
Under review as a conference paper at ICLR 2022

HYPERTRANSFORMER: ATTENTION-BASED CNN
MODEL GENERATION FROM FEW SAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we propose a HyperTransformer, a transformer based model that gen-
erates all weights of a CNN network directly from support samples. This approach
uses a high-capacity model for encoding task-dependent variations in the weights
of a smaller model. We show on multiple few-shot image classification bench-
marks with different model sizes and datasets that our method beats or matches the
performance of many traditional learning methods. Specifically, we show that for
very small target architectures, our method can generate significantly better per-
forming models than traditional few-shot learning approaches. For larger models
we discover that generating the last layer alone allows us to produce competitive
or better results while being end-to-end differentiable. Finally, we extend our ap-
proach to a semi-supervised regime utilizing unlabeled samples in the support set
and further improving few-shot performance in the presence of unlabeled data.

1 INTRODUCTION

In few-shot learning, a conventional machine learning paradigm of fitting a parametric model to
training data is taken to a limit of extreme data scarcity where entire categories are introduced with
just one or few examples. A generic approach to solving this problem uses training data to identify
parameters φ of a learner aφ that given a small batch of examples for a particular task (called a
support set) can solve this task on unseen data (called a query set).

One broad family of few-shot image classification methods frequently referred to as metric-based
learning, relies on pretraining an embedding eφ(·) and then using some distance in the embedding
space to label query samples based on their closeness to known labeled support samples. These
methods proved effective on numerous benchmarks (see Tian et al. (2020) for review and references),
however the capabilities of the learner are limited by the capacity of the architecture itself, as these
methods try to build a universal embedding function.

On the other hand, optimization-based methods such as seminal MAML algorithm (Finn et al.,
2017) can fine-tune the embedding eφ by performing additional SGD updates on all parameters
φ of the model producing it. This partially addresses the constraints of metric-based methods by
learning a new embedding for each new task. However, in many of these methods, all the knowledge
extracted during training on different tasks and describing the learner aφ still has to “fit” into the
same number of parameters as the model itself. Such limitation becomes more severe as the target
models get smaller, while the richness of the task set increases.

In this paper we propose a new few-shot learning approach that allows us to decouple the complexity
of the task space from the complexity of individual tasks. The main idea is to use the transformer
model (Vaswani et al., 2017) that given a few-shot task episode generates an entire inference model
by producing all model weights in a single pass. This allows us to encode the intricacies of the avail-
able training data inside the transformer model, while still producing specialized tiny models that
can solve individual tasks. Reducing the size of the generated model and moving the computational
overhead to the transformer-based weight generator, we can lower the cost of the inference on new
images. This can dramatically reduce the overall computation cost in cases, where the tasks change
infrequently and hence the weight generator is only used sporadically.

We start by observing that the self-attention mechanism is well suited to be an underlying mech-
anism for a few-shot CNN weight generator. In contrast with earlier CNN- (Zhao et al., 2020) or

1



Under review as a conference paper at ICLR 2022

BiLSTM-based approaches (Ravi & Larochelle, 2017), the vanilla1 transformer model is invariant
to sample permutations and can handle unbalanced datasets with a varying number of samples per
category. Furthermore, we demonstrate that a single-layer self-attention model can replicate a sim-
plified gradient-descent-based learning algorithm. Using a transformer-based model to generate the
logits layer on top of a conventionally learned embedding, we achieve competitive results on several
common few-shot learning benchmarks. Varying transformer parameters we demonstrate that this
high performance can be attributed to additional capacity of the transformer model that decouples
its complexity from that of the generated CNN.

We then extend our method to support unlabeled samples by using a special input token concate-
nated to unlabeled samples to encode unknown labels. In our experiments, we observe that using
transformers with two or more layers, we achieve better performance by adding unlabeled data into
the support set. We explain our results in Section 4.3 where we show that such a transformer with
at least two layers can encode the nearest-neighbor style algorithm that associates unlabeled sam-
ples with similarly labeled examples. In essence, by training the weight generator to produce CNN
models with best possible performance on a query set, we teach the transformer to utilize unlabeled
samples without having to manually introduce additional optimization objectives.

We also show that by generating all layers of the CNN model we can improve both the training and
the test accuracies of CNN models below a certain size. The training accuracy can be viewed as
a capability of the generated CNN model to adapt to tasks seen at training time, whereas the test
accuracy computed on unseen categories characterizes the generalization capability of this model
adaptation mechanism. We empirically demonstrate the expected increase of the model training and
test accuracies with the increase of the layer size and the number of generated layers (see Figure 3).
Interestingly, generation of the logits layer alone appears to be “sufficient” above a certain model
size threshold. This threshold is expected to depend on the variability and the complexity of the
training tasks. We conjecture that this might reflect the fact that models are sufficiently expressive
for the benchmarks we considered, or that additional regularization is needed to prevent overfitting
of the meta-learning models.

Finally, in addition to being able to decouple the complexity of the task distribution from the com-
plexity of individual tasks, another important advantage of our method is that it allows to do learning
end-to-end without relying on complex nested gradients optimization and other meta-learning ap-
proaches, where the number of unrolls steps is large.

The paper is structured as follows. In Section 2, we discuss the few-shot learning problem setup and
highlight related work. Section 3 introduces our approach, discusses the motivation for choosing
an attention-based model and shows how our approach can be used to meta-learn semi-supervised
learning algorithms. In Section 4, we discuss our experimental results. Finally, in Section 5, we
provide concluding remarks.

2 PROBLEM SETUP AND RELATED WORK

2.1 FEW-SHOT LEARNING

The main goal of a few-shot learning algorithm is to use a set of training tasks Ttrain for finding
a learner aφ parameterized by φ that given new task domains can train to recognize novel classes
using just a few samples per each class. The learner aφ can be thought of as a function that maps
task description T = {(xi, ci)}ti=1 containing k labeled input samples {xi, ci} from n classes, to the
weights θ = aφ(T ) of a trained model f(x;θ). The parameters φ are meta-optimized to maximize
the performance of the model f(x; aφ(TS)) generated using a support set TS with x drawn from
a query set TQ. Each task T = (TS , TQ) is randomly drawn from a space of training tasks Ttrain.
Typically, TS and TQ are generated by first randomly choosing several distinct classes from the
training set and then sampling examples without replacement from these classes to generate TS and
TQ. In a classical “n-way-k-shot” setting, n is the number of classes randomly sampled in each
episode, and k is the number of samples for each class in the support set TS .

The quality of a particular few-shot learning algorithm is typically evaluated using a separate test
space of tasks Ttest. By forming Ttest from novel classes unseen at training time, we can evaluate

1without attention masking or positional encodings

2



Under review as a conference paper at ICLR 2022

generalization of different learners aφ. Best algorithms are expected to capture the structure present
in the training set and to perform well on novel concepts. This structure may, for example, include
certain properties of the distributions pc(x) with c being the class label, or the presence of particular
discriminative (or alternatively invariant) features in the tasks from Ttrain.

2.2 RELATED WORK

Few-shot learning received a lot of attention from the deep learning community and while there are
hundreds of few-shot learning methods, several common themes emerged in the past years. Here we
outline several existing approaches, show how they relate to our method and discuss the prior work
related to it.

Metric-Based Learning. One family of approaches involves mapping input samples into an em-
bedding space and then using some nearest neighbor algorithm that relies on the computation of
distances from a query sample embedding to the embedding computed using support samples with
known labels. The metric used to compute the distance can either be the same for all tasks, or can be
task-dependent. This family of methods includes, for example, such methods as Siamese networks
(Koch et al., 2015), Matching Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al.,
2017), Relation Networks (Sung et al., 2018) and TADAM (Oreshkin et al., 2018). It has recently
been argued (Tian et al., 2020) that methods based on building a powerful sample representation
can frequently outperform numerous other approaches including many optimization-based meth-
ods. However, such approaches essentially amount to the “one-model solves all” approach and thus
require larger models than needed to solve individual tasks.

Optimization-Based Learning. An alternative approach that can adapt the embedding to a new
task is to incorporate optimization within the learning process. A variety of such methods are based
on the approach called Model-Agnostic Meta-Learning, or MAML (Finn et al., 2017). In MAML,
θ = aφ is obtained by initializing a DNN at θ0 = φ and then performing one or more gradient de-
scent updates on a classification loss function L, i.e., computing θk+1 = θk − γ · (∂L/∂θ)(T ;θk).
This approach was later refined (Antoniou et al., 2019) and built upon giving rise to Reptile (Nichol
et al., 2018), LEO (Rusu et al., 2019) and others. One limitation of various MAML-inspired meth-
ods is that the knowledge about the set of training tasks Ttrain is distilled into parameters φ that
have the same dimensionality as the model parameters θ. Therefore, for a very lightweight model
f(x;θ) the capacity of the task-adaptation learner aφ is still limited by the size of θ. Methods that
use parameterized preconditioners that otherwise do not impact the model f(x;θ) can alleviate this
issue, but as with MAML, such methods can be difficult to train (Antoniou et al., 2019).

Weight Modulation and Generation. The idea of using a task specification to directly generate or
modulate model weights has been previously explored in the generalized supervised learning context
(Ratzlaff & Li, 2019) and in specific language models (Mahabadi et al., 2021; Tay et al., 2021; Ye
& Ren, 2021). Some few-shot learning methods described above also employ this approach and use
task-specific generation or modulation of the weights of the final classification model. For example,
in LGM-Net (Li et al., 2019b) the matching network approach is used to generate a few layers on
top of a task-agnostic embedding. Another approach abbreviated as LEO (Rusu et al., 2019) utilized
a similar weight generation method to generate initial model weights from the training dataset in
a few-shot learning setting, much like what is proposed in this article. However, in (Rusu et al.,
2019), the generated weights were also refined using several SGD steps similar to how it is done
in MAML. Here we explore a similar idea, but largely inspired by the HYPERNETWORK approach
(Ha et al., 2017), we instead propose to directly generate an entire task-specific CNN model. Unlike
LEO, we do not rely on pre-computed embeddings for images and generate the model in a single
step without additional SGD steps, which simplifies and stabilizes training.

Transformers in Computer Vision and Few-Shot Learning. Transformer models (Vaswani
et al., 2017) originally proposed for natural language understanding applications had since become
a useful tool in practically every subfield of deep learning. In computer vision, transformers have
recently seen an explosion of applications ranging from state-of-the-art image classification results
(Dosovitskiy et al., 2021; Touvron et al., 2021) to object detection (Carion et al., 2020; Zhu et al.,
2021), segmentation (Ye et al., 2019), image super-resolution (Yang et al., 2020), image generation

3



Under review as a conference paper at ICLR 2022

Transformer

Transformer

Generated Layer 1

Generated Layer 2

Support Samples Support LabelsShared Feature Extractor

Shared Features

Activations 

Local Feature 
Extractor

Figure 1: A diagram of our model showing generation of two CNN layers: transformer-based weight
generators receive global and local features along with sample labels as their inputs and produce
CNN layer weights (θ1 and θ2). After being generated, the CNN model is used to compute the loss
on the query set. The gradients of this loss are then used to adjust the weights of the entire weight
generation model.

(Chen et al., 2021) and many others. There are also several notable applications in few-shot image
classification. For example, in Liu et al. (2021), the transformer model was used for generating
universal representations in the multi-domain few-shot learning scenario. And closely related to
our approach, in Ye et al. (2020), the authors proposed to accomplish embedding adaptation with
the help of transformer models. Unlike our method that generates an entire end-to-end image clas-
sification model, this approach applied a task-dependent perturbation to an embedding generated
by an independent task-agnostic feature extractor. In (Gidaris & Komodakis, 2018), a simplified
attention-based model was used for the final layer generation.

3 OUR APPROACH

In this section, we describe our approach to few-shot learning that we call a HYPERTRANSFORMER
(HT) and justify the choice of the self-attention mechanism as its basis.

3.1 FEW-SHOT LEARNING MODEL

A learner aφ (as introduced in Section 2.1) is the core of a few-shot learning algorithm and in this
paper, we choose aφ to be a transformer-based model that takes a task description T = {(xi, ci)}ti=1
as input and produces weights for some or all layers {θ`|` ∈ [1, L]} of the generated CNN model.
For layers with non-generated weights, they are learned in the end-to-end fashion as ordinary task-
agnostic variables. In our experiments generated CNN models contain a set of convolutional layers
and a final fully-connected logits layer. Here θ` are the parameters of the `-th layer and L is the total
number of layers including the final logits layer (with index L). The weights are generated layer
by layer starting from the first layer: θ1(T ) → θ2(θ1;T ) → · · · → θL(θ1,...,L−1;T ). Here we use
θa,...,b as a short notation for (θa, θa+1, . . . , θb).

Shared and local features. The local features at layer ` are produced by a convolutional feature
extractor h`φl

(z`i ) applied to the activations of the previous layer z`i := f`−1(xi; θ1,...,`−1) for ` > 1

and z1i := xi. In other words, the transformer for layer ` receives

I` :=
{(

sφs
(xi), h

`
φl
(f`−1(xi, θ1,...,`−1)), ci

)}
i=1,...,n

.

The intuition behind the local feature extractor is that the choice of the layer weights should primarily
depend on the inputs received by this layer. The shared features, on the other hand, are the same

4



Under review as a conference paper at ICLR 2022

Transformer

Class Embeddings Sample Features

0 0

Weight Embeddings

Generated Weight Slices

Figure 2: Structure of the tokens passed to and received from a transformer model.

for all layers and are produced by a separate trainable convolutional neural network sφs
(xi). Their

purpose is to modulate each layer’s weight generator with a global high-level sample embedding
that, unlike the local embedding, is independent of the generated weights and is also fully shared
between all layer generators.

Encoding and decoding transformer inputs and outputs. In our experiments we considered
several different architectures of the transformer model, different ways of feeding I` into it and
different ways of converting transformer outputs into the CNN weights.

Input samples were encoded by concatenating local and shared features from I` to trainable label
embeddings ξ(c) with ξ : [1, n]→ Rd. Here n is the number of classes per episode and d is a chosen
size of the label encoding. Note that the label embeddings do not contain semantic information, but
rather act as placeholders to differentiate between distinct classes.

Along with the input samples, the sequence passed to the transformer was also populated with
special learnable placeholder tokens2, each associated with a particular slice of the to-be-generated
weight tensor. After the entire input sequence was processed by the transformer, we read out model
outputs associated with the weight slice placeholder tokens and assembled output weight slices into
the final weight tensors (see Fig. 2). In our experiments we also considered two different ways
of encoding k × k × ninput × noutput convolutional kernels: (a) generating noutput weight slices
with each output token having a dimension of k2 × ninput (we call it “output allocation”), (b) k2
weight slices of size ninput×noutput (“spatial allocation”). We show these results in Supplementary
Materials.

Transformer model. The input discussed above was passed through a sequence of transformer
encoder layers and the output weight tokens were then concatenated into a full weight tensor (see
Fig. 2). Experiments with alternative architectures employing transformer decoders are discussed in
Supplementary Materials.

Training the model. The weight generation model uses the support set to produce the weights of
some or all CNN model layers. This generated CNN model then processes the query set samples
and the cross-entropy classification loss is computed. The weight generation parameters φ are then
learned by optimizing this loss function using stochastic gradient descent.

3.2 REASONING BEHIND THE SELF-ATTENTION MECHANISM

The choice of self-attention mechanism for the weight generator is not arbitrary. One motivating
reason behind this choice is that the output produced by generator with the basic self-attention is by
design invariant to input permutations, i.e., permutations of samples in the training dataset. This also
makes it suitable for processing unbalanced batches and batches with a variable number of samples
(see Sec. 4.3). Now we show that self-attention can express several intuitive algorithms, thus further
motivating its utility.

2each token is a learnable d-dimensional vector padded with zeros to the size of the input sample token

5



Under review as a conference paper at ICLR 2022

Supervised learning. Self-attention in its rudimentary form can implement a method similar to
cosine-similarity-based sample weighting encoded in the logits layer3 with weightsW :

Wij ∼
n∑

m=1

y
(m)
i e

(m)
j , (1)

which can also be viewed as a result of applying a single gradient descent step on the cross-entropy
loss (see Appendix A). Here n is the total number of support-set samples {x(m)|m ∈ [1, n]} and
e(m), y(m) are the embedding vector and the one-hot label corresponding to x(m).

The approach can be outlined (see more details in Appendix A) as follows. The self-attention opera-
tion receives encoded input samples Ik = (ξ(ck), ek) and weight placeholders (µ(i), 0) as its input.
If each weight slice Wi,· represented by a particular token (µ(i), 0) produces a query Qi that only
attends to keys Kk corresponding to samples Ik with labels ck matching i and the values of these
samples are set to their embeddings ek, then the self-attention operation will essentially average the
embeddings of all samples assigned label i thus matching the first term inW in equation 1.

Semi-supervised learning. A similar self-attention mechanism can also be designed to produce
logits layer weights when the support set contains some unlabeled samples. The mechanism first
propagates classes of labeled samples to similar unlabeled samples. This can be achieved by choos-
ing the queries and the keys of the samples to be proportional to their embeddings. The attention
map for sample i would then be defined by a softmax of ei · ej , or in other words would be pro-
portional to exp(ei · ej). Choosing sample values to be proportional to the class tokens, we can
then propagate a class of a labeled sample ej to a nearby unlabeled sample with embedding ei, for
which ei · ej is sufficiently large. If the self-attention module is “residual”, i.e., the output of the
self-attention operation is added to the original input, like it is done in the transformer model, then
this additive update would essentially “mark” an unlabeled sample by the propagated class (albeit
this term might have a small norm). The second self-attention layer can then be designed similarly
to the supervised case. If label embeddings are orthogonal, then even a small component of a class
label can be sufficient for a weight slice to attend to it thus adding its embedding to the final weight.

4 EXPERIMENTS

In this section, we present HYPERTRANSFORMER (HT) experimental results and discuss the impli-
cations of our empirical findings.

4.1 DATASETS AND SETUP

Datasets. For our experiments, we chose several most widely used few-shot datasets including
OMNIGLOT, MINIIMAGENET and TIEREDIMAGENET. MINIIMAGENET contains a relatively small
set of labels and is arguably the simplest to overfit to. Because of this and since in many recent
publications MINIIMAGENET was replaced with a more realistic TIEREDIMAGENET datasets, we
conduct many of our experiments and ablation studies using OMNIGLOT and TIEREDIMAGENET
datasets.

Models. While HT can support generation of arbitrarily large weight tensors by flattening and
slicing the entire weight tensor, in this work, we limit our experiments to HT models that gener-
ate slices encoding individual output channels directly. For the target models we focus on 4-layer
architectures identical to those used in MAML++ and numerous other papers. Generating larger
architectures such as RESNET and WIDERESNET will be the subject of our future work. More
specifically, we used a sequence of four 3× 3 convolutional layers with the same number of output
channels followed by batch normalization layers, nonlinearities and max-pooling stride-2 layers. All
BN variables were learned and not generated4.

6



Under review as a conference paper at ICLR 2022

Table 1: Comparison of HT with MAML++ on models of different sizes and different datasets:
(a) 20-way OMNIGLOTand (b) 5-way MINIIMAGENET. Results for MAML++ were obtained us-
ing GitHub code accompanying Antoniou et al. (2019), those marked with † are from Antoniou
et al. (2019). HT outperforms MAML++ on many few-shot tasks. Accuracy confidence intervals:
OMNIGLOT – between 0.1% and 0.3%, MINIIMAGENET – between 0.2% and 0.5%.

Approach 1-shot (channels) 5-shot (channels)
8 16 32 48 64 8 16 32 48 64

OMNIGLOT:
- MAML++ 81.4 88.6 95.6 95.8 97.7† 83.2 94.9 98.6 98.8 99.3†

- HT 87.2 93.7 95.5 95.7 96.2 94.7 98.0 98.6 98.8 98.8

MINI:
- MAML++ 43.9 46.6 49.4 52.2† – 59.0 64.6 66.8 68.3† –
- HT 45.5 50.2 53.8 55.1 – 58.5 63.8 67.1 68.1 –

4.2 SUPERVISED RESULTS WITH LOGITS LAYER GENERATION

Our first experiments compared the proposed HT approach with MAML++ on OMNIGLOT, MINI-
IMAGENET and TIEREDIMAGENET datasets (see Table 1). Interestingly, for models that had more
than 8 channels per layer, the results obtained with HT generating the final logits layer proved to
be nearly identical to those where HT was used to generate all CNN layers (see Section 4.4). In
our experiments the number of local features was chosen to be the same as the number of model
channels and the shared feature had a dimension of 32 regardless of the model size. The shared fea-
ture extractor was a simple 4-layer convolutional model with batch normalization and stride-2 3× 3
convolutional kernels. Local feature extractors were two-layer convolutional models with outputs of
both layers averaged over the spatial dimensions and concatenated to produce the final local feature.
For all tasks except 5-shot MINIIMAGENET our transformer had 3 layers, used a simple sequence of
encoder layers (Figure 2b-i) and used the “output allocation” of weight slices (Section 3.1). Exper-
iments with the encoder-decoder transformer architecture can be found in Appendix D. The 5-shot
MINIIMAGENET results presented in Table 1 were obtained with a simplified transformer model that
had 1 layer, and did not have the final fully-connected layer and nonlinearity. This proved necessary
for reducing model overfitting of this smaller dataset. Other model parameters are described in detail
in Appendix B.

Results obtained with our method in a few-shot setting (see Table 1) are frequently better than
MAML++ results, especially on smaller models, which can be attributed to parameter disentangle-
ment between the weight generator and the CNN model. While the improvement over MAML++
gets smaller with the growing size of the generated CNN, our results on MINIIMAGENET and
TIEREDIMAGENET appear to be comparable to those obtained with numerous other advanced meth-
ods (see Table 2). Discussion of additional comparisons to LGM-Net (Li et al., 2019b) and LEO
(Rusu et al., 2019) using a different setup (which is why they could not be included in Table 2) and
showing an almost identical performance can be found in Appendix C. While the learned HT model
could perform a relatively simple calculation on high-dimensional sample features, perhaps not too
different from that in equation 1, our brief analysis of the parameters space (see Appendix D) shows
that using simpler 1-layer transformers leads to a modest decrease of the test accuracy and a greater
drop in the training accuracy for smaller models. We observed that the results in Table 1 could be
improved even further by increasing the feature sizes (see Appendix D), but we did not pursue an
exhaustive optimization in the parameter space.

It is worth noting that overfitting leading to a good performance on tasks composed of seen cate-
gories, but poor generalization to unseen categories, may still have practical applications. Specifi-
cally, if the actual task relies on classes seen at the training time, we can generate a model customized
to a particular task in a single pass without having to perform any SGD steps to fine-tune the model.
This is useful if, for example, the client model needs to be adjusted to a particular set of known
classes most widely used by this client. We also anticipate that with more complex data augmen-
tations and additional synthetic tasks, more complex transformer-based models can further improve
their performance on the test set and a deeper analysis of such techniques will be the subject of our
future work.

3here we assume that the embeddings e are unbiased, i.e., 〈ei〉 = 0
4Experiments with generated BN variables did not show much difference with this simpler approach.

7



Under review as a conference paper at ICLR 2022

Table 2: Comparison of MINIIMAGENET and TIEREDIMAGENET 1-shot (1-S) and 5-shot (5-S)
5-way results for HT (underlined) and other widely known methods with a 64-64-64-64 model
including (Tian et al., 2020): Matching Networks (Vinyals et al., 2016), IMP (Allen et al., 2019),
Prototypical Networks (Snell et al., 2017), TAML (Jamal & Qi, 2019), SAML (Hao et al., 2019),
GCR (Li et al., 2019a), KTN (Peng et al., 2019), PARN (Wu et al., 2019), Predicting Parameters
from Activations (Qiao et al., 2018), Relation Net (Sung et al., 2018), MELR (Fei et al., 2021). We
also include results for CNNs with fewer channels (“-32” for 32-channel models, etc.).

MINIIMAGENET TIEREDIMAGENET

Method 1-S 5-S Method 1-S 5-S Method 1-S 5-S
HT 54.1 68.5 HT-48 55.1 68.1 HT-32 52.7 69.9
MN 43.6 55.3 SAML 52.2 66.5 MAML-32 51.7 70.3
IMP 49.2 64.7 GCR 53.2 72.3 HT 56.1 73.3
PN 49.4 68.2 KTN 54.6 71.2 PN 53.3 72.7
MELR 55.4 72.3 PARN 55.2 71.6 MELR 56.4 73.2
TAML 51.8 66.1 PPA 54.5 67.9 RN 54.5 71.3

4.3 SEMI-SUPERVISED RESULTS WITH LOGITS LAYER GENERATION

In our approach, the weight generation model is trained by optimizing the loss calculated on the
query set and therefore any additional information about the task, including unlabeled samples, can
be provided as a part of the support set to the weight generator without having to alter the optimiza-
tion objective. This allows us to tackle a semi-supervised few-shot learning problem without making
any substantial changes to the model or the training approach. In our implementation, we simply
added unlabeled samples into the support set and marked them with an auxiliary learned “unlabeled”
token ξ̂ in place of the label encoding ξ(c).

Since OMNIGLOT is typically characterized by very high accuracies in the 97% − 99% range, we
conducted all our experiments with TIEREDIMAGENET. Results of our experiments presented in
Table 3 show that adding unlabeled samples leads to a substantial increase of the final test accuracy.
Furthermore, notice that the model achieves its best performance when the number of transformer
layers is greater than one. This is consistent with the basic mechanism discussed in Section 3.2 and
requiring two self-attention layers to function.

It is worth noticing that adding more unlabeled samples into the support set makes our model more
difficult to train and it gets stuck producing CNNs with essentially random outputs. Our solution was
to introduce unlabeled samples incrementally during training. This was implemented by masking
out some unlabeled samples in the beginning of the training and then gradually reducing the masking
probability over time.

4.4 GENERATING MORE MODEL LAYERS

We demonstrated that HT model can outperform MAML++ on common few-shot learning datasets
by generating just the last logits layer of the CNN model. But under what conditions can it be
advantageous to generate additional CNN layers? As we show here, generating all CNN layers with
a multi-layer transformer can lead to a significant performance improvement on CNN models below
a particular size.

Table 3: Test accuracy on TIEREDIMAGENET of supervised 1-shot and 5-shot models and semi-
supervised 1-shot models with u additional unlabeled samples per class. The weight generation
transformer model uses LT encoder layers. Notice a performance improvement of semi-supervised
learning over the 1-shot supervised results. Accuracy is seen to grow with the number of unlabeled
samples and the maximum accuracy is reached when the encoder has at least two layers.

(u, LT ) 1-shot 5-shot (2, 3) (4, 1) (4, 2) (4, 3) (9, 3)

Accuracy 56.0 69.9 58.3 56.6 59.9 59.9 61.5

8



Under review as a conference paper at ICLR 2022

0 1 2 3 4
Training steps (million)

70

75

80

85

90

95

100

Te
st

 a
cc

u
ra

cy

all
logits and conv
logits

4-channel

6-channel

8-channel

4 6 8
Number of Channels

80

85

90

95

100

T
ra

in
in

g 
an

d 
T

es
t A

cc
ur

ac
ie

s

logits

logits (test)
all
all (test)
oracle

Figure 3: (Left) Test accuracies for the generated 4-, 6- and 8-channel CNN models on the 5-shot-
20-way OMNIGLOT task. Models with only the last logits layer generated (red) are characterized
by lower test accuracies compared to the models with some or all convolutional layers also being
generated (blue, green). Similar plot for TIEREDIMAGENET can be found in Appendix (Fig. 13).
(Right) 5-shot-20-way OMNIGLOT training/test accuracies as a function of the CNN model com-
plexity: only the final logits layer being generated (logits), all layers being generated (all), training
the model on all available samples for a random set of few classes (oracle). A model that generates
CNN weights by memorizing all samples (being able to determine their classes) and also memoriz-
ing optimal trained weights for any selection of classes would reach the oracle accuracy, but would
not generalize.

We demonstrated this by conducting experiments, in which some layers were generated and some
layers were learned (usually the first few layers of the CNN). For OMNIGLOT dataset, we saw that
both training and test accuracies for a 4-channel and a 6-channel CNNs increased with the number of
generated layers (see Fig. 3 and Table 4 in Appendix) and using more complex transformer models
with 2 or more encoder layers improved both training and test accuracies of fully-generated CNN
models of this size (see Appendix D). However, as the size of the model increased and reached 8
channels, generating the last logits layer alone proved to be sufficient for getting the best results on
OMNIGLOT and TIEREDIMAGENET.

The positive effect of generating convolutional layers can also be observed in shallow models with
large convolutional kernels with large strides where the model performance can be much more sensi-
tive to a proper choice of model weights. For example, in a 16-channel model with two convolutional
kernels of size 9 and the stride of 4, the overall test accuracy for a model generating only the final
convolutional layer was about 1% lower than the accuracies of the models generating at least one
additional convolutional filter. We also speculate that as the complexity of the task increases, gener-
ating some or all intermediate network layers should become more important for achieving optimal
performance. Verifying this hypothesis and understanding the “boundary” in the model space be-
tween two regimes where a static backbone is sufficient, or no longer sufficient will be the subject
of our future work.

5 CONCLUSIONS

In this work, we proposed a HyperTransformer (HT), a novel transformer-based model that gener-
ates all weights of a CNN model directly from a few-shot support set. This approach allows us to use
a high-capacity model for encoding task-dependent variations in the weights of a smaller model. We
demonstrate that generating the last logits layer alone, the transformer-based weight generator beats
or matches performance of multiple traditional learning methods on several few-shot benchmarks.
More importantly, we showed that HT can be straightforwardly extended to handle unlabeled sam-
ples that might be present in the support set and our experiments demonstrate a considerable few-
shot performance improvement in the presence of unlabeled data. Finally, we explore the impact of
the transformer-encoded model diversity in CNN models of different sizes. We use HT to generate
some or all convolutional kernels and biases and show that for sufficiently small models, adjusting
all model parameters further improves their few-shot learning performance.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Kelsey R. Allen, Evan Shelhamer, Hanul Shin, and Joshua B. Tenenbaum. Infinite mixture proto-
types for few-shot learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceed-
ings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pp.
232–241. PMLR, 2019.

Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. How to train your MAML. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Andrea Vedaldi, Horst
Bischof, Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I, volume 12346 of
Lecture Notes in Computer Science, pp. 213–229. Springer, 2020.

Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chun-
jing Xu, Chao Xu, and Wen Gao. Pre-trained image processing transformer. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2021, virtual, June 19-25, 2021, pp. 12299–
12310. Computer Vision Foundation / IEEE, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021, 2021.

Nanyi Fei, Zhiwu Lu, Tao Xiang, and Songfang Huang. MELR: meta-learning via modeling
episode-level relationships for few-shot learning. In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1126–1135. PMLR, 06–11 Aug 2017.

Spyros Gidaris and Nikos Komodakis. Dynamic few-shot visual learning without forgetting. In
2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pp. 4367–4375. IEEE Computer Society, 2018. doi: 10.1109/CVPR.
2018.00459.

David Ha, Andrew M. Dai, and Quoc V. Le. HyperNetworks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings, 2017.

Fusheng Hao, Fengxiang He, Jun Cheng, Lei Wang, Jianzhong Cao, and Dacheng Tao. Collect
and select: Semantic alignment metric learning for few-shot learning. In 2019 IEEE/CVF In-
ternational Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 -
November 2, 2019, pp. 8459–8468. IEEE, 2019. doi: 10.1109/ICCV.2019.00855.

Muhammad Abdullah Jamal and Guo-Jun Qi. Task agnostic meta-learning for few-shot learning.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach,
CA, USA, June 16-20, 2019, pp. 11719–11727. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.01199.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot
image recognition. In ICML deep learning workshop, volume 2. Lille, 2015.

Aoxue Li, Tiange Luo, Tao Xiang, Weiran Huang, and Liwei Wang. Few-shot learning with global
class representations. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV
2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 9714–9723. IEEE, 2019a. doi:
10.1109/ICCV.2019.00981.

10



Under review as a conference paper at ICLR 2022

Huai-Yu Li, Weiming Dong, Xing Mei, Chongyang Ma, Feiyue Huang, and Bao-Gang Hu. Lgm-
net: Learning to generate matching networks for few-shot learning. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 3825–3834. PMLR, 2019b.

Lu Liu, William L. Hamilton, Guodong Long, Jing Jiang, and Hugo Larochelle. A universal repre-
sentation transformer layer for few-shot image classification. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

Chongyang Ma. LGM-Net. https://github.com/likesiwell/LGM-Net, 2019.

Rabeeh Karimi Mahabadi, Sebastian Ruder, Mostafa Dehghani, and James Henderson. Parameter-
efficient multi-task fine-tuning for transformers via shared hypernetworks. In Chengqing Zong,
Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, August 1-6,
2021, pp. 565–576. Association for Computational Linguistics, 2021. doi: 10.18653/v1/2021.
acl-long.47.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. CoRR,
abs/1803.02999, 2018.

Boris N. Oreshkin, Pau Rodrı́guez López, and Alexandre Lacoste. TADAM: task dependent adaptive
metric for improved few-shot learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Informa-
tion Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 719–729, 2018.

Zhimao Peng, Zechao Li, Junge Zhang, Yan Li, Guo-Jun Qi, and Jinhui Tang. Few-shot image
recognition with knowledge transfer. In 2019 IEEE/CVF International Conference on Computer
Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pp. 441–449. IEEE,
2019. doi: 10.1109/ICCV.2019.00053.

Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan L. Yuille. Few-shot image recognition by predicting
parameters from activations. In 2018 IEEE Conference on Computer Vision and Pattern Recog-
nition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp. 7229–7238. Computer Vision
Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00755.

Neale Ratzlaff and Fuxin Li. Hypergan: A generative model for diverse, performant neural networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pp. 5361–5369. PMLR, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019.

Jake Snell, Kevin Swersky, and Richard S. Zemel. Prototypical networks for few-shot learning. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pp. 4077–4087, 2017.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip H. S. Torr, and Timothy M. Hospedales.
Learning to compare: Relation network for few-shot learning. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22,
2018, pp. 1199–1208. IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00131.

11

https://github.com/likesiwell/LGM-Net


Under review as a conference paper at ICLR 2022

Yi Tay, Zhe Zhao, Dara Bahri, Donald Metzler, and Da-Cheng Juan. Hypergrid transformers: To-
wards A single model for multiple tasks. In 9th International Conference on Learning Represen-
tations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip Isola. Rethinking few-
shot image classification: A good embedding is all you need? In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm (eds.), Computer Vision - ECCV 2020 - 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XIV, volume 12359 of Lecture
Notes in Computer Science, pp. 266–282. Springer, 2020. doi: 10.1007/978-3-030-58568-6\ 16.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. In Ma-
rina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pp. 10347–10357. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp.
5998–6008, 2017.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing networks for one shot learning. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg,
Isabelle Guyon, and Roman Garnett (eds.), Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 3630–3638, 2016.

Ziyang Wu, Yuwei Li, Lihua Guo, and Kui Jia. PARN: position-aware relation networks for few-shot
learning. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul,
Korea (South), October 27 - November 2, 2019, pp. 6658–6666. IEEE, 2019. doi: 10.1109/ICCV.
2019.00676.

Fuzhi Yang, Huan Yang, Jianlong Fu, Hongtao Lu, and Baining Guo. Learning texture transformer
network for image super-resolution. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 5790–5799. Computer
Vision Foundation / IEEE, 2020. doi: 10.1109/CVPR42600.2020.00583.

Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding adapta-
tion with set-to-set functions. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pp. 8805–8814. IEEE, 2020. doi:
10.1109/CVPR42600.2020.00883.

Linwei Ye, Mrigank Rochan, Zhi Liu, and Yang Wang. Cross-modal self-attention network for
referring image segmentation. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pp. 10502–10511. Computer Vision
Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.01075.

Qinyuan Ye and Xiang Ren. Learning to generate task-specific adapters from task description.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 2: Short Papers),
Virtual Event, August 1-6, 2021, pp. 646–653. Association for Computational Linguistics, 2021.
doi: 10.18653/v1/2021.acl-short.82.

Dominic Zhao, Johannes von Oswald, Seijin Kobayashi, João Sacramento, and Benjamin F Grewe.
Meta-learning via hypernetworks. 2020.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR:
deformable transformers for end-to-end object detection. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021.

12


