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ABSTRACT

Recent years have seen impressive advances in text-to-image generation, with im-
age generative or unified models, generating high-quality images from text. Yet
these models still struggle with fine-grained color controllability, often failing to
accurately match colors specified in text prompts. While existing benchmarks
evaluate compositional reasoning and prompt adherence, none systematically as-
sess the color precision. Color is fundamental to human visual perception and
communication, critical for applications from art to design workflows requiring
brand consistency. However, current benchmarks either neglect color or rely on
coarse assessments, missing key capabilities like interpreting RGB values or align-
ing with human expectations. To this end, we propose GenColorBench, the first
comprehensive benchmark for T2I color generation, grounded in color systems
like ISCC-NBS and CSS3/X11, including numerical colors which are absent else-
where. With 44K color-focused prompts covering 400+ colors, it reveals models’
true capabilities via perceptual and automated assessments. Evaluations of popu-
lar T2I models using GenColorBench show performance variations, highlighting
which color conventions models understand best and identifying failure modes.
Our GenColorBench assessments will allow to guide improvements in precise
color generation. The benchmark will be made public upon acceptance.

1 INTRODUCTION

Text-to-image (T2I) generation has witnessed remarkable progress in recent years, with state-of-the-
art models like Stable Diffusion (Rombach et al., 2022) and FLUX (Labs, 2024) demonstrating un-
precedented capabilities in generating high-quality, photorealistic images from text prompts. These
advances have enabled diverse applications ranging from creative content generation to automated
design workflows. However, despite their impressive overall performance, T2I models still strug-
gle with fine-grained controllability, particularly in generating images that precisely match specific
visual attributes described in text prompts (Chefer et al., 2023; Ge et al., 2023a). While numerous
benchmarks, discussed in Table 1, have been proposed to evaluate various aspects of T2I model
performance—including compositional reasoning (Huang et al., 2025; Ghosh et al., 2023), prompt
adherence (Hu et al., 2024), and faithfulness (Hu et al., 2023)—none systematically evaluates the
critical ability to generate precise colors as specified in text prompts.

Color represents a fundamental dimension of human visual perception and serves as a primary chan-
nel for human communication about objects and scenes, with color categories forming a universal
basis for describing and distinguishing visual phenomena across cultures (Berlin & Kay, 1991;
Witzel & Gegenfurtner, 2018). This perceptual importance translates directly into practical ap-
plications where accurate color generation is essential—from multimedia applications and artistic
creation to design workflows requiring brand consistency, aesthetic control and faithful reproduc-
tion of real-world scenes. However, existing T2I evaluation benchmarks critically underestimate
this importance by either neglecting color evaluation entirely or reducing it to coarse categorical as-
sessments that fail to capture their real color capabilities. Current benchmarks do not assess whether
models generate colors that maintain color consistency across different contexts, or produce colors
that align with human memory and expectations for familiar objects.

To address this, we propose GenColorBench, the first comprehensive benchmark designed to sys-
tematically evaluate the color generation capabilities of T2I models. Unlike existing benchmarks
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Color Evaluation Tasks
Benchmark Scale Focus CNA MCC COA NCU ICA Color Evaluation Methods
GenEval (Ghosh et al., 2023) 553 Compositionality ✓ ✓ ≈ × × Mask2Former + CLIP ViT-L/14
T2I-CompBench++ (Huang et al., 2025) 6000 Compositionality ✓ ≈ × × × BLIP-VQA
DPG-Bench (Hu et al., 2024) 1065 Prompt Adherence ✓ ✓ × × × mPLUG-large VQA
TIFA (Hu et al., 2023) 1000 Faithfulness ✓ ✓ × × × mPLUG-large VQA
Commonsense-T2I (Fu et al., 2024) 1000+ Reasoning ≈ ≈ × × × self-proposed (accuracy)
Winoground-T2I (Zhu et al., 2023) 11,000 Compositionality ✓ ✓ × × × Human Rating + DSG-VQA
Wise (Niu et al., 2025) 1000 Reasoning ≈ ≈ × × × WiScore, Aesthetic Quality
MMMG (Luo et al., 2025) 4456 Disciplinary Knowledge ✓ ✓ ✓ × × GPT/Gemini/QWEN VQA
Partiprompt (Yu et al., 2022) 1600 Compositionality ✓ ✓ × × × FID
OneIG-Bench (Chang et al., 2025) 2440 Compositionality × × × × × FID
DrawBench (Saharia et al., 2022) 200 Compositionality ✓ ✓ × × × Human Rating
EvalAlign (Tan et al., 2024) 3000 Compositionality ✓ ✓ × × × MLLM-VQA
Evalmuse (Han et al., 2024) 4000 Compositionality ✓ ✓ × × × FGA-BLIP2, PN-VQA
GenColorBench (Ours) 44,464 Color Understanding ✓ ✓ ✓ ✓ ✓ VQA + Color Metrics
GenColorBench-Mini (Ours) < 10K Color Understanding ✓ ✓ ✓ ✓ ✓ VQA + Color Metrics

Table 1: Overview of existing T2I evaluation benchmarks. Abbreviations for color evaluation tasks:
CN = Color Name Understanding, MC = Multi-Color Composition, CO = Color–Object Associa-
tion, NCU = Numeric Color Understanding, ICA = Implicit Color Association. While these bench-
marks are widely adopted for assessing various aspects of T2I generation—such as compositionality,
prompt adherence, and reasoning—they lack comprehensive coverage of key color understanding
and evaluation tasks. GenColorBench is specifically designed to fill this gap by supporting a broad
spectrum of color-related tasks. (✓: covered, ×: not covered, ≈: partially covered)

that rely on coarse categorical assessments, our benchmark is grounded in established color naming
systems, including the ISCC-NBS, and CSS3/X11, and uniquely incorporates evaluation of nu-
merical color specifications (RGB values and hex codes) that are completely absent from existing
benchmarks. With over 44K+ prompts specifically designed for color evaluation covering over 400+
colors, GenColorBench provides both the scale and specificity necessary to reveal models’ true color
generation capabilities through both perceptual color evaluation and automated assessment methods.

We conduct extensive evaluations of several popular image generation models and unified models
using GenColorBench, revealing significant variations in color generation capabilities across differ-
ent models and color specification methods. Our analysis provides insights into which color naming
conventions and numerical representations are most effectively understood by current models, and
identifies common failure modes in color generation tasks. The main contributions of this work
are threefold: (i) We introduce GenColorBench, a large-scale benchmark containing over 44,464
prompts covering 400+ colors specifically designed to evaluate the capabilities of T2I models across
five distinct color generation tasks; (ii) We provide comprehensive evaluations of state-of-the-art
T2I models, analyzing their performance on precise color generation and identifying key limita-
tions; (iii) We establish baseline performance metrics and evaluation protocols that can guide future
research in improving color controllability in generative models.

MAJOR FINDINGS OF OUR EVALUATION

• Current models exhibit notable shortcomings in adhering to precise color specifi-
cations, underscoring the urgent need for enhanced color controllability (Table 4).

• Model performance is tightly linked to category semantics. Categories with strong
color associations (e.g. Fruits and Vegetables—yellow bananas, green grass) pose
greater challenges (Fig. 2, Fig. 3).

• Models are better at understanding basic colors (yellow, pink, blue), while they
struggle more with intermediate colors (Fig. 5(Left)). Similarly, models favor
“light” and “dark” modifiers over more nuanced ones like “-ish”, suggesting a lim-
ited grasp of subtle color variations (Fig. 5(Right)).

• Vision-language models fall short as reliable tools for color evaluation (Table 2).

2 RELATED WORK

T2I Diffusion Models. T2I generation has advanced rapidly in recent years. T2I diffusion mod-
els (Ho et al., 2020; Gu et al., 2022) emerged as more efficient models surpassing GANs (Good-
fellow et al., 2020), VAEs (Kingma & Welling, 2013), autoregressive (Esser et al., 2021) and flow-
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based (Dinh et al., 2015; 2017) models in T2I generation. Diffusion models are probabilistic gener-
ative models aiming to learn data distribution through denoising from Gaussian distribution. These
models allow multi-modal conditioning (Song et al., 2021), (Meng et al., 2022), (Nichol et al., 2021)
to improve controllability. With recent scaling up the scale of diffusion models, SD3 (Esser et al.,
2024) and FLUX (Labs, 2024) have been state-of-the-art T2I models while largely surpassing the
previous representatives (Ramesh et al., 2022; Chen et al., 2023).

Unified Models. Recent years have seen major progress in multimodal understanding and image
generation models. Yet, these fields have advanced along separate paths, forming distinct architec-
tural paradigms. Autoregressive architectures dominate large language models such as LLaMa (Tou-
vron et al., 2023), Qwen (Team, 2024a), and multimodal models like LLaVa (Liu et al., 2023),
Qwen-VL (Team, 2024b). Autoregressive-based architectures have established dominance in large
language models such as LLaMa (Touvron et al., 2023), Qwen (Team, 2024a), etc, as well as in
multimodal understanding models including LLaVa (Liu et al., 2023) and Qwen-VL (Team, 2024b).
Diffusion models, such as Stable Diffusion (Podell et al., 2023) and FLUX (Labs, 2024), have be-
come central to image generation, producing high-fidelity, prompt-aligned images. More recently,
unified frameworks like GPT-4o aim to handle multimodal inputs and outputs in a single mechanism.
Unified models fall into three types: diffusion-based, autoregressive (AR), and fused AR/diffusion.
Pure diffusion-based MLLMs, such as MMaDA (Yang et al., 2025) and Dual-Diffusion, use dual-
branch diffusion for joint text–image generation. However, unified models based on naive autore-
gressive (AR) dominate this research landscape, with representative contributions including SEED
series (Ge et al., 2023b), Emu series (Sun et al., 2024), Janus series (Wu et al., 2025a; Chen et al.,
2025b), etc. Recently, fused AR–diffusion models have emerged for unified vision–language gener-
ation, exemplified by Show-o (Xie et al., 2024b) and BAGEL (Deng et al., 2025).

Color Control in T2I diffusion models. With the advancements in generation and unified mod-
els, various text-guided image editing approaches (Hertz et al., 2023a; Meng et al., 2022; Mokady
et al., 2023) have been developed to enable controllable modifications. For instance, methods like
Imagic (Kawar et al., 2023) and P2P (Hertz et al., 2023b) leverage Stable Diffusion (SD) models for
structure-preserving edits. And the unified models (Deng et al., 2025; Wu et al., 2025b) integrate
such editing power by large-scale pretraining with huge paired datasets. Another technique stream
which can also achieve controllable generation is transfer learning for T2I models (Ruiz et al., 2023;
Kumari et al., 2023). It aims at adapting a given model to a new concept by given images from the
users and bind the new concept with a unique token. As a result, the adaptation model can generate
various renditions for the new concept guided by text prompts. However, all these existing tech-
niques struggle to achieve fine-grained control over color attributes in image editing and generation
tasks. Only a limited number of works (Butt et al., 2024; Ge et al., 2023a) have begun addressing
the challenge of precise color generation. To facilitate the evaluation and development of precise
color generation capabilities of future models, we build the first color benchmark in this paper.

T2I Evaluation. A variety of benchmarks have been developed to evaluate text-to-image models,
each tailored to specific aspects of generative performance, as listed in Table 1. GenEval (Ghosh
et al., 2023) introduces object detectors to enable fine-grained, object-level evaluation, thereby ad-
dressing the limitations of holistic metrics. T2I-CompBench (Huang et al., 2025) elevates compo-
sitional complexity by constructing prompts that integrate attributes, relational cues, numeracy, and
complex scene descriptions. DPG-Bench (Hu et al., 2024) focuses on assessing models’ instruction-
following proficiency, leveraging text-rich prompts to gauge their fidelity to detailed directives.
Furthermore, Commonsense-T2I (Fu et al., 2024) employs adversarial prompts to probe models’
capabilities in visual reasoning. Winoground-T2I (Zhu et al., 2023) evaluates compositional gen-
eralization by leveraging contrastive sentence pairs. More recently, WISE (Niu et al., 2025) and
MMMG (Luo et al., 2025) benchmarks emphasize world knowledge-based evaluation, spanning
cultural, scientific, and temporal domains to gauge models’ alignment with broader understanding.
However, these existing benchmarks are primarily designed to evaluate the general generative capa-
bilities of diverse image generators, with none specifically focusing on the task of color generation.
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Gen

Figure 1: An overview of GenColorBench evaluation framework. The evaluation pipeline consists
of five key components: VQA-based object localization, object segmentation, pixel extraction, color
grounding, and score mechanism. Then, five color evaluation tasks are devised to analyse different
aspects of color understanding in T2I models covering single object coloring, color-object associa-
tion, multi-object color composition, numerical color understanding, and Implicit Color Association.

3 COLOR EVALUATION FRAMEWORK

3.1 T2I COLOR GENERATION TASKS.

Our primary goal is to evaluate unified vision-language and T2I models’ ability to understand and
generate images given explicit color prompts. We organize evaluation into multiple tasks, targeting
different dimensions of color understanding, considering the practical use-cases for generative mod-
els. GenColorBench consists of five color evaluation tasks: (i) Color Name Accuracy—assesses
whether the model correctly renders an object in the color specified by its linguistic name. (ii) Color-
Object Association—evaluates whether the specified color is assigned to the correct object without
erroneous attribution to contextual elements. (iii) Multi-Object Color Composition—assess cor-
rect color-object associations when multiple objects and corresponding color names are specified.
(iv) Implicit Color Association—evaluates understanding of semantic relationships when a color is
assigned to only one object but should also correspond to other objects. (v) Numerical Color Un-
derstanding—assesses comprehension of RGB triplets and hex codes for accurate color generation.

3.2 COLOR TAXONOMY

Colors can be specified in text prompts in various ways—most commonly through linguistic color
names such as ”a red rose”, but also through numerical codes such as hexadecimals (e.g., #ff0000)
or RGBs (e.g., (255, 0, 0)). These color expressions are often interpreted differently by the T2I mod-
els depending on their text encoders. Therefore, it is important to consider both the linguistic and
numerical color representations to perform an in-depth evaluation of T2I models for color generation
tasks. To this end, we ground our evaluation in two standard color naming systems i.e., ISCC-NBS,
and CSS/X11 which offers human-understandable names along with their numerical representations.

The ISCC-NBS (Kelly & Judd, 1976) is derived from the Munsell color system (Munsell, 2022)
that is a perceptually uniform color space designed to align with the human color perception. Mun-
sell’s color system organizes colors along three perceptual axes, which are hue, value (lightness),
and chroma (saturation), determined by empirical human experiments. ISCC-NBS discretizes this
continuous color space into named categories, resulting in a three-level hierarchy of colors, ranging
from coarse to fine-grained colors. Level 1 includes 13 broad color categories corresponding to basic
color linguistic names such as green, red, or blue. Level 2 expands these 13 colors to 29 intermediate
hues by incorporating modifiers such as light, deep, or strong. Level 3 provides fine-grained color
names with precise distinctions, such as light bluish green or moderate purplish pink. We also use
CSS3/X11 color set (W3C, 2018), which includes 147 colors that are widely used in web design
and digital interfaces. These color names precisely map to both RGB and hexadecimal color values,
making them ideal to be used in text-prompts for T2I color generation evaluation tasks.
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Open-Ended MCQ Binary
Model CSS L2 CSS L2 CSS L2
Janus 1.3B 5.03 25.86 12.20 33.99 30.42 34.98
Janus-Pro 7B 6.62 26.60 19.44 43.60 24.98 37.19
mPLUG-Owl3 7B 7.24 24.14 17.93 42.12 26.87 41.87
DeepSeek-VL2-7B 11.35 27.34 18.85 45.32 31.24 42.12
BLIP3o-8B 12.17 25.12 24.73 45.81 31.10 44.09
Qwen2-VL-7B 9.35 24.63 23.23 43.35 35.13 49.01
Instruct-VL-7B 7.19 26.60 20.55 45.57 31.15 41.63
Ours L2: 96.46 CSS: 92.00

Table 2: Performance (accuracy) of VLMs-based
VQA on CSS/X11 and ISCC-NBS Level 2 colors.

Type # Temp. Example Prompt
Object-
Focused

12 a red apple

Contextual
Object

62 a red apple on a white plate

Scene De-
scriptive

30 a red apple on a white plate
placed on a kitchen shelf

Implicit
Color As-
sociation

100 a red apple on a plate placed
on a kitchen shelf. The plate is
of the same color as the apple.

Table 3: Prompt categorization across four
levels of difficulty, from simple to complex.

3.3 DATA CURATION

After establishing the color evaluation tasks and the color sets, we generate prompts for each color
evaluation task. The data curation involves four key components: object selection, prompt tem-
plate creation and categorization, integration of standardized colors, and human-in-the-loop quality
assessment. Each component is designed to ensure that the generated prompts and the associated
evaluation settings are grounded, scalable, and suitable for automated and human evaluation.

Object Selection. We curate a set of 108 objects that span multiple semantic categories to ensure
comprehensive coverage of color-object combinations. These objects are drawn from two widely
used datasets—COCO (Lin et al., 2014), and ImageNet (Deng et al., 2009), and grouped them into
seven semantic domain including fruits and vegetables, tools and miscellaneous items, vehicles,
animals, clothing and accessories, furniture and household objects, and sports and toys. Each object
is selected based on recognizability in T2I generation, color variability for plausible appearance, and
suitability for the segmentation which is a crucial step in the downstream mask-based evaluation.

Prompt Creation and Categorization. We begin by pairing the objects and the color sets, result-
ing in a large pool of valid object-color combinations that serves as a seed inputs for the prompt
generation. For each color-object pair, we use a pool of hand-crafted and GPT-4o generated prompt
templates to produce the prompts, which are aligned with one of the four difficulty levels—shown
in Table 3. Level 1 templates produce simple object focused prompts that describe a single col-
ored object. These prompts are designed to evaluate the color name accuracy and numerical color
understanding task. Level 2 templates embed the object within a contextual scene which are used
for color name accuracy and color-object association task. Level 3 templates describe the scene in-
volving more than two objects along with their corresponding colors to assess the multi-object color
compositions. Level 4 templates describe semantically complex scenes having one object with the
assigned color, while a second object is referring to the color of the first object.

Quality Assessment. After completing prompt generation, we perform human-in-the-loop valida-
tion to ensure the linguistic quality and semantic clarity of the generated prompts. The prompts are
reviewed for grammatical check, and ambiguity, especially in scene descriptive and implicit color
association prompts. A random subset of prompts from each set are picked for review to ensure that
the color references are unambiguous and the prompt structure does not mislead the models. All the
ambiguous prompts are either revised or removed from the final sets.

Prompt Distribution. Finally, we get 18K object focused prompts with linguistic color names, and
11.5K prompts with numerical colors including hex codes and RGB triples. The contextual object
category includes 8.7K prompts to assess the object-color association. To evaluate multiple object
generation, the scene descriptive category contains 2.2K prompts that embed colors within broader
contexts. The implicit color association category includes 4.5K prompts where color attributes must
be inferred based on semantic relationships between objects. This prompt distribution ensures a
comprehensive evaluation of color grounding across a wide range of complexity levels, resulting into
a large-scale set of 44K+ prompts. To facilitate broader accessibility and reproducibility, we further
curate a compact, representative subset of less than 10K prompts—carefully selected to preserve
semantic diversity and evaluation fidelity—making it readily usable by the research community.

3.4 EVALUATION FRAMEWORK

Object Detection. Our framework comprises three key components: object detection and segmen-
tation, color grounding, and scoring mechanism to ensure object-aware perceptually aligned assess-
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ment. Following the Davidsonian Scene Graph (DSG) framework (Cho et al., 2023), we employ
Visual Question Answering (VQA)-based validation to first confirm the presence of the intended
object(s) in the generated image before proceeding to attribute-level assessments such as color. For
instance, given an input image along with ground truth, we formulate binary queries such as ”Is
there a car in the image”, and rely on VQA response to determine the existence of object. For the
multi-object tasks, the VQA model is queried for each object separately, and the image is validated
only if all the objects in text prompts are present in the image. This ensures object-level precision in
the evaluation tasks, especially in those that involve color association and color grounding between
multiple objects. In practice, after empirical testing across several VLMs, we employ Janus-1.3B as
VQA model due to its favorable trade-off between computational efficiency and reliability.

Then, a binary mask of the object is generated for color extraction. We use Grounded SAM (Ren
et al., 2024) pipeline which uses grounding DINO for text guided coarse localization of object and
then SAM is used to produce final mask. Another reason for employing Grounded SAM is that the
object may contain additional associated regions not required for the color grounding i.e., a mask
of car may include lights, and wind shields that are not required in the color grounding. We refer
these components as negative labels, and generated a list of the negative labels for all the objects
using GPT-4o. To remove these negative objects from the mask, we apply negative Intersection-
over-Union (IoU) filtering over positive mask to ensure separation of spatial region of the object.

Color Grounding and Score Mechanism. We propose to use a perceptually grounded, multi-
metric evaluation protocol. Instead of direct color metrics like DeltaE that penalize lighting varia-
tions, we extract RGB pixels from predicted masks and transform them to CIELAB space denoted
as P = (L∗

i , a
∗
i , b

∗
i )

N
i=1. The object may exhibit polychromatic color distribution due to geometric

and lighting variations, but human observers typically abstract these variations, attributing a single
representative color to an object. To capture this fundamental aspect of human vision, we adopt the
dominant hue concept which is explored by (Witzel & Dewis, 2022), which identifies the represen-
tative color of an object by focusing on primary direction of chromatic variation within its color
distribution. Then, we perform principal component analysis on the chromatic components (a∗ and
b∗) of the CIELAB pixel values. It is noted by (Witzel & Dewis, 2022) that the first component
v1 = (v1a, v1b) of chromaticity distribution Pab = (a∗i , b

∗
i )

N
i=1 represents the dominant hue. Then,

chromaticity of a∗i , b
∗
i is projected onto this dominant hue direction v1 and mean of lightness (L

∗
)

and the projected chromatic values (a∗proj, b
∗
proj) are computed to obtain the dominant color.

Now, we have the dominant color of the object and ground truth color from ISCC-NBS or CSS3/X11
color sets. However, a key challenge arises: can a single nominal color label—such as “pink” from
ISCC–NBS Level 1—adequately represent the full perceptual gamut of that color category? In
practice, a dominant color may correspond to a slightly different but perceptually indistinguishable
shade. To account for this variability and avoid penalizing perceptually plausible matches, we con-
struct a candidate set for each ground-truth color by including the nominal color along with its k
perceptually nearest neighbors in the same color-naming system.

We compute three complementary metrics: (i) Delta Chroma — the Euclidean distance in a∗, b∗

chromaticity plane, (ii) CIEDE2000 — distribution level distance between in L∗, a∗, b∗ space,
and (iii) MAE (Hue) — an angular difference in hue, computed in polar coordinates with chroma-
based reliability gating. For each metric, we compute the minimum perceptual distance between
the predicted dominant color and the candidate set. This distance is compared against the metric-
specific JND threshold (typically 5), with binary scores assigned based on whether the distance falls
below the threshold. An overall ”Correct” assessment requires all metrics to pass.

4 BENCHMARK

Most existing benchmarks assess color fidelity in text-to-image generation using VQA-based ap-
proaches, as summarized in Table 1. However, these methods often rely on VLLMs that lack direct
grounding in pixel-level color information, making them susceptible to hallucination, linguistic bias,
and imprecise color perception. To rigorously evaluate this limitation, we constructed a controlled
diagnostic set of 2464 synthetic images rendered in Blender using CSS3/X11 and ISCC–NBS L2
colors. We evaluated seven state-of-the-art VLLMs on three tasks: (i) open-ended color name/hex
code prediction, (ii) multiple-choice RGB selection, and (iii) binary color verification.
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Model Resolution Type Color Name Color-Object Multi-Object Color Implicit Color Numerical Color Avg.
Accuracy Association Composition Association Understanding

Flux 1024 DM 33.70 18.99 10.49 22.49 9.14 18.96
Sana 1024 DM 49.85 18.10 7.06 15.18 15.80 21.20
SD 3.5 1024 DM 49.83 20.53 11.43 17.81 9.41 21.80
Pixart Alpha 1024 DM 49.61 13.48 1.73 9.47 6.36 16.13
SD 3 1024 DM 45.97 22.45 9.84 13.17 7.45 19.78
Pixart Sigma 1024 DM 47.36 16.75 3.05 11.49 6.47 17.02
Janus Pro 384 AR 29.55 16.33 8.25 17.88 3.66 15.13
OmniGen2 512 AR 42.47 23.71 9.91 18.51 17.49 22.42
Blip3o 1024 MM 40.59 15.59 5.21 21.35 28.31 22.21

Table 4: Overall performance of T2I models on GenColorBench. The scores are averaged over
ISCC-NBS L2, L3, and CSS3/X11 colors. incidate best, second-best, and third-best.
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Flux Pixart Alpha PixArt Delta Sana SD 3.5 SD 3 Janus Pro Omnigen2 BLIP3o

Clothes and Accessories Vehicles Furniture and Household Tools and Misc. Items Sports Gears and Toys Animals Fruits and Vegetables

Figure 2: Performance of T2I model on category-wise color accuracy. The scores are averaged over
the Level 2 and Level 3 ISCC-NBS colors, and CSS3/X11 colors based object focused prompts.

As shown in Table 2, the best-performing VLLM (Qwen2-VL) achieves only 49.01% accuracy on
L2 binary task and 24.73% on CSS MCQ task, with open-ended performance remaining critically
low (below 12.17%). These results confirm that current VLLMs struggle to reliably distinguish
fine-grained colors, even under ideal conditions with single-object scenes. In contrast, our proposed
method achieves 96.46% accuracy on L2 and 92.00% on CSS3/X11 colors (see appendix for details).

4.1 EXPERIMENT SETUP

Models. We focus on a broad range of the recent T2I models. This includes Flux.1 (Labs, 2024);
Stable Diffusion 3.5 (Stability AI, 2024) and Stable Diffusion 3 (Stability AI, 2025) from the stabil-
ity AI; PixArt-α (Chen et al., 2023) and PixArt-σ (Chen et al., 2024) from the PixArt family; autore-
gressive models such as Janus Pro (Wu et al., 2025a) and OmniGen2 (Wu et al., 2025b); multimodal
model BLIP3o (Chen et al., 2025a); and Sana (Xie et al., 2024a)—an optimized model for semantic
and visual grounding. These models represent diverse architectures, ranging from diffusion-based
pipelines to autoregressive and hybrid approaches. Further details are provided in the Appendix.

Image Generation. The evaluation is performed on a set of 44,464 prompts spanning all the five
tasks described in Table 3. Following the practice in existing benchmarks, we generate 4 images
per prompt, and compute the average score across all the generated images. For each model, the
hyper-parameters including sampling step, and image resolution are set to default to ensure fairness
in comparison. Image generation is performed using Nvidia A40 GPUs.

4.2 OVERALL PERFORMANCE

We evaluate the performance of various T2I models on five color generation tasks using GenColor-
Bench, with results summarized in Table 4. For each task, scores are averaged across color prompts
derived from Levels 2 and 3 of the ISCC-NBS system and CSS/X11 color names. Despite archi-
tectural diversity — including diffusion models (DM), autoregressive models (AR), and multimodal
architectures (MM) — all models exhibit a consistent trend: performance degrades as task complex-
ity increases. OmniGen2 (Wu et al., 2025b) achieves the highest average score (22.42), followed
closely by BLIP3o (22.21) and Stable Diffusion 3.5 (21.80). Notably, OmniGen2 operates at a lower
resolution (512×512) compared to SD 3.5 and BLIP3o (both 1024×1024), suggesting its superior
performance is not merely resolution-dependent but may reflect stronger color semantics modeling.
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Figure 3: Distribution of estimated dominant colors (Top-10) across 10,000 generated images for
each T2I models, revealing inherent color biases in vanilla baseline models. Models include: A =
PixArt Alpha, B = BLIP3o, F = Flux, J = Janus-Pro, N = Sana, O = OmniGen2, P = PixArt Sigma,
S = Stable Diffusion 3, and D = Stable Diffusion 3.5. Interestingly, all the models are significantly
biased towards black, gray, and brown across all the categories except fruits and vegetables.

Figure 4: Color representation in LAION-2B text prompts, analyzed across four semantic cate-
gories: (i) Numeric Colors, (ii) ISCC-NBS L2 colors, (iii) CSS3/X11 named colors, and (iv) Color
Modifiers. The data reveals the dominant representation of ISCC-NBS L2 colors and their modifiers.
Whereas, the numeric colors are significantly under-represented as compared to the named colors.

On task-specific metrics, Stable Diffusion 3.5 (49.83) and Sana (49.85) lead in Color Name Accu-
racy, indicating strong grounding of color names, though even top performers remain below 50%,
revealing persistent difficulty with fine-grained or ambiguous color terms. In contrast, performance
plummets in the Color-Object Association task, where only OmniGen2 exceeds 23% (23.71), under-
scoring widespread failure in assigning colors to specific objects without leakage or misattribution.
The Multi-Object Color Composition task reveals a sharp drop in performance across all models
— with scores generally below 12 — highlighting severe limitations in spatially disentangling and
assigning distinct colors to multiple objects simultaneously. Similarly, in the Implicit Color As-
sociation task, models struggle to infer color relationships embedded in texture, context, or scene
semantics, with scores rarely exceeding 23%. Finally, the Numerical Color Understanding task
proves most challenging, with most models scoring under 10%. Interestingly, BLIP3o significantly
outperforms others here (28.31), suggesting its multimodal architecture may better encode or rea-
son about explicit numeric color representations (e.g., RGB/hex values), which are typically learned
implicitly in conventional T2I pipelines. These results collectively demonstrate that while modern
T2I models can approximate basic color naming, they remain fundamentally limited in their ability
to precisely control, associate, or numerically interpret color within complex visual compositions.

4.3 CATEGORY-LEVEL ANALYSIS

We evaluate how T2I models ground color names across seven semantic object categories as shown
in Figure 2. A clear pattern emerges: models consistently achieve higher accuracy on categories such
as Clothes and Accessories, Vehicles, and Furniture and Household, where color is often stylistic
or decorative rather than semantically bound to identity. In contrast, performance drops sharply for
Animals and Fruits and Vegetables, where color is biologically intrinsic (e.g., yellow banana) and
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Figure 5: (Left) Comparison b/w basic and intermediate colors. These models better understand
basic colors, while accuracy drops by 8–20% on intermediate colors. (Right) Comparison of color
modifiers. These models understand light color modifiers better, while -ish modifiers remain worst.

requires precise disentanglement of object identity from color attribute. This disparity reflects a
deep-seated training data biases. As revealed in Figure 3, all models exhibit strong chromatic bias
toward black, gray, and brown across nearly all categories, mirroring the dominant color distribution
observed in LAION-2B text prompts in Figure 4. Notably, neutral tones are overrepresented in train-
ing corpora, particularly in Vehicles and Furniture category, which explains models’ relative success
there. Conversely, vibrant or biologically specific colors such as reds, yellows are underrepresented
in both training prompts and generated outputs, especially for Animals, and Fruits and Vegetables.

This alignment between model output bias and dataset statistics suggests that current T2I systems
largely rely on statistical co-occurrence patterns rather than compositional reasoning about color
semantics. For instance, the persistent rendering of bananas as “yellow” stems not from learning
biological color norms, but from memorizing frequent associations in the training corpus — a phe-
nomenon consistent with prior findings on human color-concept associations (Rathore et al., 2019).
OmniGen2 and Stable Diffusion 3.5 show better cross-category generalization, while Janus Pro and
BLIP3o exhibit the weakest performance, particularly struggling with color control in biologically
constrained categories. This highlights that compositional color control remains challenging when
decoupling color from object identity.

4.4 BASIC AND INTERMEDIATE COLOR UNDERSTANDING

We evaluate T2I models on basic and intermediate color understanding. To achieve this, we catego-
rize the Red, Orange, Brown, Yellow, Olive, Yellow, Green, Blue, Purple, White, Gray, and Black as
basic colors —similar to conventional color naming approaches (Berlin & Kay, 1991) where colors
are described with a single word. We then group all the rest of Level 2 colors as intermediate colors.
We measure the accuracy of these categories using the color naming accuracy task and illustrate the
results in Figure 5(Left). These results indicate that all models perform well on basic colors, but
consistently struggle with intermediate color grounding, which proves to be a more difficult task.
Interestingly, there is not a large difference in the order of the models with both sets of colors, being
Sana, Stable Diffusion 3.5, and PixArt-Alpha the ones obtaining best results for both type of colors.

4.5 MODIFIER-BASED COMPOSITIONALITY

We also analyse the understanding of color modifiers (i.e., dark, light, -ish) in T2I models. These
modifiers are commonly used in natural languages to define different variants of the basic colors,
e.g. light blue, dark blue, and greenish blue. Therefore, we group the ISCC-NBS Level 3 colors
based on these three modifiers and study the color name accuracy task for each group. The results
in terms of accuracy are shown in Figure 5(Right) which demonstrate that these models perform
better with light modified colors, as compared to the dark modified colors. On the other hand, -ish
modified colors remain a hard task for all the models with the performance often below than 35%,
highlighting that these models struggle with gradient color semantics described in natural language.

5 CONCLUSIONS

We introduce GenColorBench, the first comprehensive benchmark for assessing color generation
accuracy of T2I models. Our analysis of state-of-the-art models and reveals significant limita-
tions in their ability to adhere to precise color specifications, highlighting the need for improved
color controllability. GenColorBench’s focus on both categorical color names and numerical values
(RGB, hex) fills a key void in existing evaluation frameworks, providing a robust tool for measuring
progress in this essential dimension. By establishing baseline metrics and identifying failure modes,
this work lays groundwork for advancing T2I models’ fidelity to color prompts.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Brent Berlin and Paul Kay. Basic color terms: Their universality and evolution. Univ of California
Press, 1991.

Muhammad Atif Butt, Kai Wang, Javier Vazquez-Corral, and Joost van de Weijer. Colorpeel: Color
prompt learning with diffusion models via color and shape disentanglement. In European Con-
ference on Computer Vision, 2024.

Jingjing Chang, Yixiao Fang, Peng Xing, Shuhan Wu, Wei Cheng, Rui Wang, Xianfang Zeng,
Gang Yu, and Hai-Bao Chen. Oneig-bench: Omni-dimensional nuanced evaluation for image
generation. arXiv preprint arXiv:2506.07977, 2025.

Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
Attention-based semantic guidance for text-to-image diffusion models, 2023.

Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
models-architecture, training and dataset. arXiv preprint arXiv:2505.09568, 2025a.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Yue Wu, Simian Luo, Enze Xie, Sayak Paul, Ping Luo, Hang Zhao, and Zhenguo
Li. Pixart-delta: Fast and controllable image generation with latent consistency models. arXiv
preprint arXiv:2401.05252, 2024.

Xiaokang Chen, Zhiyu Wu, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, and
Chong Ruan. Janus-pro: Unified multimodal understanding and generation with data and model
scaling. arXiv preprint arXiv:2501.17811, 2025b.

Jaemin Cho, Yushi Hu, Roopal Garg, Peter Anderson, Ranjay Krishna, Jason Baldridge, Mohit
Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in fine-
grained evaluation for text-image generation. arXiv preprint arXiv:2310.18235, 2023.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components esti-
mation. ICLR workshop, 2015.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. ICLR,
2017.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2021.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
for high-resolution image synthesis. In Forty-first international conference on machine learning,
2024.

Xingyu Fu, Muyu He, Yujie Lu, William Yang Wang, and Dan Roth. Commonsense-t2i chal-
lenge: Can text-to-image generation models understand commonsense? arXiv preprint
arXiv:2406.07546, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Songwei Ge, Taesung Park, Jun-Yan Zhu, and Jia-Bin Huang. Expressive text-to-image generation
with rich text. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 7545–7556, 2023a.

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li, Xintao Wang, and Ying Shan. Making
llama see and draw with seed tokenizer. arXiv preprint arXiv:2310.01218, 2023b.

Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework
for evaluating text-to-image alignment. Advances in Neural Information Processing Systems, 36:
52132–52152, 2023.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and
Baining Guo. Vector quantized diffusion model for text-to-image synthesis. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2022.

Shuhao Han, Haotian Fan, Jiachen Fu, Liang Li, Tao Li, Junhui Cui, Yunqiu Wang, Yang Tai,
Jingwei Sun, Chunle Guo, et al. Evalmuse-40k: A reliable and fine-grained benchmark with
comprehensive human annotations for text-to-image generation model evaluation. arXiv preprint
arXiv:2412.18150, 2024.

Amir Hertz, Kfir Aberman, and Daniel Cohen-Or. Delta denoising score. arXiv preprint
arXiv:2304.07090, 2023a.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. International Conference on Learn-
ing Representations, 2023b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
with llm for enhanced semantic alignment. arXiv preprint arXiv:2403.05135, 2024.

Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question an-
swering. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
20406–20417, 2023.

Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
An enhanced and comprehensive benchmark for compositional text-to-image generation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri, and
Michal Irani. Imagic: Text-based real image editing with diffusion models. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2023.

Kenneth L Kelly and Deane Brewster Judd. Color: universal language and dictionary of names,
volume 440. US Department of Commerce, National Bureau of Standards, 1976.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
customization of text-to-image diffusion. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2023.

Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

11

https://github.com/black-forest-labs/flux


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Yuxuan Luo, Yuhui Yuan, Junwen Chen, Haonan Cai, Ziyi Yue, Yuwei Yang, Fatima Zohra Daha,
Ji Li, and Zhouhui Lian. Mmmg: A massive, multidisciplinary, multi-tier generation benchmark
for text-to-image reasoning. arXiv preprint arXiv:2506.10963, 2025.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
SDEdit: Guided image synthesis and editing with stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=aBsCjcPu_tE.

Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. Null-text inversion
for editing real images using guided diffusion models. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2023.

Albert Henry Munsell. A Color Notation: a measured color system, based on the three qualities
Hue, Value and Chroma. DigiCat, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Yuwei Niu, Munan Ning, Mengren Zheng, Weiyang Jin, Bin Lin, Peng Jin, Jiaqi Liao, Chaoran
Feng, Kunpeng Ning, Bin Zhu, et al. Wise: A world knowledge-informed semantic evaluation
for text-to-image generation. arXiv preprint arXiv:2503.07265, 2025.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: improving latent diffusion models for high-resolution image
synthesis. arXiv preprint arXiv:2307.01952, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Ragini Rathore, Zachary Leggon, Laurent Lessard, and Karen B Schloss. Estimating color-concept
associations from image statistics. IEEE transactions on visualization and computer graphics, 26
(1):1226–1235, 2019.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, 06 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021. URL https://openreview.net/
forum?id=St1giarCHLP.

Stability AI. Stable Diffusion 3.5 Large (stabilityai/stable-diffusion-3.5-large). https://
huggingface.co/stabilityai/stable-diffusion-3.5-large, 2024. Model
released October 22, 2024 under Stability AI Community License.

12

https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=aBsCjcPu_tE
https://openreview.net/forum?id=St1giarCHLP
https://openreview.net/forum?id=St1giarCHLP
https://huggingface.co/stabilityai/stable-diffusion-3.5-large
https://huggingface.co/stabilityai/stable-diffusion-3.5-large


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Stability AI. Stable Diffusion 3 Medium Diffusers (stabilityai/stable-diffusion-
3-medium-diffusers). https://huggingface.co/stabilityai/
stable-diffusion-3-medium-diffusers, 2025. Released January 9, 2025 un-
der the Stability AI Non-Commercial Research Community License.

Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 14398–14409, 2024.

Zhiyu Tan, Xiaomeng Yang, Luozheng Qin, Mengping Yang, Cheng Zhang, and Hao Li. Evalalign:
Supervised fine-tuning multimodal llms with human-aligned data for evaluating text-to-image
models. arXiv preprint arXiv:2406.16562, 2024.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024a.

Qwen-VL Team. Qwen-vl: A strong multimodal language model, 2024b. https://
huggingface.co/Qwen/Qwen-VL.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

W3C. Css color module level 3, 2018. Accessed: 2025-07-31.

Christoph Witzel and Haden Dewis. Why bananas look yellow: The dominant hue of object
colours. Vision Research, 200:108078, 2022. ISSN 0042-6989. doi: https://doi.org/10.1016/
j.visres.2022.108078. URL https://www.sciencedirect.com/science/article/
pii/S0042698922000840.

Christoph Witzel and Karl R Gegenfurtner. Color perception: Objects, constancy, and categories.
Annual review of vision science, 4(1):475–499, 2018.

Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu,
Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified
multimodal understanding and generation. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 12966–12977, 2025a.

Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan
Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation.
arXiv preprint arXiv:2506.18871, 2025b.

Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with
linear diffusion transformer, 2024a. URL https://arxiv.org/abs/2410.10629.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. arXiv preprint arXiv:2408.12528, 2024b.

Ling Yang, Ye Tian, Bowen Li, Xinchen Zhang, Ke Shen, Yunhai Tong, and Mengdi Wang. Mmada:
Multimodal large diffusion language models. arXiv preprint arXiv:2505.15809, 2025.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv preprint arXiv:2206.10789, 2(3):5, 2022.

Xiangru Zhu, Penglei Sun, Chengyu Wang, Jingping Liu, Zhixu Li, Yanghua Xiao, and Jun Huang.
A contrastive compositional benchmark for text-to-image synthesis: A study with unified text-to-
image fidelity metrics. arXiv preprint arXiv:2312.02338, 2023.

13

https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers
https://huggingface.co/Qwen/Qwen-VL
https://huggingface.co/Qwen/Qwen-VL
https://www.sciencedirect.com/science/article/pii/S0042698922000840
https://www.sciencedirect.com/science/article/pii/S0042698922000840
https://arxiv.org/abs/2410.10629

	Introduction
	Related Work
	Color Evaluation Framework
	T2I Color Generation Tasks.
	Color Taxonomy
	Data Curation
	Evaluation Framework

	Benchmark
	Experiment Setup
	Overall Performance
	Category-Level Analysis
	Basic and Intermediate Color Understanding
	Modifier-based Compositionality

	Conclusions

