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Abstract: Model-free diffusion planners have shown great promise for robot
motion planning, but practical robotic systems often require combining them
with model-based optimization modules to enforce constraints, such as safety.
Naively integrating these modules presents compatibility challenges when dif-
fusion’s multi-modal outputs behave adversarially to optimization-based mod-
ules. To address this, we introduce Joint Model-based Model-free Diffusion
(JM2D), a novel generative modeling framework. JM2D formulates module in-
tegration as a joint sampling problem to maximize compatibility via an interac-
tion potential, without additional training. Using importance sampling, JM2D
guides modules outputs based only on evaluations of the interaction potential,
thus handling non-differentiable objectives commonly arising from non-convex
optimization modules. We evaluate JM2D via application to aligning diffusion
planners with safety modules on offline RL and robot manipulation. JM2D
significantly improves task performance compared to conventional safety fil-
ters without sacrificing safety. Further, we show that conditional generation is
a special case of JM2D and elucidate key design choices by comparing with
SOTA gradient-based and projection-based diffusion planners. More details at:
https://jm2d-corl25.github.io/
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1 Introduction

Diffusion models have advanced generative modeling of diverse, high-quality samples in challeng-
ing domains, such as images, audio, and sequential data [1, 2]. Encouraged by these successes,
robotics research has increasingly leveraged diffusion for planning, control, and imitation learn-
ing [3, 4, 5, 6], exploiting its ability to capture multimodal trajectories in a model-free way.

Nevertheless, diffusion alone often falls short when robots need strict stability and safety
guarantees—constraints more amenable to model-based optimization modules, such as trajectory
optimizers, feedback controllers, and safety filters. Integrating model-free diffusion with model-
based optimization is challenging, because these modules often struggle with alignment. Here,
alignment for modules sharing an output space (e.g., robot trajectories) means minimizing the dif-
ference between their outputs. Alignment is particularly difficult for optimization-based safety-
filters [7, 8, 9, 10], where diffusion to complete tasks can produce unsafe trajectories, while enforc-
ing safety can degrade performance by negating generative diversity.

Alignment typically follows two strategies. The sequential approach minimally corrects diffusion
outputs via model-based postprocessing [7, 8, 10, 11, 12], often causing module contradiction or
impedance. Alternatively, embedding incorporates constraints into diffusion denoising [5, 13, 14, 15,
16], but can sacrifice hard guarantees or apply only to simple cases. Both strategies suffer from being
one-directional (lacking reciprocal information sharing) and relying solely on diffusion for task
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Figure 1: Framework Overview. We consider robotic systems composed of a model-free diffusion
planner and a model-based optimization module. In this example, the diffusion policy is trained on
right-skewed goal-reaching behaviors, while the model-based module can only correct plans to the
right. The key challenge is to jointly sample a plan and its correction such that both modules are
aware of each other’s capabilities. We propose Joint Model-based Model-free Diffusion (JM2D),
which defines an interaction potential combining the diffusion model, optimization module, and
constraints. Starting from joint noise, our method denoises both components together, yielding
mutually compatible samples (green box). In contrast, conventional sequential sampling fails to
account for the optimization module’s limitations, resulting in misaligned outputs (purple box).

objectives, such as task completion. Thus, we address the key challenge of how to simultaneously
align model-free diffusion, model-based optimization, and an external objective, achieving what we
call mutual compatibility.

To address the mutual compatibility challenge, our key insight is to first pose it as a Joint Model-Free
Model-Based Generation (JM2G) problem of explicitly sampling simultaneously from model-free
and model-based parameter spaces. To solve the JM2G problem, we take advantage of diffusion
models as a generative framework and develop a Joint Model-based Model-free Diffusion (JM2D).
To enable JIM2D, we construct a joint distribution over the diffusion prior and the optimization prior,
each importance weighted by an interaction potential that quantifies mutual compatibility, even in
the absence of paired training data. As shown in Fig. 1, IM2D enables simultaneously diffusing over
model-based and model-free modules while aligning both with each other and an external objective.
Altogether, JM2D resolves the core mutual compatibility challenge by yielding trajectories that
satisfy arbitrary, possibly non-differentiable, safety constraints by construction while preserving
generative diversity.

Contributions and Paper Organization. We pose the JM2G problem to enable mutual compatibil-
ity between model-free diffusion modules, model-based optimization modules, and external objec-
tives, introducing a novel interaction potential to relate these components (Sec. 3). To solve this, we
propose the JM2D framework (Sec. 4). JM2D is based on a theoretical joint score function for si-
multaneous diffusion; critically, we derive a Monte Carlo score approximation that enables practical
implementation even when model-based gradients are unavailable (a common scenario) and em-
pirically improves diffusion output quality. Finally, we provide extensive experimental evaluations
on offline RL benchmarks and robotic manipulation tasks (Sec. 5), demonstrating that, compared
to SOTA methods with sequential sampling alignment, our joint sampling method achieves signifi-
cantly improved task performance without sacrificing the safety constraint.

2 Related Work

Diffusion models and motion planning. Motion planning seeks trajectories that drive a robot from
a start to a goal state while respecting kinodynamic and environmental constraints. Traditional plan-
ners—such as gradient-based optimizers [17] and sampling-based methods [18]—perform well in



structured settings but falter in highly nonconvex spaces or under discontinuous dynamics. Re-
cently, diffusion models [19, 1, 2], which learn to sample from complex, multimodal distributions,
have been applied to both data-driven [3, 20, 4, 21] and model-based [6, 22] motion planning. How-
ever, the stochastic sampling process complicates the satisfaction of explicit safety and feasibility
constraints, limiting its deployment in safety-critical robotic domains.

Diffusion planning with inference-time constraints. Existing diffusion-based planners enforce
constraints through three main paradigms. (i) Post-hoc filtering first generates diverse trajectories,
then applies constrained optimization [12, 23] or safety filters [8, 9]—drawing on set-invariance
theory [24], reachability analysis [25, 10], or predictive control [7]—but decoupled overrides can
induce out-of-distribution actions [26] and efficiency losses [10]. (ii) Soft-constraint guidance uses
classifier-based or classifier-free methods [27, 28] and training-free gradient steering [29, 5, 13,
14], yet demands differentiable losses and lacks strict feasibility guarantees. (iii) Hard-constraint
guidance embeds convex feasibility via mirror maps or reflected SDEs [30, 31, 32] or projection-
based corrections [15, 33, 34, 35], but is limited to convex domains and can be computationally
prohibitive. Other efforts such as [36] integrate optimization during training under same-modality
assumptions. Our approach generalizes beyond this by jointly sampling across modalities—plan
and optimization output—via a compatibility-aware diffusion process that satisfies hard constraints
without performance loss, addressing prior limitations.

3 Problem Statement and Preliminaries

This section introduces the general framework of Joint Model-free Model-based Generation
(JM2G), where we consider the problem of sampling from a joint distribution over a model-based
and a model-free variable, given only their marginals and an interaction potential quantifying their
compatibility. This formulation naturally arises in robotics, where subsystems such as planners,
controllers, and safety filters are developed independently and only integrated at deployment: dif-
fusion planners generate actions [3, 4, 20], and model-based optimization modules enforce con-
straints [25, 37, 11]. This creates a joint sampling problem requiring simultaneous generation of
actions and corresponding responses. We first define the general version of the JM2G problem:

Problem 1. (Joint Model-free Model-based Generation) Given a model-free generative distribu-
tion pg(x) over sample x € X C R"™, a model-based prior p(k) over sample k € X C R" and an
interaction potential V (x,k) : X x K :— R quantifying the compatibility of (x,k) pairs, we aim to
efficiently sample from the joint distribution: p(x,k) o< pg(x)p(k)V (x,k).

While we learn the parameterized distribution pg(x) using a diffusion model, we assume p(k) and
V(x,k) are only available at inference time. This reflects modular deployment scenarios where
generative planners are pre-trained, and model-based optimization modules are introduced later.

In the context of robotics, we focus on a prevalent setting where the model-free component is a
diffusion planner, and the model-based component is defined through constrained optimization *.
Specifically: (a) we use a diffusion planner to learn the distribution of plan x = [x;,...,x4+x] condi-
tioned on the observation o, and (b) an optimization module that generates a model-based output k
(e.g., low-level control, safety correction) by solving

k* =argmin J(k |x) st g(k|x)<0 ()
k

where J : X x K — R, g: X x KX — R respectively denotes the objective and constraints. We aim to
solve Prob. 1 with the interaction potential defined as V (x,k) = exp (—A~'J(k | x)) -1 (g(k | x) <0),
where the temperature A € R™ controls the optimality and 1(+) is an indicator function. We provide
a toy domain planning example in Fig. 2.

Diffusion Models. We consider diffusion models [1, 2, 38] as a generative framework. Given a
data distribution p(xp), the forward noising process perturbs clean samples x( into noisy samples

'Our framework naturally includes the setting where the model-based module is defined via an explicit form
k = f(x) rather than an implicit form of optimization. We omit this extension for simplicity.



xit po,; (xi | x0) = N(xi31/Qixo, (1 — 04)I), following a noise schedule o; € (0, 1]. A reverse process
denoises x; to x;—; using DDIM [38]:

xi+ (1 —o)sg(xi,i
Pe(xi—l|xi):N(xi—1§\/ai—l(l ( : e : ) 1=ty —62/1— ausg(xi,i 61) @)

where sg(x;,i) predicts the score functzon Vxl. log pi(x;), the gradient of the log-density of noisy
samples. The model is trained by minimizing the denoising score matching loss [1] by regressing

over the Tweedie score of the forward kernel [39]: s¢,(x0 | x;) = 7)@—177\/367&).

In this work, we extend diffusion models to the joint space (x,k), aiming to approximate the joint
score V, ;log p(x, k) when only the model-free score V. log pg(x) is available.

4 Method

Naively chaining diffusion planners and model-based optimizers often fails due to conflicting ob-
jectives. Our key insight is a unified view: simultaneously generating mutually-compatible outputs
via JM2D (Joint Model-based Model-free Diffusion). This section develops JM2D, starting with a
unified joint diffusion process encoding mutual compatibility via a shared score function (Sec. 4.1).
Since direct score computation is often intractable—due to non-differentiable objectives and reliance
on clean samples—we derive a practical Monte Carlo approximation (Sec. 4.2). This allows han-
dling hard, non-differentiable constraints without privileged information such as gradient or com-
promising the data fidelity of the pre-trained planner. Finally, we connect JM2D to conditional
generation [40] and model-based diffusion [6] as special cases (Sec. 4.3).

4.1 Joint Diffusion Process

Challenge. A natural joint generation approach is sequential sampling: first drawing x ~ pg(x) from
the model-free planner, then solving for k ~ p(k | x) via model-based optimization. Alternatively,
one could alternate these steps using Gibbs sampling [41]. However, in robotics, planner outputs
and optimization are often tightly coupled, such as when a planner proposes an unsafe trajectory,
leaving no feasible corrective action [8, 10, 11]. As a result, many x admit no compatible k, making
p(k | x) ill-defined and causing sample waste. More formally, when p(k | x) is sparsely supported in
X x X, joint sampling becomes essential to efficiently explore feasible regions.

Design. To address the challenge, we introduce a joint diffusion process over the concatenated
variable y = [x,k]. Specifically, we define a pseudo-forward diffusion:

Po (il yo) = (yz\\ﬁym (1—a)I ) A3)

where o = [a'; off k] preserves the pre-trained model-free schedule * while letting ot explore the
optimization varlable k. For sampling, starting from pure noise, we iteratively apply the reverse
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Figure 2: Comparison of sampling methods on a toy domain. A model-free planner pg(x)
samples start-goal pairs in a donut-shaped region (gray), and a model-based optimization module
finds the longest collision-free path connecting start and goal parameterized by k while avoiding
inference-time obstacles (transparent red). We visualize 16 samples per sampling method. Sequen-
tial sampling draws x without considering k, often yielding infeasible pairs (red). Gibbs sampling
alternates between p(x | k) and p(k | x), improving feasibility but struggling when conditionals are
ill-defined. Instead, JM2D (Ours) jointly explores (x,k) via diffusion, globally searching the com-
patible joint sample, achieving the highest rates of mutually compatible samples (blue).
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update (2) to recover a compatible joint sample. To perform this reverse process, we require the
Jjoint score Vy,1og p;i(yi), where p;(yi) = [ po> (vi | Yo)po(yo)dyo. This score guides y; toward higher
compatibility under the interaction potential without excessively perturbing the pre-trained model-
free score. Hence, our joint diffusion framework can globally search over y while locally refining
according to mutual compatibility. Fig. 2 shows how joint diffusion outperforms sequential sampling
in capturing compatible joint solutions.

4.2 Monte-Carlo Joint Score Approximation

Challenge. We now efficiently estimate the joint score V, log p;(y;) to implement the joint diffusion
scheme from Sec. 4.1. This approximation is challenging in robotics for three reasons: (a) Non-
differentiability: the interaction potentials often encode hard constraints or nonconvex optimizations,
so gradients are unavailable. (b) Clean sample dependence: compatibility can be only evaluated on
clean (fully denoised) samples, preventing naive noisy levels score composition. (c) Data-fidelity:
the planner is pre-trained; overly aggressive corrections can destroy its learned distribution [42], so
we must minimally perturb the model-free score V, log p(x;).

Design. To address these, we derive a gradient-free Monte Carlo (MC) estimator that approximates
the joint score via importance sampling, which requires only evaluation of the interaction potential
at clean joint samples to guide the generation along the model-free reverse diffusion process.

We derive our estimator starting from

JVy.1og oy (vilyo) Py (Vilyo) Po(yo)dyo
V., log pily) = o — [ s olypoitoolydye
1 13

where s,y (yolyi) is the Tweedie score of the forward kernel [39]. See Appx. D.1 for details. Since

the posterior po‘,»(yo | v;) is intractable, we instead approximate it using self-normalized importance
sampling with a tractable proposal ¢(yo | y;), giving:

i(volyi) N o
v, log ( ) fsa,:v(y()b’i) ps‘(y())ryiy) q(yo\y,-)dyg ]Eyowq('\}’i) [Soc;v (yO |yi)w(y0)} 5)
Vi pi\yi) = AN ~ =
J s aboliddyo Eio~atiy) v Go)]

where w($) are the importance weights. We define the proposal as
a0 130 = Py [ x)-a (ko | k). (ko | ) 2 N (koika(od) ™2, (e =1)1), ©)

where p’é‘i(xo | x;) is the model-free reverse diffusion. This leads to our main theorem:

Theorem 2. Joint Score Approximation using Importance Sampling. The joint score can be ex-
pressed as an importance-weighted combination of the scores of individually estimated clean joint
samples, where the weights are determined by the interaction potential:

Egyq(-lyn) 5 (0 | 70V (%o, ko) P (ko )]

\% )i IOgPi()’i) = — - %)
’ By, otV (oo ko) 2 (o))

where: y; = [x;;k;] denotes the joint noisy sample, q(- | y;) denotes (5).

Proof. This follows from w($) = p(q)‘(’y(g(‘;‘y)') o< V (%0, ko) p’é(lAco). See Appx. D.2 for the derivation. []
Having defined the proposal ¢(yo | yi), we estimate the joint score using MC samples and apply it in
areverse diffusion (2). See Alg. C.1 in Appx. C for details. For extensions to settings with privileged
information as gradients and projection operators, see Appx. B.

Remark. In the robotics context, by encoding mutual compatibility, the interaction potential en-
courages sampling feasible plans, but does not guarantee feasibility (g(k | x) < 0 per (1)). Therefore,
in practice, we postprocess infeasible joint samples (i.e., V (xo, ko) = 0) with a single model-based
optimization step to guarantee feasibility. Despite this, our approach still improves performance
because the sample is already aligned with the optimization (see Sec. 5).



4.3 Special Cases: Conditional Generation and Model-Based Diffusion

We conclude this section by showing that JM2D unifies Conditional Generation (CG) and Model-
Based Diffusion (MBD) [6] under a common framework. This is crucial because these approaches
represent widely-used paradigms in diffusion-based robotics, so unification supports direct bench-
marking with CG-based methods and enables the reuse of practical heuristics from the MBD litera-
ture, such as proposal shaping and noise scheduling.

Corollary 3. Under the interaction potential structure V (x,k) = V*(x)V*(k) and a uniform prior
p(k), JM2D reduces to two independent sampling process: (1) conditional generation of x guided
by V¥(x), and (2) model-based diffusion over k guided by V* (k).

Proof. Follows directly from Thm. 2. See Appx. D.3 for the proof. O

As joint sampling lacks baselines, we benchmark the CG segment against constraint-aligned plan-
ners to evaluate sampling efficiency in the absence of model-based modules (see Sec. 5.3).

5 Experiments

We experimentally validate JM2D in three ways. First, we assess the effectiveness of joint diffu-
sion in handling complex, non-differentiable interaction potentials in a robotics safety-filtering task.
Then, we illustrate how JM2D overcomes challenges in constrained generation. Finally, we assess
JM2D’s ability to improve conditional generation over robotics baselines.

5.1 JM2D for Safety Filtering of Robot Motion Plans

Setup. We aim to understand key performance improvements with JM2D in a safety-filtering sce-
nario. Thus, we hypothesize that J2MD improves both safety and task completion over baselines.
We evaluate in a 2D Maze environment (Fig. 3), where the goal is to reach the target without col-
liding with the walls. We use a pre-trained Diffusion Policy [3] as our model-free module and a
reachability-based safety policy [37, 10] as the model-based optimization module. We introduce
inference-time constraints by padding the maze walls; the diffusion planner does not see padded
walls during training. We also perform an ablation to assess the tradeoff between computation time
and accuracy by varying JIM2D’s number of Monte Carlo samples. We compare to two baselines: (a)
RAIL [10], which aligns a model-free diffusion policy [3] with a reachability-based safety filter [37]
via sequential sampling; and (b) a Gibbs sampler that alternates between conditional distributions
over model-free and model-based components. We combine three metrics to assess mutual compat-
ibility: Safe Success Rate (percentage of safe and successful trials), Intervention Rate (percentage
of timesteps with safety filter intervention), and Task Horizon (duration to task completion).
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Figure 3: Joint diffusion safety filtering increases performance without sacrificing safety. A
mobile robot (green dot) must navigate to a target (red dot) while avoiding collisions with walls.
At test time, additional obstacles are introduced by padding walls with increasing thickness w. We
evaluate performance across 80 trials of 5 random seeds using three metrics: safe success rate
(left), intervention rate (middle), and task horizon (right). As wall padding increases, without the
safety intervention, the baseline diffusion policy’s safe success rate degrades significantly. RAIL
and Gibbs sampling strategy maintains safety but exhibits increasing intervention rates. In con-
trast, our method consistently exhibits high safe success, with significantly fewer interventions and
shorter horizons—indicating improved safety-performance trade-offs. While RAIL, Gibbs and ours
all maintain strict safety guarantees, our joint sampling leads to more efficient task execution.
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Result: JM2D outperforms Sequential sampling and Gibbs sampling. As shown in Fig. 3,
JM2D achieves significantly lower Intervention Rate and higher Safe Success Rate over RAIL, es-
pecially as conflicts between inference-time safety constraints and the training distribution increase
(e.g., with greater wall padding, the safe success rate of the diffusion policy drops sharply). This
improvement results from JM2D’s ability to jointly sample both the plan and its safety backup,
maintaining compatibility throughout the diffusion process. RAIL’s decoupled design lacks feed-
back, often producing incompatible samples that require external safety-filter overrides, leading to
longer task horizons and reduced success. While Gibbs sampling incorporates feedback, it still suf-
fers from higher intervention rates and longer horizons, likely due to ill-posed intermediate steps
that bias guidance and reduce compatibility. None of these methods violate safety.

Result: Ablation on Monte Carlo Sample Size. As Intervention Rate vs N vs Nk
shown in Fig. 4, more samples reduce the Intervention
Rate; this is due to exploring more denoising paths for
x and k, enabling better mutual compatibility. However,
since this increases computation time, users must balance
sample size with practical efficiency.
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Setup. We now evaluate the efficiency of our algorithmin ~ ~ -
a conditional generation setting, which we still denote as !
J2MD for consistency. We hypothesize that IM2D yields
more valid, in-distribution samples than the baselines. We
evaluate JMZD on a modified DonuF Toy Domaip (Fig.' 2) tion of JM2D samples by the external
by removing the model-based variable k and imposing safety filter decreases, implying higher
tight constraints that leave only a small feasible region. (A

The task reduces to sampling from the feasible region

within the donut while staying in distribution, serving as a proxy for JM2D’s ability to maintain
data fidelity while complying with constraints. We compare against a projection-based conditional
diffusion model that enforces feasibility by projecting noisy samples onto the constraint set at each
denoising step [35]. We report two metrics: Constraint Alignment (CA), measured by the number
of valid samples, and Data Fidelity, assessed by alignment with the donut distribution.

Result: JM2D Achieves Feasible, In-Distribution Samples. As shown in Fig. 5, JM2D produces
many samples that are both feasible and in-distribution, despite not explicitly enforcing constraint
satisfaction. In contrast, while guaranteeing feasibility, projection often generates out-of-distribution
samples due to applying constraints on noisy inputs and disregarding the data distribution.

8
N

Figure 4: As the number of candidate
samples (N and Nk) increases, interven-

(a) Final samples (ours) (b) Final samples (projection) (c) Diffusion trajectory (projection)

Figure 5: When does projection fail? For constraint-guided diffusion in the Donut task. The gray
dots show the training distribution and the red region is a test-time constraint. (a) Our method gen-
erates 60/64 valid samples within distribution. (b) Projection yields valid samples, but 31/64 lie far
outside the data distribution. (c) Diffusion trajectory of a projected sample: early noise explores an
out-of-distribution mode (left), and projection locks it in—despite valid, in-distribution alternatives
(right), highlighting how projection can misalign constraint satisfaction with data fidelity.



5.3 J2MD for Conditional Generation

Setup. Finally, we assess JM2D’s ability to solve conditional generation and alignment tasks in
robotics, which allows comparison against baselines from the literature and validates critical design
choices for sampling with a non-differentiable interaction potential. We consider the Avoiding envi-
ronment from D3IL [43], wherein one must generate safe trajectories for a 7DOF manipulator end
effector through narrow passages under test-time constraints. We benchmark against constrained dif-
fusion planners: SafeDiffuser [16], DPCC [15] (projection-based), and MPD [5] (gradient-based).
As before, we assess Safe Success Rate (SSucc.), plus Number of Constraint Violations (#Vio) to
assess conservativeness.

Result: JM2D improves alignment over projection and gradient-based diffusion planners.
We find that SafeDiffuser’s per-step projection induces “trap” behaviors by ignoring system dy-
namics [16], while trajectory-level projection methods like DPCC rely on linearized dynamics and
padded uncertainty margins that overconstrain the planner, failing in cluttered, narrow-gap maneu-
vers (Fig. 6). Thus, early enforcement on noisy samples at higher noise levels further degrades
trajectory smoothness and fidelity, leading to semantically invalid motions. Gradient-based diffu-
sion planners like MPD [5] fare no better: by injecting cost gradients into denoising, they introduce
noisy corrections that steer samples away from both constraints and the training prior, resulting in
unsmooth, out-of-distribution trajectories and poor downstream performance (Table 1). JM2D in-
stead integrates constraints into denoising, guiding samples toward in-distribution feasibility. This
yields dynamically feasible trajectories that satisfy constraints and respect the learned data manifold,
improving success rates and constraint violations (Table 1).

Table 1: Performance of all the algorithms in the D3IL-Avoiding task under different constraints.

Aleorith Top Left Top Right Both Cluttered
gorithm SSucc. #Vio SSucc. #Vio SSucc. #Vio SSucc. #Vio
DPCC 0.87x0.04 0.02 0.72x006 | 0.77 0.66x0.15 1.46 0.0x0.0 6.52
SafeDiffuser | 0.15 +o.12 | 13.18 | 0.07+0.02 | 18.27 | 0.01+0.01 11.66 | 0.01+0.01 | 22.92
MPD 0.13x0.13 11.97 | 0.08x0.06 | 14.85 | 0.03x003 | 10.80 | 0.02x002 | 12.71
Ours 0.77+0.10 1.13 0.83+015 | 0.29 | 0.84+010 | 0.37 | 0.75+0.01 0.32
e /e @ ® o ©o ® |10 O
® (0 ®) O
o
(a) SafeDiffuser [16] (b) DPCC [15] (c) Ours

Figure 6: Planning in Cluttered Environments. In Avoiding-Cluttered, SafeDiffuser fails due
to local traps; DPCC struggles to find a feasible path due to conservative obstacle padding from
model uncertainty. Our method generates smooth, valid plans without privileged dynamics models.

6 Conclusion

We introduced Joint Model-based Model-free Diffusion (JM2D), a unified generative framework
that jointly samples from diffusion-based generative models and model-based optimization mod-
ules. This leads to a novel safety filter that improves performance while maintaining strict safety
guarantees compared to traditional decoupled approaches. Our experiments show that IM2D per-
forms robustly in realistic robotics tasks with non-differentiable constraints, outperforming condi-
tional diffusion motion planners and conventional safety filters. Looking forward, we plan to extend
JM2D to other integration problems, such as aligning generative planners with model-based tracking
controllers, or aligning multiple robotics modules.



7 Limitations

Despite the improvements that we found with joint sampling, our framework still suffers from vari-
ous limitations. Foremost, we achieve alignment at the cost of increased computational overhead—
as we rely on denoising process to construct a Monte-Carlo sample. Automatically determining
when alignment is beneficial remains an open question and is left for future work. Furthermore,
our method assumes that the generative model’s support overlaps the constraint-feasible region; its
effectiveness fades when the learned policy becomes less multimodal. Finally, as our approach can-
not strictly enforce constraints, a separate “backup” optimization module is still needed to ensure
hard-constraint satisfaction.
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A Highlighted Result

A.1 Hardware

Setup We implement JM2D on a Franka robot. For our task, we chose to pick up a mug while avoid-
ing obstacles. These obstacles were not present in the training data for the diffusion policy. To train
the model, we collect 100 demonstrations of the task through teleoperation of the robot, grasping the
mug in different locations like the rim and the handle. The input to the diffusion policy (DP) is the
SE(3) poses of the mug (acquired through ArUco markers [44]), and the proprioceptive information
of the robot. The output of the model is the absolute end-effector pose (position and translation).
During testing, we placed novel obstacles in the robot’s workspace as shown in Fig. A.1. The robot
then has to complete the task without hitting any of the obstacles.

Camera

Az

]

Unseen Objects
ArUco markers

Figure A.1: Real robot experiment setup

We rollout the pre-trained vanilla DP in the cluttered scenario. Since there are obstacles in the
scenario previously unseen by the DP, it collides with them and fails. This is expected as naive DP
is uninformed action sampling. We show this in Fig. A.2 (top). On the other hand, we deploy DP
combined with a reachability-based safety filter deployed through our JM2D sampling framework.
We see an improved safety guarantee as the sampled actions respond to the backup planner and
follow a safe trajectory without compromising task success as illustrated in Fig. A.2 (bottom).

Vanilla DP

JM2D (Ours)

Figure A.2: (Top) Naive DP fails to execute the task of mug-pickup when it faces obstacles unseen
in the training data. (Bottom) JM2D-based composition of DP and reachability-based safety filter
successfully completes the task without compromising safety.
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Additionally, investigating into the diffusion process also shows the multi-modality considered by
our method before choosing the final trajectory. With our JM2D framework, we can guide the
diffusion sampling process to choose the safest mode. We show it in Fig. A.3.

Figure A.3: (Left) Initial multi-modality in the paths that is sampled by the DP. (Right) IM2D rejects
unsafe paths using safety filter implicitly throughout the denoising process to guide the generation
towards safe and feasible goal reaching trajectories.

We provide the sampling hyperparameters of our real-robot setup below:

Table A.1: real-robot JM2D sampling hyperparameters

Hyperparameter Value
Denoising process DDPM

Number of denoising timesteps / 25

Number of action samples N 128

Number of optimization param samples Nk 128

Sample selection strategy Rejection Sampling
Diffusion schedule for action o* cosine
Diffusion schedule for optimization parameter ot* linear

We use the following public libraries:

1. Diffusers: https://huggingface.co/docs/diffusers/en/index
2. Robomimic: https://github.com/ARISE-Initiative/robomimic
3. Zonopy: https://github.com/roahmlab/zonopy

14


https://huggingface.co/docs/diffusers/en/index
https://github.com/ARISE-Initiative/robomimic
https://github.com/roahmlab/zonopy

A.2 Ablation: How does clean sample estimation impact?

Effective guidance requires accurate alignment between estimated clean samples and the true
support of the target distribution. Interaction potentials in conditional generation depend on
clean-sample estimates, typically obtained by either assuming noisy samples as a proxy of the clean
samples or via a single-step Tweedie estimation—both of which can misalign with the data mani-
fold. To quantify this, we introduce chamfer distance between estimated and true training samples
as a measure of DF, and perform an ablation on the Donut task comparing four estimation schemes:
(1) noisy samples, (2) single-step Tweedie, (3) u-step denoising + Tweedie, and (4) full-step denois-
ing. In (3), at every noise level, we perform u-steps of further denoising to get the clean estimates
via Tweedie and for (4) we completely denoise samples before evaluating interaction potential. On
Donut, DF improves monotonically with the number of denoising steps u, reaching its maximum
under full-step denoising. Crucially, increases in DF correlate with higher Objective Alignment
(OA; safe-success rate) and lower Constraint Adherence (CA; violation count) (Fig. A.4(a)). In
the robotics Avoiding domain(discussed further in Appx. E.1)—where true DF is unavailable—we
observe the same trend: larger u yields greater OA and fewer CA violations (Fig. A.4(b,c)). Fi-
nally, gradient-based planners such as MPD [5] also benefit: computing cost gradients on Tweedie-
corrected samples instead of raw noisy ones substantially reduces CA and boosts OA (discussed
further in Appx. E.2).

Table A.2: The table shows the performance of all the variants of our algorithm with varying k-step
denoising for clean sample estimation.

Algorithm Top Left Top Right Both Cluttered
SSucc. #Vio SSucc. #Vio SSucc. #Vio SSucc. #Vio
Ours-0 0.06+005 | 16.44 | 0.07+0.06 18.0 0.0+0.02 12.98 | 0.01+0.02 | 24.33
Ours-1 0.33z012 | 4.21 0.23z012 | 6.15 | 0.23+012 | 6.76 | 0.48:025 | 2.90
Ours-2 0.37+0.21 3.84 | 0.28+012 | 4.12 | 0.34+018 | 5.80 | 0.48+030 1.71
Ours-5 0.51+015 | 2.46 | 0.46+x023 | 1.91 | 0.61+01s | 2.10 | 0.63x01s8 | 1.10
Ours-10 0.51+019 | 2.22 | 0.60x024 | 0.95 | 0.57+020 | 1.56 | 0.71x023 | 0.76

Ours-Tight-0 | 0.13+015 | 12.92 | 0.06+007 | 18.34 | 0.0+002 | 12.98 | 0.01x002 | 23.19
Ours-Tight-1 0.47+024 | 3.54 | 0332023 | 5.24 | 0.32+0u8 | 5.76 | 0.34x012 | 1.35
Ours-Tight-2 | 0.50+030 | 3.14 | 0.45+017 | 2.80 | 0.50+0.6 | 3.48 | 0.39+015 | 1.11
Ours-Tight-5 | 0.68+023 | 1.83 | 0.65+019 | 1.15 | 0.82+000 | 0.59 | 0.63+0.2 | 0.65
Ours-Tight-10 | 0.70+022 | 1.6 | 0.81x019 | 0.41 | 0.84007 | 0.38 | 0.73x009 | 0.49
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(a) Donut: Metrics vs U-step de- (b) Avoiding: Mean OA vs U- (c) Avoiding: Mean CA vs U-
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Figure A.4: Impact of clean sample quality on guidance effectiveness. (a) On the donut task,
increasing denoising steps improves Distribution Fidelity (DF), leading to higher OA and lower CA.
(b, ¢) On the Avoiding task, where DF is not directly measurable, increased denoising similarly
improves OA and reduces CA, confirming that better-aligned clean samples enhance guidance.
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B Discussion: Practical Considerations of JM2D

In this section, we particularly want to emphasize the completeness of our framework in encompass-
ing existing model-free sampling and model-based optimization for hard-constraint satisfaction.

Differentiable interaction potential. When the interaction potential arises from a differentiable
optimization [45, 46], we can use pathwise gradient estimators [47, 29] for lower-variance score
estimation.

Constraint enforcement strategy. If a projection operator onto the feasible set is available, one can
project noisy samples back onto the constraint manifold at each diffusion step [35, 15, 33]. We com-
pare these gradient-based and projection-based strategies to our proposed Monte Carlo estimator and
show that while privileged methods enforce constraints more aggressively, they tend to excessively
perturb the learned distribution compared to our approach empirically (as shown in Appx. F.1).

Design principle of the joint forward noise schedule. As shown via our formulation, JM2D
can use different denoising schedules for model-free and model-based parameter. Our current for-
mulation leverages cosine schedule for the model-free parameter. This aligns with several ex-
isting benchmarks of implementing diffusion policies (https://github.com/real-stanford/
diffusion_policy). For the model-based parameter, prior works like MBD [6] and DIAL-
MPC [22] have used 1inear schedules which can be found at https://github.com/LeCAR-Lab/
model-based-diffusion. JM2D can incorporate the best of both model-free and model-based
diffusion sampling.

Computational efficiency. JM2D is based on two main principles:

1. Increasing alignment between a predicted clean sample and the interaction potential via
complete denoising at every reverse diffusion timestep leads to improved guidance.

2. Complete denoising at every timestep following a stochastic sampling process like
DDPM [2] leads wide coverage of the training distribution that scales linearly with the
number of sampled candidates. Specifically, it relies on the capability of the base diffusion
model is capturing multiple principal modes of the training distribution.

Practical application of JM2D is computationally in-efficient. Instead of performing I denoising
steps or I evaluations of the score function in standard diffusion sampling, IM2D requires I(7+1)/2
evaluations of the score function. Further batch size of IM2D sampling scales with the choice of
N and Nk which are critical design parameters. Increasing N and Nk improves performance but
increases batch size with N x Nk. As future work, we consider adapting better diffusion samplers
with JM2D, particularly:

1. DPM /DPM++ solvers: https://github.com/LuChengTHU/dpm-solver
2. DEIS: https://github.com/qsh-zh/deis

This will give us computational flexibility to consider higher values of N and Nk.
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C Algorithms

‘We now elaborate the details of our Joint Model-based Model-free Diffusion (JM2D) framework.

Algorithm C.1 Joint Model-free Model-based Diffusion (JM2D)

Require: Model-free diffusion pg(x), Model-based prior pf(ko), Interaction potential V (x, k)

Require: Joint forward noise schedule &’ = [0, off], Stochasticity o;
1: Initialize joint noise: y; = [x7; k] ~ N(0,1)
2: fori=1to1do
3: Construct the Monte Carlo samples per (6):

:X:,',:K,' < SAMPLEMC(i,x,’,ki,pg (x), (Xl})

4: Estimate the joint score per (7):

L (50.k0) €00 x X [sa;'(ﬁo |yi)V(ﬁo,7<o)p’5(120)}
Z(’eOaIQO)ExiXK,‘ [V(XA()? ]}0)pl(3(i€0)]

5: Denoise the joint samples per (2) and Eq. (6) in [6]:

V., log pi(vi
V. log pi(yi) = {V: 102283] -

Vi1 ﬁ (yi+ (1= 0f)Vy,logpi(yi))
1
\1—of — 0\ /T— "V, logpi(yi) + 0z
O b

+ 7~ N(0,1)

end for
: return yo = [xo;ko|

B

Algorithm C.2 Monte Carlo Sample Construction (SAMPLEMC)

Require: Denoising timestep i, Noisy model-free sample x;, Noisy model-based sample k;
Require: Diffusion model pg, Joint forward noise schedule o
Sample N clean model-free samples )EE)’ ) from X; via reverse steps:
for 1(? itol do< 3 1)
£ ~pe(x;” | &), for j=1---N
end for
Sample Nk clean model-based parameters:

AR e

/Ac(()” ~ g (ko | ki) = N(ko;ki(aik)il/za (Lk - 1) 1) ; I=1---Ng

6: return {)Ef)j) 1}’:], {]A‘(()l) ?/:Kl
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D Additional Derivations
D.1 Derivation of Eq. (4)

We detail the derivation of (4), which expresses the joint score function prior to applying importance
sampling.

Vy,pi(yi)
vilog pi(yi) 2i01)
Vi J pay (vilyo) Po(yo) dyo
- 9)
pi(yi)
 JVylog oy (vilyo) Py (vilyo) Po(yo) dyo 10
- pi(yi)
= / Vyilog pgy (vilyo) poji(yolyi) dyo (11
= / sqy (Yolyi) poji(yolyi) dyo (12)

We first marginalize the forward perturbation kernel from (8) to (9), then apply the log-derivative
trick from (9) to (10). Using Bayes’ rule, we obtain (11), and finally substitute the score term
with the predefined Tweedie score s,y (yoly:) in (12). Here, poj;(yoly:) is the target distribution for
sampling, but it is intractable—motivéting the use of importance sampling.

D.2 Proof of Thm. 2

poji(volyi)

q(yolyi)
V (x0,ko) pl (ko) under the proposal distribution g(yoy;) given in (6). Since we use a self-normalized
importance sampling scheme, any term independent of yg cancels out. Hence we show:

Proof. Tt is sufficient to show that importance weight becomes proportional to

poi(yo [yi) _ Ppoji(vo | yi)
alyo |yi) — pp(xo | xi)g* (ko | ki)
P (vi | Yo)Po(yo) Pr(x)
T b il x)ph(o)d (ko [K)
pie) P Oily0)  po(y)

-~ pili) .P)&ix(xi | x0)q* (ko [ k)~ p(x0)

P?‘(xi) W (ki | ko)  psk0) P (ko)V (xo, ko)
Mq ko |k M

= Z(yi, 1) -po(ko) (x0,k0)

D.3 Proof of Cor. 3

Proof. From Thm. 2, we represent the joint score as

Esona(-i) [Sai’ (Fo | yi)V(fo,l?o)p’a(l%o)}
Egomg(-lvi) [V()?o,lzo)p’(‘)(lzo)}

Vy,log pi(yi) =

Since the proposal distribution factorizes as

q(yo | yi) = py;(xo | %) - " (ko | ki),
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and the interaction potential also factorizes as
V(XQ, ko) = Vx()C()) . Vk(ko),

we can decompose the joint score into separate expectations.

Score with respect to x;:

i

o [0 (50 | 5V (50)] - By, oy P
T Byt ) V0] By 17 TR0
) [Sa;f(fo IXi)VX(J?o)]

Egopy 1) [V*(R0)]

Score with respect to k;:

e QIR [Sal.k(i‘O | ki)Vk(iCO)}
Byt ] Etygi i) [VE (ko)

Bt [Sa,-" (ko kf)V"(/?o)}

]

Vi logpi(yi) =

The score term V,, log p;(y;) resembles the conditional guidance used in classifier-based diffusion
[40]. Meanwhile, V, log p;(y;) corresponds to Eq. (9) in [6]. O
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E Experimental Details

E.1 Task Description

Toy-Donut. This task requires the planner to generate start-goal pairs within a donut-shaped re-
gion (gray), while avoiding inference-time obstacles introduced at test time (shown in transparent
red). The sample x € R* denotes the concatenated start and goal states, drawn from a model-free
planner pg(x). The corresponding connecting trajectory is then optimized by a model-based module
parameterized by k € R? to produce the longest collision-free path between the start and goal.

D4RL-PointMaze (Fig. E.5) This task requires the robot to reach a goal marked by a green dot while
avoiding static obstacles. Demonstrations are drawn from the offline RL dataset, which consists
mostly of trajectories that are collision-free with respect to the maze walls. The state and action
spaces are s € R*, representing position and velocity, and a € R?, denoting 2D actuation forces.

GEVGE\GRLLE

w = O w = 0_]_5 w = 0,25 Inference-time Padding

Figure E.5: Task description of D4RL-PointMaze [48]. (a) The robot (red) must reach the goal
(green) without colliding with the wall. (b) At inference time, the wall boundaries are inflated by
a width w to impose additional safety constraints. The case w = 0 corresponds to the original wall
thickness used during training.

We train a Diffusion Policy-style planner [3] to generate sequences of actions x = [a;,...,aq+H]
over a fixed horizon of H = 32, resulting in x € R%. As the safety policy, we use RTD [37],
which computes a failsafe backup action k € R? via a model-based optimization module. During
evaluation, we introduce novel obstacles by inflating the wall boundaries, which were not present
during training. Each policy is evaluated across 5 random seeds, with 100 simulations per seed.

D3IL-Avoiding (Fig. E.6) This task requires a manipulator to reach a goal region marked by a green
line while avoiding static obstacles. Training demonstrations are all collision-free with respect to a
fixed set of obstacles (shown in red), ensuring that the learned policy remains in-distribution. The
state and action spaces are s € R*, consisting of the current and desired end-effector positions, and
a € R?, denoting Cartesian end-effector velocities. The episode length is capped at 200 timesteps.
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(a) Initial state of Avoiding task (b) Top-down view of inference-time constraints
Figure E.6: Task description of D3IL-Avoiding [43]. (a) The robot must reach the green line with-
out colliding with red obstacles. (b) At inference time, additional blue obstacles are introduced as

safety constraints. The first three scenarios (Top Left, Top Right, Both Hard) are from the bench-
mark in DPCC [15], and the rightmost scenario (Cluttered) is newly introduced.

We train a Diffuser-style planner [4] to generate sequences of (s,a) pairs over a fixed horizon of
H = 8, resulting in x € R*3. At test time, novel obstacles (shown in blue) not present during training
are introduced, making this an instance of test-time constraint generalization. We evaluate each
trained model across 5 random seeds, with 100 simulations per seed.
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E.2 Baselines

DPCC [15], which enforces constraint satisfaction via projection onto a feasible set under approx-
imate linear dynamics. Such projection-based diffusion planners enforce constraints by modifying
noisy samples post hoc—typically without regard for the learned data distribution or task-specific
structure embedded in it. This is problematic in settings like robotics, where feasible sets defined by
test-time constraints may lie outside the support of the training data (as is often the case in Imitation
Learning). In such cases, projections may find constraint-satisfying solutions that are semantically
incorrect, dynamically inconsistent, or simply implausible.

SafeDiffuser [16], which employs invariance principles to ensure constraint satisfaction by design.
Specifically, it applies projection at each state without modeling dynamics, leading to the well-
documented “trap” behavior.

RAIL [10], which enforces the same safety filter as ours but performs filtering explicitly after sam-
pling a diffusion plan. Such a method is highly susceptible to bad modes being sampled by the diffu-
sion planner, such that no safe backup plans exist. Moreover, such methods lack feedback between
the model-free planner and the model-based optimization module, which can result in conflicting
actions and failure in completing the task objective.

MPD [5]. Motion Planning Diffusion (MPD) is a method that uses gradients to guide the denoising
process. Cost functions are evaluated using noisy samples x;,i > 0, and the gradient of the cost
functions with respect to x; is calculated. The sample is then stepped towards low-cost regions using
weight A before the next denoising iteration.

Algorithm E.3 Motion Planning Diffusion - Tweedie Version

Require: costs g, weights A '
Require: Diffusion forward process variances f;, o; :=1—f;, @; :=[T;_; 0

1: x7 ~ N(O,I)
2: fort=Tto1do
3: Compute the posterior mean of x,_; using model-free score:
. 1 1—o; £ (x1.1)
Xt = —F— |\ Xt — —F/—7— X;
t—1 \/Et t m 0\At1s
4: Estimate final clean sample using Tweedie Formula:
. L 0 .
o= —= 1 (xtfl — V1 =0 18g(Xs—1,i— 1))
i
5: Compute weighted costs:
L£=Y Zigi(fo)
i
6: Compute gradient of costs with respect to X;_; with autograd:
5 = _A)er—l ([‘)
7: Calculate the next noisy sample:
X_1=%_1+g=0+02z, ze€N(0,I)
8: end for

9: return return x,
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F Additional Experiments

F.1 JM2D results in the smooth and safe trajectory

In this section, we show that our method enables better alignment between constraints and data
fidelity compared to projection-based diffusion planners. We focus on the trade-off between hard
constraint satisfaction and fidelity to the data-driven priors—such as realistic dynamics or motion
patterns—that are implicitly learned by the generative model. We first inspire the failure mode of
the projection via the toy example. We show how this failure mode can negatively impact in terms
of the data fidelity of the generated trajectory and overall system performance in robotics.

Limitation of Projection. Projection-based diffusion planners enforce constraints by modifying
noisy samples post hoc—typically without regard for the learned data distribution or task-specific
structure embedded in it. This is problematic in settings like robotics, where feasible sets defined by
test-time constraints may lie outside the support of the training data (as is often the case in Imitation
Learning). In such cases, projections may find constraint-satisfying solutions that are semantically
incorrect, dynamically inconsistent, or simply implausible.

Running Example: Donut Toy Task. We illustrate this failure mode in a 2D toy task, where
a test-time constraint creates two disjoint feasible regions—only one of which overlaps with the
training distribution. As shown in Fig. 5, projection moves samples toward the closest feasible
region, regardless of whether the sample remains consistent with the training distribution, leading
to low-fidelity samples. In contrast, our method guides the generative process toward feasible, in-
distribution samples, even though it fails to provide hard constraint satisfaction.
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Figure F.7: Denoising behavior in constrained trajectory generation. Visualization of the de-
noising process across different methods on the Avoiding-Left task. Each row shows trajectory
evolution from pure noise (left) to final output (right), with color indicating timestep. SafeDiffuser
projects each state independently, causing trap behavior. DPCC imposes dynamics constraints at
early stages, which introduces mismatches with training-time data and leads to degraded smooth-
ness. Our method preserves randomness and structure across diffusion steps while satisfying con-
straints.

Effect of Incorporating Dynamics. One of the distinctive data-embedded features in demonstra-
tions is robot dynamics. In Fig. F.7, we visualize how different methods evolve over the diffusion
horizon. SafeDiffuser applies projection at each state without modeling dynamics, leading to the
well-documented “trap” behavior [16]. Although trajectory-level projection, such as that in DPCC,
introduces a dynamics model to avoid this issue, it does so by injecting hand-designed approxima-
tions (e.g., linearized dynamics). To account for modeling error, these methods often pad constraints
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with uncertainty margins—introducing conservativeness. As seen in Fig. 6, this conservativeness
can block feasible plans in cluttered environments requiring narrow-gap maneuvers.

(a) JM2D (Ours) (b) SafeDiffuser [16] (c) DPCC [15]

Figure F.8: Comparison of trajectory smoothness and safety. We compare sampled trajectories
from different methods on the Avoiding-Left task. Our method achieves the best balance between
data fidelity and constraint satisfaction, resulting in smoother trajectories that avoid collisions.

Mismatched Training Distribution. A subtler failure is shown in Fig. F.7, where dynamics-aware
projections force early denoising steps to adhere to realistic trajectories. However, forward diffusion
degrades trajectory structure, and hence noisy samples should be dynamically infeasible. Enforcing
dynamics constraints on these corrupted inputs forces the denoiser to operate on unrealistic, out-of-
distribution samples. This mismatch leads to degraded denoising quality and non-smooth outputs,
as visualized in Fig. F.8. In contrast, our method maintains the generative structure across the entire
diffusion trajectory, leading to smoother, higher-fidelity results.

System Performance. Finally, we argue that although projection-based diffusion motion planners
enforce hard constraint satisfaction at each horizon, their tendency to produce low-fidelity trajec-
tories leads to degraded downstream behavior. In contrast, while our method does not guarantee
per-sample constraint satisfaction, it reduces overall constraint violations by naturally steering the
generative process toward safe and plausible solutions. This results in improved task performance,
as seen in Table 1, where our method consistently achieves higher success rates and fewer constraint
violations compared to projection-based baselines.

F.2 JM2D is robust to the backup planner design quality

Table F.3: Robustness of JM2D to degraded backup—planner capabilities.

. Original X+ y+ X—y—
Algorithm SSucc. | SHor. | Int% | SSucc. | SHor. | Int% | SSucc. | SHor. | Int%
RAIL 0.90 351.7 | 0.52 0.62 417.3 | 0.61 0.60 367.7 | 0.72
JM2D (Ours) 0.94 297.7 | 0.24 0.76 259.7 | 0.40 0.88 366.3 | 0.47

Robustness to Backup-Planner Quality. Safety—filter frameworks must tolerate imperfect backup
policies in real robots, so we evaluate JM2D under three variants: (1) Original, which performs an
accelerate—brake maneuver (accelerate for 0.5 s, then decelerate to rest); (2) x+y-+, which allows
acceleration only in the positive x and y directions; and (3) x—y—, which allows acceleration only
in the negative x and y directions. For each variant we execute 50 roll-outs with inference-time
wall padding w = 0.20 and record the Safe Success Rate (SSucc.), Successful Horizon (SHor.), and
Intervention Ratio (Int %), reported in Table F.3. Constraining the backup planner sharply degrades
RAIL: safe success falls from 0.90 to 0.60 while interventions climb from 0.52 to 0.72. In contrast,
JM2D remains resilient (SSucc. > 0.76 across all variants) and roughly halves the intervention fre-
quency, suggesting that its diffusion planner anticipates backup-planner limitations and produces
plans that remain compatible even with weakened safety capabilities.
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