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Abstract

Multi-agent reinforcement learning (MARL) provides a framework for problems
involving multiple interacting agents. Despite apparent similarity to the single-
agent case, multi-agent problems are often harder to train and analyze theoretically.
In this work, we propose MA-Trace, a new on-policy actor-critic algorithm, which
extends V-Trace to the MARL setting. The key advantage of our algorithm is its
high scalability in a multi-worker setting. To this end, MA-Trace utilizes impor-
tance sampling as an off-policy correction method, which allows distributing the
computations with no impact on the quality of training. Furthermore, our algo-
rithm is theoretically grounded – we prove a fixed-point theorem that guarantees
convergence. We evaluate the algorithm extensively on the StarCraft Multi-Agent
Challenge, a standard benchmark for multi-agent algorithms. MA-Trace achieves
high performance on all its tasks and exceeds state-of-the-art results on some of
them.

1 Introduction

Reinforcement learning has witnessed impressive development in recent years. Famously, superhuman
performance has been achieved in games Go [30], StarCraft II [36], Dota 2 [4] and other applications.
These successes are the result of rapid algorithmic development. Research in directions like trust-
region optimization [29], principle of maximum entropy [13], importance sampling [7], distributional
RL [3] or bridging the sim-to-real gap [2] are among these which brought significant progress. Multi-
agent reinforcement learning (MARL), a framework for problems involving multiple interacting
agents, is similar to the standard, single-agent setting. However, it is inherently harder. The challenges
are both theoretical (e.g., partial observability and lack of the Markov property) and practical (MARL
algorithms often suffer from inferior stability and scalability).

In this work, we take a step towards amending this situation. We propose MA-Trace, a new on-policy
actor-critic algorithm, which adheres to the centralized training and decentralized execution paradigm
[19, 11, 25]. The key component of MA-Trace is the usage of importance sampling. This mechanism,
based on V-Trace [7], provides off-policy correction for training data. As we demonstrate empirically,
it allows distributing the computations efficiently in a multi-worker setup. Another advantage of MA-
Trace is the fact that it is theoretically grounded. We provide a fixed-point theorem that guarantees
convergence.

The on-policy algorithms directly optimize the objective; thus, they tend to be more stable and robust
to hyperparameter choices than off-policy methods [1, 35, 33]. However, it is often impractical to
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train an on-policy algorithm in the distributed setting. When data collection is performed using many
workers, the communication latency, asynchronicity, and other factors make the behavioral policies
lag behind the target one. This results in a shift of the collected data towards off-policy distribution,
which hurts the training quality. V-Trace reduces this shift by utilizing importance weights, thus
permitting highly scalable training. Following that scheme, MA-Trace can be distributed to many
workers to vastly reduce the wall-time of training with no negative impact on the results.

We evaluate MA-Trace on StarCraft Multi-Agent Challenge [27] – a standard benchmark for multi-
agent algorithms. Our approach achieves competitive performance on all tasks and exceeds state-of-
the-art results on some of them. Additionally, we provide a comprehensive set of ablations to quantify
the influence of each component on the final results. We confirm that importance sampling is a key
factor for MA-Trace’s performance and show that our algorithm scales favorably with the number of
actor workers. Additionally, we provide a few quite surprising findings, e.g. that an observation-based
critic network performs better than a state-based.

For the description of key ideas and videos, visit our webpage: https://sites.google.com/
view/ma-trace/main-page. The code used for our experiments is available at https://github.
com/awarelab/seed_rl.

Our main contributions are the following:

1. We introduce MA-Trace – a simple, scalable and effective multi-agent reinforcement learning
algorithm with theoretical guarantees.

2. We confirm that the training of MA-Trace can be easily distributed on multiple workers with
nearly perfect speed-up and no negative impact on the quality.

3. We provide extensive experimental validation of the MA-Trace algorithm in StarCraft Multi-
Agent Challenge, including ablations with regard to importance sampling, centralization of
learning, scaling and sharing of parameters.

2 Related work

For a general overview of multi-agent reinforcement learning (MARL) we refer to [5, 15]. Unsur-
prisingly, the development of MARL methods is closely coupled with the algorithmic progress in
RL. A simple approach to multi-agent learning was proposed by Tan [34]: the IQL algorithm uses
independent Q learners for each agent, with improvements proposed in [10, 17, 24].

MA-Trace adheres to the centralized training and decentralized execution (CTDE) paradigm. CTDE
[16, 23, 9] is based on using the centralized information during training. During execution, the
agents act using only their respective observations. Following this scheme, [9] introduces the RIAL
and DIAL algorithms in the context of Q-learning. CTDE is particularly easy to implement with
actor-critic algorithms; the centralized information is imputed only to the critic network (which is not
used during the execution). COMA [11] is an example of such an algorithm; additionally, it uses a
counterfactual baseline to deal with multi-agent credit assignment explicitly.

Another approach to take advantage of the multi-agent structure is the value decomposition method.
VDN [32] propose a linear decomposition of the collective Q function into agent-local Q functions.
Following this idea, [25] introduced QMIX, which learns a complex state-dependent decomposition
by using monotonic mixing hypernetworks. Extensions of QMIX include MAVEN [21], COMIX [6],
SMIX(λ) [39], and QTRAN [31] that can represent even general non-monotonic factorizations.

MA-Trace is based on V-Trace [7], a distributed single-agent algorithm. The idea of extending RL
algorithms to the multi-agent setting has been successfully executed multiple times. Lowe et al. [19]
propose a multi-agent actor-critic algorithm MADDPG, which is based on the DDPG algorithm [18].
Yu et al. [40] introduce also MASAC, extending SAC [14], and MATD3 building on top of TD3 [12].
Recently [41] showed that MAPPO, a multi-agent version of PPO [29], achieves surprisingly strong
results in the most popular benchmarks, comparable with off-policy methods.

Espeholt et al. [7] propose the V-Trace algorithm to address the problem that in distributed (e.g.
multi-node) training the policy used to generate experience is likely to lag behind the policy used for
learning. Munos et al. [22] considered earlier a similar off-policy corrections for the target of the
Q-function. These corrections are intended to focus on samples generated by behavioral policies close
to the target one. Leaky V-Trace, a more general version of the V-Trace correction, was considered
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by Zahavy et al. [42]. Vinyals et al. [37] adapt V-Trace importance corrections to large action space
to train grandmaster level StarCraft II agents. These corrections are refinements of the concept of
importance sampling; see [33, Sections 5.5, 12.9] for a broader discussion.

Blending all these concepts, DOP [38] utilizes value decomposition and importance sampling
to successfully train decentralized agents with policy gradients on off-policy samples. This is
substantially different from our work since in MA-Trace we use importance weights to enable
efficient multi-node training. DOP does not consider distributing the computations, the objective
optimized by that algorithm requires providing on-policy samples, which is impossible to satisfy in a
highly distributed setting.

3 Background

Multi-agent reinforcement learning task is formalized by decentralized partially observable
Markov decision processes (Dec-POMDP) [23]. A Dec-POMDP is defined as a tuple
(N ,S,A, P, r,Z, O, γ, ρ0). N is the set of agents {1, . . . , n}, S is the state space, A is the set
of actions available to agents, P is the transition kernel, r is the reward function, Z is the space of
collective observations, O is the set of observation functions {O1, . . . , On}, γ is the discount factor
and ρ0 is the initial state distribution. At state s ∈ S, the agents select actions ai ∼ πi(·|Oi(s)),
where πi are their respective polices. Fix a := (a1, . . . , an). The agents receive rewards according
to the reward functions ri = ri(s, a) and the system evolves to the next step generated by P (s, a)
(might be stochastic). In the so-called fully cooperative setting, assumed in this work, the rewards are
equal, i.e. r1 = . . . = rn.

The agents learn a joint policy

π(a|o) =

n∏
i=1

πi(ak|ok) (1)

with the aim to maximize the expected discounted return

J(π) = Eπ

[ ∞∑
t=0

γtrt

]
.

The expected discounted return obtained by policy π starting from state s ∈ S is called the value
function

V π(s) = Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
, (2)

4 MA-Trace algorithm

4.1 Overview of the algorithm

In this work, we introduce a multi-agent actor-critic algorithm based on V-trace: MA-Trace, see
Algorithm 1. It follows the paradigm of centralized training, decentralized execution. Each agent
compute its action taking its local observation as input. On the other hand, the critic network operates
only during training, so it does not need to obey decentralization requirements. Furthermore, it
can utilize any kind of additional information. We study two versions of MA-Trace: with the critic
V : S → R taking as inputs full states, and with the critic V : Z → R taking as input the joint
observation of all agents, denoted respectively as MA-Trace (full) and MA-Trace (obs). MA-Trace
(full) requires collecting states st in line 6 of Algorithm 1 and using them as input to Vφ in lines 10
and 14.

The value function V π corresponding to policy π can be, for example, obtained by repeated application
of the Bellman operator. This requires on-policy data. The central innovation of V-Trace in the
single-player setting and MA-Trace in the multi-player setting is to allow for slightly off-policy data
by utilizing importance sampling. To this end, we use the V-Trace-inspired policy evaluation operator
R, defined as

RV (s) := V (s) + Eµ

[
+∞∑
t=0

γt(c0 · · · ct−1)ρt(rt + γV (st+1)− V (st))|s0 = s

]
, (3)
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where ct = c(st, at), ρt := ρ(st, at) are importance sampling corrections and c : S ×A → R+, ρ :
S ×A → R+ are measurable functions. In our algorithms we specialize to

ct := min

(
c,
π(at|st)
µ(at|st)

)
, ρt := min

(
ρ,
π(at|st)
µ(at|st)

)
, (4)

where µ is a policy that collected the data and c, ρ are hyperparameters (usually set to 1.0). Intuitively
speaking, ct controls the speed of training and ρt balances the learned value function between V π
and V µ. These parameters are further discussed in Corollary 3. The operator R leads to n-step
Monte-Carlo target vt given the state st

vt := V (st) +

t+n+1∑
u=t

γu−t

(
u−1∏
i=t

ci

)
ρu
(
ru + γV (su+1)− V (su)

)
. (5)

It is a random variable; the clipping with the min function in (4) is instrumental to reducing its
variance and thus making it applicable in learning. A key advantage of MA-Trace is a significant
reduction in the wall-time due to distributed data collection (see line 6 in Algorithm 1). From the
algorithmic standpoint, the major problem to address is that the policy used for collection πθ′ might
be outdated due to communication overheads. This is successfully achieved with the importance
correction mechanisms described above.

We use the communication model proposed in [8, Figure 1, Figure 3]. It consists of a single learner
and actor workers. The actors are simple loops around the environment, generating observations (and
rewards) transmitted to the learner. The learner makes inferences (and sends back actions); moreover,
it handles trajectory accumulation and training.

Algorithm 1 MA-Trace
Require: d density of training

α learning rate
1: for k in 0, . . . , n− 1 do
2: ωk ← random actor parameters
3: φ← random critic parameters
4: for epoch in 0, 1, 2, . . . do
5: D ← ∅
6: add trajectories {τi} sampled with πθ′ to D
7: . collected by multiple workers possibly remote.
8: for i in 0, . . . , d− 1 do
9: sample st ∼ D

10: φ← φ− α∇φ
[
‖vt − Vφ(st)‖22

]
. vt is calculated according to (5)

11: for i in 0, . . . , d− 1 do
12: sample st ∼ D
13: for k in 1, . . . , n do
14: gk ← ρt∇ω log(πω(at,k|st,k))(rt,k + γV kφ (st+1)− V kφ (st))
15: . ρt is calculated according to (4)
16: ωk ← θk + αgk

4.2 Theoretical analysis of MA-Trace

The operator, R enjoys the fixed point property. We present a proof of the following Theorem in
Appendix A.
Theorem 1. Let c, ρ be such that for any s ∈ S, a ∈ A

ρ(s, a)− c(s, a)Ea′∼µ(·|s′) [ρ(s′, a′)] ≥ 0, (6)

where s′ is the state obtained from s after issuing action a. Assume also that Eµ ρ0 ≥ β ∈ (0, 1].
Then the operatorR is a C∞ contraction with a unique fixed point V π̃ which is a value function of a
policy π̃ given by

π̃(a|s) :=
ρ(s, a)µ(a|s)∑
b∈A ρ(s, b)µ(b|s)

. (7)

The contraction constant is smaller than 1− (1− γ)β < 1.
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Remark 2. The theorem is an extended version of [7, Theorem 1]. First, we assume the vectorized
statement, which is natural for the multi-agent setting. Second, the condition (6) admits more general
importance sampling weights. We also fix a mathematical inaccuracy present in the original proof of
[7, Theorem 1], see Remark 6.

Now we can easily show that the result follows for the importance weights used in our work.
Corollary 3. Let ct, ρt be importance sampling weights (4) and 0 ≤ c ≤ ρ. Assume also that
Eµ ρ0 ≥ β ∈ (0, 1]. Then the operatorR is a C∞ contraction with a unique fixed point V π̃ which is
a value function of a policy π̃ given by

π̃(a|s) :=
min (ρµ(a|s), π(a|s))∑
b∈Amin (ρµ(b|s), π(b|s))

.

The contraction constant is smaller than 1− (1− γ)β < 1.

Proof. It is easy to check that c(s, a) = min
(
c, π(a|s)µ(a|s)

)
, ρ(s, a) = min

(
ρ, π(a|s)µ(a|s)

)
yield the

importance sampling weights (4). Moreover, for any s′ ∈ S

Ea′∼µ(·|s′) [ρ(s′, a′)] = Ea′∼µ(·|s′) min

(
ρ,
π(a′|s′)
µ(a′|s′)

)
≤ Ea∼µ(·|s′)

(
π(a′|s′)
µ(a′|s′)

)
= 1

and therefore (6) holds whenever 0 ≤ c ≤ ρ. Now the result follows by Theorem 1.

Observe that when ρ is infinite, the fixed point V π̃ corresponds to the target policy π. On the other
hand, when ρ tends to 0, V π̃ gets close to the value of the behavioral policy µ. In the general case,
when ρ is finite but positive, the fixed point is the value function of a policy located somewhere
between π and µ. However, π̃ does not depend on ct – these weights affect the speed of convergence
only [7].
Remark 4. There is a theoretical difference between MA-Trace (full) and MA-Trace (obs), which
perhaps is subtle in some cases. The Markov property is a key element required in the proof of
Corollary 3. While it is by definition true for MA-Trace (state) it might fail for MA-Trace (obs) - if the
concatenated observations do not provide a sufficient statistic of st.

For the actor network we use policy gradient updates. Here we also need importance sampling to
correct for using the off-policy behavioral policy µ. We recall the factorization (1); analogously we
denote joint decentralized parameterized policy πω(a1, . . . , aK |s) =

∏K
k=1 πω(ai|si). The policy

gradient theorem suggests the ascent in the direction:

g := Eat∼πω
[∇ω log πω(at|st)Aπω (st, at))] ,

where at = (at,1, . . . , at,K) and Aπω is some advantage estimator. For off-policy data collected with
µ we have

g ≈ Eat∼µ [ρt∇ω log πω(at|st)Aπω (st, at))] ,

where the equality holds if c = +∞ in (4). This formula leads to the practical Monte-Carlo estimator
used in line 14 of Algorithm 1:

ρt(∇ωi log(πωi(at,i|st,i)))(rt + γV (st+1)− V (st)). (8)

5 Experiments

5.1 Environment

We evaluate MA-Trace on StarCraft Multi-Agent Challenge (SMAC) [28] (version 4.10), which
is a standard benchmark for multi-agent algorithms, based on a popular real-time strategy game
StarCraft II. It provides 14 micromanagement tasks of varying difficulty and structure.

The aim is to win a battle against a built-in AI by using your team of agents. In easier tasks, often
rudimentary coordination is enough. However, harder tasks involve engaging a stronger enemy (e.g.,
having more units), which requires inventing smart techniques and tricks. Each unit has a limited line
of sight, which makes the environment partially observable. We provide more details in Appendix F.
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5.2 Main result

In Table 1 and Figure 1, we present the results of the main version of our algorithm – MA-Trace (obs),
in which the critic uses stacked observations of agents as described in Appendix F. MA-Trace (obs)
reaches competitive results and in some cases exceeds the current state-of-the-art. We compare with
a selection of the state-of-the-art algorithms on SMAC following [41] and [26]. We also demonstarte
scalability, which lets MA-Trace can reach good performance even using short training (wall time).

Task MA-Trace (our) MAPPO IPPO QMIX COMA IQL

2s3z 99 [99.5; 99.7] 100 100 95 43 75
3s5z 97 [96.6; 98.6] 100 100 88 1 10
1c3s5z 100 [99.8; 100] 100 100 96 31 21
5m_vs_6m 78 [74.3; 78.4] 89 87 75 1 49
10m_vs_11m 96 [86.2; 97.7] 97 93 95 7 34
27m_vs_30m 99 [99; 100] 94 69 39 0 0
3s5z_vs_3s6z 87 [81.6; 92.1] 84 83 83 0 0
MMM2 98 [98; 98.8] 90 87 87 0 0
2s_vs_1sc 99 [99; 99.6] 100 100 97 98 100
3s_vs_5z 0 [0; 0] 100 100 98 0 45
6h_vs_8z 85 [71; 88.8] 88 84 9 0 0
bane_vs_bane 100 [100; 100] 100 100 100 64 99
2c_vs_64zg 98 [98; 98.5] 100 98 92 0 7
corridor 91 [88.6; 96.1] 100 98 84 0 0

Table 1: Median win rate of MA-Trace (obs) compared with other algorithms. In 3s_vs_5z, our agent discovers
that keeping the opponents alive leads to higher rewards than killing them. This strategy, however, yields a low
win rate. See Appendix F.1 for a detailed study.

Figure 1: MA-Trace compared with state-of-the-arts algorithms on SMAC.

5.3 Training details

We use standard feed-forward networks for the actor and critic networks with two hidden layers of 64
neurons and ReLU activations. The critic network of MA-Trace (obs) takes stacked observations of
agents as input, while MA-Trace (full) utilizes the full state provided by SMAC. DecMA-Trace have
a critic using single-agent observations. See details in Appendix C.

For each reported version of MA-Trace, we have searched for the best hyperparameters to ensure a
fair comparison. The values of all hyperparameters are listed in Appendix D.2.

To estimate the performance of MA-Trace we run training for 3 days or until convergence. We report
the median win rate of 10 runs (with different random seeds) along with the interquartile range.
Training curves for all the tasks can be found in Appendix G.

6



5.4 Ablations

Below we present a comprehensive list of ablations to evaluate the design choices of our algorithm.
In each case, we present training curves for tasks, which best illustrate our claims. For the complete
training results and more details, we refer to Appendix E.

Advantage of using importance sampling. Using the importance weights is the key algorithmic
innovation of MA-Trace (and V-Trace), responsible for the strong performance we report. Indeed,
already for 30 actor workers, using the weights is essential. Otherwise, the algorithm is unstable and
suffers from poor asymptotic performance. See Figure 2 and Appendix E.2.

Figure 2: MA-Trace using 30 distributed workers with and without importance sampling (no IS).

Training scaling. The importance sampling enables V-Trace to be truly scalable in multi-node
setups. MA-Trace enjoys the same property. Importantly, we do not observe any degradation in the
training performance when trained in the multi-node setup. See Figure 3 and Appendix E.3.

Figure 3: Speed of MA-Trace training with respect to the number of distributed workers, with standard deviation
shaded. The speed is measured as the average number of steps processed per second.

Input for the critic network. We found that MA-Trace (full) performs slightly worse than MA-
Trace (obs). Usually the differences are small. However, in two harder tasks, corridor and 6h_vs_8z,
MA-Trace (full) learns much slower and often fails. This is perhaps surprising, as the full state
contains additional information (e.g., about invisible opponents). To deepen the analysis, we ran
MA-Trace (obs+full), which uses both the observations and full state as the critic input. This improves
the results, though they are still slightly inferior to MA-Trace (obs); see Figure 4 and Appendix G. A
more detailed discussion of this topic can be found in Appendix E.1.

Centralized vs decentralized. As noted by [20], centralized training in some cases may suffer
from higher variance. Therefore we compared MA-Trace with its decentralized version (i.e. having
indpendent critics for each agent). The latter typically obtains weaker results and is less stable. See
Figure 5 and details in Appendix B.
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Figure 4: Comparison of using the full state MA-Trace (full) and aggregated agents’ observations MA-Trace
(obs) and both.

Figure 5: Performance of MA-Trace during centralized and decentralized training.

Sharing actors networks. We follow a common approach of sharing the policy network between
agents. In some works, e.g., [26], to preserve individuality, the observations are enriched with agent
ID. This might be beneficial if agents should be assigned different roles within the team. However,
we find these benefits rather minor and opt for input provided by the environment (i.e., without ID).
See Figure 7 and details in Appendix C.2.

One can also use separate networks for each agent. We check that MA-Trace works considerably
worse in such a case. In rare cases, using separate networks is advantageous, but only in the easiest
tasks, e.g., 3s5z. See Figure 6 and details in Appendix C.1.

Figure 6: Performance of shared (standard MA-Trace) and separate agents’ networks.

Figure 7: The impact of enriching observation with agent ID.

8



6 Limitations and further work

We show that MA-Trace successfully solves SMAC tasks. Further benchmarking is needed to
underpin its quality. This includes testing on more environments, both fully cooperative (like SMAC)
and competitive. The latter might require further algorithmic developments.

The importance sampling weights successfully reduce distributional shifts arising in distributed
training. An interesting question is whether they can also reduce the shifts introduced by the
non-stationarity of the multi-agent environment.

MA-Trace exhibits lower sample efficiency than the other methods we used for comparisons. This,
at least partially, can be explained by its on-policy nature. Adapting the importance correction to
accommodate more off-policy data would be an important achievement.

7 Conclusions

In our work, we introduced MA-Trace, a new multi-agent reinforcement learning algorithm. We
evaluated it on 14 scenarios constituting the StarCraft Multi-Agent Challenge and confirmed its
strong performance. We also included ablations regarding importance sampling, centralization of
learning, scaling, and sharing of parameters.

Thanks to the use of importance weights, MA-Trace is highly scalable. Furthermore, the convergence
properties of our algorithm highlighted by Theorem 1 show that it has not only experimental but also
mathematical grounding.
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A The proof of the fixed point theorem

Let CK∞ be the space of functions S 7→ RK endowed with the infinity norm ‖f‖CK∞ = sups∈S |f(s)|∞.
CK∞ is Banach if S is finite or we additionally assume that functions are continuos (this encompasses
the case when S is discrete).

For an easy reference we recall the statement of Theorem 1. Let c : S ×A → R+, ρ : S ×A → R+

be measurable functions and set ct = c(xt, at), ρt = ρ(xt, at).

Define the operatorR : CK∞ 7→ CK∞ by

RV (s) := V (s) + +Eµ

[
+∞∑
t=0

γt(c0 · · · ct−1)ρt(rt + γV (st+1)− V (st))|s0 = s

]
. (9)

Theorem 5. Let c, ρ be such that for any s ∈ S, a ∈ A
α(s, a) := ρ(s, a)− c(s, a)Ea∼µ(·|s′) [ρ(s′, a)] ≥ 0, (10)

where s′ is the state obtained from s after issuing action a. Assume also that Eµ ρ0 ≥ β ∈ (0, 1].
Then the operatorR is CK∞ contraction with a unique fixed point V π̃ which is a value function of a
policy π̃ given by

π̃(a|x) :=
ρ(x, a)µ(a|x)∑
b∈A ρ(x, b)µ(b|x)

. (11)

The contraction constant η is smaller than 1− (1− γ)β < 1.
Remark 6. We note that the proof [7, Theorem 1] has some glitches. A careful examination reveals
that the analysis of the first displayed equation on page 12 in [7] is not correct. We fix it by making
introducing filtration and analyzing the measurability of explicitly and argue that such an approach
makes the proof more clear

Proof. Let c̃t :=
∏t
u=0 cu with the convention c̃t = 1 for t ≤ 0. We use the same convention for ρs.

It is convenient to expressR in the following form

RV (s) = (1− Eµ ρ0)V (s) + +Eµ

[
+∞∑
t=0

γtc̃t−1 (ρtrt + γ[ρt − ctρt+1]V (st+1))

]
.

Fix V1, V2 ∈ CK∞ and put CK∞ 3 ∆V := V1 − V2. For s ∈ S we write

RV1(s)−RV2(s) = (1− Eµ ρ0)∆V (s) + +Eµ

[
+∞∑
t=0

γt+1c̃t−1[ρt − ctρt+1]∆V (st+1)

]
.

We define filtration {Ft}+∞t=0 by

Ft := σ((x0, a0, . . . , at−1, xt)).

We rewrite in terms of conditional expectation

a := Eµ [c̃t−1[ρt − ctρt+1]∆V (st+1)] = Eµ (Eµ [c̃t−1[ρt − ctρt+1]∆V (st+1)|Ft+1]) .

Clearly, all terms except for ρt+1 are Ft+1 measurable, thus

a = Eµ [c̃t−1[ρt − ct Eµ (ρt+1|Ft+1)]∆V (st+1)] .

Recall (10) and observe that ρt − ct Eµ (ρt+1|Ft+1) = α(st, at) =: αt+1. Let us also put by
convention α0 = 1− Eµ ρ0. Thus shifting indices we get

RV1(s)−RV2(s) = Eµ

[
+∞∑
t=0

γtc̃t−2αt∆V (st)

]
.

By our assumptions we have c̃t, αt ≥ 0 and thus we get

|RV1(s)−RV2(s)| ≤ ‖V1 − V2‖CK∞ Eµ

[
+∞∑
t=0

γtc̃t−2αt

]
.

14



We are left with rather straightforward calculations (assume by convention that ρ−1 = 1).

Eµ

[
+∞∑
t=0

γtc̃t−2αt

]
= Eµ

[
+∞∑
t=0

γtc̃t−2ρt−1

]
− Eµ

[
+∞∑
t=0

γtc̃t−1 Eµ (ρt|Ft)

]

= Eµ

[
+∞∑
t=0

γtc̃t−2ρt−1

]
− Eµ

[
+∞∑
t=0

γtc̃t−1ρt

]

= 1 + γ Eµ

[
+∞∑
t=0

γtc̃t−1ρt

]
− Eµ

[
+∞∑
t=0

γtc̃t−1ρt

]

= 1 + (γ − 1)Eµ

[
+∞∑
t=0

γtc̃t−1ρt

]
≤ 1 + (γ − 1)β.

The last inequality follows by dropping all summands except t = 0.

Now, we are to determine the unique fixed point. Recall (11), we calculate

Eµ
[
ρt
(
rt + γV π̃(st+1)− V π̃(st)

)
|st
]

= cEπ̃
[
ρt
(
rt + γV π̃(st+1)− V π̃(xt)

)
|xt
]

= 0,

where c =
∑
b∈A ρ(s, b)µ(b|s) is the normalizing constant and the second equality hold by the

Bellman equation.
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B Centralized training and decentralized execution

In a multi-agent problem, the agents take actions based on their local observations xi, according to
their policies πi. Decentralized training is a simple approach of learning πi, using any (single-agent)
RL algorithm separately for each agent. To better utilize the structure of a multi-agent problem, a
paradigm of centralized training and decentralized execution was introduced. The key idea is to
centralize the learning process of all the agents – use shared knowledge provided by observations
and any other information available during training to more effectively optimize the decentralized
policies. It is now considered a leading paradigm and is usually chosen off-the-shelf.

Recently the authors of [20] suggested that this should be reinvestigated. Sharing the knowledge in
centralized training is indeed beneficial, but the paradigm of independent training also has advantages.
The multi-agent problems lack the strong theoretical guarantees associated with the standard case.
For example, if we train all the agents simultaneously, the environment changes during training from
every agent’s perspective. Such non-stationarity can destabilize standard algorithms. According to
[20], decentralized learning partially mitigates this issue – for every agent, a separate value network
is trained; thus it averages much of the stochasticity in the environment, producing more stable
estimates. On the other hand, because of the limited information, these values are less accurate.
Therefore choosing between centralized and decentralized training is a tradeoff.

To address these issues, we compared MA-Trace with its decentralized version, DecMA-Trace.
However, in the StarCraft Multi-Agent Challenge, the decentralized version learns much slower and
fails to reach good performance; see Figure 8.

16



Figure 8: Comparison of MA-Trace and DecMA-Trace on the StarCraft Multi-Agent Challenge tasks.

C Networks’ architectures

In our experiments, we use feed-forward networks with two hidden layers of 64 neurons and ReLU
activations (without normalization). This is smaller than the networks used in benchmark [40] and
[26], but we found this sufficient to obtain good results. In this work, we focus on algorithmic aspects
rather than tuning architectures. However, for completeness, we include a discussion of some most
popular design choices.

C.1 Sharing parameters

Our default (and most effective) scheme uses a single shared network for the actors and a separate
one for the critic. We experimented with sharing feature extractors between the agents and the critic,
which performed worse. We also checked the performance when training separate networks for all
the components. Interestingly, with this approach, the learning is much faster on the easy tasks, such
as 3s5z or 2c_vs_64zg, but completely fails on the hardest ones; see Figure 9.
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Figure 9: Comparison of standard MA-Trace (with a shared actor network) and its ablation with separate
networks.

C.2 ID experiments

Sharing the agents’ networks, as described in Section C.1, can lead to poor results if agents are
not homogenous (for example, the behavior of shooting units should differ from melee units). This
might be circumvented by adding units’ characteristics (which is a default in SMAC) or enriching the
observations with one-hot encoded ID. In Figure 10 we present the results of experiments in which
we use these two mechanisms. We observe some improvements, which are, however, relatively minor.

C.3 Agents with memory

The units in StarCraft Multi-agent Challenge have limited sight range, thus the environment is
partially observable. A common approach to mitigate such an issue, is to give the agents memory,
e.g. by using recurrent networks or frame stacking. The authors of [26] show that using recurrent
policy is required to achieve good results in the hardest tasks. However, our experiments show that
memoryless policies can be successfully trained to solve all the tasks (possibly except 3s_vs_5z, see
Section F.1).
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Figure 10: Comparison of MA-Trace conditioned on observation with and without (default) agents’ IDs.

To implement a simple memory it is enough to pass a few previous observations concatenated
(“framestack”). We experimented with both observation-based and state-based critics. Figures 11 and
12 show the progress of training memory-equipped agents. One can observe hardly any difference in
most tasks. On the easy task 2c_vs_64zg, using memory leads to faster training. What is particularly
interesting, on the corridor, task the stacked versions learn much faster. This may be related to the
strategy learned by MA-Trace, in which at some point a group of units has to hide and wait (see
Section F.2 for detailed description). Execution of this strategy is probably easier when using at least
short memory. However, on some other tasks, such as 5m_vs_6m, training with memory is much less
stable and effective.
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Figure 11: Comparison of MA-Trace with growing number of stacked frames. The critic networks in ablations
are conditioned on aggregated observations.

D Training details

D.1 SEED RL

We base our code on SEED RL [8], which is an open-source framework for distributed learning,
licensed under the Apache License, Version 2.0. This library provides an implementation of V-Trace
for single-agent environments.

D.2 Hyperparameters

In our experiments the parameters crucial to the final performance were: learning rate and entropy
cost. For other hyperparameters, we use the default values provided by SEED. The most relevant,
common for all the experiments, are listed in Table 2.

We searched for the best learning rate in the set [3.5 · 10−3, 2.5 · 10−3, 1.5 · 10−3, 10−3, 7 · 10−4, 5 ·
10−4, 3.5 · 10−4]. We experimented with adding learning rate schedules with warmup and decay,
though no such scheme appeared to be beneficial.
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Figure 12: Comparison of MA-Trace with growing number of stacked frames. The critic networks in ablations
are conditioned on environment state.

Another hyperparameter that has a strong influence on the final results is entropy cost. By default,
SEED sets it to a constant value of 2.5 · 10−4 and allows to use annealing. We found that aggressive
exploration at the beginning is crucial to reach good results. We annealed entropy cost from 1 towards
10−5. The speed of adjustment was tuned in the set [10, 5, 2.5, 1, 0.5].

In Table 3, we show the best parameters for our experiments, found by the above grid-search. Unlike
in some other works, we found no advantage of using gradient clipping; thus, we leave the gradients
not clipped.

D.3 Infrastructure used

The typical configuration of a computational node used in our experiments was: the Intel Xeon
E5-2697 2.60GHz processor with 128GB memory. On a single node, we ran one experiment with
30 workers. A typical experiment was run for about 20h. For the final evaluation, we extended the
training to 3 days, which is usually equivalent to about 3 · 108 environment steps. We did not use
GPUs; we found that with the relatively small size of the network it offers only slight wall-time
improvement while generating substantial additional costs.
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hyperparameter value

batch size 32
optimizer Adam
gamma 0.99
ρ 1.0
c 1.0
λ 1.0

initial entropy cost 1.0
target entropy 10−5

Table 2: Default parameters for our experiments.

hyperparameter MA-Trace (obs) MA-Trace (full)

learning rate 10−3 7 · 10−4

entropy adjustment 10 10

Table 3: Specific parameters for our experiments.

E Ablations

E.1 Critic comparison

During centralized training, the critic network in MA-Trace algorithm uses any information available.
A natural choice is to aggregate the observations available to the agents, and we denote this version
as MA-Trace (obs). This might not be a sufficient statistic of the (Markov) state of the environment.
SMAC provides additional access to such a state description, which we use in MA-Trace (full).
Intuitively, using complete information should be advantageous.

As shown in Figure 16, on most tasks, both the versions do not differ much. On 3s5z_vs_3s6z there is
a small advantage on the full-state side. However, MA-Trace (full) shows little progress on 6h_vs_8z
and corridor, as opposed to MA-Trace (obs). Therefore we consider MA-Trace (obs) to be our default
version.

Such behavior is a bit counter-intuitive. We speculate that some information available in the agents’
observation is not easily accessible (computable) for the full state. To verify this, we compared the
two versions with another, MA-Trace (obs+full), which uses both the aggregated observations and
the full state. As we can see in Figure 16, it trains similarly to MA-Trace (obs), without significant
advantage on any task. Moreover, on the hardest tasks, the training progresses a bit slower. We leave
a precise explanation of this behavior as future work.

E.2 Importance sampling ablation

We claim that the strong performance of MA-Trace is due to using importance weights. To verify
this statement, we compared MA-Trace with its ablation without importance weights. The training
curves for all the tasks are shown in Figure 13. Without the corrections, the training is unstable and
reaches good performance only on the easiest tasks. The difference gets even larger when using more
compute workers. One notable exception is the corridor task, in which the ablated version trains
faster than MA-Trace, though eventually both reach similar results.

E.3 Scaling experiments

MA-Trace utilizes importance sampling to reduce the shifts arising naturally in distributed training
(when behavioral policies lag behind the target policy). This allows our algorithm to be highly
scalable. Our experiments confirm that MA-Trace scales almost linearly on at least 70 workers.

As shown in Section E.2, the importance weights indeed enable stable training, even when distributed
to many workers. What is equally important, our experiments show that scaling does not affect the
learned policies significantly.
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Figure 13: Comparison of MA-Trace with and without importance sampling.

F StarCraft Multi-Agent Challenge

To evaluate MA-Trace, we use StarCraft Multi-Agent Challenge (SMAC) [28]. It is a standard
benchmark for multi-agent algorithms, used e.g. by [26, 11, 40] and many others. The challenge is
based on a popular real-time strategy game StarCraft II and consists of 14 micromanagement tasks.
Each task is a small arena in which two teams, controlled by the player by the built-in AI, fight
against each other. The goal in every task is to defeat (kill) all the enemy units.

Units belong to one of the three races: Protoss, Terran or Zerg. Additionally, they are divided on a
number of classes with unique characteristic, such as speed, shooting range, fire power etc. In each
turn they can move or attack an enemy in their shooting range. A unit is considered defeated if its
health drops to 0. A defeated unit remain inactive.

SMAC provides a variety of different tasks. In the easier tasks, the opponents control the same forces.
Therefore to win such a game, it is enough to coordinate slightly better than the built-in AI. In the
harder tasks, however, the computer starts with a stronger squad. This can be a minor advantage, such
as in the task 10 marines vs 11 marines, or quite a big difference. In particularly hard scenarios, such
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as corridor, it is unreasonable for the player to engage in an open fight, so it is essential to develop a
long-term strategy to obtain a positional advantage.

For the hardest tasks, the authors of the challenge consider the so-called microtricks sufficient to win
consistently. However, it appears that MA-Trace in some cases develop unexpected strategies, see
e.g. Section F.2. What is particularly interesting, our algorithm manages to learn some techniques
associated with professional human players, such as focusing fire, withdrawing low-health units,
hit-and-run, sacrificing a unit to deceive the opponent and others.

Units in the game have limited sight range, which makes the environment partially observable. The
observations received by individual agents contain information about all the visible units (including
themselves) – their health, energy, position, class, and other relevant features. All the units beyond
the sight range are marked as dead (i.e., defeated and invisible units are not distinguished). It is
possible that the aggregated observations do not provide full information, for there can be enemy
units hidden beyond the sight range of any ally. Therefore, to facilitate centralized training, SMAC
provides additional access to the full state of the environment.

Learning from binary reward (win/lose) is prohibitively hard in most tasks. Therefore SMAC provides
dense rewards to enable training. The team receives additional points for damage dealt and defeating
a unit. This scheme is arguably natural and leads to successful training. However, in some cases, it
might reinforce undesired behaviors, see, e.g., Section F.1.

F.1 3s_vs_5z task

MA-Trace masters all the tasks except 3s_vs_5z, see Table 1. In that scenario, we control 3 Stalkers
fighting against 5 Zealots. Stalkers can attack the enemy from a distance; however, they are no match
for Zealots in close combat. A strategy to gain an advantage is to shoot the enemies while they are
away and flee when they get close.

All the units in this task are Protoss, so they all have protective shields. The shields absorb some
amount of damage, until they are down. However, as opposed to regular health, the shields regenerate
slowly with time. As dealing damage yields rewards, it might be beneficial to keep enemy alive
infinitely. Apparently, MA-Trace learns to this strategy.

Figure 14 shows an example of the winning rate and episode rewards. As we can see, after a short
training, our algorithm wins almost every time. Further, it discovers that the reward scheme can be
exploited – at some point, the mean return increases fast, while the actual win rate decreases and
becomes unstable.

Figure 14: The winning rate and episode rewards in a training for the task 3s_vs_5z.

F.2 Corridor task

Another super-hard scenario (according to [26]) is corridor. In this task, we control a team of 6
Zealots against 24 enemy Zerglings. Though Zealots are far more powerful in combat, they are
outnumbered; thus, the open fight is clearly an unreasonable strategy. However, the fighting arena
contains a narrow passage. The authors of SMAC suggest that a winning strategy is to gather the
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forces in that passage, where the number of enemy units should lose its importance (possibly inspired
by the Battle of Thermopylae).

However, MA-Trace develops an alternative interesting strategy. Firstly, our forces split into two
groups. One (strong) hides in the corner, where it easily defeats a few enemies, while the other (one
or two units) attracts majority of the enemies to the other side and sacrifice itself. After defeating the
second group, the enemies pass to the far side of the arena and wait, unaware of the hidden group.
Then the strong group attack them from behind and defeat the Zerglings one by one.

The strategy is outlined in Figure 15.

(a) Split into two groups.

(b) Hide the stronger, sacrifice the weaker.

(c) Attack from behind.

Figure 15: The consecutive parts of strategy executed by MA-Trace on the corridor task. The yellow soldiers
are our units, while the blue creatures are enemy units.
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G Full training data

In this section, we provide the main practical results of our work – complete training data for all
standard versions of MA-Trace on all the SMAC tasks. They were trained for three days or until
convergence. We report the median win rates and interquartile ranges.

Figure 16: Training curves of main MA-Trace versions on all the tasks available in StarCraft Multi-Agent
Challenge.

26


	Introduction
	Related work
	Background
	MA-Trace algorithm
	Overview of the algorithm
	Theoretical analysis of MA-Trace

	Experiments
	Environment
	Main result
	Training details
	Ablations

	Limitations and further work
	Conclusions
	The proof of the fixed point theorem
	Centralized training and decentralized execution
	Networks' architectures
	Sharing parameters
	ID experiments
	Agents with memory

	Training details
	SEED RL
	Hyperparameters
	Infrastructure used

	Ablations
	Critic comparison
	Importance sampling ablation
	Scaling experiments

	StarCraft Multi-Agent Challenge
	3s_vs_5z task
	Corridor task

	Full training data

