002

003

004

005

006

007

008

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

032

033

0.34

035

036

037

038

039

040

041

042

043

044

045

046

051

055

063

065

066

068

069

070

071

072

A diffusion based approach for Oil Spill Detection in SAR Images

Anonymous Full Paper Submission 31

Abstract

Fast and reliable oil spill detection is vital for minimizing environmental damage. Synthetic Aperture Radar (SAR) imagery enables large-scale ocean monitoring, but distinguishing oil from natural lookalikes remains challenging. This thesis investigates reconstruction-based approaches to detect oil spills by framing the task as Out-of-Distribution detection. A diffusion model trained only on non-oil images is compared with a standard autoencoder and a classical Local Binary Pattern (LBP) baseline. Anomaly maps from reconstruction errors (or LBP textures) are summarized as histograms and classified using a Support Vector Machine. To our knowledge, this is the first application of diffusion models to SAR imagery for oil spill detection. While diffusion models show promise for anomaly detection, adapting them to SAR proved difficult due to the fine-grained image structure and noise-level balance. The autoencoder achieved similar recall (70%) but higher precision (59%) than the diffusion model, while LBP yielded strong recall but poor precision. These results reveal both the potential and the limitations of diffusion-based anomaly detection for SAR data and highlight directions for future work, including improved noise tuning and dataset refinement.

1 Introduction

Oil spills pose a serious hazard to both human health and marine life. Particularly in the ocean, oil can quickly spread out and drift, allowing even small spills to cause damage over vast areas. Oil spills also pose a threat to coastal communities as they can drift ashore, contaminate our food or interact with desalination plants. To minimize the potential for harm, it is of the utmost importance to detect oil spills when they happen, and to report them quickly to ensure mitigation efforts can be implemented immediately. Satellite images are one of the main tools used for environmental moniroting. However, manual analysis of satellite images is a time-consuming and expensive process, wasting resources and time that could be spent more efficiently towards mitigation efforts. Recent studies have explored machine learning models such as Convolutional Neural Networks (CNN) and autoencoders (AE) for oil spill detection [1], with hopes of reducing costs and speeding up the detection

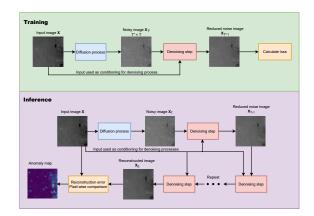


Figure 1. Flowchart for the diffusion model showcasing the process of adding noise and guided reconstruction, for training and inference, as well as the creation of an anomaly map fom the reconstruction error in inference.

process. Especially for SAR images, this proves to be a difficult task. A consequence of various different natural phenomena, such as low wind areas and algae blooms, that produce artifacts resembling oil spills in the images. Recent studies in anomaly detection have shown diffusion models to be particularly effective at detecting anomalies due to their ability to produce high quality reconstructions of in-distribution data and maintain fine spatial detail. They are also particularly useful in situations where labeled data of a certain class is sparse or expensive, learning to detect anomalies explicitly by training on data not including the anomaly. While classifications are usually performed on an image-wide level, the output anomaly map provide information about the spatial position of the anomaly as well, from only an image-wide label. Diffusion models have been shown effective in anomaly detection for general datasets [2, 3] and digital pathology [4], but remain unexplored in SAR image applications such as oil spill detection, this thesis seeks to address this and is, to the best of our knowledge, one of the first studies applying diffusion models to SAR images specifically for the task of oil spill detection.

2 Methodology

In this study we implement a model inspired by the approach in Mousakhan et al. [3], adapted for the task of oil spill detection in SAR images. By training the diffusion model only on images that 078

079

080

081

082

083

084

085

086

087

088

089

091

092

093

094

095

096

099

100

101

102

104

105

106

107 108

109

110

111

112

113

114

115

117

118

119

120

121

122

123

124

125

126

127

128

129

130

132

137

140

148

149

151

152

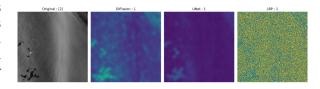
do not contain oil, the model learns to reconstruct only in-distribution data, including lookalikes, but excluding oil spills. If effective, the model is expected to produce a poor reconstruction in the oil covered regions, causing the oil spills to stand out in anomaly maps created from the reconstruction error.

During inference Gaussian noise is added to the images. The sum of multiple Gaussian noise can be calculated as a single instance of Gaussian noise. These are calculated with a β -value. Creating a list of increasing β -values, called the β -scheduler, different levels of noise to be added to the image can be easily sampled by sampling from this list. Higher values correspond to a higher degree of noise. During training, a random noise level is sampled and added to the image. The model tries to reconstruct the image only at the previous noise level before moving on to the next image, with a new random noise level. During inference, a suitable noise level is chosen. The image is then sampled at this noise level, and the model tries to reconstruct the image at the previous noise level, which is fed back into the model to iteratively remove more noise from the image, until a noise-free reconstruction remains. Figure 1 provides a flowchart of this process.

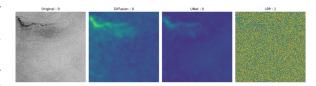
In training, the reconstructed image \mathbf{X}_0 is used to calculate the **loss**, by calculating the MSE between the input image and the reconstructed image. Once trained, the model produces reconstructions of the images in the dataset. The pixel-wise difference between the original input image and the reconstruction is calculated to produce an anomaly map. A Gaussian blur smoothing kernel is then applied to the anomaly map to remove noise and highlight areas rather than individual pixels of high error.

3 Data

The original dataset used is sourced from KSAT containing 313 SAR images taken from the Satellite Sentinel-1A. The images are provided by KSATpartner, Norsk Regnesentral (NR). NR has preprocessed the images for downstream machine learning applications. This preprocessing includes downsampling the images to a lower resolution, and sampling smaller crops from the larger full images, resulting in 10317 cropped samples. These samples were provided in both the original 10 meter resolution version with 2880×2880 pixels, as well as a downsampled 60 meter resolution with 480×480 pixels. Additionally an image containing labels on a pixel level was provided for every sample, but was only provided in the 60 meter resolution. The data is labeled with 7 classes, which represent background, 5 different types of oil spills and finally an ignore class.



(a) All the models accurately detecting a clear strong contrast oil spill.



(b) Reconstruction-based models perform well on a difficult lookalike. The lookalike produce a relatively high reconstruction error, but the classifier is able to differentiate it nevertheless.

Figure 2. Two images showcasing ideal performance on classification by the the diffusion model and autoencoder.

4 Conclusion

Metric	Diffusion	Autoencoder	LBP
Accuracy	0.685	0.720	0.575
Recall	0.701	0.702	0.760
Precision	0.542	0.587	0.441
F1-score	0.610	0.639	0.558

Table 1. Evaluation metrics for the respective models.

While recent work has shown diffusion models to be especially useful for anomaly detection tasks, this study highlights the challenges in adapting diffusion models to SAR imagery: The combination of the fine-grained features of SAR and the need to balance noise levels in the diffusion process made detection of small or diffuse lookalikes particularly difficult. As can be seen in Table 1, the autoencoder outperformed the diffusion model with a similar recall at 70%, but with a significantly higher precision at 59% compared to the diffusion model at 54% precision. The LBP on the other hand achieved a very poor precision, but strong recall. This study has shown some of the potential, as seen in Figure 2, and highlighted the main limitations related to diffusion-based approaches in SAR image analysis. Multiple directions for future work have been identified, including hyperparameter tuning of the noise level and conditioning variable, and dataset expansion and refinement.

3 References

- [1] R. Al-Ruzouq, M. B. A. Gibril, A. Shanableh,
 A. Kais, O. Hamed, S. Al-Mansoori, and M. A.
 Khalil. "Sensors, features, and machine learning
 for oil spill detection and monitoring: A review".
 In: Remote Sensing 12.20 (2020), p. 3338.
- [2] M. S. Graham, W. H. Pinaya, P.-D. Tudosiu,
 P. Nachev, S. Ourselin, and J. Cardoso. "Denoising diffusion models for out-of-distribution
 detection". In: Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern
 Recognition. 2023, pp. 2948–2957.
- 165 [3] A. Mousakhan, T. Brox, and J. Tayyub.

 "Anomaly detection with conditioned denoising diffusion models". In: arXiv preprint

 168 arXiv:2305.15956 (2023).
- [4] J. Linmans, G. Raya, J. van der Laak,
 and G. Litjens. "Diffusion models for out-of-distribution detection in digital pathology". In:
 Medical Image Analysis 93 (2024), p. 103088.