GENCOLORBENCH: A COLOR EVALUATION BENCH-MARK FOR TEXT-TO-IMAGE GENERATION MODELS

Anonymous authors

000

001

002003004

010 011

012

013

014

016

017

018

019

021

024

025

026

027 028 029

031

032

033

034

037

038

040

041

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Recent years have seen impressive advances in text-to-image generation, with image generative or unified models, generating high-quality images from text. Yet these models still struggle with fine-grained color controllability, often failing to accurately match colors specified in text prompts. While existing benchmarks evaluate compositional reasoning and prompt adherence, none systematically assess the color precision. Color is fundamental to human visual perception and communication, critical for applications from art to design workflows requiring brand consistency. However, current benchmarks either neglect color or rely on coarse assessments, missing key capabilities like interpreting RGB values or aligning with human expectations. To this end, we propose GenColorBench, the first comprehensive benchmark for T2I color generation, grounded in color systems like ISCC-NBS and CSS3/X11, including numerical colors which are absent elsewhere. With 44K color-focused prompts covering 400+ colors, it reveals models' true capabilities via perceptual and automated assessments. Evaluations of popular T2I models using GenColorBench show performance variations, highlighting which color conventions models understand best and identifying failure modes. Our GenColorBench assessments will allow to guide improvements in precise color generation. The benchmark will be made public upon acceptance.

1 Introduction

Text-to-image (T2I) generation has witnessed remarkable progress in recent years, with state-of-the-art models like Stable Diffusion (Rombach et al., 2022) and FLUX (Labs, 2024) demonstrating unprecedented capabilities in generating high-quality, photorealistic images from text prompts. These advances have enabled diverse applications ranging from creative content generation to automated design workflows. However, despite their impressive overall performance, T2I models still struggle with fine-grained controllability, particularly in generating images that precisely match specific visual attributes described in text prompts (Chefer et al., 2023; Ge et al., 2023a). While numerous benchmarks, discussed in Table 1, have been proposed to evaluate various aspects of T2I model performance—including compositional reasoning (Huang et al., 2025; Ghosh et al., 2023), prompt adherence (Hu et al., 2024), and faithfulness (Hu et al., 2023)—none systematically evaluates the critical ability to generate precise colors as specified in text prompts.

Color represents a fundamental dimension of human visual perception and serves as a primary channel for human communication about objects and scenes, with color categories forming a universal basis for describing and distinguishing visual phenomena across cultures (Berlin & Kay, 1991; Witzel & Gegenfurtner, 2018). This perceptual importance translates directly into practical applications where accurate color generation is essential—from multimedia applications and artistic creation to design workflows requiring brand consistency, aesthetic control and faithful reproduction of real-world scenes. However, existing T2I evaluation benchmarks critically underestimate this importance by either neglecting color evaluation entirely or reducing it to coarse categorical assessments that fail to capture their real color capabilities. Current benchmarks do not assess whether models generate colors that maintain color consistency across different contexts, or produce colors that align with human memory and expectations for familiar objects.

To address this, we propose GenColorBench, the first comprehensive benchmark designed to systematically evaluate the color generation capabilities of T2I models. Unlike existing benchmarks

			Color Evaluation Tasks					
Benchmark	Scale	Focus	CNA	MCC	COA	NCU	ICA	Color Evaluation Methods
GenEval (Ghosh et al., 2023)	553	Compositionality	√	√	\approx	×	×	Mask2Former + CLIP ViT-L/14
T2I-CompBench++ (Huang et al., 2025)	6000	Compositionality	✓	\approx	×	×	×	BLIP-VQA
DPG-Bench (Hu et al., 2024)	1065	Prompt Adherence	✓	\checkmark	×	×	×	mPLUG-large VQA
TIFA (Hu et al., 2023)	1000	Faithfulness	✓	✓	×	×	×	mPLUG-large VQA
Commonsense-T2I (Fu et al., 2024)	1000 +	Reasoning	\approx	\approx	×	×	×	self-proposed (accuracy)
Winoground-T2I (Zhu et al., 2023)	11,000	Compositionality	✓	✓	×	×	×	Human Rating + DSG-VQA
Wise (Niu et al., 2025)	1000	Reasoning	\approx	\approx	×	×	×	WiScore, Aesthetic Quality
MMMG (Luo et al., 2025)	4456	Disciplinary Knowledge	✓	\checkmark	\checkmark	×	×	GPT/Gemini/QWEN VQA
Partiprompt (Yu et al., 2022)	1600	Compositionality	✓	✓	×	×	×	FID
OneIG-Bench (Chang et al., 2025)	2440	Compositionality	×	×	×	×	×	FID
DrawBench (Saharia et al., 2022)	200	Compositionality	✓	✓	×	×	×	Human Rating
EvalAlign (Tan et al., 2024)	3000	Compositionality	✓	\checkmark	×	×	×	MLLM-VQA
Evalmuse (Han et al., 2024)	4000	Compositionality	✓	✓	×	×	×	FGA-BLIP2, PN-VQA
GenColorBench (Ours)	44,464	Color Understanding	✓	✓	✓	✓	✓	VQA + Color Metrics
GenColorBench-Mini (Ours)	< 10K	Color Understanding	✓	✓	✓	✓	✓	VQA + Color Metrics

Table 1: Overview of existing T2I evaluation benchmarks. Abbreviations for color evaluation tasks: CN = Color Name Understanding, MC = Multi-Color Composition, CO = Color-Object Association, NCU = Numeric Color Understanding, ICA = Implicit Color Association. While these benchmarks are widely adopted for assessing various aspects of T2I generation—such as compositionality, prompt adherence, and reasoning—they lack comprehensive coverage of key color understanding and evaluation tasks.**GenColorBench** $is specifically designed to fill this gap by supporting a broad spectrum of color-related tasks. (<math>\checkmark$: covered, \times : not covered, \approx : partially covered)

that rely on coarse categorical assessments, our benchmark is grounded in established color naming systems, including the ISCC-NBS, and CSS3/X11, and uniquely incorporates evaluation of numerical color specifications (RGB values and hex codes) that are completely absent from existing benchmarks. With over 44K+ prompts specifically designed for color evaluation covering over 400+ colors, GenColorBench provides both the scale and specificity necessary to reveal models' true color generation capabilities through both perceptual color evaluation and automated assessment methods.

We conduct extensive evaluations of several popular image generation models and unified models using GenColorBench, revealing significant variations in color generation capabilities across different models and color specification methods. Our analysis provides insights into which color naming conventions and numerical representations are most effectively understood by current models, and identifies common failure modes in color generation tasks. The main contributions of this work are threefold: (i) We introduce GenColorBench, a large-scale benchmark containing over 44,464 prompts covering 400+ colors specifically designed to evaluate the capabilities of T2I models across five distinct color generation tasks; (ii) We provide comprehensive evaluations of state-of-the-art T2I models, analyzing their performance on precise color generation and identifying key limitations; (iii) We establish baseline performance metrics and evaluation protocols that can guide future research in improving color controllability in generative models.

MAJOR FINDINGS OF OUR EVALUATION

- Current models exhibit notable shortcomings in adhering to precise color specifications, underscoring the urgent need for enhanced color controllability (Table 4).
- Model performance is tightly linked to category semantics. Categories with strong color associations (e.g. Fruits and Vegetables—yellow bananas, green grass) pose greater challenges (Fig. 2, Fig. 3).
- Models are better at understanding basic colors (yellow, pink, blue), while they struggle more with intermediate colors (Fig. 5(Left)). Similarly, models favor "light" and "dark" modifiers over more nuanced ones like "-ish", suggesting a limited grasp of subtle color variations (Fig. 5(Right)).
- Vision-language models fall short as reliable tools for color evaluation (Table 2).

2 RELATED WORK

T2I Diffusion Models. T2I generation has advanced rapidly in recent years. T2I diffusion models (Ho et al., 2020; Gu et al., 2022) emerged as more efficient models surpassing GANs (Goodfellow et al., 2020), VAEs (Kingma & Welling, 2013), autoregressive (Esser et al., 2021) and flow-

based (Dinh et al., 2015; 2017) models in T2I generation. Diffusion models are probabilistic generative models aiming to learn data distribution through denoising from Gaussian distribution. These models allow multi-modal conditioning (Song et al., 2021), (Meng et al., 2022), (Nichol et al., 2021) to improve controllability. With recent scaling up the scale of diffusion models, SD3 (Esser et al., 2024) and FLUX (Labs, 2024) have been state-of-the-art T2I models while largely surpassing the previous representatives (Ramesh et al., 2022; Chen et al., 2023).

Unified Models. Recent years have seen major progress in multimodal understanding and image generation models. Yet, these fields have advanced along separate paths, forming distinct architectural paradigms. Autoregressive architectures dominate large language models such as LLaMa (Touvron et al., 2023), Qwen (Team, 2024a), and multimodal models like LLaVa (Liu et al., 2023), Owen-VL (Team, 2024b). Autoregressive-based architectures have established dominance in large language models such as LLaMa (Touvron et al., 2023), Qwen (Team, 2024a), etc, as well as in multimodal understanding models including LLaVa (Liu et al., 2023) and Qwen-VL (Team, 2024b). Diffusion models, such as Stable Diffusion (Podell et al., 2023) and FLUX (Labs, 2024), have become central to image generation, producing high-fidelity, prompt-aligned images. More recently, unified frameworks like GPT-40 aim to handle multimodal inputs and outputs in a single mechanism. Unified models fall into three types: diffusion-based, autoregressive (AR), and fused AR/diffusion. Pure diffusion-based MLLMs, such as MMaDA (Yang et al., 2025) and Dual-Diffusion, use dualbranch diffusion for joint text-image generation. However, unified models based on naive autoregressive (AR) dominate this research landscape, with representative contributions including SEED series (Ge et al., 2023b), Emu series (Sun et al., 2024), Janus series (Wu et al., 2025a; Chen et al., 2025b), etc. Recently, fused AR-diffusion models have emerged for unified vision-language generation, exemplified by Show-o (Xie et al., 2024b) and BAGEL (Deng et al., 2025).

Color Control in T2I diffusion models. With the advancements in generation and unified models, various text-guided image editing approaches (Hertz et al., 2023a; Meng et al., 2022; Mokady et al., 2023) have been developed to enable controllable modifications. For instance, methods like Imagic (Kawar et al., 2023) and P2P (Hertz et al., 2023b) leverage Stable Diffusion (SD) models for structure-preserving edits. And the unified models (Deng et al., 2025; Wu et al., 2025b) integrate such editing power by large-scale pretraining with huge paired datasets. Another technique stream which can also achieve controllable generation is transfer learning for T2I models (Ruiz et al., 2023; Kumari et al., 2023). It aims at adapting a given model to a *new concept* by given images from the users and bind the new concept with a unique token. As a result, the adaptation model can generate various renditions for the new concept guided by text prompts. However, all these existing techniques struggle to achieve fine-grained control over color attributes in image editing and generation tasks. Only a limited number of works (Butt et al., 2024; Ge et al., 2023a) have begun addressing the challenge of precise color generation. To facilitate the evaluation and development of precise color generation capabilities of future models, we build the first color benchmark in this paper.

T2I Evaluation. A variety of benchmarks have been developed to evaluate text-to-image models, each tailored to specific aspects of generative performance, as listed in Table 1. GenEval (Ghosh et al., 2023) introduces object detectors to enable fine-grained, object-level evaluation, thereby addressing the limitations of holistic metrics. T2I-CompBench (Huang et al., 2025) elevates compositional complexity by constructing prompts that integrate attributes, relational cues, numeracy, and complex scene descriptions. DPG-Bench (Hu et al., 2024) focuses on assessing models' instruction-following proficiency, leveraging text-rich prompts to gauge their fidelity to detailed directives. Furthermore, Commonsense-T2I (Fu et al., 2024) employs adversarial prompts to probe models' capabilities in visual reasoning. Winoground-T2I (Zhu et al., 2023) evaluates compositional generalization by leveraging contrastive sentence pairs. More recently, WISE (Niu et al., 2025) and MMMG (Luo et al., 2025) benchmarks emphasize world knowledge-based evaluation, spanning cultural, scientific, and temporal domains to gauge models' alignment with broader understanding. However, these existing benchmarks are primarily designed to evaluate the general generative capabilities of diverse image generators, with none specifically focusing on the task of color generation.

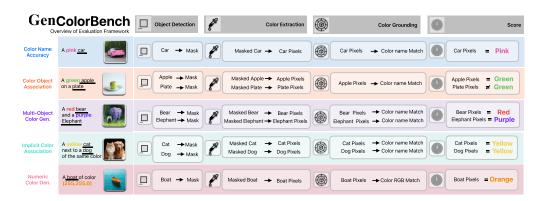


Figure 1: An overview of GenColorBench evaluation framework. The evaluation pipeline consists of five key components: VQA-based object localization, object segmentation, pixel extraction, color grounding, and score mechanism. Then, five color evaluation tasks are devised to analyse different aspects of color understanding in T2I models covering single object coloring, color-object association, multi-object color composition, numerical color understanding, and Implicit Color Association.

3 COLOR EVALUATION FRAMEWORK

3.1 T2I COLOR GENERATION TASKS.

Our primary goal is to evaluate unified vision-language and T2I models' ability to understand and generate images given explicit color prompts. We organize evaluation into multiple tasks, targeting different dimensions of color understanding, considering the practical use-cases for generative models. GenColorBench consists of five color evaluation tasks: (i) Color Name Accuracy—assesses whether the model correctly renders an object in the color specified by its linguistic name. (ii) Color-Object Association—evaluates whether the specified color is assigned to the correct object without erroneous attribution to contextual elements. (iii) Multi-Object Color Composition—assess correct color-object associations when multiple objects and corresponding color names are specified. (iv) Implicit Color Association—evaluates understanding of semantic relationships when a color is assigned to only one object but should also correspond to other objects. (v) Numerical Color Understanding—assesses comprehension of RGB triplets and hex codes for accurate color generation.

3.2 COLOR TAXONOMY

Colors can be specified in text prompts in various ways—most commonly through linguistic color names such as "a red rose", but also through numerical codes such as hexadecimals (e.g., #ff0000) or RGBs (e.g., (255, 0, 0)). These color expressions are often interpreted differently by the T2I models depending on their text encoders. Therefore, it is important to consider both the linguistic and numerical color representations to perform an in-depth evaluation of T2I models for color generation tasks. To this end, we ground our evaluation in two standard color naming systems i.e., ISCC-NBS, and CSS/X11 which offers human-understandable names along with their numerical representations.

The ISCC-NBS (Kelly & Judd, 1976) is derived from the Munsell color system (Munsell, 2022) that is a perceptually uniform color space designed to align with the human color perception. Munsell's color system organizes colors along three perceptual axes, which are hue, value (lightness), and chroma (saturation), determined by empirical human experiments. ISCC-NBS discretizes this continuous color space into named categories, resulting in a three-level hierarchy of colors, ranging from coarse to fine-grained colors. Level 1 includes 13 broad color categories corresponding to basic color linguistic names such as green, red, or blue. Level 2 expands these 13 colors to 29 intermediate hues by incorporating modifiers such as light, deep, or strong. Level 3 provides fine-grained color names with precise distinctions, such as light bluish green or moderate purplish pink. We also use CSS3/X11 color set (W3C, 2018), which includes 147 colors that are widely used in web design and digital interfaces. These color names precisely map to both RGB and hexadecimal color values, making them ideal to be used in text-prompts for T2I color generation evaluation tasks.

	Open-Ended		MCQ		Binary	
Model	CSS	L2	CSS	L2	CSS	L2
Janus 1.3B	5.03	25.86	12.20	33.99	30.42	34.98
Janus-Pro 7B	6.62	26.60	19.44	43.60	24.98	37.19
mPLUG-Owl3 7B	7.24	24.14	17.93	42.12	26.87	41.87
DeepSeek-VL2-7B	11.35	27.34	18.85	45.32	31.24	42.12
BLIP3o-8B	12.17	25.12	24.73	45.81	31.10	44.09
Qwen2-VL-7B	9.35	24.63	23.23	43.35	35.13	49.01
Instruct-VL-7B	7.19	26.60	20.55	45.57	31.15	41.63
Ours	L2: 96.46			CSS: 92.00		

Type	# Temp.	Example Prompt
Object-	12	a red apple
Focused		
Contextual	62	a red apple on a white plate
Object		
Scene De-	30	a red apple on a white plate
scriptive		placed on a kitchen shelf
Implicit	100	a red apple on a plate placed
Color As-		on a kitchen shelf. The plate is
sociation		of the same color as the apple.

Table 2: Performance (accuracy) of VLMs-based Table 3: Prompt categorization across four VQA on CSS/X11 and ISCC-NBS Level 2 colors.

levels of difficulty, from simple to complex.

3.3 Data Curation

224

225 226

227 228

229

230

231

232 233

234

235

236

237

238

239 240

241

242

243

244

245

246

247

248

249

250 251

253

254

256 257

258

259

260

261

262

263

264

265

266

267 268

269

After establishing the color evaluation tasks and the color sets, we generate prompts for each color evaluation task. The data curation involves four key components: object selection, prompt template creation and categorization, integration of standardized colors, and human-in-the-loop quality assessment. Each component is designed to ensure that the generated prompts and the associated evaluation settings are grounded, scalable, and suitable for automated and human evaluation.

Object Selection. We curate a set of 108 objects that span multiple semantic categories to ensure comprehensive coverage of color-object combinations. These objects are drawn from two widely used datasets—COCO (Lin et al., 2014), and ImageNet (Deng et al., 2009), and grouped them into seven semantic domain including fruits and vegetables, tools and miscellaneous items, vehicles, animals, clothing and accessories, furniture and household objects, and sports and toys. Each object is selected based on recognizability in T2I generation, color variability for plausible appearance, and suitability for the segmentation which is a crucial step in the downstream mask-based evaluation.

Prompt Creation and Categorization. We begin by pairing the objects and the color sets, resulting in a large pool of valid object-color combinations that serves as a seed inputs for the prompt generation. For each color-object pair, we use a pool of hand-crafted and GPT-40 generated prompt templates to produce the prompts, which are aligned with one of the four difficulty levels—shown in Table 3. Level 1 templates produce simple object focused prompts that describe a single colored object. These prompts are designed to evaluate the color name accuracy and numerical color understanding task. Level 2 templates embed the object within a contextual scene which are used for color name accuracy and color-object association task. Level 3 templates describe the scene involving more than two objects along with their corresponding colors to assess the multi-object color compositions. Level 4 templates describe semantically complex scenes having one object with the assigned color, while a second object is referring to the color of the first object.

Quality Assessment. After completing prompt generation, we perform human-in-the-loop validation to ensure the linguistic quality and semantic clarity of the generated prompts. The prompts are reviewed for grammatical check, and ambiguity, especially in scene descriptive and implicit color association prompts. A random subset of prompts from each set are picked for review to ensure that the color references are unambiguous and the prompt structure does not mislead the models. All the ambiguous prompts are either revised or removed from the final sets.

Prompt Distribution. Finally, we get 18K object focused prompts with linguistic color names, and 11.5K prompts with numerical colors including hex codes and RGB triples. The contextual object category includes 8.7K prompts to assess the object-color association. To evaluate multiple object generation, the scene descriptive category contains 2.2K prompts that embed colors within broader contexts. The implicit color association category includes 4.5K prompts where color attributes must be inferred based on semantic relationships between objects. This prompt distribution ensures a comprehensive evaluation of color grounding across a wide range of complexity levels, resulting into a large-scale set of 44K+ prompts. To facilitate broader accessibility and reproducibility, we further curate a compact, representative subset of less than 10K prompts—carefully selected to preserve semantic diversity and evaluation fidelity—making it readily usable by the research community.

3.4 EVALUATION FRAMEWORK

Object Detection. Our framework comprises three key components: object detection and segmentation, color grounding, and scoring mechanism to ensure object-aware perceptually aligned assess-

ment. Following the Davidsonian Scene Graph (DSG) framework (Cho et al., 2023), we employ Visual Question Answering (VQA)-based validation to first confirm the presence of the intended object(s) in the generated image before proceeding to attribute-level assessments such as color. For instance, given an input image along with ground truth, we formulate binary queries such as "Is there a car in the image", and rely on VQA response to determine the existence of object. For the multi-object tasks, the VQA model is queried for each object separately, and the image is validated only if all the objects in text prompts are present in the image. This ensures object-level precision in the evaluation tasks, especially in those that involve color association and color grounding between multiple objects. In practice, after empirical testing across several VLMs, we employ Janus-1.3B as VQA model due to its favorable trade-off between computational efficiency and reliability.

Then, a binary mask of the object is generated for color extraction. We use Grounded SAM (Ren et al., 2024) pipeline which uses grounding DINO for text guided coarse localization of object and then SAM is used to produce final mask. Another reason for employing Grounded SAM is that the object may contain additional associated regions not required for the color grounding i.e., a mask of car may include lights, and wind shields that are not required in the color grounding. We refer these components as negative labels, and generated a list of the negative labels for all the objects using GPT-40. To remove these negative objects from the mask, we apply negative Intersection-over-Union (IoU) filtering over positive mask to ensure separation of spatial region of the object.

Color Grounding and Score Mechanism. We propose to use a perceptually grounded, multimetric evaluation protocol. Instead of direct color metrics like DeltaE that penalize lighting variations, we extract RGB pixels from predicted masks and transform them to CIELAB space denoted as $\mathbf{P} = (L_i^*, a_i^*, b_i^*)_{i=1}^N$. The object may exhibit polychromatic color distribution due to geometric and lighting variations, but human observers typically abstract these variations, attributing a single representative color to an object. To capture this fundamental aspect of human vision, we adopt the dominant hue concept which is explored by (Witzel & Dewis, 2022), which identifies the representative color of an object by focusing on primary direction of chromatic variation within its color distribution. Then, we perform principal component analysis on the chromatic components (a* and b*) of the CIELAB pixel values. It is noted by (Witzel & Dewis, 2022) that the first component $\mathbf{v}_1 = (v_{1a}, v_{1b})$ of chromaticity distribution $\mathbf{P}_{ab} = (a_i^*, b_i^*)_{i=1}^N$ represents the dominant hue. Then, chromaticity of a_i^*, b_i^* is projected onto this dominant hue direction \mathbf{v}_1 and mean of lightness (\overline{L}^*) and the projected chromatic values $(\overline{a}_{\text{proj}}^*, \overline{b}_{\text{proj}}^*)$ are computed to obtain the dominant color.

Now, we have the dominant color of the object and ground truth color from ISCC-NBS or CSS3/X11 color sets. However, a key challenge arises: can a single nominal color label—such as "pink" from ISCC-NBS Level 1—adequately represent the full perceptual gamut of that color category? In practice, a dominant color may correspond to a slightly different but perceptually indistinguishable shade. To account for this variability and avoid penalizing perceptually plausible matches, we construct a candidate set for each ground-truth color by including the nominal color along with its k perceptually nearest neighbors in the same color-naming system.

We compute three complementary metrics: (i) Delta Chroma — the Euclidean distance in a^*, b^* chromaticity plane, (ii) CIEDE2000 — distribution level distance between in L^* , a^* , b^* space, and (iii) MAE (Hue) — an angular difference in hue, computed in polar coordinates with chromabased reliability gating. For each metric, we compute the minimum perceptual distance between the predicted dominant color and the candidate set. This distance is compared against the metric-specific JND threshold (typically 5), with binary scores assigned based on whether the distance falls below the threshold. An overall "Correct" assessment requires all metrics to pass.

4 BENCHMARK

Most existing benchmarks assess color fidelity in text-to-image generation using VQA-based approaches, as summarized in Table 1. However, these methods often rely on VLLMs that lack direct grounding in pixel-level color information, making them susceptible to hallucination, linguistic bias, and imprecise color perception. To rigorously evaluate this limitation, we constructed a controlled diagnostic set of 2464 synthetic images rendered in Blender using CSS3/X11 and ISCC–NBS L2 colors. We evaluated seven state-of-the-art VLLMs on three tasks: (i) open-ended color name/hex code prediction, (ii) multiple-choice RGB selection, and (iii) binary color verification.

Model	Resolution	Type	Color Name Accuracy	Color-Object Association	Multi-Object Color Composition	Implicit Color Association	Numerical Color Understanding	Avg.
Flux	1024	DM	33.70	18.99	10.49	22.49	9.14	18.96
Sana	1024	DM	49.85	18.10	7.06	15.18	15.80	21.20
SD 3.5	1024	DM	49.83	20.53	11.43	17.81	9.41	21.80
Pixart Alpha	1024	DM	49.61	13.48	1.73	9.47	6.36	16.13
SD 3	1024	DM	45.97	22.45	9.84	13.17	7.45	19.78
Pixart Sigma	1024	DM	47.36	16.75	3.05	11.49	6.47	17.02
Janus Pro	384	AR	29.55	16.33	8.25	17.88	3.66	15.13
OmniGen2	512	AR	42.47	23.71	9.91	18.51	17.49	22.42
Blip3o	1024	MM	40.59	15.59	5.21	21.35	28.31	22.21

Table 4: Overall performance of T2I models on GenColorBench. *The scores are averaged over ISCC-NBS L2, L3, and CSS3/X11 colors.* incidate best, second-best, and third-best.

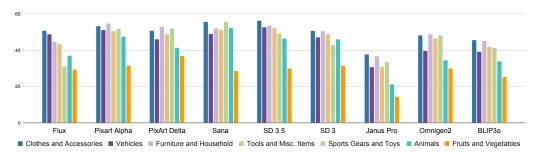


Figure 2: Performance of T2I model on category-wise color accuracy. The scores are averaged over the Level 2 and Level 3 ISCC-NBS colors, and CSS3/X11 colors based object focused prompts.

As shown in Table 2, the best-performing VLLM (Qwen2-VL) achieves only 49.01% accuracy on L2 binary task and 24.73% on CSS MCQ task, with open-ended performance remaining critically low (below 12.17%). These results confirm that current VLLMs struggle to reliably distinguish fine-grained colors, even under ideal conditions with single-object scenes. In contrast, our proposed method achieves 96.46% accuracy on L2 and 92.00% on CSS3/X11 colors (see appendix for details).

4.1 EXPERIMENT SETUP

Models. We focus on a broad range of the recent T2I models. This includes Flux.1 (Labs, 2024); Stable Diffusion 3.5 (Stability AI, 2024) and Stable Diffusion 3 (Stability AI, 2025) from the stability AI; PixArt- α (Chen et al., 2023) and PixArt- σ (Chen et al., 2024) from the PixArt family; autoregressive models such as Janus Pro (Wu et al., 2025a) and OmniGen2 (Wu et al., 2025b); multimodal model BLIP3o (Chen et al., 2025a); and Sana (Xie et al., 2024a)—an optimized model for semantic and visual grounding. These models represent diverse architectures, ranging from diffusion-based pipelines to autoregressive and hybrid approaches. Further details are provided in the Appendix.

Image Generation. The evaluation is performed on a set of 44,464 prompts spanning all the five tasks described in Table 3. Following the practice in existing benchmarks, we generate 4 images per prompt, and compute the average score across all the generated images. For each model, the hyper-parameters including sampling step, and image resolution are set to default to ensure fairness in comparison. Image generation is performed using Nvidia A40 GPUs.

4.2 Overall Performance

We evaluate the performance of various T2I models on five color generation tasks using GenColor-Bench, with results summarized in Table 4. For each task, scores are averaged across color prompts derived from Levels 2 and 3 of the ISCC-NBS system and CSS/X11 color names. Despite architectural diversity — including diffusion models (DM), autoregressive models (AR), and multimodal architectures (MM) — all models exhibit a consistent trend: performance degrades as task complexity increases. OmniGen2 (Wu et al., 2025b) achieves the highest average score (22.42), followed closely by BLIP3o (22.21) and Stable Diffusion 3.5 (21.80). Notably, OmniGen2 operates at a lower resolution (512×512) compared to SD 3.5 and BLIP3o (both 1024×1024), suggesting its superior performance is not merely resolution-dependent but may reflect stronger color semantics modeling.

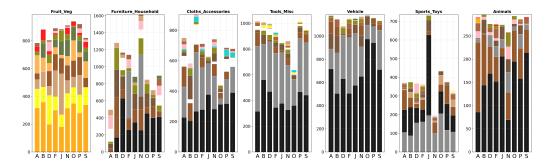


Figure 3: Distribution of estimated dominant colors (Top-10) across 10,000 generated images for each T2I models, revealing inherent color biases in vanilla baseline models. Models include: A = PixArt Alpha, B = BLIP30, F = Flux, J = Janus-Pro, N = Sana, O = OmniGen2, P = PixArt Sigma, S = Stable Diffusion 3, and D = Stable Diffusion 3.5. Interestingly, all the models are significantly biased towards black, gray, and brown across all the categories except fruits and vegetables.

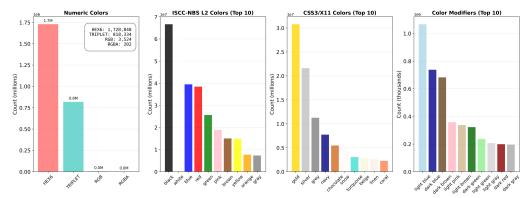


Figure 4: Color representation in LAION-2B text prompts, analyzed across four semantic categories: (i) Numeric Colors, (ii) ISCC-NBS L2 colors, (iii) CSS3/X11 named colors, and (iv) Color Modifiers. The data reveals the dominant representation of ISCC-NBS L2 colors and their modifiers. Whereas, the numeric colors are significantly under-represented as compared to the named colors.

On task-specific metrics, Stable Diffusion 3.5 (49.83) and Sana (49.85) lead in Color Name Accuracy, indicating strong grounding of color names, though even top performers remain below 50%, revealing persistent difficulty with fine-grained or ambiguous color terms. In contrast, performance plummets in the Color-Object Association task, where only OmniGen2 exceeds 23% (23.71), underscoring widespread failure in assigning colors to specific objects without leakage or misattribution. The Multi-Object Color Composition task reveals a sharp drop in performance across all models — with scores generally below 12 — highlighting severe limitations in spatially disentangling and assigning distinct colors to multiple objects simultaneously. Similarly, in the Implicit Color Association task, models struggle to infer color relationships embedded in texture, context, or scene semantics, with scores rarely exceeding 23%. Finally, the Numerical Color Understanding task proves most challenging, with most models scoring under 10%. Interestingly, BLIP30 significantly outperforms others here (28.31), suggesting its multimodal architecture may better encode or reason about explicit numeric color representations (e.g., RGB/hex values), which are typically learned implicitly in conventional T2I pipelines. These results collectively demonstrate that while modern T2I models can approximate basic color naming, they remain fundamentally limited in their ability to precisely control, associate, or numerically interpret color within complex visual compositions.

4.3 CATEGORY-LEVEL ANALYSIS

We evaluate how T2I models ground color names across seven semantic object categories as shown in Figure 2. A clear pattern emerges: models consistently achieve higher accuracy on categories such as *Clothes and Accessories*, *Vehicles*, and *Furniture and Household*, where color is often stylistic or decorative rather than semantically bound to identity. In contrast, performance drops sharply for *Animals* and *Fruits and Vegetables*, where color is biologically intrinsic (e.g., yellow banana) and

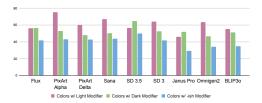


Figure 5: (Left) Comparison b/w basic and intermediate colors. These models better understand basic colors, while accuracy drops by 8–20% on intermediate colors. (Right) Comparison of color modifiers. These models understand light color modifiers better, while -ish modifiers remain worst.

requires precise disentanglement of object identity from color attribute. This disparity reflects a deep-seated training data biases. As revealed in Figure 3, all models exhibit strong chromatic bias toward *black*, *gray*, and *brown* across nearly all categories, mirroring the dominant color distribution observed in LAION-2B text prompts in Figure 4. Notably, neutral tones are overrepresented in training corpora, particularly in Vehicles and Furniture category, which explains models' relative success there. Conversely, vibrant or biologically specific colors such as reds, yellows are underrepresented in both training prompts and generated outputs, especially for Animals, and Fruits and Vegetables.

This alignment between model output bias and dataset statistics suggests that current T2I systems largely rely on statistical co-occurrence patterns rather than compositional reasoning about color semantics. For instance, the persistent rendering of bananas as "yellow" stems not from learning biological color norms, but from memorizing frequent associations in the training corpus — a phenomenon consistent with prior findings on human color-concept associations (Rathore et al., 2019). OmniGen2 and Stable Diffusion 3.5 show better cross-category generalization, while Janus Pro and BLIP30 exhibit the weakest performance, particularly struggling with color control in biologically constrained categories. This highlights that compositional color control remains challenging when decoupling color from object identity.

4.4 BASIC AND INTERMEDIATE COLOR UNDERSTANDING

We evaluate T2I models on basic and intermediate color understanding. To achieve this, we categorize the Red, Orange, Brown, Yellow, Olive, Yellow, Green, Blue, Purple, White, Gray, and Black as basic colors —similar to conventional color naming approaches (Berlin & Kay, 1991) where colors are described with a single word. We then group all the rest of Level 2 colors as intermediate colors. We measure the accuracy of these categories using the color naming accuracy task and illustrate the results in Figure 5(Left). These results indicate that all models perform well on basic colors, but consistently struggle with intermediate color grounding, which proves to be a more difficult task. Interestingly, there is not a large difference in the order of the models with both sets of colors, being Sana, Stable Diffusion 3.5, and PixArt-Alpha the ones obtaining best results for both type of colors.

4.5 Modifier-based Compositionality

We also analyse the understanding of color modifiers (i.e., dark, light, -ish) in T2I models. These modifiers are commonly used in natural languages to define different variants of the basic colors, e.g. light blue, dark blue, and greenish blue. Therefore, we group the ISCC-NBS Level 3 colors based on these three modifiers and study the color name accuracy task for each group. The results in terms of accuracy are shown in Figure 5(Right) which demonstrate that these models perform better with light modified colors, as compared to the dark modified colors. On the other hand, -ish modified colors remain a hard task for all the models with the performance often below than 35%, highlighting that these models struggle with gradient color semantics described in natural language.

5 CONCLUSIONS

We introduce GenColorBench, the first comprehensive benchmark for assessing color generation accuracy of T2I models. Our analysis of state-of-the-art models and reveals significant limitations in their ability to adhere to precise color specifications, highlighting the need for improved color controllability. GenColorBench's focus on both categorical color names and numerical values (RGB, hex) fills a key void in existing evaluation frameworks, providing a robust tool for measuring progress in this essential dimension. By establishing baseline metrics and identifying failure modes, this work lays groundwork for advancing T2I models' fidelity to color prompts.

REFERENCES

- Brent Berlin and Paul Kay. *Basic color terms: Their universality and evolution*. Univ of California Press, 1991.
- Muhammad Atif Butt, Kai Wang, Javier Vazquez-Corral, and Joost van de Weijer. Colorpeel: Color prompt learning with diffusion models via color and shape disentanglement. In *European Conference on Computer Vision*, 2024.
 - Jingjing Chang, Yixiao Fang, Peng Xing, Shuhan Wu, Wei Cheng, Rui Wang, Xianfang Zeng, Gang Yu, and Hai-Bao Chen. Oneig-bench: Omni-dimensional nuanced evaluation for image generation. *arXiv* preprint arXiv:2506.07977, 2025.
 - Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite: Attention-based semantic guidance for text-to-image diffusion models, 2023.
 - Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal models-architecture, training and dataset. *arXiv preprint arXiv:2505.09568*, 2025a.
 - Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.
 - Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo Li. Pixart-delta: Fast and controllable image generation with latent consistency models. *arXiv* preprint arXiv:2401.05252, 2024.
 - Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model scaling. *arXiv preprint arXiv:2501.17811*, 2025b.
 - Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-grained evaluation for text-image generation. *arXiv* preprint arXiv:2310.18235, 2023.
 - Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv* preprint arXiv:2505.14683, 2025.
 - Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*, pp. 248–255. Ieee, 2009.
 - Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. *ICLR workshop*, 2015.
 - Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. *ICLR*, 2017.
 - Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2021.
- Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. In *Forty-first international conference on machine learning*, 2024.
 - Xingyu Fu, Muyu He, Yujie Lu, William Yang Wang, and Dan Roth. Commonsense-t2i challenge: Can text-to-image generation models understand commonsense? *arXiv preprint arXiv:2406.07546*, 2024.

- Songwei Ge, Taesung Park, Jun-Yan Zhu, and Jia-Bin Huang. Expressive text-to-image generation with rich text. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7545–7556, 2023a.
 - Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making llama see and draw with seed tokenizer. *arXiv preprint arXiv:2310.01218*, 2023b.
 - Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36: 52132–52152, 2023.
 - Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
 - Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2022.
 - Shuhao Han, Haotian Fan, Jiachen Fu, Liang Li, Tao Li, Junhui Cui, Yunqiu Wang, Yang Tai, Jingwei Sun, Chunle Guo, et al. Evalmuse-40k: A reliable and fine-grained benchmark with comprehensive human annotations for text-to-image generation model evaluation. *arXiv* preprint *arXiv*:2412.18150, 2024.
 - Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta denoising score. *arXiv preprint arXiv:2304.07090*, 2023a.
 - Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt image editing with cross attention control. *International Conference on Learning Representations*, 2023b.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in Neural Information Processing Systems*, 33:6840–6851, 2020.
 - Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.
 - Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question answering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 20406–20417, 2023.
 - Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++: An enhanced and comprehensive benchmark for compositional text-to-image generation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2025.
 - Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani. Imagic: Text-based real image editing with diffusion models. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2023.
 - Kenneth L Kelly and Deane Brewster Judd. *Color: universal language and dictionary of names*, volume 440. US Department of Commerce, National Bureau of Standards, 1976.
 - Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint* arXiv:1312.6114, 2013.
 - Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept customization of text-to-image diffusion. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2023.
 - Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
 - Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *European conference on computer vision*, pp. 740–755. Springer, 2014.

- Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
 - Yuxuan Luo, Yuhui Yuan, Junwen Chen, Haonan Cai, Ziyi Yue, Yuwei Yang, Fatima Zohra Daha, Ji Li, and Zhouhui Lian. Mmmg: A massive, multidisciplinary, multi-tier generation benchmark for text-to-image reasoning. *arXiv preprint arXiv:2506.10963*, 2025.
 - Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit: Guided image synthesis and editing with stochastic differential equations. In *International Conference on Learning Representations*, 2022. URL https://openreview.net/forum?id=aBsCjcPu_tE.
 - Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion for editing real images using guided diffusion models. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2023.
 - Albert Henry Munsell. A Color Notation: a measured color system, based on the three qualities Hue, Value and Chroma. DigiCat, 2022.
 - Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion models. *arXiv preprint arXiv:2112.10741*, 2021.
 - Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation for text-to-image generation. *arXiv* preprint arXiv:2503.07265, 2025.
 - Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, and Robin Rombach. Sdxl: improving latent diffusion models for high-resolution image synthesis. *arXiv preprint arXiv:2307.01952*, 2023.
 - Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
 - Ragini Rathore, Zachary Leggon, Laurent Lessard, and Karen B Schloss. Estimating color-concept associations from image statistics. *IEEE transactions on visualization and computer graphics*, 26 (1):1226–1235, 2019.
 - Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang, Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual tasks. *arXiv preprint arXiv:2401.14159*, 2024.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 06 2022.
 - Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2023.
 - Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic text-to-image diffusion models with deep language understanding. *Advances in neural information processing systems*, 35:36479–36494, 2022.
 - Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International Conference on Learning Representations*, 2021. URL https://openreview.net/forum?id=StlgiarCHLP.
 - Stability AI. Stable Diffusion 3.5 Large (stabilityai/stable-diffusion-3.5-large). https://huggingface.co/stabilityai/stable-diffusion-3.5-large, 2024. Model released October 22, 2024 under Stability AI Community License.

- Stability AI. Stable Diffusion 3 Medium Diffusers (stabilityai/stable-diffusion-3-medium-diffusers). https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers, 2025. Released January 9, 2025 under the Stability AI Non-Commercial Research Community License.
 - Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14398–14409, 2024.
 - Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, Mengping Yang, Cheng Zhang, and Hao Li. Evalalign: Supervised fine-tuning multimodal llms with human-aligned data for evaluating text-to-image models. *arXiv preprint arXiv:2406.16562*, 2024.
 - Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a.
 - Qwen-VL Team. Qwen-vl: A strong multimodal language model, 2024b. https://huggingface.co/Qwen/Qwen-VL.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
 - W3C. Css color module level 3, 2018. Accessed: 2025-07-31.
 - Christoph Witzel and Haden Dewis. Why bananas look yellow: The dominant hue of object colours. Vision Research, 200:108078, 2022. ISSN 0042-6989. doi: https://doi.org/10.1016/j.visres.2022.108078. URL https://www.sciencedirect.com/science/article/pii/S0042698922000840.
 - Christoph Witzel and Karl R Gegenfurtner. Color perception: Objects, constancy, and categories. *Annual review of vision science*, 4(1):475–499, 2018.
 - Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12966–12977, 2025a.
 - Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation. *arXiv preprint arXiv:2506.18871*, 2025b.
 - Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with linear diffusion transformer, 2024a. URL https://arxiv.org/abs/2410.10629.
 - Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin, Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer to unify multimodal understanding and generation. *arXiv preprint arXiv:2408.12528*, 2024b.
 - Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada: Multimodal large diffusion language models. *arXiv preprint arXiv:2505.15809*, 2025.
 - Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for contentrich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.
 - Xiangru Zhu, Penglei Sun, Chengyu Wang, Jingping Liu, Zhixu Li, Yanghua Xiao, and Jun Huang. A contrastive compositional benchmark for text-to-image synthesis: A study with unified text-to-image fidelity metrics. *arXiv preprint arXiv:2312.02338*, 2023.