunes redundant filters. Chan-
nel pruning (He et al., 2017) prunes channels through LASSO regression-based channel selection
and least square reconstruction. A layer collapse cannot be evaded when FP is performed (Tanaka

4



Under review as a conference paper at ICLR 2023

Figure 3: The CSR format use three 1-D arrays
to store a matrix (Yu et al., 2017). Row pointer
stores the pointer to the index of the beginning of
each row.

Figure 4: Comparison of inference time of matrix
multiplication. The size of matix multiplication
is 16384× 8196× 8 (Yao et al., 2019).

et al., 2020). Since the pruned model of FP has a structural form in both standard convolution and
Winograd convolution, FP has no index computation overhead. Thus, FP can accelerate Winograd
convolution in proportion to the pruning ratio. However, FP loses a significant representation ability
at a high pruning ratio because the pruning unit size that determines weight redundancy is too large.
Therefore we propose WSP with less accuracy drop than FP at a high pruning ratio while maintain-
ing structural data pattern by selecting fine-grained pruning unit size over FP in consideration of the
WC computational structure on hardware.

4 WINOGRAD PRUNING

4.1 PROBLEM OF CONVENTIONAL WINOGRAD PRUNING

Irregular data pattern problem of WWP As shown in Figure 2(a) and equation (2), since WWP
is an element-wise pruning method, the WWP pruned model is an irregular data pattern before and
after EC2B conversion. The irregular data pattern is not adequate for parallel processors such as
GPUs (Greathouse & Daga, 2014). The irregular data pattern is calculated by converting weights
into a sparse data format (e.g. CSR) to not calculate the zero values in hardware. In Figure 3, among
the various sparse data formats, the representative CSR data format consists of two index arrays
and one non-zero value array. When calculating sparse matrix multiplication using CSR, an index
computation using two index arrays is required to select and obtain input data that operates with non-
zero values. Then, the sparse matrix multiplication is performed with the input data and non-zero
value array that are selected. Sparse matrix multiplication only computes non-zero values, so the
amount of computation for values is less than dense matrix multiplication. However, in Figure 4, the
overall inference time is slower than dense matrix multiplication since sparse matrix multiplication
has an considerable index computation. As a result, WWP with irregular data pattern produces index
computing overhead, so hardware support such as NPU, is essential for efficient use of WWP.

S = AT [WeightPrune(GgGT )⊙ (BT dB)]A (2)

Figure 5: Comparison of pruning unit size of
pruned model on ResNet-18 convolutional layer
except convolutional 1 layer. The pruning unit
size of FP on Winograd-domain is a Rc×p×p.

Figure 6: Comparison of accuracy and pruning
ratio. Top-1 validation and pruning ratio for four
model on a variation of ResNet-18 on ImageNet.
The fine-tuning epoch is one.
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Too high pruning unit size problem of FP In Figure 2(b) and equation (3), FP has a regular
pattern in both before and after EC2B conversion. The regular structure rarely requires index com-
putation. Therefore, the FP pruned model is computable using the existing hardware kernel as it is,
and there is no increase in inference time due to additional operations. However, the effect of FP is
not appreciable, because it is limited to pruning ratio. As shown in Figure 2(b), the pruning unit size
of FP on Winograd-domain is Rc×p×p, which size is too large to easily destroy the representative
of weights, that makes hard to maintain accuracy in intensive pruning. For example, on ResNet-18,
the pruning unit size of FP is 1024, 2048, 4096, and 8192 parameters depending on the layer (Fig-
ure 5). In Figure 6, the accuracy drop of VGG-16 remains within 1%, only up to 10% pruning ratio.
Therefore, although FP is hardware-friendly structured, and even re-training is applied, FP has a
significant accuracy drop in the high pruning ratio. Therefore, structured pruning with high pruning
ratio needs to be applied to WC.

S = AT [(G(FilterPrune(g))GT )⊙ (BT dB)]A (3)

4.2 WINOGRAD STRUCTURED PRUNING (WSP)

We introduce Winograd structured pruning (WSP), that satisfies hardware-friendly regularity and
high pruning ratio. We apply structured pruning in Winograd-domain as shown in equation (4) and
Figure 7. Structured pruning with optimized pruning unit and format solves the problem of irregular
computation overhead of weight pruning and low pruning ratio of filter pruning. Structured prun-
ing only requires a small amount of index computation, which is a negligible portion of hardware
computation, which does not require any hardware change.

S = AT [StructuredPrune(GgGT )⊙ (BT dB)]A (4)

We first analyze the operation flow of Winograd convolution, to present new pruning method that is
specialized for Winograd convolution. As explained in subsection 2.2, the EWMM operation which
accounts for the largest computation time among the Winograd convolution, has less data reuse
during parallel processing. Hardware utilization decreases for low data reuse, and thus EWMM
increases the total computation time. In NVIDIA GPUs and ARM CPUs, the EWMM operation of
the Winograd convolution is converted to a BGEMM operation that has relatively high data reuse,
as described in subsection 2.2. In Figure 1, BGEMM operation consists of p-square of sub matrix
multiplication (sub-MM) operations.

Figure 7: Overview of WSP

As explained in subsection 4.1, pruned
model of WWP has irregular data pat-
tern, since weights are pruned randomly
in element units in all sub-MM weights
in E2CB conversion. Therefore, WWP re-
sults in significant index computation. Un-
like WWP, our WSP prunes vector-wise
in every sub-MM weight, to achieve regu-
lar weight structure in Winograd-domain.
The WSP uses the groupLASSO method
to obtain the representative value of the
vector, and if the absolute value of the rep-
resentative value is less than the threshold,
weight vector is removed. Figure 2(b) and
7 show that FP simultaneously removes
vectors of the same position for all sub-MMs, but our WSP removes only one vector of sub-MMs.
Therefore, WSP maintains regularity while pruning in unit size that is less than FP, so WSP results
in high compression ratio with tolerable accuracy drop. Each structured sub-MM is processed in
parallel with very little additional operation. We propose two WSP techniques: WSP-R pruning on
a row vector basis and WSP-C pruning on a column vector basis.

WSP-R and WSP-C are defined as below.
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• WSP-R: WSP-R prunes elements in a group unit within the same input channel before the
conversion process called EC2B. In WSP-R, one row vector (R1×c) among several sub-
MM weights of BGEMM after EC2B is a pruning unit.

• WSP-C: WSP-C prunes elements in a group unit within the same output channel before
the conversion process called EC2B. In WSP-C, one column vector (Rn×1) among several
sub-MM weights of BGEMM after EC2B is a pruning unit.

Training In WSP, we use pre-trained model provided by PyTorch. WSP is conducted with pre-
trained model transformed by FTrans. Our WSP also applies pruning after FTrans like the existing
WWP, so the sparsity does not disappear by FTrans (Liu et al., 2017; 2018).

Pruning ratio WSP calculates the threshold t by setting the desired pruning ratio. All weight
groups whose absolute value of groupLASSO is less than t are set to 0 to prune the filter (Wen et al.,
2016). WSP uses the same pruning ratio for all layers, but, in the case of the first layer, the pruning
sensitivity was high, so it is excluded from the application of WSP.

Acceleration We measure the inference time of our proposed WSP using the BGEMM kernel
provided by the NVIDIA CUTLASS library (Kerr et al., 2017). Since CUTLASS is an open-source
CUDA C++ templates library providing customizable GEMM templates, we modify the BGEMM
kernel of CUTLASS for WSP-C. The customized code processes index computation first, producing
a dense BGEMM. WSP-C prunes by vector size, so the index computation of WSP is n or c times
less than WSP, which is an element-wise method. On the other hand, the GPU kernel for WSP-R
does not need customizing.

5 EXPERIMENTS

Datasets and Models We evaluate the performance of Winograd Structured Pruning using Ima-
geNet dataset (Deng et al., 2009). ImageNet contains 1.28M training images and 50K validation
images for 1000 object classes. For the validation of image classification, we assess our method
with CNN models: VGG-16 (Simonyan & Zisserman, 2015) and ResNet-18 (He et al., 2016).

Baseline Settings We evaluate WSP using NVIDIA RTX 2080 TI GPUs. In our experiments,
we use the pre-trained CNN models from Pytorch framework (Paszke et al., 2019). We perform
fine-tuning with only 90 epochs after conducting pruning methods on ImageNet. For settings of the
fine-tuning, we use SGD optimizer with the weight decay, 1× 10−4 and the momentum as 0.9. We
set a batch size of 256. The initial learning rate is set to 0.1 and divide it by 10 every 30 epochs.

5.1 COMPARISON OF WWP AND FP

We compare our proposed WSP with existing Winograd prunings in terms of accuracy drop, pruning
ratio, and speedup. First, looking at Figure 8, FP is faster than the dense model in most pruning ratios
because FP is a structured form after Winograd transformation, as described in section 3. However,
the pruning unit size is too large to avoid indiscreet pruning because FP creates a structured form
without considering the Winograd convolution. Due to FP’s large pruning unit size, the accuracy
drop exceeds 1% in FP from 30% pruning ratio. Therefore, FP is limited in Winograd applications
requiring high accuracy. Second, WWP is a suitable method for accuracy only because even if the
pruning ratio is increased to 90%, the accuracy drop is within 1%. However, despite pruning up
to 90% pruning ratio, it is slower than the dense model due to the significant index computation of
WWP, and there is a limitation that there should be additional hardware support. Finally, as shown in
Figure 8, the WSP has an accuracy drop of almost 1% at 70% pruning ratio and is about 2.11 times
faster than the dense model. Therefore, the WSP is suitable for the pruning method that satisfies all
three aspects at the same time.

5.2 COMPARISON OF SOTA PRUNING

The pruning unit size of WSP-C is a Rn×1. However, the pruning unit size of FP on Winograd-
domain is Rc×p×p. Since n and c are the same sizes in most layers in ResNet-18, the pruning unit
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Figure 8: Comparison of speedup and accuracy with WWP and FP (groupLASSO) of VGG-16 on
ImageNet (Deng et al., 2009). WC-FP denote FP on Winograd convolution. We simply acceler-
ate WSP using CSRMM on cuSPARSE library (Naumov et al., 2010). Additionally, WSP can be
slightly faster if customized GPU kernel for WSP is provided in future research.

Model Pruning
ratio Top-1↓ Pruning

unit size
Inference

time Speedup

ResNet-18 Dense - - 7.270ms 1.00×
Winograd Convolution Dense - - 5.229ms 1.39×

TAS
(Dong & Yang, 2019) 33.3% -1.50% Rc×p×p 3.532ms 2.06×

LCCL
(Dong et al., 2017) 34.6% -3.65% Rc×p×p 3.439ms 2.11×

WSP-C (Ours) 40.1% -0.32% Rn×1 3.389ms 2.14×
SFP

(He et al., 2018) 41.7% -3.18% Rc×p×p 3.094ms 2.35×
FPGM

(He et al., 2019) 41.7% -1.87% Rc×p×p 3.094ms 2.35×
WSP-C (Ours) 60.7% -1.04% Rn×1 2.357ms 3.08×
WSP-C (Ours) 70.1% -1.49% Rn×1 1.864ms 3.90×

Table 1: Comparison of inference time (ms) with filter pruning (FP) on Winograd-domain of
ResNet-18 on ImageNet (Deng et al., 2009). All pruned models work with Winograd convolu-
tion (Lavin & Gray, 2016). Since WSP can prune only 3 convolutional layers, WSP-C performs
filter pruning (groupLASSO) on the FC layer. Top-1↓ denotes accuracy drop.

size of WSP-C is about p × p times smaller than that of FP’s. Therefore, WSP-C can prune more
delicately than FP. In table 1, When the pruning ratio of LCCL (Dong et al., 2017) and SFP (He
et al., 2018) is 34.6% and 41.7%, respectively, the top-1 accuracy drop is more than 3%. On the
other hand, WSP-C’s accuracy drop is only less than 2% in 70% pruning ratio. Since both WSP-C
and FP have a pruned model as structured form, both prunings improve performance in proportion
to the pruning ratio. In 60% pruning ratio, WSP-C has an accuracy drop of about 1% and 3.08 times
faster inference time than the ResNet-18, simultaneously.

5.3 PER-LAYER SPEEDUP COMPARISON

In GPUs, the speedup increases as the pruning ratio increases in each convolutional layer (Conv).
However, since the number and structure of parameters are different for each layer, the speedup ratio
according to the pruning ratio is different. As shown in Figure 9, WSP-C has a faster inference time
than WSP-R from Conv 2 to Conv 5 layers in VGG-16 on GPU. Conv2 to Conv5 have a smaller
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Figure 9: Comparison of speedup than dense VGG-16 model on ImageNet with WSP on GPU. c
denotes convolutional layer. C and R denotes WSP-C and WSP-R, respectively.

parameter size of the layer than the other layers. Thus, it can be executed by assigning most Conv
layer operation threads to the GPU cores at once, so pruning, which reduces the number of threads,
such as WSP-R, is hardly effective in Conv layers with a small number of parameters of weight. On
the other hand, from Conv 6 to Conv 13, the number of parameters is more than 600k, which means
that the number of GPU threads required is also high, so the WSP-R speedup ratio is higher than
that of WSP-C. Additionally, unlike WSP-R in GPUs, WSP-C requires an index computing process
that requires additional index loading, but WSP-R does not have an index computing overhead, so
the speedup ratio is higher from Conv 6 to Conv 13 than WSP-C.

Figure 10: Filter visualizations in res2a 2a layer of ResNet-18 on ImageNet. Positive, negative and
pruned weights are in blue, yellow and green respectively. Dotted redline denotes a pruning unit.

5.4 FILTER VISUALIZATION

We use a visualization method to understand that WSP has a regular data pattern and middle pruning
unit size at Winograd convolution. In Figure 10, we sequentially visualized WWP (Liu et al., 2018),
WSP-C, and WSP-R. The filter visualization is done with the pruning ratio of 50% within the 1%
variance. For visualization, we convert the EWMM 4D weight matrix of the WC to BGEMM weight
matrix using EC2B converting method. The weight map of WWP shows irregular data patterns in
both non-converted and converted weight matrice as shown in Figure 10(a) and 10(d). WSP-C has
the same pruning mask between matrices with the same output channel as shown in Figure 10(b). In
Figure 10(e), the WSP-C shows regular data patterns which have column-wise vector pruning unit
at converted weight. In Figure 10(c), WSP-R has the same pruning mask between matrices with the
same input channel. WSP-R has row-wise vector pruned data pattern as shown in Figure 10(f).

6 CONCLUSION

We propose Winograd structured pruning that accelerates Winograd convolution in consideration
of Winograd convolution computational characteristics on a parallel processor. The EWMM, the
core operation of Winograd convolution, is converted to BGEMM for execution in CPU and GPU.
Since our WSP performs vector-wise pruning in BGEMM operation, it is possible to create a more
delicate structured data pattern than WWP and FP. This efficient approach does not change the
computational structure of BGEMM, so there is no additional computation overhead or hardware
support. Moreover, even though WSP is a type of structured pruning, due to our optimized pruning
unit size, our WSP brings a high pruning ratio for realistic CNN inference acceleration.
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