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Abstract

As large language models improve in capability, they are increasingly taking on
more agentic and interactive roles in multi-agent settings that demand effective
communication and coordination. In order to measure a model’s capabilities in
these settings, new benchmarks are quickly emerging to study language-based,
multi-agent interaction, often by adding language scaffolds on top of existing multi-
agent environments. However, when evaluating agents on such benchmarks, an
agent’s performance can be significantly influenced by implicit factors related to the
design of the scaffolds, rather than the inherent properties of the agents. Moreover,
it is unclear if coordination among agents in these settings follows scaling laws. We
consider one such environment—the popular collaborative cooking environment,
Collab-Overcooked—and characterize how scaffolding plays a role in successful
collaborations between models of varying sizes. We perform empirical evaluations
on the collaborative capabilities of agents and find that, as long as models are
given clear instructions on how to collaborate, their capabilities follow positive
scaling laws in both self-play and cross-play. However, without a scaffold that
explicitly defines how the collaboration should be done, we find models struggle
to develop effective methods for collaboration, and scaling laws break down. Our
experiments highlight how subtle changes in agent scaffolds can drastically impact
their collaborative capabilities and raises questions on how to design evaluations
for agents that may have to collaborate with open-ended partners.

1 Introduction

Large language models (LLMs) are moving from single-agent deployments to open, multi-agent
ecologies in which AI assistants interact with humans and other AI agents to carry out real-world tasks.
Improvements in AI agent capabilities are allowing them to be deployed in increasingly complex
tasks Kwa et al. [2025]. Such tasks range from trivial ones like scheduling a table at a restaurant or
grocery shopping Rogers [2025], to genuinely consequential ones, such as handling bureaucratic
obligations, advising about medical care or on other high-stakes decisions Palantir Technologies
[2025], Preiksaitis et al. [2024], Li et al. [2024], Newman et al. [2022]. As assistants assume such
open-ended roles, they will necessarily need to interact with other agents. We focus on the ability of
models to coordinate: how well they form shared plans and distribute roles between varying partners.
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Moreover, we examine when coordination follows scaling laws, and how design choices (scaffolds,
prompts, and environmental factors) shape their ability to coordinate.

We study coordination in Collab-Overcooked [Sun et al., 2025], a two-player, fully cooperative
benchmark featuring explicit inter-agent communication, interactive planning, and sparse rewards.
Collab-Overcooked instantiates the core primitives required for successful coordination between LLM
agents—language-mediated negotiation, interdependent sub-tasks, shared-resource management, and
rapid role allocation—within a controlled setting that enables precise, repeatable measurement.

Since LLM agents operating in the real-world need to be able to coordinate with open-ended partners
(whether that be humans or other agents), our analysis focuses on studying models in cross-play:
when their partner is different than themselves. Our primary analysis examines cross-play within a
single model lineage (Qwen3.0; 1.7B–32B) [Yang et al., 2025]. Our first result shows that, under
carefully designed scaffolds, models obey clean scaling laws when it comes to coordination: agents
tend to do better when their underlying model size increases, or their partner’s.

However, we find that as interactions become less clearly defined within the agents’ scaffolds, scaling
laws break down. To isolate drivers of coordination, we vary three additional factors: (i) the scaffolds
that define an agent’s role in the interaction, (ii) game structure, varying between asymmetric and
symmetric layouts ; (iii) turn order, swapping which assistant moves first . Our results indicate
that LLM agent coordination capabilities might be become more limited as multi-agent interactions
become less well-defined and more open-ended. Our main empirical contributions are as follows:

• Scaling trends in cross-play. With clearly defined scaffolds, performance generally in-
creases with the model size of either partner with a compounding effect.

• Open-ended interaction degrades scaling laws. When the restrictions on agent interactions
are relaxed, scaling laws break down.

• Emergence of hierarchy predicts success. Task success is correlated with how strong a
hierarchy emerges between the two agents in the game.

2 Related Work

LLM agent coordination. We use Collab-Overcooked [Sun et al., 2025] as the basis for our
experiments, a benchmark originally used to study self-play cooperation. We build on this work by
studying model’s in cross-play as well as introducing modifications to the environment and scaffolds
to study their effects on the coordination capabilities of agents. There are an increasing number of
other benchmarks arising for studying the coordination capabilities of agents, ranging from various
types of simple matrix games including “Guess 2/3 of the Average", “El Farol Bar", “Divide the
Dollar" tse Huang et al. [2025] to a cooperative symmetric game of traveling salesman [Jeknic
et al., 2025], to graph-based coordination environments [de Carvalho Silva and Macharet, 2025],
and simulating societies of agents [Piatti et al., 2024]. However, while these settings do require
communication and coordination between LLMs to succeed, they do not evaluate them in multi-step
agentic coordination settings.

There is some, but limited work, on investigating LLMs in our setting of multi-agent cross-play
scenarios. In [Curvo et al., 2025], the authors evaluate models of different sizes and providers in a
mixed-motive game, finding that smaller, lower-performing agents can be influenced by larger ones.
Another work Chen et al. [2025] studies the ability of models that are specialized for different tasks
to coordinate on time series anomaly detection tasks.

Scaling laws. Several works have studied various scaling laws in language models Kaplan et al.
[2020] and agentic capabilities Kwa et al. [2025]. Other prior work has also documented inverse
scaling in language models: some behaviors worsen with scale and, with improved prompting or
data, can become U-shaped [McKenzie et al., 2023, Wei et al., 2022]. We connect scaling laws to
multi-agent coordination: demonstrating when and how language models follow scaling laws in
cross-play.

Prompting and Scaffolds. Several works have focused on building scaffolds that coordinate
multiple LLMs in a way to outperform a single model [Wu et al., 2023, Suzgun and Kalai, 2024].
For example, Wang et al. [2024] introduces a scaffold that consists of two LLM agents with distinct
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roles: a planning agent and a reasoning agent. Cross et al. [2024] scaffold agents to explicitly engage
in theory of mind to improve cooperation capabilities in mixed-motive settings. Similarly, our work
studies the impact on agent’s coordination abilities of various design choices in the scaffolds within
the Collab-Overcooked environment.

3 The Environment

Benchmark and tasks. We evaluate agents in Collab-Overcooked [Sun et al., 2025], a two–agent
kitchen simulation that enforces collaboration via resource isolation and asymmetric task knowledge.
Figure 1 shows the asymmetric layout: the Chef controls the pot, oven, and delivery pass; the
Assistant has access to the ingredient dispenser, chopping board, dish stack, and blender; both agents
share a central counter for hand-offs.

Figure 1: Collab-Overcooked layout. The column of three central tiles in which the agents are standing
are walkable floor; red/blue tiles denote counters. The central line demarcates the asymmetric partition
for the asymmetric environment. In the symmetric variant, we remove this divider and convert the
previous shared counter area to walkable floor; all other items remain in place. The Chef becomes
the First Player in the symmetric environment while the Assistant becomes the Second Player.

We study two variants of this environment:

• Asymmetric: Roles and access are fixed as above. This setting resolves all hierarchical
ambiguity: one agent naturally plans and delivers (Chef) while the other supplies and
prepares ingredients (Assistant).

• Symmetric: The physical partition is removed; both agents see identical task information
(including the recipe) and can access all stations. No roles are prescribed—agents must
negotiate a plan and divide work via communication. Prompt details are provided in the
Appendix’s Figure 15. As a convention we say that the agent that used to be the Chef is now
First Agent and the agent that used to be the Assistant the second agent.

Agents and pairings. We study self-play (homogeneous pairings), and cross-play (heterogeneous
pairings) in both the asymmetric and symmetric environments. In the asymmetric environment, we
also swap which agent acts first to test turn-order effects. We use Qwen 3.0 models at five scales:
{1.7B, 4B, 8B, 14B, 32B}. LLMs use temperature 0.7, and a max communication budget of 4
SAY turns per communication window. We disable external tool usage.

Prompts and memory. In the asymmetrical environment, both players receive high-level context
regarding the structure of the task, who they are, the current environment state st, and role-specific
capabilities. Moreover, the chef has exclusive access to the recipes. In the symmetrical environment,
agents receive the same information as above, but now they share the same prompt and context, which
establishes no role but still informs them about the task to be completed. In both asymmetrical and
symmetrical cases, agents retain a short-horizon scratch memory (last K transitions, K=10) and the
transcript of the most recent communication window.
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3.1 Experimental protocol

We evaluate ordered model pairs to capture role/turn-order effects. All metrics in §3.2 are computed
per episode, averaged over the E episodes within a recipe, then over the S recipes within a level,
and finally (when reported “overall”) averaged across levels. Each episode is capped at Tmax = 120
environment timesteps.

• Asymmetric. For each ordered pair of models (i, j) we run S=5 recipes, each with E=10
episodes, across 5 levels (levels 1–5). This yields 5× 5× 10 = 250 episodes per ordered
pair.

• Symmetric. For comparability and tractability, we restrict evaluation to the two levels that
admit faithful symmetric/asymmetric mappings and span different coordination regimes
(levels 2 and 4; details in the Appendix D). For each ordered pair (i, j) we run the same
S=5 recipes with E=10 episodes per recipe, giving 2× 5× 10 = 100 episodes per ordered
pair.

Reproducibility. All code, prompts, and scripts to regenerate figures are available at
https://github.com/marimeireles/Collab-Overcooked/

3.2 Metrics

We evaluate agent coordination using two complementary metrics. The first captures whether
agents successfully complete recipes, while the second measures how closely they follow optimal
behavior—allowing us to assess execution quality and partial progress even in failed episodes.

1. Success Rate:

success rate =
number of times the experiment is successful

total number of experiments

2. Similarity to the RAT: We measure how closely each agent follows optimal behavior using the
Referential Action Trajectory (RAT). For each recipe, we precompute the complete set of optimal
trajectories—all possible action sequences that complete the recipe in the minimum number of steps.
Each trajectory is role-specific: in the asymmetric environment, we generate separate RAT sets for
the Chef and Assistant based on their respective action spaces and responsibilities; in the symmetric
environment, we generate new RAT sets that reflect the unified action space available to both players.
Figure 14 in the Appendix shows an example RAT.

To score an agent’s trajectory, we find the RAT in the appropriate set that has the maximum overlap
with the agent’s actual actions. Let nk be the length of the RAT for agent k, and let Dmax

j be the
length of the longest subsequence match between agent j’s trajectory and the closest RAT. This
allows us to measure partial task completion even in episodes where agents fail to deliver the recipe.
We define similarity to the RAT as:

similarity to the RAT =
Dmax

j

nk

We compute both metrics per episode and aggregate them across recipes and levels as described in
§??. When analyzing cross-play, we additionally report RAT similarity separately by role to identify
asymmetries between Chef and Assistant performance.

4 Results

We present our empirical findings on how scaffolds influence coordination scaling in LLM agents.
Through our experiments, we investigate the following hypotheses:

• H1 (Self-play scaling). Within a fixed model family, self-play performance increases
monotonically with model size.
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• H2′ (Scaffold dependence of scaling). Under less prescriptive scaffolds (no role definitions),
scaling trends become less evident, indicating that scaling can be scaffold-induced.

• H3′ (Hierarchy predicts success). The emergence of a clear leader–follower hierarchy
predicts higher task performance.

• H4′ (Parallelization amplifies coordination). For tasks with greater opportunity for work in
parallel (higher decomposability), cooperative performance increases, and scaling trends
become more evident.

4.1 Asymmetric Env

Does cooperation among LLM agents follow scaling laws? Figure 9 shows a clear scaling trend:
as model size increases, mean success rises in both self-play and cross-play. The improvements are
most pronounced up to mid-scale (notably from 4B to 8B and again to 14B) and then taper off, with
smaller, overlapping gains beyond 14B. This pattern suggests that once a basic planning/communica-
tion competence is achieved, raw capacity ceases to be the primary limiter to increase the success
rate; interaction dynamics become the bottleneck. We explain why this happens using the symmetric
setting in §4.2, where turn order and emergent role assignment explain both the departures from a
purely size-ordered ranking.

(a) With Assistant size fixed, larger Chefs raise success,
but gains beyond 14B lie within overlapping confidence
intervals. Chef scaling is less effective than Assistant
scalling’s in Fig. 2b.

(b) With Chef size fixed, larger Assistants improve
success. A 32B Assistant especially boosts smaller
Chefs—note the strong performance when paired with
8B and 14B models.

Figure 2: Cross-play and self-play outcomes in the asymmetric Overcooked setting (means with 95%
CIs, averaged over all tasks)

How do LLMs behave in different roles? Figure 3 decomposes the similarity to RAT by role.
Larger models not only plan well as Chef; they also track partner plans and recover from partner
errors more effectively as Assistant, as we will see in Figures 4a and 4c, yielding high RAT alignment
even with weaker Chefs. We have included randomly sampled examples of interactions between
small models playing as Chef and larger models playing as Assistants in order to illustrate this in
the Appendix F. This asymmetry explains part of the reason why some mixed pairs outperform
symmetric strong–strong pairs: a capable follower resolves ambiguity early, increasing the chance
for success.

Cross-vendor testing Our scaling trends are not specific to the Qwen model family. We tested three
additional models in the asymmetric environment: Nemotron 14B, Gemma 4B, and Gemma 12B.
These models exhibit the same coordination scaling patterns as their Qwen counterparts. Specifically,
Nemotron 14B and Gemma 12B achieve success rates comparable to Qwen 14B, while Gemma 4B
matches Qwen 4B performance. Figure 8 in the Appendix shows detailed success rates for these
cross-vendor pairings.
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(a) Mean similarity to the RAT for Chefs. (b) Mean similarity to the RAT for Assistants.

Figure 3: Mean similarity to the RAT (Referential Action Trajectory), averaged across all levels. The
y-axis denotes models in the Chef role; the x-axis denotes models in the Assistant role.

4.2 Symmetric environment

Agents perform substantially better in the symmetric environment than in the asymmetric one.
Figure 4 compares success rates for levels 2 and 4 across both environments. The symmetric setting
consistently yields higher completion rates across all model pairings.

(a) Symmetric env. level 2 (b) Asymmetric env.

(c) Symmetric env., level 4 (d) Asymmetric env., level 4

Figure 4: We compare the success of the models playing a symmetric version of the Overcooked
game with models playing an asymmetric version. The y-axis represents the First Player while the
x-axis represents the Second Player.

The symmetric environment removes one major coordination challenge: agents no longer need to
track which stations their partner can access, since both agents can reach all stations. However, other
coordination difficulties remain. Agents must still maintain a shared understanding of the recipe’s
current state (which ingredients have been prepared, what cooking steps are in progress), monitor what
their partner is doing to avoid duplicate or conflicting actions, and negotiate who does what without
explicit role assignments. We find that how agents resolve these remaining challenges—particularly
role negotiation—strongly influences coordination success, and several factors shape these outcomes.

Turn order induces a leadership prior. The agent that acts first in the symmetric setting implicitly
becomes the coordinator. This leadership role emerges not from the prompt, but simply because the
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first agent reads the recipe and speaks before its partner. This turn-order effect produces three striking
patterns in Figure 4a:

1. First column is weakest (1.7B as the Second Player). When a model is the First Player,
it assumes the leading position and expects a cooperative follower. Instead, 1.7B tends to
flood the channel with repeated recitations of the actions one should take in the environment
and self-assigns actions, derailing the stronger partner’s plan and stalling role resolution.
This produces uniformly low success when 1.7B is cast as the follower.

2. First row is unexpectedly strong (1.7B as the First Player). When 1.7B goes first, its
repetitive instruction dumps act like a crude “project brief.” Stronger partners interpret this
as a leadership signal and, with the follower prior, often salvage the plan by extracting
actionable steps. The same verbosity that harms it as follower helps it as a proto-leader
because the other agent adopts the follower role early.

3. Last column is strongest (32B as the Second Player). Having the largest model to go last,
or falling in the follower role, yields robust success rates across leaders: the 32B agent rapidly
understand the context and commits to the other agent’s plan (Figure 12). Furthermore, in
every mirrored pairing with a smaller partner m ∈ {4, 8, 14}, the configuration with 32B as
follower (m×32) outranks its role-swapped mirror (32×m) in the level-2 symmetric game
(see the top-7 success rate in Table 1b).

The 1.7B model’s success as First Player stems from its partner compensating for its incompetence,
not from genuine coordination ability. We therefore exclude 1.7B from further analysis. This model
lacks basic understanding of the environment and fails to follow task constraints—it repeatedly
recites action lists instead of executing them (see Appendix E for examples). While this behavior
occasionally yields high success rates in level-2 symmetric tasks, this occurs only because the task is
simple enough for a capable Second Player to complete alone while ignoring 1.7B’s outputs. The
strategy is not robust: when we increase task difficulty to level 4, the pattern disappears entirely
(Figure 4c), confirming that 1.7B’s apparent coordination is an artifact of partner capability and task
simplicity rather than genuine competence.

Hierarchy formation correlates with performance. To measure whether agents established
clear leader-follower roles, we used GPT-5 to classify each episode’s interaction transcripts into
three categories: CLEAR_HIERARCHY (one agent consistently delegates while the other executes),
FUZZY_HIERARCHY (agents negotiate roles but never stabilize), and NO_HIERARCHY (no role differen-
tiation emerges). The classifier analyzed 36 interaction snippets per episode—6 from the beginning,
middle, and end for each agent—to capture role dynamics for 1000 unique games. The protocol is
detailed in Appendix G.

Using this metric, we find that early hierarchy formation strongly predicts task success. In level-
2 symmetric runs, pairings that quickly converged to a clear hierarchy (e.g., 14×32 and 32×32)
achieved success rates of 0.6–0.7, whereas pairings with weak or unstable hierarchies (e.g., 4×14 and
8×14) hovered around 0.3. Five of the seven highest-performing combinations (Table 1b) also appear
among the seven pairings with the most frequently observed clear hierarchies (Table 1a). Model
capacity still matters—pairings with a large follower (e.g., 4×32 and 8×32) achieved success rates
near 0.6 even without perfect hierarchy scores—but hierarchy formation is independently predictive
of coordination success.

Parallelizable tasks. Level-4 tasks contain independent subtasks that can be completed simultane-
ously (e.g., one agent prepares ingredient A while the other prepares ingredient B; see Figure 10).
When agents successfully divide this work, coordination substantially improves: agents achieve much
higher success rates in level-4 symmetric tasks compared to level-4 asymmetric tasks (Figures 4c,
4d), and work division is more balanced—agents execute similar numbers of actions rather than one
dominating (Figure 6b).

However, parallelizable structure only helps when agents successfully negotiate who does what.
When coordination succeeds, two mechanisms amplify performance. First, agents complete recipes
faster in the symmetric version—compare completion times between symmetric and asymmetric
level-4 in Table 2. Faster completion produces shorter interaction histories, which reduces the context
burden on the models. Second, once agents agree on subtask assignments, each can execute its
portion independently without constantly monitoring its partner’s state. This lowers coordination

7



(a) Left: CLEAR_HIERARCHY (9.4% of runs); see Appendix G for
the labeling protocol. (b) Top-right: FUZZY_HIERARCHY (87%),
marked by persistent back-and-forth over leadership with no stable
roles. (c) Bottom-right: NO_HIERARCHY (3.6%), where confusion
prevents even tentative role assignment or task division.

Figure 5: Correlation between models’ success rates and hierarchy conditions.

overhead compared to tightly coupled, sequential tasks. When agents fail to establish clear roles,
however, even parallelizable tasks produce poor outcomes (Figure 4). Success at level-4 therefore
requires both the right task structure (parallelizable subtasks) and sufficient coordination capability
(role negotiation and task division).

(a) Level 2. Number of valid actions by First Player
(y-axis) vs. Second Player (x-axis).

(b) Level 4. Number of valid actions by First Player
(y-axis) vs. Second Player (x-axis).

Figure 6: Task division heat maps in the symmetric environment across two difficulty levels. Values
near 0 indicate an even split between players.

Task division across task complexity. Comparing level-2 and level-4, we find that explicit task
division matters little in level-2, where many pairs achieve strong performance without clear role
separation (Figure 6a). By contrast, at level-4, effective task division tends to emerge from successful
coordination and is more tightly linked to higher success (Figure 6b). We hypothesize that level-2
problems are simple enough to solve without structured coordination, whereas the structure of level-4
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inherently incentivizes parallelization; when models perceive opportunities to share work, they do so.
These findings imply that coordination algorithms are complexity-dependent: strongly cooperative
strategies arise only when task demands warrant them. Though as seen in Figure 4, such strategies
won’t emerge when model capacity is insufficient.

5 Conclusion and Future Work

Summary. We set out to understand when coordination among LLM agents obeys scaling trends
and how much of the apparent scaling is induced by scaffolds rather than intrinsic model ability.
Using Collab-Overcooked across asymmetric and symmetric variants, ordered cross-play pairings
within Qwen 3.0 (1.7B–32B), and standardized prompts/memory, we find:

• H1 (Self-play scaling). With clear, prescriptive scaffolds, self-play improves monotonically
with model size and exhibits a competence threshold between small and mid-scale models.
Cross-play shows the same positive trend when at least one partner is sufficiently capable
(Fig. 9).

• H2′ (Scaffold dependence). As we remove role definitions, the neat scaling regularities
break (Fig. 4). Scaffolding can overstate intrinsic coordination.

• H3′ (Hierarchy predicts success). Stable leader–follower structure correlates with higher
success (Fig. 5); turn order creates a leadership prior, and “bigger-as-follower” (e.g., 14×32,
8× 32) often outperforms the mirrored pairing.

• H4′ (Parallelization amplifies coordination). On tasks with decomposable subgoals, the
ability to divide tasks among agents boosts division of labor, shortens trajectories, and
strengthens scaling signals (Figs. 4c, 6b).

Across all settings, larger models are more valuable when serving in the Assistant role (or when they
naturally assume that role in symmetric settings). These larger Assistants track global state more
accurately, infer missing preconditions, and reduce coordination overhead—even when paired with
weaker Chefs (Fig. 3). Cross-vendor tests with Gemma and Nemotron models show that these effects
are not unique to the Qwen lineage (§4.1).

Implications for evaluation design. Our results indicate that benchmark conclusions about “coordi-
nation scaling” can be artifacts of wrappers. To make agent evaluations informative and reproducible,
we recommend:

1. Report scaffold details (role scripts, turn order, communication budgets) and vary them via
a scaffold sensitivity analysis to test whether results are robust or scaffold-induced.

2. Include parallelizable regimes to probe genuine cooperation rather than serial plan-
following.

3. Disaggregate by role and order (Chef vs. Assistant; who goes first), since these systemati-
cally mediate scaling.

Taken together, H1, H3′ , and H4′ describe when scaling is likely to appear: clear roles, fast hierarchy
formation, and opportunities for parallel work. H2′ delineates when scaling ceases to exist: under
open-ended interaction without strong priors about who plans, who executes, and how to negotiate.
The practical upshot is that coordination scaling is conditional—it requires scaffolds that reduce
ambiguity or partners capable enough to establish structure on the fly.
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A Asymmetric Environment Complete Per-level Analysis

In Figure 7, we show the per-level analysis of the mean similarity to the optimal policies (RAT) and
success rates per level.

(a) Level 1 - Mean similarity of chef and assistant and success rate

(b) Level 2 - Mean similarity of chef and assistant and success rate

(c) Level 3 - Mean similarity of chef and assistant and success rate

(d) Level 4 - Mean similarity of chef and assistant and success rate

(e) Level 5 - Mean similarity of chef and assistant and success rate

Figure 7: Mean similarity to optimal policies (RAT) and success rate in asymmetric environment
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B Cross vendor pairings

To check that our coordination trends are not idiosyncratic to a single lineage, we paired similarly
sized models across different families (Qwen, Gemma, Nemotron) under the same scaffold, prompts,
decoding (temperature 0.7), and communication budget as in the main experiments. The heat map in
Figure 8 summarizes success rates for these cross-vendor pairings.

Figure 8: Success rate over similar sized models of cross vendors.

C Agent’s Action Space for All Environments

These are all the actions defined by the DSL that the agents have access to and have to use in order to
play the underlying implementation of Overcooked.

(a) Unified action space for all agents playing the sym-
metric environment.

(b) In the asymmetric environment roles come pre-
determined with different actions an agent can take.

Figure 9: Action space

D Rationale for Selecting Levels 2 and 4 in the Symmetric Environment

We restrict symmetric–environment evaluation to Levels 2 and 4 for empirical coverage of two distinct
coordination regimes. In the asymmetric setting, Level 2 shows the greatest success-rate dispersion
among smaller models (cf. Fig. 7), making it sensitive to coordination differences not swamped by
raw capacity. Symmetrizing Level 2 removes access constraints while preserving difficulty, letting us
probe early role negotiation of a wider range of models.

The recipes of Level 4 incentivize the development of a concurrent algorithm in order to solve them
as sub-tasks (Figure 10), making it an interesting study case for work division and parallel execution.
The symmetric variant lets us assess whether agents that can parallelize actually do, and how this
interacts with emergent hierarchy.
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Figure 10: Example of one of the recipes used in level 4. The recipes are shared among environments.

E 1.7B Model Removal

Figure 11: In the majority of Qwen 1.7B runs, the agent degenerates into repeatedly echoing the
DSL or other role-specific instructions—often for many turns—instead of producing task-advancing
actions. This is an example of a level-2 asymmetric environment run.

F Larger Models as Assistants

Larger assistants drive most of the cross-play gains. Holding the Chef fixed, success rises with the
Assistant’s scale (Fig. 2b); and Assistant RAT alignment remains high even when paired with weaker
Chefs (Fig. 3b). Qualitatively, large Assistants act as robust followers: they maintain an accurate
global state, infer missing preconditions, and issue targeted partner requests or execute the needed
primitives—rather than reciting rules.

These behaviors reduce coordination overhead for the Chef and explain why “bigger-as-follower”
configurations (e.g., 14× 32, 8× 32) often outperform their mirrors (e.g., 32× 14, 32× 8) in the
symmetric setting (Fig. 4a).
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Figure 12: A 32B Assistant exhibits high-quality follower behavior: it summarizes the state
(Chef holds pepper; oven contains a baked item), remembers Chef’s past states (that the Chef
itself seems to have forgotten), infers a latent precondition (plating requires a dish), and issues
precise partner requests that close the loop—request(‘pickup(dish, dish_dispenser)’);
request(‘fill_dish_with_food(oven0)’)—instead of echoing the DSL. This example was
taken from an asymmetric run.

G Top performers in the symmetric environment for level-2

This section outlines our hierarchy labeling procedure and reports the top-performing model pairings
on the symmetric level-2 task, emphasizing the association between early role formation and success
rates.

Hierarchy evaluation protocol. Across all runs in the symmetric setting, the distribution of
hierarchy labels was CLEAR_HIERARCHY (9.4%), FUZZY_HIERARCHY (87.0%), and NO_HIERARCHY
(3.6%). The labeling protocol is specified in Figure 13. For each episode, the evaluator received the
base prompt plus 36 interaction snippets: 6 from the beginning, 6 from the middle, and 6 from the
end for each of the two agents. Each snippet contained the complete reasoning, planning, and spoken
turns at that time point. This yielded up to 36 analyzed steps per game; if an episode had fewer than
36 steps, we analyzed all available interactions.

We evaluated with GPT-4-nano and GPT-4 as well, though their evaluation quality was below human-
validator expectations. For GPT-5, a human audit of a 5% stratified sample of symmetric runs found
the evaluations to be largely correct.

Table 1a lists the model pairings that most frequently exhibited a clear leader–follower structure in
the symmetric environment. For comparison, Table 1b ranks the same set of experiments by success
rate. The overlap between the two tables supports our central claim: early emergence of a stable
hierarchy is positively associated with task success. Pairs that rapidly settle on complementary roles
(one agent delegating, the other executing) tend to complete recipes more reliably and with fewer
coordination stalls.
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Figure 13: Prompt used to query the OpenAI GPT-5 model in order to achieve hierarchical classifica-
tion.

Table 1: Ranking of the best 7 performing models in the symmetric environment in the hierarchy and
succes rate metrics.

(a) Models that most commonly formed clear hierar-
chies in the symmetric environment

Rank Configuration Success

1 14× 14 0.3
2 14× 32 0.7
3 14× 8 0.3
4 32× 14 0.4
5 32× 8 0.4
6 8× 32 0.6
7 32× 32 0.7

(b) Highest success in the symmetric environment

Rank Configuration

1 32× 32
2 14× 32
3 8× 32
4 4× 32
5 32× 4
6 32× 8
7 32× 14

H Task division among players

For the task-division metric, we compute a role-specific RAT for each agent, align their trajectories,
and compare the counts of RAT-consistent (valid) actions between agents to assess how evenly work
was split in a setting without enforced role constraints.

RAT adaptation for the symmetric setting. In the symmetric environment we omit
counter–placement and counter–pickup actions from the reference RAT. In such an unconstrained
environment, handoffs via the central counter are not relevant. Besides, the task can be completed
end-to-end by a single agent, so these logistics steps are not required by the optimal plan. Excluding
them shortens the reference trajectory and thus reduces the number of actions an agent must match to
achieve a perfect RAT alignment. We don’t compare RAT across environments.
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Figure 14: Example of a RAT used to compare level-4 agents actions.

I Mean Timestamp for Task Completion for All Environments

Table 2: Mean timestamp by model combination and recipe level 4 running on an symmetric and
asymmetric environment

Model Combination Mean Timestamp (Symmetric) Mean Timestamp (Asymmetric)

1.7× 1.7 119.0 119.0
1.7× 4 113.3 119.0
1.7× 8 115.0 119.0
1.7× 14 112.1 119.0
1.7× 32 116.5 119.0
4× 1.7 119.0 119.0
4× 4 112.9 119.0
4× 8 109.4 119.0
4× 14 103.7 119.0
4× 32 95.4 119.0
8× 1.7 116.5 119.0
8× 4 110.4 119.0
8× 8 106.0 119.0
8× 14 104.3 116.9
8× 32 101.1 117.0
14× 1.7 116.4 119.0
14× 4 106.7 119.0
14× 8 100.5 119.0
14× 14 100.0 114.9
14× 32 95.0 115.9
32× 1.7 116.6 119.0
32× 4 109.2 119.0
32× 8 99.2 118.7
32× 14 103.2 109.0
32× 32 99.2 97.7

J Prompting

Thinking mode. Qwen 3.0 supports a “thinking" mode, but pilot runs showed episode runtimes
increasing by numbers as large as an order of magnitude, making evaluation impractical. Because our
focus is coordination under realistic latency constraints, we disable thinking mode and use standard
decoding for all models.
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Figure 15 shows the modified prompt used to establish the task context for both players in the
symmetric environment.

Figure 15: Symmetric environment rules’ prompt. Both agents in the symmetric environment receive
the same prompt.

18


	Introduction
	Related Work
	The Environment
	Experimental protocol
	Metrics

	Results
	Asymmetric Env
	Symmetric environment

	Conclusion and Future Work
	Asymmetric Environment Complete Per-level Analysis
	Cross vendor pairings
	Agent's Action Space for All Environments
	Rationale for Selecting Levels 2 and 4 in the Symmetric Environment
	1.7B Model Removal
	Larger Models as Assistants
	Top performers in the symmetric environment for level-2
	Task division among players
	Mean Timestamp for Task Completion for All Environments
	Prompting

