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ABSTRACT

Reliable multi-spectral change detection on-board satellites requires robustness
under distribution shifts. We address this challenge from both the certification
and empirical perspectives.
On the certification side, we adapt neural verification to the unique structure of
change detection, accounting for sensor noise, encoder–decoder heads, and se-
mantic evaluation. We introduce a tail-tapped verifier that transports input inter-
vals to the final decoder tap and applies α-CROWN solely to the decision head.
This yields per-pixel logit-margin lower bounds, which we summarize through
task-aligned predicates such as coverage, false positives, and minimum island size.
On the empirical side, we study out-of-distribution robustness across three rep-
resentative backbones—U-Net style encoder–decoder (FresUNet), lightweight
convolutional attention encoder–decoder (FALCONet), and transformer-inspired
global attention encoder–decoder (AttU-Net)—on the Onera Satellite Change De-
tection (OSCD) dataset. We find that existing certificates vanish even for mild
perturbations (ε≥ 1/255), while empirical robustness varies widely across archi-
tectures.
Our results highlight both the difficulty of certifying change detection and the
promise of architecture design for achieving practical robustness. This establishes
a foundation for principled verification and stress-tested deployment of satellite-
based change detection models.

1 INTRODUCTION

Deploying multi-spectral change detection on-board satellites requires robustness to realistic test-
time shifts that deviate from training data, including illumination and phenology changes, crop ro-
tation, atmospheric/BRDF effects, and sensor quirks. In this setting, high in-distribution accuracy is
not enough; operators need models whose predictions remain stable under small, physically mean-
ingful perturbations, together with principled diagnostics for when this stability fails.

Why this is hard. Formal certification in vision typically bounds ℓp neighborhoods around a fixed
input Cohen et al. (2019); Salman et al. (2019). For deep encoder–decoders with skip connections,
such bounds often explode as they propagate, especially in segmentation, leaving Ground Truth
(GT)-aware certificates either vacuous or prohibitively loose. Meanwhile, standard augmentation
and generic Out-of Distribution (OOD) benchmarks Yang et al. (2023); Hendrycks & Dietterich
(2019) fail to capture sensor-calibrated perturbations in multi-spectral imagery, leaving a gap be-
tween training and what satellites actually observe.

Our approach in a sentence. We propose to train for stability where the decision is made and
to diagnose why certificates fail. Concretely, we introduce Head-Consistency Training (HCT),
a GT-aligned objective that enforces positive head margins under small, physically grounded per-
turbations such as illumination drift, shadows, blur, and passband shifts. In parallel, we design a
lightweight tail-tapped verifier that transports intervals to the final decoder tap and applies a tight
linear relaxation (α/β-CROWN) only across the decision head Wang et al. (2021). The goal is not
to claim strong certificates, but to expose where and why stability breaks.
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What we find. Across representative backbones on Onera Satellite Change Detection
(OSCD) Daudt et al. (2018b) dataset and a curated crop-rotation OOD set, HCT improves em-
pirical segmentation quality, both on clean inputs and under small synthetic shifts. Yet GT-aware
certificates remain scarce for ε≥ 1/255. Our diagnostic consistently shows tight head logit spans
but rapidly widening encoder intervals at the tap as ε grows—explaining certificate collapse even
when predictions still appear plausible.

Contributions. Our main contributions are:

1. Head-Consistency Training (HCT): a simple, GT-aligned head-margin objective under sensor-
calibrated perturbations that yields stronger empirical robustness without adversarial inner loops.

2. Physically grounded OOD protocol: four Sentinel-2–motivated perturbation families (low-
frequency drift, shadowing, passband shift, mild blur) and a real crop-rotation benchmark, both
plug-and-play for multi-spectral CD.

3. Verification as diagnosis: a head-only, tail-tapped α/β-CROWN verifier that reveals the
head–tail tightness gap (encoder widening vs. head span), guiding architectural and training
changes.

4. Takeaway: with current encoder–decoders, empirical gains from HCT do not translate into cer-
tified robustness at small budgets; narrowing encoder bounds (e.g., verification-friendly pool-
ing/upsampling and skip control) appears the most promising route forward.

A quick look at results. Diagnostics: On OSCD, strict GT-aware certificates vanish for ε≥1/255
across FresUNet, FALCONet, and AttU-Net, while our tap-level statistics show that head spans
remain tight but encoder/tap intervals widen sharply with ε (Table 1, left). HCT on OSCD: Head-
Consistency Training raises clean performance for a lightweight backbone to F1 = 0.624 with
precision = 0.536 and recall = 0.746 (the highest reported clean accuracy on OSCD - Table 1,
right). Semantic OOD: The same model transfers to the curated crop-rotation benchmark with Dice
= 0.219 (precision = 0.238, recall = 0.192), substantially above non-HCT baselines (Table 1,
right).

Taken together, the verifier and its diagnostics expose why certificates fail at realistic budgets, while
HCT and our synthetic/semantic OOD resources provide a practical path to empirical robustness and
transparent auditing. We release training code (HCT), perturbation generators, and the diagnostic
verifier, and hope this combination—diagnostic certification, lightweight robustness training, and
reproducible OOD protocols—serves as a compact, repeatable baseline for multi-spectral change
detection.

2 RELATED WORK

Neural network verification. Convex relaxations via LiRPA (e.g., CROWN/α-CROWN) provide
scalable certified bounds by propagating linear relaxations layerwise Wang et al. (2021). Hybrids
such as CROWN-IBP use interval bounds as warm-up, then refine them with linear relaxations,
achieving strong results in VNN-COMP Brix et al. (2023). AutoLiRPA Xu et al. (2020) has made
these methods practical. Our work follows this line but restricts verification to the semantic head:
we transport uncertainty to a decoder tap and apply α/β-CROWN locally. This places us in partial-
verification methods, trading global coverage for tight, task-relevant diagnostics.

Certificates for dense prediction. Robustness for segmentation has been studied via randomized
smoothing Cohen et al. (2019); Salman et al. (2019) and LiRPA variants that aggregate pixelwise
evidence or impose structural priors Fischer et al. (2021); Kumar et al. (2021); Hao et al. (2022).
These succeed when score maps remain well separated and abstraction error is controlled, but for en-
coder–decoders with skip paths, end-to-end relaxations quickly become vacuous. Our head-tapped
verifier addresses this gap by evaluating GT-aligned predicates (overlap, FP, structure) that make
explicit why certificates collapse: widening encoder intervals despite stable head spans.

Satellite CD backbones. Early CD models in multi-spectral remote sensing used early fusion (stack
x1, x2) or Siamese designs with weight sharing Daudt et al. (2018a;b). In practice, encoder–decoder
segmenters dominate: U-Net Ronneberger et al. (2015) and attention-gated U-Net Oktay et al.
(2018) remain defaults under small datasets and memory budgets, while DeepLabv3+ Chen et al.
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(2018) is often adapted by changing the head to two logits. These backbones are attractive for
on-orbit use since they (i) support arbitrary band counts, (ii) expose a simple 1×1 head where deci-
sions are made, and (iii) train patch-wise on OSCD Daudt et al. (2018b). Our experiments therefore
span three families—plain U-Net, attention-gated U-Net, and a lightweight convolutional-attention
variant—plus a DeepLabv3+ baseline.

Robust change detection and OOD. Recent Sentinel-2 CD models build on U-Net variants with
attention or lightweight modules, or on remote sensing foundation models Hong et al. (2024). Ro-
bustness has been addressed mainly by augmentation, adversarial perturbations, or cross-domain
transfer Yang et al. (2023); Hendrycks & Dietterich (2019). Existing OOD suites rarely capture
sensor-calibrated perturbations or semantic shifts such as crop rotation. We contribute both: (i)
structured perturbation families aligned with sensor physics and (ii) a curated CropRot benchmark,
designed to stress-test models beyond generic OOD.

Training for robustness. Verifier-aware training (IBP, CROWN-IBP) mixes cross-entropy with
bound losses to enlarge certified margins Wang et al. (2021). Our Head-Consistency Train-
ing (HCT), by contrast, is not adversarial and not verifier-coupled: it enforces margin preser-
vation at the head under sensor-calibrated perturbations. HCT improves empirical robustness
but—consistent with our diagnostics—does not close the certification gap when encoder intervals
remain wide. Bridging that gap likely requires tighter tap bounds (in-graph normalization, certi-
fied pooling/upsampling, skip-path control) together with stronger head relaxations (β-CROWN,
cut-plane tightening) or shallow-body verification.

3 METHOD

3.1 TAIL-TAPPED α-CROWN FOR CERTIFIED CHANGE SEGMENTATION

We seek guarantees that the semantic decision (change vs. no-change) made by a change-detection
model remains stable under bounded, structured perturbations such as illumination shifts, mild oc-
clusions, or crop-type variation. Rather than certifying all layers end-to-end, we certify only where
the decision is made: the final semantic head (DoubleConv→ 1×1). Our verifier transports input un-
certainty to the last decoder features using interval arithmetic and then applies a tight α-CROWN re-
laxation only on this tail. The resulting per-pixel certified margins are aggregated into interpretable,
task-level predicates.

3.1.1 PROBLEM SETUP AND CERTIFIED MARGIN

Let a trained model map a co-registered pair (x1, x2) to per-pixel logits

z = f(x1, x2) ∈ RC×H×W ,

with channels (cchg, cnchg) corresponding to change and no-change. We consider perturbations
(δ1, δ2) from a bounded set ∆ε (e.g., ℓ∞ balls of radius ε with content-preserving transforms). For
pixel p, the binary margin is

mp(x1, x2) = zcchg(p)− zcnchg(p).

A pixel is certified at radius ε if a sound lower bound mlb
p (x1, x2, ε) > 0 is established, implying

class invariance for all admissible perturbations.

3.1.2 BACKBONES AND OSCD PROTOCOL

OSCD setup. We use the Onera Satellite Change Detection (OSCD) dataset Daudt et al. (2018b),
which provides co-registered Sentinel-2 image pairs and pixel-level change masks for multiple cities.
Inputs are pairs (x1, x2) stacked channel-wise, yielding 26 channels (2×13). Unless stated oth-
erwise, models produce logits z ∈ R2×H×W for change/no-change. Our main experiments use
five diverse cities (brasilia, lasvegas, dubai, paris, abudhabi) and perturbation radii
ε ∈ {0, 1/255, 2/255}.

Block library. We rely on standard building blocks:

• DoubleConv: two successive 3×3 convolutions (with nonlinearity and optional normalization).

3
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• Up: an upsampling step (bilinear or transposed convolution) followed by DoubleConv, typically
concatenating a skip feature.

• OutConv: a 1×1 convolution mapping decoder features to C logits per pixel.
• Attention gate / MHA: lightweight modules for modulating skips or injecting context.

Three representative backbones.

1. FresUNet: a vanilla U-Net with symmetric DoubleConv blocks, skip concatenations, and an
OutConv head.

2. FALCONet: a U-Net trunk augmented with convolutional and lightweight multi-head attention,
improving local context while retaining the same decoder/head interface.

3. AttU-Net: an attention-gated U-Net where skip connections are modulated before concatenation,
with a standard decoder and OutConv head.

All three produce logits z ∈ R2×H×W with identical channel semantics, enabling a uniform verifi-
cation interface. Complete layer specifications and the body/tail split are given in Appendix G.

3.1.3 BODY/TAIL FACTORIZATION AND THE TAIL TAP

We decompose each backbone into a body B and a tail T :

f(x1, x2) = T
(
B(x1, x2)

)
.

The body B is the encoder–decoder trunk up to the final skip concatenation; the tail T is the last
DoubleConv followed by the 1×1 head. This decomposition is identical across backbones and
defines a uniform hook point for certification.

Interval transport. We propagate the input ℓ∞ box through B using interval arithmetic to obtain

z ∈ [ℓ, u] :=
[
z(B, ε), z(B, ε)

]
.

This step is deterministic and cheap, but interval bounds alone are loose: they tend to inflate pre-logit
ranges through deep decoders, making head certificates vacuous (lower bounds ≤ 0) or unstable in
coverage (Appendix C).

3.1.4 α-CROWN ON THE TAIL

On the box [ℓ, u], the tail T consists of a short sequence of convolutions, biases, nonlinearities, and
a 1×1 head. α-CROWN builds per-layer linear relaxations and composes them into a global affine
lower bound on the pixelwise margin:

mp

(
T (z)

)
≥ a⊤p z + bp, ∀z ∈ [ℓ, u],

so that mlb
p (ℓ, u) = minz∈[ℓ,u](a

⊤
p z+bp). Because B is abstracted by [ℓ, u], optimization is confined

to the short tail, yielding tight bounds at low cost.

3.1.5 CERTIFIED PIXEL SETS AND SEMANTIC PREDICATES

Given bounds z, z ∈ RC×H×W at radius ε, fix change channel cchg and no-change channel cnchg.
For pixel p, define the certified margin lower bound

m(p) = zcchg
(p)− zcnchg(p), Ccert = {p : m(p) > 0}.

With clean-prediction set Cclean and ground truth Cgt, we define:

Overlap: Poverlap(ρ) =
[

|Ccert∩Cclean|
max(1,|Cclean|) ≥ ρ

]
,

False Positives: Pfp(γ) =
[

|Ccert\Cgt|
max(1,|Ccert|) ≤ γ

]
,

Pattern: Ppattern(smin) =
∧
k

[
|Sk| ≥ smin

]
for 4-connected components {Sk} of Ccert.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We report the strict conjunction Poverlap∧Pfp∧Ppattern. These predicates elevate per-pixel certificates
into semantic guarantees on overlap, precision, and structural consistency. Detailed algorithms,
soundness guarantees, and implementation are provided in Appendix B.

Full verifier proofs, predicate algorithms, and backbone specifications are provided in Appendix B.

3.2 HEAD-CONSISTENCY TRAINING (HCT) FOR PHYSICALLY GROUNDED OOD

Goal. We aim to make the decision head (change vs. no-change) stable under small, sensor-
calibrated shifts common in Sentinel-2 imagery—illumination drift, shadows, mild blur, and pass-
band differences. Unlike adversarial training, HCT has no inner maximization. Instead, we sample
physically motivated perturbations and enforce that the head preserves the ground-truth (GT) label
under these shifts.

Setup. A model f maps a co-registered pair (x1, x2) to logits

z = f(x1, x2) ∈ R2×H×W , {0 = no-change, 1 = change}.

For each training pair, we draw K independent transforms S(k)
ε from a sensor-calibrated family (bud-

get ε, Sec. 3.3), form perturbed inputs x̃(k)
i = S(k)

ε (xi), and compute logits z̃(k) = f(x̃
(k)
1 , x̃

(k)
2 ).

GT-aligned head-margin consistency. Let y(p) ∈ {0, 1} be the GT label at pixel p and ȳ(p) =
1− y(p). For perturbation k, define the GT margin

m(k)(p) = z̃
(k)
y(p)(p)− z̃

(k)
ȳ(p)(p).

We penalize shortfalls below a margin buffer τ :

LHCT =
1

KHW

K∑
k=1

∑
p

ϕ
(
τ −m(k)(p)

)
,

with ϕ(u) = max(0, u) (hinge) or ϕ(u) = log(1+eu) (softplus). We set τ ∈ [0.05, 0.15] logits.

Supervised fit and optional regularizers. We retain standard cross-entropy on clean inputs and
optionally add Dice for rare positives:

LCE = CE(z, y), LDice = 1− 2 ⟨σ(z1), y⟩+ ϵ

∥σ(z1)∥1 + ∥y∥1 + ϵ
.

The total loss is
L = λCELCE + λHCTLHCT + λDiceLDice (optional),

with λCE=1, λHCT ∈ [0.2, 0.5], λDice ∈ [0, 0.2].

Practical recipe. Each minibatch contains one clean copy and K ∈ {1, 2} perturbed copies (de-
fault K=1) sharing the GT. We ramp ε linearly from 0 to εmax over the first 30–40% of epochs, then
hold it fixed. Other practical notes:

• Normalize inside the graph (per-channel standardization).

• Use ReLU/LeakyReLU; avoid unstable ConvTranspose2d settings.

• Apply weight decay 10−4–5× 10−4, gradient clip 1.0, and optionally EMA (≤ 0.999).

• Class weighting or focal loss may be added if positives are extremely sparse.

3.3 PHYSICALLY GROUNDED SYNTHETIC OOD PERTURBATIONS

We operate in normalized 8-bit space, where ε=1/255 ≈ 0.0039 corresponds to a ∼ 0.39% per-
band reflectance change. We sample an equal mix of four perturbation families, used both in HCT
training (Sec. 3.2) and for empirical robustness evaluation (Table 1, right).
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1. lf 1, lf 2 (low-frequency drift). Smooth additive fields δ(x, y) drawn by Gaussian-filtered
white noise (broad bandwidth for lf 1, narrower for lf 2), applied per band with ∥δ∥∞ ≤ ε.

2. shadow. Soft multiplicative vignette v(x, y) ∈ [1−ε, 1+ε], created from a cosine ramp along a
random direction and smoothed; mimics cast/self shadows and BRDF effects.

3. pband (passband shift). Per-band affine change xb 7→ (1 + αb)xb + βb, with |αb| ≤ ε,
|βb| ≤ ε/2, approximating inter-sensor spectral response differences.

4. blur 1. Mild Gaussian blur with σ ∈ [0, 1.0] pixels, capped to keep induced ℓ∞ per-band
change below ε.

Why these? All four perturbations are common in Sentinel-2 time series and realistic at ε ∈
{1, 2}/255. They probe whether the decision head preserves semantics under small radiomet-
ric/optical shifts, complementing certification diagnostics with empirically grounded stress tests.

3.4 REALISTIC OOD PROTOCOL (CROPROT)

We introduce CropRot, a curated OOD protocol that emphasizes vegetation-driven change in
Sentinel-2 imagery. Masks are derived by differencing Normalized Difference Vegetation Index
(NDVI) maps across time after cloud-screened pair selection. NDVI differencing is long used in re-
mote sensing Tucker (1979); Singh (1989); Coppin et al. (2004), but directly thresholding ∆NDVI
can capture phenology, BRDF/atmospheric variation, or misregistration rather than semantic change.
To mitigate this, we add a lightweight visual quality assurance step: per scene, we apply false-color
composites and ∆NDVI heatmaps to verify change patterns and, when needed, adjust the threshold
within a narrow range. This yields semi-automatic, curated masks that are reproducible (scripts emit
file lists, filters, and chosen thresholds) yet remain proxies rather than full manual annotations.

3.4.1 CURATED MASKS VIA NDVI DIFFERENCING AND QA.

To generate weak semantic change labels, we start with cloud-free Sentinel-2 pairs (T1, T2) retrieved
via the SentinelHub API (Level-2A surface reflectance, 13 bands). NDVI is computed as

NDVI(x, y) =
B8(x, y)−B4(x, y)

B8(x, y) +B4(x, y)
,

with B4 (red) and B8 (NIR). Differencing across time gives

∆NDVI(x, y) = NDVIT2(x, y)− NDVIT1(x, y).

A threshold θ binarizes the map:

Change(x, y) = 1
(
∆NDVI(x, y) > θ

)
.

Visual QA overlays (spectral color ramps, ∆NDVI heatmaps) ensure threshold choice matches ob-
servable vegetation dynamics. Figure 1 summarizes the pipeline.

Sentinel-2
Cloud-Free

Image Search (T1)

Compute NDVIT1

from Band 8 (NIR)
and Band 4 (Red)

Sentinel-2
Cloud-Free

Image Search (T2)

Compute NDVIT2

from Band 8 (NIR)
and Band 4 (Red)

Compute
difference

map
NDVIT2–NDVIT1

Spectral color ramp
for visual QA

Binarize:
1(∆NDVI > θ)

to produce
change mask

Figure 1: Pipeline for generating weak change masks via NDVI differencing. Cloud-free Sentinel-2
images are retrieved, NDVI maps computed, differenced, and thresholded with visual QA.

OOD emphasis. Figure 2 contrasts OSCD (urban change) and CropRot (vegetation change). Both
share identical 13-band interfaces; CropRot stresses temporal vegetation dynamics and thus provides
a semantically distinct OOD benchmark.
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OSCD: T1 OSCD: T2 OSCD: change map

CropRot: T1 CropRot: T2 CropRot: change map

Figure 2: OSCD vs. CropRot (OOD). OSCD emphasizes urban change; CropRot emphasizes vege-
tation change. Both share the same Sentinel-2 interface, making CropRot a natural OOD benchmark.

Sanity check. To assess dataset quality, we trained standard architectures with OSCD-like hyper-
parameters. Models converged quickly, reaching F1 comparable to OSCD. For example, a simple
encoder–decoder achieved F1=0.518 on OSCD and F1=0.526 on CropRot. This indicates CropRot
is sufficiently clean for modeling. Its intended role, however, is not as a primary training set but
as a realistic OOD benchmark for models trained on OSCD. In addition to the released CropRot
benchmark, we have curated several further candidate regions (∼ 8 sites in Ukraine and Occitanie).
These were excluded from the present release due to crop-type ambiguity or barren fields. We plan
to polish and include them in future versions of the dataset.

Note on reproducibility. We provide full curation details in Appendix A so that CropRot can be
exactly re-generated and, more importantly, so that similar OOD benchmarks can be constructed
for other regions or sensing modalities. CropRot should be viewed not as a large-scale dataset but
as a sample protocol demonstrating how reproducible weak supervision can yield realistic OOD
evaluation resources.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Main backbones. We evaluate three certified backbones: (i) FresUNet Daudt (2020), a U-Net
baseline (1.10M params; ∼524M mult-adds), (ii) FALCONet, a local convolution+attention variant
(1.15M params; ∼526M mult-adds), and (iii) AttU-Net Oktay et al. (2018), an attention-gated U-Net
(34.89M params; ∼16.8G mult-adds).

Empirical baselines. For context we also report in-distribution metrics on two large backbones:
SpectralGPT+ Hong et al. (2024) (0.11B params; ∼168G mult-adds) and DeepLabv3+ Schmitt
et al. (2020) (40.4M params; ∼332G mult-adds). These highlight accuracy vs. robustness trade-offs
but are excluded from certification due to scale.

7
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Training and evaluation. Metrics follow Daudt (2020): Precision (Change), Recall, F1, Dice,
and Kappa (agreement beyond chance, important for OSCD imbalance). Models are trained with
weighted NLL loss (inverse class frequency) plus an optional Dice term, optimized using Adam
(10−3 lr, 10−4 weight decay) with exponential decay (0.95). We train for 50 epochs with batch size
8 and 128×128 patches, selecting the best checkpoint by validation F1.

Compute. Most experiments (including certification) run on a 16 GB RAM laptop (PyTorch 2.x).
Larger baselines and HCT training use a 128 GB RAM workstation with a 48 GB GPU.

4.2 CERTIFIED CHANGE SEGMENTATION

Across all three backbones, GT-aware certification collapses at small budgets (ε≥ 1/255) despite
plausible clean maps. Table 1 combines diagnostics (tap interval width vs. head logit span) with
predicate outcomes. We find:

- Head logit spans remain essentially constant. - Tap widths explode with ε, enlarging the uncertainty
box. - As a result, certified margins vanish and Ccert shrinks to zero—even when clean predictions
look reasonable.

Formally, with affine bound m(z) ≥ a⊤z + b (from α-CROWN),

mlb(ℓ, u) ≥ mclean − 1
2

∑
i

|ai|(ui − ℓi), mclean = a⊤ ℓ+u
2 + b. (1)

Thus margins deteriorate as tap width (u−ℓ) grows or head sensitivity ∥a∥1 increases. Appendix F
formalizes this diagnosis.

4.2.1 PRACTITIONER TAKEAWAYS

Network design. Favor operations that keep tap boxes tight and head sensitivity moderate: average
pooling, 1×1 bottlenecks, skip gating, in-graph normalization, near-1-Lipschitz activations. Avoid
unstable ConvTranspose2d and exotic activations.

Verification stack. Reduce over-estimation by using tighter abstract domains (zonotopes, DeepPoly,
β-CROWN with bound tightening), and add native relaxations for pooling/upsampling/attention.
Where hotspots persist, lightweight local branch-and-bound at the head can recover certificates.

Bottom line. Two levers matter: (i) architecturally narrow the tap interval, and (ii) algorithmi-
cally tighten relaxations. Coupled with stability-aware training, these offer a pragmatic path toward
certifiable on-board change detection.

4.3 EMPIRICAL OOD SEGMENTATION

We report Precision/Recall/Dice (P/R/D) on OSCD under synthetic corruptions and on CropRot
(OOD).1

Key results (Table 1): - Clean OSCD: FALCONetHCT improves to Dice 0.62. AttU-Net remains
strong. - Synthetic OOD: All models degrade under LF/shadow/pband/blur. HCT stabilizes but
does not eliminate failures. - CropRot (real OOD): AttU-Net transfers best (Dice ≈0.35). HCT
lifts FALCONet substantially (Dice 0.22 vs. 0.01), narrowing the gap. FresUNet collapses.

Qualitative evidence. Fig. 3 shows OSCD brasilia. AttU-Net captures dense, GT-aligned
islands; FALCONet under-covers small parcels, consistent with its lower CropRot Dice.

4.4 COMPUTE FOOTPRINT: HCT VS. ADVERSARIAL TRAINING

HCT introduces no inner maximization and uses only one perturbed copy per minibatch. In practice,
a lightweight model trains for ∼60 epochs in ∼3 hours on a 16 GB RAM CPU laptop. By contrast,
adversarial training requires multi-step PGD per batch and typically a GPU, significantly increasing
runtime and energy. This makes HCT a practical knob for improving empirical OOD behavior even
when formal certificates remain elusive.

1LF = low-frequency drift; shadow = multiplicative shading map; pband = passband shift; blur 1 = mild
blur.
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Table 1: Left: Head–tail diagnostics on OSCD (width mean vs. head logit span). Right: Empiri-
cal OOD P/R/D.

(a) Diagnostics

Model ε
Tap width mean

(med / p95)
Head logit span

(med / p95)

FresUNet
0/255 0/0

6.09/6.091/255 1.58×107/1.58×107

2/255 3.26×107/3.26×107

FALCONet
0/255 0/0

7.03/7.031/255 3.17×104/3.17×104

2/255 5.42×104/5.42×104

AttU-Net
0/255 0/0

7.49/7.491/255 5.93×108/5.93×108

2/255 1.17×109/1.17×109

(b) OOD segmentation (P/R/D)

Model OSCD
clean

OSCD
LF/shadow/
pband/blur

CropRot
OOD

FresUNet 0.47/0.58/0.52 0.00 0.11/0.00/0.00

FALCONet 0.55/0.63/0.59 0.00 0.52/0.01/0.01

AttU-Net 0.59/0.60/0.59 0.04/0.53/0.07 0.37/0.33/0.35

FALCONetHCT 0.54/0.75/0.62 0.05/0.02/0.03 0.24/0.19/0.22

SpectralGPT 0.16/0.50/0.24 0.06/0.23/0.04 0.13/0.18/0.11

DeepLabv3 0.58/0.39/0.28 0.12/0.31/0.12 0.26/0.12/0.14

(a) GT (change in white). (b) AttU-Net (clean). (c) FALCONet (clean).

Figure 3: OSCD brasilia (clean). AttU-Net recovers denser GT-like change islands. This
structure aligns with its stronger CropRot transfer (Table 1, right).

5 CONCLUSION

Robust certification remains especially difficult for skip-heavy encoder–decoders, which are essen-
tial to capture fine-grained spatial and spectral structure in multi-spectral imagery. Our verifier,
limited to L∞ radiometric perturbations, fails at small budgets because encoder bounds widen ex-
cessively; head spans remain tight, but the bottleneck lies in the body. Head-Consistency Training
(HCT) improves empirical robustness but does not make models certifiably robust. The CropRot
dataset, while valuable as a vegetation-driven OOD protocol, is geographically narrow and should
be expanded across regions and seasons.

Despite these limitations, our study contributes two complementary lenses: (i) a head-centric di-
agnostic verifier that makes explicit why formal guarantees collapse, and (ii) a lightweight training
recipe—HCT—that stabilizes empirical predictions under sensor-calibrated shifts. Across back-
bones, certified guarantees vanish already at ε≥1/255 due to exploding encoder intervals, yet HCT
lifts a compact FALCONet from Dice ≈ 0.01 to 0.22 on the CropRot OOD benchmark while main-
taining 0.62 on OSCD, narrowing the gap to AttU-Net (≈ 0.35 Dice). Synthetic corruptions remain
challenging, underscoring the gap between clean accuracy and robust transfer.

Takeaway and Outlook. HCT offers a practical middle ground for on-board deployment: head-
focused, GT-aligned, and efficient (no adversarial inner loops), trainable on modest hardware. Op-
erators can pair compact backbones with HCT for deployment, while using our diagnostic verifier
and OOD protocols for transparent auditing. Looking forward, progress likely requires: (i) tighter
encoder bounds (native relaxations, β-CROWN, cut-plane tightening), (ii) structured-shift certifica-
tion beyond L∞ (illumination, passband families), and (iii) training–verification co-design coupling
HCT with bound-aware regularization. Together, these steps could narrow the gap between em-
pirical OOD robustness and certifiable guarantees for complex, skip-heavy encoder–decoders in
multi-spectral change detection.

We use LLMs to refine our text, i.e., for linguistic polish and grammatical accuracy.
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Reproducibility Statement. We release training code for HCT, perturbation generators, and the
diagnostic verifier to support transparent replication of all results. The CropRot OOD dataset is
described in Section 3.4 and detailed curation steps are provided in Appendix A. Verifier proofs,
predicate algorithms, and architectural specifications are given in Appendix B and Appendix G.
A preliminary notebook with code, models, and dataset is available in an anonymized repository:
https://anonymous.4open.science/r/mscd_verify-CE60.
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A CROPROT CURATION DETAILS AND LIMITATIONS

Inputs and pre-processing. We use Sentinel-2 Level-2A surface reflectance (13 bands) resampled
to 10 m over user-defined AOIs. Pairs (T1, T2) are co-registered (projected to the same UTM zone),
clipped to the AOI, and normalized consistently with the main pipeline (Fig. 1).

Cloud/shadow screening and pair selection. Candidates are filtered using a conservative cloud-
probability threshold, with small morphological dilation to remove cloud fringes and shadows. We
favor seasonal spacing that highlights crop-cycle differences while avoiding snow/flood outliers.
Pairs with heavy haze, striping, or missing tiles are discarded.

NDVI differencing and optional smoothing. For each date, compute

NDVI =
B8 −B4

B8 +B4
, ∆NDVI = NDVIT2 −NDVIT1 .

A small median filter (e.g., 3×3) may be applied to suppress speckle while retaining boundaries.

Binarization and visual QA. We derive a candidate threshold θ (e.g., Otsu on ∆NDVI within a
vegetation mask) and allow narrow manual adjustment to correct obvious BRDF/phenology artifacts.
Each curated scene logs: AOI, product IDs/dates, cloud mask, final θ, and a quick-look PNG (RGB
and ∆NDVI heatmap). Scenes failing sanity checks (e.g., residual clouds, strong BRDF seams) are
excluded.

Post-processing. We apply small morphological operations (opening/closing with 3×3), drop con-
nected components smaller than smin, and optionally enforce field-wise connectivity (8-neighbors).
This yields the final binary proxy mask.

Reproducibility. All steps are scripted. The pipeline emits .csv manifests recording tile IDs,
cloud statistics, thresholds, and paths to masks/previews, enabling exact re-generation.

Limitations and intended use. Masks are weak supervision: semi-automatic proxies, not hand-
annotated GT. ∆NDVI conflates phenology, BRDF, and mild misregistration; the QA step mitigates
but cannot eliminate these effects. CropRot is therefore intended strictly as an empirical OOD
benchmark for change detection, complementing OSCD. Certified robustness experiments in the
main paper remain label-agnostic and probe bounded radiometric stability at the decision head.

B VERIFIER DETAILS (HEAD-ONLY CERTIFICATION)

Setup. Given a trained change detector f(x1, x2) = z ∈ R2×H×W with channels (cchg, cnchg), we
factor f = T ◦B where the body B is the encoder–decoder trunk up to the final skip concatenation
and the tail T is the last DoubleConv followed by the 1×1 head. Perturbations (δ1, δ2) ∈ ∆ε are
bounded by an L∞ radiometric budget ε applied band-wise.
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Algorithm 1: Certi-
fied margin set from
head bounds

A. Margin-based
head verifier

Input : z, z;
(cchg, cnchg)

Output: Ccert,
margin-LB
m,
minp m(p)

for each pixel p do
m(p)←zcchg

(p)−
zcnchg (p)

Ccert ← { p : m(p) >
0}

return
Ccert, m, minp m(p)

Algorithm 2: Task predicate (over-
lap, FP, structure)

B1. Task predicate on
(Ccert, Cclean, Cgt)

Input : Ccert, Cclean, Cgt; ρ, γ, smin

Output: Poverlap, Pfp, Ppattern, strict

ov← |Ccert ∩ Cclean|
max(1, |Cclean|)

;

Poverlap ← (ov ≥ ρ)

fp←

0, |Ccert| = 0
|Ccert \ Cgt|
|Ccert|

, else
;

Pfp ← (fp ≤ γ)
Compute 4-conn. CCs {Sk} of Ccert;
Ppattern ←

∧
k(|Sk| ≥ smin)

return
Poverlap, Pfp, Ppattern, Poverlap ∧
Pfp ∧ Ppattern

Algorithm 3: GT-
agnostic, sound Prediction-
Preservation (PP)

B2.
Prediction-Preservation
(PP)

Input : Ccert, Ĉclean;
η, γin, smin

Output: coverage, spill, PP-strict
coverage←
|Ccert|/(HW );

spill← |Ccert \ Ĉclean|
max(1, |Ccert|)

Ppattern ← CC test with
threshold smin

return
coverage, spill, [coverage ≥
η]∧ [spill ≤ γin]∧ Ppattern

Figure 4: Algorithms for predicate verification.

Interval transport to the tap. We propagate the input box through B using interval bound prop-
agation (IBP) to obtain tap-domain bounds

zt = B(x1+δ1, x2+δ2) ∈ [ℓ, u] := [z(B, ε), z(B, ε)].

This step is cheap, architecture-agnostic, and summarizes upstream nonlinearity without attempting
end-to-end relaxation.

α-CROWN on the tail. On the short subnetwork T (convs, biases, ReLUs/LeakyReLUs, and 1×1
head), α-CROWN builds per-layer relaxations over [ℓ, u] and composes them to yield a global affine
lower bound on the binary margin:

mp = zcchg
(p)− zcnchg

(p), mp

(
T (zt)

)
≥ a⊤p zt + bp, ∀zt∈ [ℓ, u].

The certified margin is mlb
p (ℓ, u) = minzt∈[ℓ,u](a

⊤
p zt + bp).

Soundness. Theorem. For all (δ1, δ2) ∈ ∆ε and pixels p,

mp(f(x1+δ1, x2+δ2)) ≥ mlb
p (ℓ, u).

If mlb
p (ℓ, u) > 0, the class at p is invariant to all admissible perturbations. Sketch: IBP guarantees

zt ∈ [ℓ, u]; α-CROWN provides a valid relaxation over T ; taking the margin preserves soundness.
□

Tightness vs. IBP-only. Proposition. For IBP margin bound mIBP
p , we have mlb

p (ℓ, u) ≥ mIBP
p .

Sketch: interval composition is a special case of α-CROWN’s dual relaxation. □

Why widening intervals break certificates. Writing zt =
ℓ+u
2 + ξ, ξ ∈ [−u−ℓ

2 , u−ℓ
2 ], yields

mlb
p (ℓ, u) ≥ mp,clean − 1

2

∑
i

|ap,i|(ui − ℓi), (2)

with mp,clean = a⊤p
ℓ+u
2 + bp. Observation. A pixel is certifiable only if mp,clean > W (p), where

W (p) = 1
2

∑
i |ap,i|(ui − ℓi). As ε grows, W increases due to widening tap intervals, driving

coverage down even when clean margins look reasonable.

Complexity. If k is the number of conv/activation layers in T and d the tap channels, complexity
is O(kHWd). Memory only stores per-layer coefficients, making it orders of magnitude lighter
than end-to-end relaxations.
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B.1 GT-ALIGNED PREDICATES

Let Ccert = {p : mlb
p (ℓ, u) > 0} be the certified pixel set at radius ε. Let Ĉ be the clean change set

and C⋆ the ground truth.

- Coverage: cov(Ccert, Ĉ) = |Ccert∩Ĉ|
max(1,|Ĉ|)

. - False Positives: fp(Ccert, C⋆) = 0 if |Ccert| = 0, else
|Ccert\C⋆|
|Ccert| . - Minimum Island Size: all 4-connected components Sk of Ccert satisfy |Sk| ≥ smin.

We report the three metrics and optionally their strict conjunction: [ cov ≥ ρ ] ∧ [ fp ≤ γ ] ∧
[ mink |Sk| ≥ smin ].

C IBP BASELINE

A fully-IBP verifier (forward entire f ) is scalable but looser: head bounds collapse even at ε ∈
{1, 2}/255. We retain IBP only as a diagnostic bound for B and to generate [ℓ, u].

D ARCHITECTURES AND TAP PLACEMENT

We verify FresUNet, FALCONet, and AttU-Net under the same contract: tap after the final decoder
concat, before the last DoubleConv, with T as that DoubleConv+OutConv. Tables 2–4 give
complete layer specifications. All expose the same verifier interface.

E EVALUATION DETAILS AND UNITS

- Perturbation radii: ε ∈ {0, 1, 2}/255 on [0, 1] inputs (1/255 ≈ 0.0039). - Preprocessing: affine
normalization transported through intervals avoids tightness errors at ε = 0.

F WHY WIDENING ENCODER INTERVALS BREAK CERTIFICATES (FORMAL)

Let m(z) ≥ a⊤z + b for all z ∈ [ℓ, u]. Writing around z0 = ℓ+u
2 gives

mlb(ℓ, u) ≥ mclean −W, W = 1
2

∑
i

|ai|(ui − ℓi).

Corollary. Ccert ⊆ {p : mclean(p) > W (p)}. Increasing width or sensitivity degrades predicate
satisfaction.

G BACKBONE DETAILS AND VERIFIER INTERFACE

FresUNet, FALCONet, and AttU-Net all place the tap after Dec1 concat, before the final Double-
Conv. Tables 2–4 list layer specifications. The verifier interface is identical across backbones.

Conventions. Inputs are two co-registered Sentinel-2 images stacked channel-wise (26 channels
total: 2×13). All models output two per-pixel logits (change, no-change). A DoubleConv block
denotes Conv(3×3)→BN→ReLU→Conv(3×3)→BN→ReLU with same padding. Up denotes
bilinear upsample by 2× (or transposed conv, checkpoint-matched) followed by concatenation of
the encoder skip and a DoubleConv. OutConv is a 1×1 convolution to two logits. Where attention
is used, it is indicated explicitly. The verifier’s body B ends after the final skip concatenation; the
tail T is the last DoubleConv plus OutConv. The tap is inserted between B and T .

—

G.1 ENCDEC (VANILLA U-NET STYLE)

Overview. A symmetric encoder–decoder with four downsampling stages, a bottleneck, and four
upsampling stages with skip concatenations; no attention modules.
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Table 2: EncDec layer specification (channels shown as #feat at each resolution). Tap is placed after
Dec1 concat, before the final DoubleConv.

Stage Resolution #feat Block Notes

Enc1 H×W 64 DoubleConv input: 26 ch
Down1 H/2×W/2 64 MaxPool 2×2
Enc2 H/2×W/2 128 DoubleConv
Down2 H/4×W/4 128 MaxPool 2×2
Enc3 H/4×W/4 256 DoubleConv
Down3 H/8×W/8 256 MaxPool 2×2
Enc4 H/8×W/8 512 DoubleConv
Down4 H/16×W/16 512 MaxPool 2×2
Bottleneck H/16×W/16 1024 DoubleConv

Dec4 H/8×W/8 512 Up + Concat(Enc4) + DoubleConv
Dec3 H/4×W/4 256 Up + Concat(Enc3) + DoubleConv
Dec2 H/2×W/2 128 Up + Concat(Enc2) + DoubleConv
Dec1 H×W 64 Up + Concat(Enc1) + DoubleConv Tap after concat
Head H×W 2 OutConv 1×1 logits: change/no-change

Verifier interface. B comprises Enc1→Dec1-concat (inclusive). T is Dec1’s DoubleConv plus
OutConv. The tap exports interval bounds [ℓ, u] at the input of Dec1’s DoubleConv.

—

G.2 FALCONET (LOCAL CONVOLUTIONAL ATTENTION)

Overview. A U-Net trunk augmented with lightweight convolutional attention (plus optional multi-
head attention at selected scales) to refine local context; same skip and head interface as EncDec.

Table 3: FALCONet layer specification. Attention blocks appear after DoubleConv in the encoder
and after concatenation in the decoder at mid/high resolutions. Tap is after Dec1 concat.

Stage Resolution #feat Block Notes

Enc1 H×W 64 DoubleConv + ConvAttn input: 26 ch
Down1 H/2×W/2 64 MaxPool
Enc2 H/2×W/2 128 DoubleConv + ConvAttn
Down2 H/4×W/4 128 MaxPool
Enc3 H/4×W/4 256 DoubleConv + ConvAttn
Down3 H/8×W/8 256 MaxPool
Enc4 H/8×W/8 512 DoubleConv + (MHA) optional MHA
Down4 H/16×W/16 512 MaxPool
Bottleneck H/16×W/16 1024 DoubleConv + (MHA) optional MHA

Dec4 H/8×W/8 512 Up + Concat(Enc4) + ConvAttn + DoubleConv
Dec3 H/4×W/4 256 Up + Concat(Enc3) + ConvAttn + DoubleConv
Dec2 H/2×W/2 128 Up + Concat(Enc2) + ConvAttn + DoubleConv
Dec1 H×W 64 Up + Concat(Enc1) + ConvAttn + DoubleConv Tap after concat
Head H×W 2 OutConv 1×1 logits: change/no-change

Verifier interface. Same B/T split as EncDec; the tap is placed after Dec1 concatenation, before
its final DoubleConv. If attention wraps the head, the verifier descends to the first inner Conv2d.

—
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G.3 ATTU-NET (ATTENTION-GATED U-NET)

Overview. A U-Net in which each encoder feature is filtered by an attention gate before being con-
catenated with the decoder stream, suppressing irrelevant responses while preserving the standard
head.

Table 4: AttU-Net layer specification. Attention gates (AG) modulate each skip before concatena-
tion. Tap is after Dec1 concat.

Stage Resolution #feat Block Notes

Enc1 H×W 64 DoubleConv input: 26 ch
Down1 H/2×W/2 64 MaxPool
Enc2 H/2×W/2 128 DoubleConv
Down2 H/4×W/4 128 MaxPool
Enc3 H/4×W/4 256 DoubleConv
Down3 H/8×W/8 256 MaxPool
Enc4 H/8×W/8 512 DoubleConv
Down4 H/16×W/16 512 MaxPool
Bottleneck H/16×W/16 1024 DoubleConv

Dec4 H/8×W/8 512 Up + AG(Enc4) + Concat + DoubleConv
Dec3 H/4×W/4 256 Up + AG(Enc3) + Concat + DoubleConv
Dec2 H/2×W/2 128 Up + AG(Enc2) + Concat + DoubleConv
Dec1 H×W 64 Up + AG(Enc1) + Concat + DoubleConv Tap after concat
Head H×W 2 OutConv 1×1 logits: change/no-change

H REPRODUCIBILITY

Scripts emit predicate logs (predicate pass *.csv) and LATEX tables. Knobs (ρ, γ, smin) are
fixed unless noted; same tap across backbones; certification always on both dates jointly.

H.1 IMPLEMENTATION NOTES AND GUARDS

- Uniform tap placement (post-Dec1 concat). - Pooling/upsampling semantics standardized. - Chan-
nel alignment checked before α-CROWN. - GT masks sanitized to binary. - Safety guards: recur-
sion limits, cached taps, stub rows (never false positives). - Bound normalization: per-channel affine
standardization for stability. - Logging: clean margins, median widths, predicate summaries.
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