
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT REALLY MATTERS IN
MATRIX-WHITENING OPTIMIZERS?

Anonymous authors
Paper under double-blind review

ABSTRACT

A range of recent optimizers have emerged that approximate the same matrix-
whitening transformation in various ways. In this work, we systematically de-
construct such optimizers, aiming to disentangle the key components that explain
performance. Under tuned hyperparameters across the board, all flavors of matrix-
whitening methods reliably outperform their elementwise counterparts, such as
Adam. Matrix-whitening is often related to spectral descent – however, metrics
reveal that performance gains are not explained solely by accurate spectral nor-
malization – particularly, SOAP displays the largest per-step gain, even though
Muon more accurately descends along the steepest spectral descent direction. In-
stead, we argue that matrix-whitening serves two purposes, and the variance adap-
tation component of matrix-whitening is the overlooked ingredient explaining this
performance gap. Experiments show that variance-adapted versions of optimizers
consistently outperform their sign-descent counterparts, including an adaptive ver-
sion of Muon. We further ablate variance adaptation strategies, finding that while
“lookahead” style approximations are not as effective, low-rank variance estima-
tors can effectively reduce memory costs without a performance loss.

1 INTRODUCTION

In recent years, increasing growth in the scale of neural networks has resulted in a strong need to
understand how neural networks can be trained efficiently. The workhorse of modern deep learning,
gradient descent, has proven extensively scalable yet remains an inherently iterative process. By
gaining a deeper understanding of such processes through both theoretical and empirical reconcilia-
tion, the field may continue the steady march in improving neural network training.

A range of recent optimizers have emerged that share a similar matrix-whitening transformation
(Yang & Laaksonen, 2008; Carlson et al., 2015b; Gupta et al., 2018). While differing in their exact
approximations and implementation, such optimizers can generally be derived from the same core
principles (Bernstein & Newhouse, 2024). However, the concrete algorithms proposed have often
contained auxiliary implementation details, potentially obscuring the root cause of the performance
gain. Clarity is at times obscured further by uneven hyperparameter tuning (Schmidt et al., 2021;
Zhao et al., 2024; Wen et al., 2025).

In this work, we systematically deconstruct such optimizers, aiming to disentangle the key com-
ponents that explain performance. We establish a controlled experimental setup, with an explicit
emphasis on breaking down methods into their constituent parts. We conduct a thorough sweep
over four key hyperparameters, noting that optimal learning rate and weight decay parameters vary
greatly across optimizer flavors. When all methods are tuned, we confirm that matrix-whitening
optimizers reliably outperform elementwise transformations like Adam by a nontrivial margin.

However, the story comparing matrix-whitening optimizers is less clear. Empirically in our setting,
SOAP (Vyas et al., 2024) displayed the largest per-step gain in performance, outperforming Muon
(Jordan et al.). In an effort to understand the cause of these gains, we consider a hypothesis that the
strength of matrix-whitening comes from its interpretation as steepest spectral descent (Bernstein &
Newhouse, 2024), and that Shampoo-style explicit matrix inversion provides a more accurate spec-
tral normalization than approximate Newton-Schulz iteration. However, metrics show that Muon-
style methods result in a tighter spread of singular values than SOAP, leading to a conclusion that
performance gains are not explained solely by accurate spectral normalization.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In contrast, we argue that matrix-whitening serves two purposes—both spectral normalization and
variance adaptation, and this variance adaptation aspect of whitening is a crucial, and often over-
looked, ingredient in achieving strong performance. We identify three optimizer pairs that utilize the
same spectral transformation, but opt to use signed descent vs. variance-adapted descent – Signum
vs. Adam, SPlus vs. SOAP, and Muon vs. AdaMuon. In all cases, the variance-adapted versions
result in superior performance difference almost equal to the gap between Adam and Muon.

Having understood the above relationship, we then seek to understand how gains from variance-
adaptation can be achieved with less computational and hyperparameter requirements. We begin by
considering the family of “lookahead” optimizers that can be seen as approximating a continuous
function over expectations over the sign, but conclude that this is ineffective in closing the gap.
Instead, we show that low-rank approximations of elementwise variance estimates can be used with
negligible impact, at at times even superior performance.

Our main contributions in this work are in establishing a controlled experimental framework for
comparing optimizer flavors, and in the use of this framework to identify variance-adaptation as an
critical ingredient. We further detail this claim through a thorough ablation of variance-adaptation
across three matrix-whitening optimizer families. We do not claim that the spectral-descent view of
matrix-whitening is incorrect, rather, we show that spectral normalization is consistently effective,
but argue it is not the full picture, and pure orthogonalization methods – such as Muon, Dion (Ahn
et al., 2025) and Polargrad (Lau et al., 2025), among others – can be further improved. We hope
our findings encourage the study of optimizer flavors in terms of interchangeable components rather
than entirely separate methods.

2 RELATED WORK

Optimization for neural networks. The search for strong neural network optimization strategies
has a long history alongside the adoption of deep learning (LeCun et al., 2002; Martens et al., 2010;
Sutskever et al., 2013). Two crucial techniques are momentum along with adaptive elementwise
preconditioning (Hinton, 2012; Duchi et al., 2011), which are combined in the Adam optimizer
(Kingma & Ba, 2014). Adam can seen as an elementwise approximation to the whitening metric (as
discussed in Equation (2)), a metric which has also been related to second-order descent over the
Hessian (in particular, the Gauss-Newton approximation) (Martens et al., 2010; Korbit et al., 2024;
Bottou et al., 2018; Schraudolph, 2002; Li, 2017; Pooladzandi & Li, 2024; LeCun et al., 2002; Liu
et al., 2023), to natural gradient descent over a form of the Fisher information matrix (Amari, 1998;
Sohl-Dickstein, 2012; Kunstner et al., 2019), to a signal-to-noise trust region (Balles & Hennig,
2018; Orvieto & Gower, 2025), and to descent under the spectral norm (Bernstein & Newhouse,
2024). Our work takes a step towards bridging these perspectives, showing how performance may
in fact come from several of these arguments, as we will show concretely.

Matrix-based optimizers. More recently, optimizers have been proposed that explicitly account
for the matrix-based structure of neural networks. K-FAC (Martens & Grosse, 2015) introduced
a dimension-wise Kronecker factorization scheme, which was further refined in Shampoo (Gupta
et al., 2018) and its variants. PSGD (Li, 2017; 2018) also utilizes this scheme in its Kron variety.
The Muon family (Jordan et al.) again utilizes the matrix-structure of a network to define a computa-
tionally efficient orthogonalization procedure, with alternate orthogonalization techniques being an
open problem (Ahn et al., 2025; Lau et al., 2025). Our work views such methods in a unified light,
allowing experiments at the resolution of individual components of matrix-based optimization.

Benchmarks for neural network training. There have been a number of previous works which
evaluate a suite of optimizers for comparison purposes (Schmidt et al., 2021; Dahl et al., 2023;
Kasimbeg et al., 2025; Kaddour et al., 2023), some of which are concurrent (Wen et al., 2025; Se-
menov et al., 2025). Closest to our work in flavor are Zhao et al. (2024) and Wen et al. (2025), which
similarly place an emphasis on disentangling performance via careful sweeping of hyperparameters,
with the latter considering matrix-based optimizers. The difference is that in this work, we explic-
itly control for all auxiliary decisions (e.g., the optimization strategy for non-matrix parameters) and
deconstruct each optimizer into only its minimal transformation – this allows us to conduct fine-
grained ablations, eventually concluding that the spectral-normalization aspect of matrix-whitening
may not be the full story.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: Our experimental setup aims to isolate the core effects of various matrix-whitening
optimizers on Transformer training. For each method, we sweep over learning rate, weight decay,
β1, and β2. All runs use the same initial parameters and data ordering. Nonstandard parameters
(embed, output, and layernorm) are optimized using Adam with fixed tuned hyperparameters.

3 PRELIMINARIES

Gradient descent on non-Euclidean metrics. Gradient descent can be seen as solving for a trade-
off between linear improvement and a distance penalty over parameters. While standard gradient
descent assumes a Euclidean distance over parameters, we can generally represent second-order
distances using a symmetric positive-definite metric M , with an analytic solution of:

u = argmin∆θ −gT∆θ︸ ︷︷ ︸
Improvement

+(1/2)∆θTM∆θ︸ ︷︷ ︸
Distance Penalty

= M−1g, (1)

where the matrix-inverse M−1 is sometimes referred to as a preconditioner.

Whitening metric. While there are many possible distance metrics to descend on, many recent
optimizers have converged on a specific metric in particular, which we refer to as the whitening
metric following (Yang & Laaksonen, 2008). Mechanically, the whitening metric can be written as
the square-root uncentered covariance of incoming gradients:

MWhitening = Ex,y

[
∇θL(θ, x, y)∇θL(θ, x, y)

T
]1/2

= Ex,y

[
ggT

]1/2
. (2)

Prior works have examined the relation of the whitening metric to the Hessian and to the Fisher in-
formation matrix, for which we defer to previous discussion (Kunstner et al., 2019). Adam (Kingma
& Ba, 2014) can be understood as utilizing an elementwise approximation to the whitening metric,
resulting in an efficient update where m = diag(M):

m = Ex,y

[
g2
]

u = g/m. (3)

Matrix-based whitening. Two powerful connections appear when we accept that in neural net-
works, parameters are structured matrices rather than an arbitrary set. First, we can represent the
per-layer whitening metric in terms of its Kronecker factors. For dense layer parameters with the
natural matrix form g ∈ Rmn ↔ G ∈ Rm,n, this defines the convenient approximation:

ggT ← approx.→ (GGT)1/2 ⊗ (GTG)1/2. (4)
The key benefit of Kronecker approximation is that we can precondition via the inverted Kronecker
factors directly, without ever actually forming the full product. This results in the following matrix-
form whitening update utilized by the Shampoo (Gupta et al., 2018) family:

Ex,y[gg
T]−1/2g ← approx.→ Ex,y[GGT]−1/4 G Ex,y[G

TG]−1/4 (5)

Second, if we ignore the expectation, the term above is equivalent to the orthogonalization of G
(Carlson et al., 2015b;a; Tuddenham et al., 2022; Bernstein & Newhouse, 2024; Lau et al., 2025).
This relation can be derived by rewriting G as its singular-value decomposition, G = UΣV T :

(GGT)−1/4 G (GTG)−1/4 = (UΣ2UT)−1/4 UΣV T (V Σ2V T)−1/4 = UV T , (6)
and is the solution to steepest descent under the spectral norm of the matrix.

A range of optimizer families – such as PSGD, Shampoo, and Muon – can be seen as approximating
the above behaviors, and we refer to these as matrix-whitening methods. While similar in mo-
tivation, these families differ in their core algorithmic decisions, and we will take a step towards
disentangling these choices in the following section.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

10 1/2 10 1/4 10 1/8 1 101/8 101/4 101/2

Relative Learning Rate

2.94

2.96

2.98

3.00
Va

lid
at

io
n

Lo
ss

10 1/2 10 1/4 1 101/4 101/2

Relative Weight Decay

2.94

2.96

2.98

3.00

10 1/2 10 1/4 1.0 10 1/4 101/2

Relative Beta1 Half-Life

2.94

2.96

2.98

3.00

Va
lid

at
io

n
Lo

ss

10 1/2 1.0 101/2

Relative Beta2 Half-Life

2.94

2.96

2.98

3.00

Va
lid

at
io

n
Lo

ss

Hyperparameter Sensitivity of Optimizers

adam muon adamuon soap100 splus100 psgd soap10

Figure 2: All methods are tuned to within a local optimum of four key hyperparameters. Matrix-
whitening optimizers generally maintain their relative performance gains across local adjust-
ments to hyperparameters. Plots are centered around each method’s optimal hyperparameters.

4 EXPERIMENTAL SETUP

We now conduct an empirical study of optimizers that approximate the matrix-whitening update.
In our experimental setting (Figure 1), we train a standard GPT-2 architecture Transformer (Brown
et al., 2020; Vaswani et al., 2017) on a next-token prediction language modelling objective with the
OpenWebText dataset (Gokaslan et al., 2019). The model follows the ”Base” size architecture and
has 162M total parameters. We train for 10,000 gradient steps on a batch of 1024 sequences of
length 256, which is roughly a 1x Chinchilla ratio (Hoffmann et al., 2022). We use a fixed warmup
of 200 steps and a cosine learning rate schedule afterwards.

The primary aim of this comparison is to remove confounding factors and examine only the core
differences between each optimizer. Thus, we ensure that each trial uses the same data ordering,
random seed, and initial parameters. For nonstandard parameters (i.e. layer norm scales and in-
put/output heads), we update using a separate Adam optimizer with fixed tuned hyperparameters.
Whenever possible, we disregard auxiliary design choices in each algorithm (e.g. learning rate
grafting, Nesterov momentum, or iterate averaging) and focus on the core whitening behavior.

Importantly, we sweep over four key hyperparameters – learning rate, weight decay, momentum
coefficient β1, and variance coefficient β2 (when applicable) – and do so independently for each
method. We sweep learning rate within a resolution of 101/8 ≈ 1.32, weight decay within a reso-
lution of 101/4 ≈ 1.78, β1 within a half-life resolution of 101/4 ≈ 1.78, and β2 within a half-life
resolution of 101/2 ≈ 3.15. All methods are tuned to within a local optimum of these hyperparam-
eters as displayed in Figure 2. As discussed in Table 1, we believe this resolution to be sufficient to
differentiate performance.

We benchmark the performance of the following optimizers, choosing method-specific settings that
lead to the strongest performance when computationally reasonable:

• Adam (Kingma & Ba, 2014), a baseline optimizer that is the current standard for training
deep neural networks. Updates are normalized by an elementwise second moment buffer.

• Signum (Bernstein et al., 2018), which updates via the elementwise sign rather than nor-
malizing by second-moment.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Val. Loss LR WD β1 Half-Life β2 Half-Life Comparable to...

±0.005 1.33 1.78 1.78 ≥ 3.15 n/a
±0.01 1.78 3.15 3.15 ≥ 3.15 SOAP-100 vs. SOAP-10
± 0.02 1.78 ≥ 3.15 ≥ 3.15 ≥ 3.15 Adam vs. Muon

Table 1: Required hyperparameter tuning resolution to achieve a desired resolution in validation loss.
We tuned hyperparameters to a resolution of ±0.005 validation loss, enough to distinguish
between optimizer flavors which can result in a difference of ±0.02.

Method LR WD β1 β2 Walltime Adam Steps Val Loss

Adam 0.001 1.0 0.95 0.99 1.0 1.0 2.982 ±.008

Signum 0.000177 3.162 0.9 - 1.0 > 1.0 3.006 ±.008

PSGD 0.000264 0.001 0.968 - 4.8 0.95 - 1.0 2.973 ±.006

Shampoo-100 (Fails to converge)
Shampoo-10 0.00132 1.0 0.9 0.99 3.2 0.80 - 0.83 2.963 ±.004

SPlus-100 0.1 0.01 0.99 0.968 1.3 0.80 - 0.83 2.962 ±.007

SPlus-10 0.1 0.01 0.99 0.99 3.2 0.77 - 0.80 2.954 ±.007

SOAP-100 0.00175 0.316 0.9 0.99 1.2 0.71 - 0.74 2.946 ±.003

SOAP-10 0.00311 0.316 0.968 0.99 3.1 0.66 - 0.68 2.939 ±.003

Muon 0.00770 0.1 0.9 - 1.07 0.80 - 0.83 2.964 ±.005

AdaMuon 0.000312 3.162 0.968 0.99 1.07 0.74 - 0.77 2.950 ±.003

Table 2: Under optimal hyperparameters, matrix-whitening methods outperform Adam. The
highest per-step performance is achieved by SOAP, followed by AdaMuon which strikes a strong
balance between wallclock time and final validation loss. ”Adam Steps” compares against how long
Adam takes to reach an equivalent validation loss, see Appendix Section A.3 for details.

• Shampoo (Gupta et al., 2018; Shi et al., 2023), a matrix optimizer which explicitly tracks
Kronecker factors as in Equation (5). Every N gradient steps, the left and right precondi-
tioners are calculated by raising each factor to the −(1/4) matrix power, and this result is
cached until the next recalculation. We consider N ∈ {10, 100}.

• SOAP (Vyas et al., 2024), a variant of Shampoo where updates are rotated onto the eigen-
basis of the left/right factors. In this rotated space, the updates are normalized via an
elementwise uncentered variance (i.e. an inner Adam update), then rotated back.

• SPlus (Frans et al., 2025), which similarly to SOAP rotates updates onto the eigenbasis, but
takes the elementwise sign rather than normalizing by an explicit second moment buffer.

• Muon (Jordan et al.), an optimizer which implicitly orthogonalizes updates via Newton-
Shulz iteration, and can be seen as descending under the spectral norm (Equation (6)).

• AdaMuon (Si et al., 2025), a variant on Muon where a variance buffer is estimated over
post-orthogonalized updates, and is used for elementwise normalization. We use a simpli-
fied form of the original algorithm that does not use the pre-NS sign transformation.

• PSGD (Fisher-Kron) (Li, 2017; 2018), which keeps track of a left/right preconditioner
that is learned via iterative gradient descent. We update the precondioner at every step.

For all optimizers, preconditioning is performed on a momentum buffer, as is standard practice.

As shown in Table 2, the considered set of optimizers outperform Adam across the board, reaching
an equivalent validation loss within between 66% to 83% of the gradient steps for the Shampoo and
Muon families. We report a margin of error as the difference within our smallest hyperparameter
search resolution, and note that the gap between optimizer flavors is an order-of-magnitude higher.
Notably, the gains in performance from utilizing a more performant optimizer are consistent even
when considering sub-optimal hyperparameters, e.g. Muon with a 2x greater-than-optimal learning
rate remains stronger than Adam with the equivalent adjustment, as shown in Figure 2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000
Training Steps

1

2

4

Max/Avg Ratio of Singular Values
soap100
muon
splus100

1 3 5 10 25
Muon Newton-Schulz Iters

2.94

2.96

2.98

3.00
muon

2000 500 100 50 25 10 5
SPlus Inversion Frequency

splus

Validation Loss vs. Compute Overhead

Figure 3: Left: Muon descends under the spectral norm more accurately than SOAP or SPlus.
This is achieved when all singular values in the update are ±1, and the ratio between the maximum
and average is close to 1. In contrast, the Shampoo-style methods perform this only loosely, with a
ratio between 2 to 3. Adam results in a ratio of ≈ 12 (not plotted). Right: Even with increased
computation, Muon or SPlus do not reach the empirical performance of SOAP. For Muon, we
increase the number of Newton-Schulz iterations at each step. For SPlus, we increase the frequency
of updating the eigenbasis. The red dotted line represents the performance of SOAP-100.

5 PERFORMANCE GAINS ARE NOT EXPLAINED SOLELY BY ACCURATE
SPECTRAL NORMALIZATION

In our experimental setting, SOAP displays the largest per-step gain in performance, and both SOAP-
100 and SOAP-10 outperform other optimizer flavors. We have reasonably outruled the hypothesis
of unequal hyperparameter tuning. What other reasons may explain the difference?

One notable comparison is between SOAP and Muon, as the two optimizers utilize different com-
putational strategies to perform the matrix-whitening operation. SOAP keeps a historical average of
the left and right second moments, then uses an explicit solver to locate the eigenbasis (we use eigh
in our implementation). Incoming momentum buffers are then rotated onto this basis, normalized
elementwise, then rotated back. In contrast, Muon utilizes a Newton-Schulz iteration to implicitly
orthogonalize the momentum buffer, aiming to set all singular values to ±1.

A reasonable hypothesis is that the approximate nature of the Newton-Schulz iteration is not as ef-
fective as the explicit eigendecomposition used in Shampoo-style methods. To investigate this claim,
we log both the maximum singular value (i.e. spectral norm) and the average singular value of up-
dates, visualized in Figure 3 (left). As expected, the gap between the maximum and average singular
values is largest in Adam, around ≈ 12. However, in comparison to SOAP which ranges from 2 to
3, Muon achieves a tighter spread in its singular values, with a ratio very close to 1. In other words,
even though Muon achieves a more accurate solution to the steepest descent direction under
the spectral norm (Equation (6)), SOAP results in a stronger final performance.

Additionally, we show that the eigenbasis pairs of SOAP can be even further approximated, and
performance still remains stronger than Muon. First, SOAP utilizes a cached eigenbasis for com-
putational reasons, and performance remains strong even when this eigenbasis is cached for 100
gradient steps. Second, it has been shown that SOAP can be performed with only one side pre-
conditioned with relatively little degradation (Vyas et al., 2024). We confirm these claims, and
additionally show that the output basis can be completely ignored – i.e. the matrices are only rotated
along the input axis – and performance is negligibly affected (Appendix Section A.1).

As a final point of evidence, we find in Figure 3 (right) that Muon and SPlus cannot reach the
performance of SOAP even with additional computational budget for the optimizer. Specifically, we
increase the amount of Newton-Schulz iterations in Muon, and the frequency of matrix-inversions
in SPlus, and find that gains from a more accurate preconditioner plateau.

Together, these observations lead us to believe that faithfully descending along the spectral norm
may not be the optimal behavior for a matrix-whitening optimizer. Instead, are there other aspects
of matrix-whitening that may be equally important?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Signum Adam SPlus SOAP Muon AdaMuon
2.93
2.94
2.95
2.96
2.97
2.98
2.99
3.00
3.01

Va
lid

at
io

n
Lo

ss

Sign Optimizers vs. Variance-Adapted Optimizers

Figure 4: Variance-adapted variants of optimizers outperform their strictly signed-descent
counterparts. As elaborated more in Table 3, these improvements remain when the variance buffer
is factorized into a rank-1 approximation, as well as to a less degree when β1 = β2. Variance adap-
tation can be interpreted as imposing a signal-to-noise dependent adaptive trust region, composable
with the rotational or spectral-normalizing aspects of matrix-whitening.

6 VARIANCE ADAPTATION IS A CRUCIAL MATRIX-WHITENING INGREDIENT

When examining the design of optimizer flavors, a recurring choice occurs in approximating Equa-
tion (2) – regardless of the prior or post transformations, a raw update can be normalized by either
1) its instantaneous sign, or 2) by its square-root historical (uncentered) variance, which we refer to
as variance adaptation following (Balles & Hennig, 2018). This distinction can be made explicitly
clear by considering three pairs of optimizers:

Signum: sign(ḡ) → Adam: ḡ ⊘ E[g2]−1/2 (7)

SPlus: unrot(sign(rot(ḡ))) → SOAP: unrot(rot(ḡ) ⊘ E[rot(g)2]−1/2) (8)

Muon: NS(ḡ) → AdaMuon: NS(ḡ) ⊘ E[NS(g)2]−1/2 (9)

For each pair, the same rotational behavior is used (e.g. an identity basis, a rotated eigenbasis, or
implicit Newton-Shulz basis), but the elementwise normalizations are handled differently. Note that
the Newton-Shulz operator of Muon is implicitly a signed descent method, as it approximates the
orthogonalization of ḡ such that all singular values are ±1.

We find that utilizing variance adaptation consistently achieves stronger results than otherwise. This
trend remains consistent across all three optimizer pairs, as shwon in Figure 4, and the performance
difference is nontrivial – for example, the difference between Muon and Adamuon is almost as large
as the difference between Adam and Muon itself, indicating that variance adaptation is roughly as
important as the spectral-normalizing aspect of matrix whitening.

Notably, variance adaptation is a natural consequence of the original whitening metric (Equa-
tion (2)), but theoretical equivalences between matrix-whitening methods and spectral descent
(Bernstein & Newhouse, 2024) often rely on “disabling the accumulation” and treating all meth-
ods as signed descent (in a basis of choice), which may not be capturing the full picture. In fact,
comparing Adam and Muon may be understating the gains from Newton-Schulz orthogonalization;
a more fine-grained comparison would be Signum vs. Muon, or Adam vs. AdaMuon. We believe
that proposed optimizers that focus solely on orthogonalizing updates (Ahn et al., 2025; Lau et al.,
2025) will gain from re-implementing variance-adaptation in some form.

6.1 WHY DOES VARIANCE ADAPTATION STILL WORK WHEN DONE AFTER
ORTHOGONALIZATION?

Interestingly, variance adaptation appears to provide a benefit regardless of the specific basis in
which the adaptation is performed in. In SOAP, variance adaptation is performed in the rotated
eigenbasis, as a pure alternative to signed descent. The same exchange is done in Adam versus
Signum. However, in the AdaMuon setup, variance adaptation is performed in the original element-
wise basis, after the update has already been spectrally-normalized via the Newton-Schulz iterations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Val Loss Walltime Memory Usage

Elementwise Basis
Sign [Signum] 3.008 ±.008 1.0 2n2

Sign + Lookahead [Lion] 3.008 ±.008 1.0 2n2

Variance-Full (β1 = β2) 2.994 ±.008 1.0 3n2

Variance-Factorized [Adafactor] 2.989 ±.008 1.0 2n2 + 2n
Variance-Full [Adam] 2.982 ±.008 1.0 3n2

Shampoo Basis (Every 100)
Sign [SPlus] 2.961 ±.003 1.2 4n2

Sign + Lookahead 2.949 ±.003 1.2 4n2

Variance-Full (β1 = β2) 2.952 ±.003 1.2 5n2

Variance-Factorized 2.946 ±.003 1.2 4n2 + 4n
Variance-Full [SOAP] 2.946 ±.003 1.2 5n2

Newton-Schulz ”Basis”
Sign 2.964 ±.003 1.07 2n2

Sign + Lookahead [Muon] 2.961 ±.003 1.07 2n2

Variance-Full (β1 = β2) 2.953 ±.003 1.07 3n2

Variance-Factorized 2.943 ±.003 1.07 2n2 + 2n
Variance-Full [AdaMuon] 2.950 ±.003 1.07 3n2

Table 3: Ablations on variance-adaptation across three optimizer families. When a specific
combination resembles a previously proposed method, we include that method in brackets.

In both cases, variance adaptation provides a reliable performance boost. One understanding that
may explain the this phenomenon is the interpretation of variance adaptation as a heuristic for dy-
namically adjusting a trust region in proportion to a signal-to-noise ratio. As described in (Orvieto
& Gower, 2025), when β1 = β2, Adam can be re-written as:

Adam: sign(ḡ) · 1√
1 + σ̄2/ḡ2

(10)

where σ̄2 = β · EMAβ

[
(ḡ − g)2

]
, i.e. an exponential moving average of the centered variance of

gradients. Under this interpretation, the variance adaptation term serves as a dynamic learning-rate
adjustment and does not necessarily have to share the same basis as the ‘sign‘ term.

For this reason, we argue that matrix-whitening as described in Equation (2) serves two interpretable
purposes. The first is to spectrally normalize updates, in effect reducing the learning rates of corre-
lated parameters to prevent over-updating. The second is to further modulate these learning rates by
a signal-to-noise term. While typically performed together, these two transformations can also be
decoupled and done separately, as is the case in AdaMuon.

As a didactic example, we consider the “SPA” algorithm (SPlus-then-Adam), that first spectrally-
normalizes updates with SPlus, and performs variance-modulation afterwards:

SPA: unrot(sign(rot(ḡ))) ⊘ E[unrot(sign(rot(ḡ))2]−1/2 (11)

When tuned, this addition achieves a final validation loss of 2.955, improving upon SPlus (albeit to
a lesser degree than SOAP). We leave further examination on how to reconcile the proper bases for
spectral-normalization and variance-adaptation to future investigation.

6.2 CAN LOOKAHEAD STRATEGIES REPLACE VARIANCE ADAPTATION?

The downside of variance adaptation is that one must keep track of an additional set of parameters
in memory. Signed methods employing ”lookahead” techniques (e.g. Lion Chen et al. (2023) and
under loose interpretations MARS Yuan et al. (2024) or Cautious optimizers (Liang et al., 2024))
are a way to approximate this behavior without the additional memory cost. The general idea is
to calculate the sign over (1 − β3)ḡ + β3g, where β3 is a new hyperparameter. For high-variance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

gradients, the intuition is that the sign will flip more often between subsequent updates, resulting in
a smaller overall change. This can also be interpreted as a generalization of Nesterov momentum
(Dozat, 2016) which fixes β3 = 1 − β1. In Table 3, we sweep over β3 for lookahead variants of
the signed optimizers, and find that while gains can be achieved, these variants cannot reach the
performance of variance-adapted variants (and require a sensitive additional hyperparameter).

6.3 CAN LOW-RANK FACTORIZATION REDUCE THE MEMORY FOOTPRINT OF VARIANCE
ADAPTATION?

An alternate way to reduce memory requirements is to utilize a rank-1 approximation of the variance
buffer, reducing memory usage from mn to m+n. We find that factorized variance estimators retain
almost exactly the same performance as the full matrices, and at times even improve performance.
We utilize the following scaled Adafactor (Shazeer & Stern, 2018) update:

vL ← (1− β2) · vL + (1− β2) ·mean(G, axis=0) (12)
vR ← (1− β2) · vR + (1− β2) ·mean(G, axis=1) (13)

U = Ḡ ⊘ (vLv
T
R) · (len(vR)/sum(vL)) (14)

As shown in Table 3 under the ”Variance-Factored” label, using a rank-1 factorization results in neg-
ligible performance changes. For the specific case of Muon, the factorized variance estimator even
improves performance over the full matrix estimator. We hypothesize that this may be due to a bias-
variance tradeoff in the variance estimator. Taking the view from Section 6.1, variance adaptation
can be seen as assigning a dynamic learning-rate to specific parameters, and this adaptivity may be
more effective in practice if averaged over multiple parameters sharing a natural relationship, such
as the input/output bases of a weight matrix (Morwani et al., 2024).

7 DISCUSSION AND CONCLUSION

In this work, we undertook a deconstruction of various matrix-whitening optimizers under a
carefully-tuned experimental setup. Using this setting, we find evidence that matrix-whitening per-
forms two key transformations–spectral normalization and variance adaptation. However, not all
practical methods achieve both transformations. Spectrally-normalized methods outperform their el-
ementwise counterparts, and variance-adapted methods outperform their sign-descent counterparts.
Notably, these two components may be implemented in a decoupled manner, opening up the design
space for future optimizers.

Limitations. We intentionally opt for a limited breadth of scope for our experiments – a single
model architecture under a single language modelling objective – in favor of greater depth of abla-
tions. While previous papers have also adopted a similar scope (Zhao et al., 2024; Liu et al., 2023),
conclusions may transfer to varying degrees to different model sizes and data ratios, and we refer to
(Wen et al., 2025) for a recent exploration of these scaling laws.

While we carefully sweep the learning rate, weight decay, β1, and β2, we did not search over other
hyperparameters such as Adam’s ϵ, warmup, or alternate learning rate schedules. Wall-clock times
are presented as a reference point, but wall-clock times may differ greatly depending on the specific
hardware configuration used in training.

In this work, we focused on the core matrix-whitening behavior of optimizers. We intentionally did
not consider changes to other aspects of optimization such as the initialization, momentum buffer,
or automatic learning rate schedules, which may yield additional benefits.

A challenge. In our specific setting, the best methods improved over Adam by around 0.4 final
validation loss, moving from 2.98 to 2.94. The ablations we consider in the paper are able to effect
changes on the order of ±0.2 validation loss. However, we believe that a more prominent jump in
performance will require additional significant insights, perhaps beyond the abstraction of matrix-
whitening. We present the challenge, is there an alternate preconditioning scheme that can double
these gains, and achieve a validation loss of < 2.90 under equivalent constraints?

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide the exact code required to fully reproduce the results at https://anonymous.
4open.science/r/matrix-whitening-submit-5DF2/, and describe the full experi-
mental details in the Appendix.

REFERENCES

Kwangjun Ahn, Byron Xu, Natalie Abreu, and John Langford. Dion: Distributed orthonormalized
updates. arXiv preprint arXiv:2504.05295, 2025.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–
276, 1998.

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In International Conference on Machine Learning, pp. 404–413. PMLR, 2018.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pp. 560–569. PMLR, 2018.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

David Carlson, Volkan Cevher, and Lawrence Carin. Stochastic spectral descent for restricted boltz-
mann machines. In Artificial intelligence and statistics, pp. 111–119. PMLR, 2015a.

David E Carlson, Edo Collins, Ya-Ping Hsieh, Lawrence Carin, and Volkan Cevher. Preconditioned
spectral descent for deep learning. Advances in neural information processing systems, 28, 2015b.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36:49205–49233, 2023.

George E Dahl, Frank Schneider, Zachary Nado, Naman Agarwal, Chandramouli Shama Sastry,
Philipp Hennig, Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg, Daniel Suo, et al.
Benchmarking neural network training algorithms. arXiv preprint arXiv:2306.07179, 2023.

Timothy Dozat. Incorporating nesterov momentum into adam. 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Kevin Frans, Sergey Levine, and Pieter Abbeel. A stable whitening optimizer for efficient neural
network training. arXiv preprint arXiv:2506.07254, 2025.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Geoffrey Hinton. rmsprop: Divide the gradient by a running average of its recent mag-
nitude, 2012. URL https://www.cs.toronto.edu/˜tijmen/csc321/slides/
lecture_slides_lec6.pdf.

10

https://anonymous.4open.science/r/matrix-whitening-submit-5DF2/
https://anonymous.4open.science/r/matrix-whitening-submit-5DF2/
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

K Jordan, Y Jin, V Boza, Y Jiacheng, F Cecista, L Newhouse, and J Bernstein. Muon: An optimizer
for hidden layers in neural networks, 2024b. URL https://kellerjordan. github. io/posts/muon.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. Advances in Neu-
ral Information Processing Systems, 36:25793–25818, 2023.

Priya Kasimbeg, Frank Schneider, Runa Eschenhagen, Juhan Bae, Chandramouli Shama Sas-
try, Mark Saroufim, Boyuan Feng, Less Wright, Edward Z Yang, Zachary Nado, et al. Ac-
celerating neural network training: An analysis of the algoperf competition. arXiv preprint
arXiv:2502.15015, 2025.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Mikalai Korbit, Adeyemi D Adeoye, Alberto Bemporad, and Mario Zanon. Exact gauss-newton
optimization for training deep neural networks. arXiv preprint arXiv:2405.14402, 2024.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
unifying preconditioning perspective. arXiv preprint arXiv:2505.21799, 2025.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions on neural networks and
learning systems, 29(5):1454–1466, 2017.

Xi-Lin Li. Preconditioner on matrix lie group for sgd. arXiv preprint arXiv:1809.10232, 2018.

Kaizhao Liang, Lizhang Chen, Bo Liu, and Qiang Liu. Cautious optimizers: Improving training
with one line of code. arXiv preprint arXiv:2411.16085, 2024.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate
curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pp. 735–742,
2010.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran Malach, Sham Kakade, and Lucas Janson. A new
perspective on shampoo’s preconditioner. arXiv preprint arXiv:2406.17748, 2024.

Antonio Orvieto and Robert Gower. In search of adam’s secret sauce. arXiv preprint
arXiv:2505.21829, 2025.

Omead Pooladzandi and Xi-Lin Li. Curvature-informed sgd via general purpose lie-group precon-
ditioners. arXiv preprint arXiv:2402.04553, 2024.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine Learning, pp.
9367–9376. PMLR, 2021.

Nicol N Schraudolph. Fast curvature matrix-vector products for second-order gradient descent.
Neural computation, 14(7):1723–1738, 2002.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Andrei Semenov, Matteo Pagliardini, and Martin Jaggi. Benchmarking optimizers for large language
model pretraining. arXiv preprint arXiv:2509.01440, 2025.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Hao-Jun Michael Shi, Tsung-Hsien Lee, Shintaro Iwasaki, Jose Gallego-Posada, Zhijing Li,
Kaushik Rangadurai, Dheevatsa Mudigere, and Michael Rabbat. A distributed data-parallel py-
torch implementation of the distributed shampoo optimizer for training neural networks at-scale.
arXiv preprint arXiv:2309.06497, 2023.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. arXiv preprint
arXiv:2507.11005, 2025.

Jascha Sohl-Dickstein. The natural gradient by analogy to signal whitening, and recipes and tricks
for its use. arXiv preprint arXiv:1205.1828, 2012.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. pmlr, 2013.

Mark Tuddenham, Adam Prügel-Bennett, and Jonathan Hare. Orthogonalising gradients to speed
up neural network optimisation. arXiv preprint arXiv:2202.07052, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Nikhil Vyas, Rosie Zhao, Depen Morwani, Mujin Kwun, and Sham Kakade. Improving soap using
iterative whitening and muon.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. Soap: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them. arXiv preprint arXiv:2509.02046, 2025.

Zhirong Yang and Jorma Laaksonen. Principal whitened gradient for information geometry. Neural
Networks, 21(2-3):232–240, 2008.

Huizhuo Yuan, Yifeng Liu, Shuang Wu, Xun Zhou, and Quanquan Gu. Mars: Unleashing the power
of variance reduction for training large models. arXiv preprint arXiv:2411.10438, 2024.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 DO CERTAIN PRECONDITIONING BASES MATTER MORE THAN OTHERS?

None (Adam)
0%

Smaller
8%

Larger
91%

Output
59%

Input
41%

All (Full SOAP)
100%

2.93

2.94

2.95

2.96

2.97

2.98

2.99
Va

lid
at

io
n

Lo
ss

Gain from SOAP on certain parameter sides

Figure 5: SOAP-100, with matrices preconditioned using only one side.

In the standard Shampoo (and SOAP) formulation, preconditioners are learned for both the input
and output bases of each dense matrix. It has been suggested in previous works (Vyas et al., 2024;
Bernstein & Newhouse, 2024; Vyas et al.) that only one of these preconditioners may be needed.
Indeed, the orthogonalization view of the Shampoo update allows us to equate:

(GGT)−1/4 G (GTG)−1/4 = (GGT)−1/2G = G(GTG)−1/2 = UV T ,

and we can take the matrix inverse for the smaller dimension. However, this equivalence does not
hold in general when the left/right preconditioners are estimated via historical gradients.

In Figure 5, we compare a variant of SOAP where only half of the preconditioning matrices are used.
We consider four strategies 1) the smaller dimension, 2) the larger dimension, 3) the input bases to
each dense layer, and 4) the output basis. We find that preconditioning the input basis recovers a
majority of the performance of full SOAP. This strategy reduces the memory overhead of SOAP
to around 41% of the original. Notably, input-basis preconditioning outperforms using the larger
dimension, implying an asymmetry.

A.2 DO CERTAIN PARAMETER SUBSETS MATTER MORE THAN OTHERS?

None (Adam) QKV Attn_In MLP-Out MLP-In All (Full SOAP)
2.93

2.94

2.95

2.96

2.97

2.98

2.99

Va
lid

at
io

n
Lo

ss

Gain from SOAP update to parameter subsets

Figure 6: Gains from using SOAP vs. Adam are roughly additive among independent pa-
rameter groups. Each bar represents a Transformer trained with SOAP-100 applied to only that
parameter type, and Adam applied otherwise. Learning rates are tuned, other hyperparameters are
inherited from the baselines. Notably, a large percentage of the performance gain comes from pre-
conditioning the MLP-In parameters, implying that the incoming 3072-length activations may be
highly correlated.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A natural question is to ask whether it is important that all dense parameters are preconditioned via
matrix-whitening methods, or if certain parameters types play an outsized impact on performance. In
Figure 6, we examine this question by applying SOAP updates only to specific subsets of parameters,
and using a default Adam optimizer otherwise. Learning rates are tuned independently per setting.

Notably, we find that the “MLP In” matrix benefits the most from preconditioning. One hypothesis
for this finding is that the input features to this dense layer, a 3072-dimensional vector modulated by
the ‘gelu‘ activation, are highly linearly correlated. This should not be a surprising claim, as these
features are the result of a linear projection from the 768-dimensional residual stream and thus are
rank-deficient before the ‘gelu‘ activation. If this is true, a naive Adam update may result in the
simultaneous change of many parameters that affect the same singular vector in the update matrix,
resulting in a greater-than-desired change. In contrast, a matrix-whitening optimizer can properly
normalize to prevent this behavior.

An additional observation is that the gain in performance from matrix-whitening various parameters
are roughly additive. This may imply that utilizing a matrix-whitening optimizer is helpful in so
far as taking the appropriate update to prevent overshooting, but does not lead to branching changes
across other parameters.

A.3 ADAM STEPS

When estimating the number of steps that Adam would have taken to reach an equivalent validation
loss, as reported in Table 2, we report the two ranges as 10000/T , where T is the minimum number
of steps that Adam must be run to achieve an equivalent validation loss. We search over a resolution
of ±500 steps, and report the lower and upper bins. Note that these are independent runs, as we
utilize a cosine learning rate schedule, and we sweep over learning rate independently.

We provide this metric to avoid a potentially misleading alternative of ”steps to reach Adam within a
training run”, as certain optimizers may reach lower validation losses faster, but fail near the end of
training (Wen et al., 2025). Instead, we only consider the final validation losses of any experiment,
and compare against final Adam validation losses.

Table 4: Final validation loss achieved by Adam, under additional training steps.

Max Steps Validation Loss
10000 2.984
11500 2.967
12000 2.964
12500 2.955
13000 2.952
13500 2.947
14000 2.944
14500 2.940
15000 2.938

A.4 HYPERPARAMETERS IN EXPERIMENTS

In the following tables, we log the trials used throughout the paper to sweep over hyperparame-
ters. Our criteria is that within the desired resolution, all four hyperparameters should be at their
respective local optimums, as shown in Figure 2. For Shampoo-10, SPlus-10, and SOAP-10, we
could not conduct an exhaustive search due to computational requirements, and we instead present
a best-effort setting.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Shared hyperparameters across model training.

Hyperparameter Value
Adam LR (Embed) 0.01
Adam LR (Output Head) 0.01
Adam LR (Layernorm) 0.01
Weight Decay (Embed) 0
Weight Decay (Output Head) 0.001
Weight Decay (Layernorm) 0
Adam β1 (Embed/Output/Layernorm) 0.9
Adam β2 (Embed/Output/Layernorm) 0.99
LR Warmup 200 steps
LR Decay Cosine
Sequence Length 256
Batch Size 1024
Training Iterations 10, 000
Weights Precision fp32
Optimizer Precision fp32
Activation Precision bf16
Hidden Size 768
MLP Ratio 4
Attention Heads 12
Num Blocks 12

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameter sweeps for Adam.

Learning Rate Weight Decay β1 β2 Valid Loss
0.01 1.0 0.95 0.99 4.564
0.001 10 0.95 0.99 3.366
0.00316 1.0 0.9 0.99 3.255
0.0001 1.0 0.95 0.99 3.196
0.001 3.162 0.9 0.99 3.182
0.00316 1.0 0.95 0.99 3.072
0.001 1.0 0.9 0.997 3.071
0.001 1.0 0.684 0.99 3.062
0.00075 1.0 0.677 0.99 3.057
0.001 3.162 0.968 0.99 3.039
0.001 3.16 0.95 0.99 3.035
0.001 1.0 0.99 0.99 3.025
0.00032 1.0 0.9 0.99 3.022
0.00032 1.0 0.95 0.99 3.020
0.00075 3.162 0.898 0.99 3.018
0.001 1.0 0.842 0.99 3.011
0.001 1.778 0.9 0.99 3.011
0.00178 1.0 0.968 0.99 3.006
0.00178 1.0 0.968 0.99 3.006
0.001 1.0 0.984 0.99 3.006
0.00042 1.0 0.898 0.99 3.006
0.001 0.1 0.95 0.99 3.005
0.001 0.316 0.968 0.99 3.004
0.001 1.778 0.968 0.99 3.004
0.00178 1.0 0.9 0.99 3.003
0.001 1.0 0.822 0.99 3.003
0.00075 0.316 0.898 0.99 3.000
0.00133 1.0 0.898 0.99 2.997
0.00133 1.0 0.968 0.99 2.996
0.00075 1.778 0.898 0.99 2.995
0.001 1.0 0.968 0.99 2.994
0.00056 1.0 0.9 0.99 2.994
0.00056 1.0 0.898 0.99 2.994
0.001 0.316 0.9 0.99 2.992
0.00056 1.0 0.968 0.99 2.992
0.001 0.316 0.95 0.99 2.991
0.00133 1.0 0.9 0.99 2.991
0.001 1.0 0.968 0.99 2.991
0.001 1.0 0.9 0.968 2.989
0.001 1.0 0.899 0.99 2.988
0.00075 1.0 0.968 0.99 2.988
0.00075 1.0 0.898 0.968 2.988
0.00075 1.0 0.898 0.997 2.987
0.00075 1.0 0.9 0.99 2.986
0.00075 1.0 0.898 0.99 2.985
0.00075 1.0 0.968 0.99 2.985
0.001 0.562 0.9 0.99 2.984
0.001 1.0 0.95 0.99 2.983
0.001 1.0 0.9 0.99 2.982
0.001 1.0 0.898 0.99 2.982
0.001 1.0 0.944 0.99 2.982

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Hyperparameter sweeps for Signum.

Learning Rate Weight Decay β1 β2 Valid Loss
0.00032 1.0 0.968 0 6.624
0.00056 1.0 0.9 0 6.496
0.00032 3.162 0.968 0 6.313
0.00056 3.162 0.9 0 4.121
0.00042 1.0 0.9 0 3.160
0.00042 3.162 0.9 0 3.136
0.00032 0.316 0.9 0 3.076
0.00032 0.562 0.9 0 3.065
0.00018 3.162 0.968 0 3.060
0.00032 1.0 0.9 0 3.056
0.00032 9.998 0.9 0 3.055
0.00032 1.0 0.9 0 3.051
0.00032 5.622 0.9 0 3.045
0.00032 1.0 0.684 0 3.044
0.00024 1.0 0.9 0 3.043
0.00032 1.778 0.9 0 3.039
0.00032 1.778 0.9 0 3.038
0.00018 3.162 0.684 0 3.033
0.00018 1.0 0.9 0 3.032
0.00032 3.162 0.684 0 3.031
0.00031 3.162 0.9 0 3.030
0.00018 1.0 0.9 0 3.029
0.00032 3.162 0.9 0 3.028
0.00032 3.162 0.9 0 3.025
0.00024 3.162 0.9 0 3.022
0.00018 9.998 0.9 0 3.020
0.0001 3.162 0.9 0 3.020
0.00018 1.778 0.9 0 3.019
0.00024 3.162 0.9 0 3.017
0.00018 3.162 0.9 0 3.008
0.00013 3.162 0.9 0 3.007
0.00018 5.622 0.9 0 3.006

Table 8: Hyperparameter sweeps for PSGD.

Learning Rate Weight Decay β1 β2 Valid Loss
0.00035 0.001 0.968 0 3.666
0.0002 0.001 0.968 0 3.456
0.00083 0.001 0.968 0 2.996
8e-05 0.001 0.968 0 2.994
0.00026 0.001 0.99 0 2.990
0.00026 0.001 0.943 0 2.990
0.00026 0.001 0.899 0 2.988
0.00015 0.001 0.968 0 2.983
0.00047 0.001 0.968 0 2.982
0.00026 0.001 0.982 0 2.977
0.0002 0.001 0.968 0 2.977
0.00026 0.0 0.968 0 2.976
0.00035 0.001 0.968 0 2.975
0.00026 0.003 0.968 0 2.975
0.00026 0.002 0.968 0 2.974
0.00026 0.001 0.968 0 2.973

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Hyperparameter sweeps for SPlus-100.

Learning Rate Weight Decay β1 β2 Valid Loss
0.1 0.032 0.968 0.99 3.434
0.1 0.018 0.968 0.99 3.226
0.1 0.01 0.997 0.968 3.161
0.1778 0.01 0.968 0.99 3.120
0.1333 0.01 0.968 0.99 3.100
0.03163 0.01 0.99 0.968 3.004
0.1 0.032 0.99 0.99 2.999
0.3162 0.01 0.99 0.968 2.996
0.1 0.032 0.99 0.968 2.995
0.1 0.003 0.968 0.99 2.985
0.05624 0.01 0.968 0.99 2.983
0.1 0.018 0.968 0.99 2.981
0.1 0.01 0.899 0.99 2.981
0.1 0.01 0.997 0.99 2.978
0.1 0.01 0.997 0.99 2.977
0.1 0.003 0.99 0.968 2.976
0.1778 0.01 0.99 0.99 2.975
0.1 0.003 0.99 0.99 2.974
0.1778 0.01 0.99 0.968 2.973
0.07502 0.01 0.968 0.99 2.973
0.05624 0.01 0.99 0.99 2.972
0.1 0.018 0.99 0.968 2.972
0.1 0.018 0.99 0.99 2.972
0.05624 0.01 0.99 0.968 2.971
0.1 0.01 0.968 0.99 2.971
0.1 0.01 0.968 0.99 2.970
0.1 0.01 0.968 0.997 2.969
0.1 0.01 0.968 0.968 2.969
0.07502 0.01 0.99 0.968 2.969
0.1333 0.01 0.99 0.99 2.969
0.1 0.01 0.994 0.968 2.969
0.1333 0.01 0.99 0.99 2.968
0.1 0.006 0.99 0.968 2.967
0.1 0.01 0.99 0.899 2.966
0.1 0.01 0.982 0.968 2.966
0.07502 0.01 0.99 0.99 2.965
0.1 0.01 0.99 0.997 2.965
0.1 0.01 0.99 0.99 2.965
0.1333 0.01 0.99 0.968 2.965
0.1 0.01 0.99 0.997 2.964
0.1 0.01 0.99 0.99 2.964
0.1 0.01 0.99 0.99 2.963
0.1 0.01 0.99 0.968 2.963
0.1 0.01 0.99 0.968 2.962

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameter sweeps for SOAP-100.

Learning Rate Weight Decay β1 β2 Valid Loss
0.00132 3.162 0.968 0.99 3.020
0.00132 3.162 0.968 0.99 3.008
0.00175 0.316 0.822 0.99 2.980
0.00235 1.0 0.968 0.99 2.980
0.00055 0.316 0.9 0.99 2.975
0.00132 1.778 0.968 0.99 2.969
0.00132 1.778 0.968 0.99 2.968
0.00235 1.0 0.968 0.99 2.967
0.00074 0.316 0.9 0.99 2.965
0.00098 0.316 0.9 0.99 2.958
0.00132 0.1 0.9 0.99 2.958
0.00132 1.0 0.899 0.99 2.958
0.00074 1.0 0.968 0.99 2.957
0.00176 1.0 0.968 0.99 2.957
0.00132 1.0 0.968 0.997 2.957
0.00099 0.316 0.9 0.99 2.956
0.00132 1.0 0.99 0.99 2.955
0.00099 1.0 0.968 0.99 2.955
0.00132 1.0 0.99 0.99 2.954
0.00132 1.0 0.968 0.968 2.954
0.00132 0.316 0.968 0.99 2.953
0.00233 0.316 0.9 0.99 2.953
0.00132 1.0 0.968 0.99 2.953
0.00132 0.316 0.9 0.968 2.952
0.00132 1.0 0.968 0.99 2.952
0.00132 0.316 0.968 0.99 2.952
0.00132 0.316 0.9 0.99 2.952
0.00132 1.0 0.899 0.99 2.952
0.00175 0.561 0.9 0.99 2.952
0.00175 0.178 0.9 0.99 2.951
0.00132 0.999 0.9 0.99 2.951
0.00099 1.0 0.968 0.99 2.951
0.00132 0.562 0.9 0.99 2.951
0.00175 0.177 0.9 0.99 2.951
0.00175 0.561 0.9 0.968 2.950
0.00131 0.316 0.9 0.99 2.950
0.00132 0.316 0.9 0.997 2.950
0.00131 0.561 0.9 0.99 2.950
0.00175 0.316 0.9 0.968 2.950
0.00098 0.561 0.9 0.99 2.950
0.00175 0.561 0.968 0.99 2.950
0.00175 0.316 0.944 0.99 2.949
0.00235 0.316 0.9 0.99 2.949
0.00175 0.561 0.9 0.997 2.948
0.00175 0.316 0.9 0.997 2.948
0.00175 0.316 0.9 0.99 2.946

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Hyperparameter sweeps for SOAP-10.

Learning Rate Weight Decay β1 β2 Valid Loss
0.00175 0.316 0.684 0.99 3.119
0.00175 0.316 0.968 0.968 3.041
0.00175 0.316 0.899 0.99 3.033
0.00175 0.316 0.968 0.997 3.028
0.00175 0.999 0.9 0.99 2.997
0.00055 0.316 0.968 0.99 2.972
0.00074 0.316 0.968 0.99 2.964
0.00175 0.1 0.9 0.99 2.962
0.00132 0.1 0.968 0.99 2.962
0.00098 0.316 0.9 0.99 2.958
0.00099 0.316 0.968 0.99 2.956
0.00175 0.178 0.9 0.99 2.955
0.00098 0.316 0.968 0.99 2.954
0.00175 0.562 0.9 0.99 2.954
0.00311 0.316 0.9 0.99 2.954
0.00175 0.316 0.9 0.997 2.953
0.00132 0.178 0.968 0.99 2.953
0.00175 0.1 0.968 0.99 2.952
0.00132 0.316 0.968 0.997 2.952
0.00175 0.999 0.968 0.99 2.952
0.00132 0.316 0.899 0.99 2.952
0.00132 0.316 0.99 0.99 2.951
0.00175 0.316 0.9 0.968 2.951
0.00131 0.316 0.9 0.99 2.949
0.00132 0.316 0.968 0.968 2.949
0.00553 0.316 0.968 0.99 2.948
0.00132 0.316 0.9 0.99 2.948
0.00132 0.999 0.968 0.99 2.947
0.00132 0.316 0.968 0.99 2.947
0.00131 0.316 0.968 0.99 2.947
0.00175 0.178 0.968 0.99 2.947
0.00233 0.316 0.9 0.99 2.947
0.00175 0.316 0.99 0.99 2.945
0.00175 0.316 0.9 0.99 2.945
0.00132 0.562 0.968 0.99 2.945
0.00175 0.316 0.9 0.99 2.944
0.00175 0.316 0.943 0.99 2.943
0.00175 0.562 0.968 0.99 2.943
0.00175 0.316 0.982 0.99 2.942
0.00175 0.316 0.968 0.99 2.942
0.00176 0.316 0.968 0.99 2.942
0.00235 0.316 0.968 0.99 2.941
0.00233 0.316 0.968 0.99 2.940
0.00311 0.316 0.968 0.99 2.939

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameter sweeps for Muon.

Learning Rate Weight Decay β1 β2 Valid Loss
0.0578 0.1 0.95 0 3.194
0.00058 0.1 0.95 0 3.122
0.00578 1.0 0.95 0 3.040
0.00183 0.1 0.95 0 3.003
0.00244 0.1 0.9 0 2.998
0.00578 0.01 0.95 0 2.989
0.0077 0.316 0.9 0 2.986
0.02436 0.1 0.9 0 2.985
0.0077 0.316 0.968 0 2.985
0.0077 0.1 0.684 0 2.980
0.00578 0.032 0.95 0 2.980
0.00578 0.032 0.968 0 2.979
0.0077 0.032 0.968 0 2.978
0.01826 0.1 0.95 0 2.978
0.0077 0.032 0.9 0 2.978
0.00578 0.316 0.968 0 2.977
0.00578 0.316 0.95 0 2.976
0.0077 0.1 0.99 0 2.976
0.00433 0.1 0.9 0 2.975
0.00325 0.1 0.968 0 2.975
0.00578 0.1 0.99 0 2.974
0.0137 0.1 0.968 0 2.972
0.00578 0.1 0.984 0 2.970
0.00433 0.1 0.968 0 2.970
0.0077 0.178 0.968 0 2.969
0.0137 0.1 0.9 0 2.969
0.0077 0.1 0.822 0 2.969
0.00434 0.1 0.968 0 2.968
0.01028 0.1 0.968 0 2.968
0.01027 0.1 0.968 0 2.968
0.0077 0.056 0.9 0 2.968
0.0077 0.178 0.9 0 2.968
0.00578 0.1 0.9 0 2.968
0.00578 0.1 0.899 0 2.967
0.00578 0.178 0.968 0 2.967
0.00578 0.1 0.968 0 2.967
0.0077 0.1 0.968 0 2.967
0.0077 0.1 0.968 0 2.966
0.00578 0.1 0.95 0 2.966
0.00578 0.1 0.968 0 2.966
0.0077 0.1 0.944 0 2.965
0.01027 0.1 0.9 0 2.965
0.0077 0.1 0.9 0 2.965
0.0077 0.1 0.899 0 2.964

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Hyperparameter sweeps for AdaMuon.

Learning Rate Weight Decay β1 β2 Valid Loss
0.00042 0.1 0.968 0.99 2.987
0.00013 0.316 0.968 0.99 2.983
0.00056 0.316 0.968 0.99 2.983
0.00031 1.0 0.99 0.99 2.982
0.00031 9.998 0.9 0.99 2.982
0.00042 0.316 0.968 0.99 2.979
0.00042 0.316 0.968 0.997 2.978
0.00031 9.998 0.968 0.99 2.977
0.00023 0.316 0.968 0.99 2.976
0.00031 0.316 0.968 0.99 2.976
0.00042 0.316 0.968 0.968 2.975
0.00031 0.316 0.968 0.99 2.975
0.00042 0.316 0.899 0.99 2.970
0.00042 0.562 0.968 0.99 2.969
0.00018 1.0 0.968 0.99 2.968
0.0001 3.162 0.968 0.99 2.967
0.00055 1.0 0.968 0.99 2.967
0.00031 1.0 0.968 0.99 2.964
0.00055 3.162 0.968 0.99 2.963
0.00031 5.622 0.968 0.99 2.963
0.00031 1.0 0.968 0.997 2.963
0.00031 3.162 0.684 0.99 2.962
0.00031 3.162 0.99 0.99 2.962
0.00031 1.0 0.968 0.968 2.962
0.00031 1.0 0.9 0.99 2.962
0.00031 1.0 0.899 0.99 2.961
0.00031 1.0 0.968 0.99 2.961
0.00031 5.622 0.9 0.99 2.961
0.00042 0.999 0.968 0.99 2.960
0.00018 3.162 0.9 0.99 2.960
0.00055 3.162 0.9 0.99 2.957
0.00031 3.162 0.982 0.99 2.957
0.00042 3.162 0.968 0.99 2.956
0.00031 1.778 0.968 0.99 2.956
0.00018 3.162 0.968 0.99 2.956
0.00031 1.778 0.968 0.99 2.955
0.00031 3.162 0.9 0.968 2.954
0.00031 3.162 0.9 0.99 2.954
0.00031 3.162 0.968 0.99 2.953
0.00031 3.162 0.968 0.968 2.953
0.00031 3.162 0.899 0.99 2.953
0.00023 3.162 0.9 0.99 2.952
0.00042 3.162 0.9 0.99 2.952
0.00031 3.162 0.968 0.997 2.952
0.00031 3.162 0.968 0.99 2.952
0.00023 3.162 0.968 0.99 2.952
0.00031 3.162 0.943 0.99 2.951
0.00031 3.162 0.968 0.99 2.950

22

	Introduction
	Related Work
	Preliminaries
	Experimental Setup
	Performance gains are not explained solely by accurate spectral normalization
	Variance adaptation is a crucial matrix-whitening ingredient
	Why does variance adaptation still work when done after orthogonalization?
	Can lookahead strategies replace variance adaptation?
	Can low-rank factorization reduce the memory footprint of variance adaptation?

	Discussion and Conclusion
	Appendix
	Do certain preconditioning bases matter more than others?
	Do certain parameter subsets matter more than others?
	Adam Steps
	Hyperparameters in Experiments

