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ABSTRACT

Quantizing floating-point neural network to its fixed-point representation is cru-
cial for Learned Image Compression (LIC) because it ensures the decoding consis-
tency for interoperability and reduces space-time complexity for implementation.
Existing solutions often have to retrain the network for model quantization which
is time consuming and impractical. This work suggests the use of Post-Training
Quantization (PTQ) to directly process pretrained, off-the-shelf LIC models. We
theoretically prove that minimizing the mean squared error (MSE) in PTQ is sub-
optimal for compression task and thus develop a novel Rate-Distortion (R-D)
Optimized PTQ (RDO-PTQ) to best retain the compression performance. Such
RDO-PTQ just needs to compress few images (e.g., 10) to optimize the transfor-
mation of weight, bias, and activation of underlying LIC model from its native
32-bit floating-point (FP32) format to 8-bit fixed-point (INT8) precision for fixed-
point inference onwards. Experiments reveal outstanding efficiency of the pro-
posed method on different LICs, showing the closest coding performance to their
floating-point counterparts. And, our method is a lightweight and plug-and-play
approach without any need of model retraining which is attractive to practitioners.

1 INTRODUCTION

Compressed images are used vastly in networked applications for efficient information sharing,
which continuously drives the pursuit of better compression technologies for the past decades (Wal-
lace, 1992; Sullivan et al., 2012; Bross et al., 2021). Built upon the advances of deep neural networks
(DNNs), recent years have witnessed the explosive growth of image compression solutions (Ballé
et al., 2018; Minnen et al., 2018; Chen et al., 2021; Cheng et al., 2020; Hu et al., 2021; Lu et al.,
2022) with superior efficiency to well-known rules-based JPEG (Wallace, 1992), HEVC Intra (BPG)
(Sullivan et al., 2012), and even Versatile Video Coding Based Intra Profile (VVC Intra) (Bross et al.,
2021).

Nevertheless, existing learned image compression (LIC) approaches typically adopt the floating-
point format for data representation (e.g., weight, bias, activation), which not only consumes exces-
sive amount of space-time complexity but also brings up the platform inconsistency and decoding
failures (He et al., 2022). To tackle these for practical application, model quantization is usually
applied to generate fixed-point (or integer) LICs (Ballé et al., 2018; Hong et al., 2020; Sun et al.,
2021).

Popular Quantization-Aware Training (QAT) (Bhalgat et al., 2020; Le et al., 2022; Sun et al., 2021)
was mainly used in (Ballé et al., 2018; Hong et al., 2020; Sun et al., 2020; 2021) to transform
floating-point LIC to its fixed-point representation. Such methods requires model re-training with
the full access of labels which is expensive and impractical.

Recently, Post-Training Quantization (PTQ) (Nagel et al., 2020; 2021) offered a lightweight and
plug-and-play solution to directly quantize pretrained, off-the-shelf network models without requir-
ing model retraining. However, such PTQ scheme was mostly dedicated for high-level vision tasks
as studied in (Choukroun et al., 2019; Liu et al., 2021). This work therefore extends the use of PTQ
to image compression model quantization.
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Figure 1: Learned Image Compression (LIC). ga (gs)
is main encoder (decoder); AE/AD is arithmetic en-
coding/decoding using pŶ (Ŷ ). Either convolution or
self-attention is used to derive Ŷ of input X . Model
quantization Q is applied at every layer (convolutional
or self-attention) to transform weight w, bias b and ac-
tivation x in native FP32 to INT8 precision.

We theoretically prove that only minimiz-
ing the quantization error (e.g., MSE) in
PTQ for LIC model quantization as other
vision tasks (Choukroun et al., 2019; Liu
et al., 2021) is sub-optimal from the com-
pression perspective because of localized
non-monotonic relation between the quan-
tization error and rate-distortion perfor-
mance of the image compression task.
We thus propose the Rate-Distortion Op-
timized PTQ (RDO-PTQ) for LIC model
quantization.

Considering the optimization complexity,
the RDO-PTQ is executed from one net-
work layer1 to anther (e.g., layerwisely) to
process weight, bias and activation in ei-
ther convolutional or self-attention com-
putation to respectively determine their
proper ranges for quantization. In current
implementation, it just compresses a tiny
calibration image set (e.g., less than 10
images) to optimize relevant quantization
factors like range, offset, etc for a fixed-
point model.

Given that the distribution of both weight and activation varies across channels at each network
layer, the range is adapted channel-wisely besides the layer-wise adaptation (see Fig. 3); Besides the
range determination of the bias, a bias rescaling is applied to ensure the computation using INT8
data tensor strictly.

Contribution. 1) We suggest the use of PTQ to quantize LIC model for a lightweight, plug-and-
play solution by just compressing fewer image samples to derive the fixed-point model without any
model retraining; 2) Both rate and distortion metrics are optimized jointly at compression task in-
ference stage to determine proper ranges of weight, bias and activation for quantization in proposed
RDO-PTQ; 3) Our method is generalized to a variety of LIC models, demonstrating the closest
compression efficiency between native FP32 and corresponding quantized INT8 model.

2 RELATED WORK

Learned Image Compression (LIC). As shown in Fig. 1, popular LICs are mainly built upon the
Variational Auto-Encoder (VAE) architecture to find rate-distortion optimized compact representa-
tion of input image. In Ballé et al. (2018), on top of the GDN (Generalized Divisive Normalization)
based nonlinear transform, a hyper prior modeled by a factorized distribution was introduced to bet-
ter capture the distribution of latent features. Shortly, the use of joint hyper prior and autoregressive
neighbors for entropy context modeling was developed in Minnen et al. (2018), demonstrating better
efficiency than the BPG (e.g., a HEVC Intra implementation).

Later then, stacked convolution with simple ReLU was used in (Cheng et al., 2020; Chen et al.,
2021) to replace GDN and the attention mechanism was augmented for better information embed-
ding, which, for the first time, outperformed the VVC Intra. Recalling that the principle behind the
image coding is to find content-dependent models (e.g., transform, statistical distribution) for more
compact representation, apparently, solutions simply stacking convolutions are not capable of effi-
ciently characterizing the content dynamics because of the fixed receptive field and fixed network
parameters of a trained convolutional neural network (CNN). To enable the content-adaptive dy-
namic embedding, self-attention mechanism was extended in (Qian et al., 2021; Lu et al., 2022; Lu
& Ma, 2022). As extensively studied in (Lu et al., 2022; Lu & Ma, 2022), an integrated convolution

1For simplicity, we refer the “network layer” to as the “layer”.
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and self-attention could not only provide performance improvements to the VVC intra on various
datasets, but also reduces the space-time complexity significantly.

As shown subsequently, three popular open-resource LICs are used to exemplify the efficiency of
our RDO-PTQ, including the Minnen2018 (Minnen et al., 2018), Cheng2020 (Cheng et al., 2020)
and Lu2022 (Lu et al., 2022).

LIC Model Quantization. Although learning-based solutions remarkably improved the perfor-
mance for various tasks, their native floating-point representation incurred a serial problems for
practical enabling, including the excessive amount of space-time complexity consumption, nonde-
terministic inconsistency across heterogeneous platforms, etc. These issues are more severe for
image compression task because the guarantee of interoperability across a variety of devices is the
vital functionality of a LIC solution. As reported, a small numerical rounding-off error in floating-
point computation may lead to decoding failures or incorrect reconstructions (Ballé et al., 2018).

A pioneer exploration was made in Ballé et al. (2018) to train an integer LIC to resolve platform
inconsistency and decoding failures. Subsequently, the quantization of convolutional weights was
specifically treated with in Sun et al. (2020; 2021). Almost at the same time, Hong et al. (Hong et al.,
2020) suggested layer-wise range-adaptive quantization (RAQ) for both weights and bias, and linear
scaling for feature activation. Recently, Le et al. (2022) quantized the transformer-based learned
codec and realized the real-time decoding on a mobile device. Note that these methods require the
full access of labels for model retraining when performing the quantization, which is impractical
and expensive to some extent (Nagel et al., 2021).

Recently, PTQ attracts intensive attentions (Nagel et al., 2021) because it is a push-button approach
without model retraining, which is presumably applicable to any off-the-shelf, pretrained neural
networks. Unfortunately, a majority of PTQ studies were still devoted to high-level vision tasks as in
(Choukroun et al., 2019; Nagel et al., 2020; Liu et al., 2021), where, more importantly, they mainly
minimized quantization induced MSE (Mean Square Error). Given the advantages of PTQ, this
work extends it to the image compression task; Since image compression pursues the optimal rate-
distortion performance, a novel rate-distortion optimized PTQ is developed to fulfill the purpose.

3 QUANTIZATION FUNDAMENTAL

For an arbitrary floating-point value xfloat (e.g., weight, bias or activation of either a convolutional
or self-attention layer), it is quantized using:

xint = clip(⌊xfloat

sx
⌉+ zx,−2b−1 + 1, 2b−1 − 1), (1)

where ⌊·⌉ rounds the input to its nearest integer. zx is the offset and sx is the linear scaling factor.

Each xint is mapped to a fixed-point x̂ for inference (Hong et al., 2020) or simulating the effect of
integer quantization to avoid gradient vanishing (Dai et al., 2021) in training. Thus, the mapping is
often formulated as

x̂ = sx · xint − zx. (2)

Such mapping is also used in our RDO-PTQ for optimizing quantization factors by examining the
compression performance of a tiny set of images in task inference stage to derive the corresponding
fixed-point model.

As pointed out in Nagel et al. (2021), zx typically makes integer computation more complicated.
Therefore, practical accelerators usually apply the symmetric quantization assuming zx = 0. In this
way, we only need to define the scale factor sx and bit width precision bs. In general, bs can be
predefined, and sx is deduced using

sx = Γ(
rx

2b−1 − 1
;nr, b

s), (3)

where rx represent the dynamic range of x, nr is reserved number of decimal digits and Γ(·) is
defined below

Γ(s;nr, b
s) = clip(s · 2nr ,−2b

s−1, 2b
s−1 − 1)× 2−nr . (4)

In practice, these functions can be implemented using bit shift operation.
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4 RATE-DISTORTION OPTIMIZED PTQ

4.1 FROM QUANTIZATION ERROR TO R-D LOSS

To derive proper sx for model quantization as in Eq. (3), existing works mostly minimize the square
error between vectorized elements x in FP32 and quantized x̂ in INT8, e.g.,

sx = argmin
sx

∥x− x̂∥2. (5)

The use of Eq. (5) generally assumes the monotonic relation between quantization error induced dis-
tortion D (e.g., MSE) and compression efficiency measured by the R-D metric J = R+λD (Davis-
son, 1972). Apparently, such assumption does not hold because of inevitable rate contribution to
J .

Theoretical Justification. Assuming a trained compression task model J(x,w) with floating-point
activation x and weight w, its fixed-point model used for inference can be formulated as J(x +
∆x,w + ∆w). ∆w and ∆x are quantization noises for w and x respectively. To simplify the
deduction, the bias term is neglected since it can be absorbed into w by appending a unit term to x
as studied in Botev et al. (2017).

Then the model quantization induced performance loss of underlying task model is:
∆J = E [J(x+∆x,w +∆w)− J(x,w)]

≈ E

[([
∂J

∂x

∂J

∂w

]
+

1

2
[∆x ∆w]Hx,w

)[
∆x
∆w

]]
, (6)

where Hx,w is the Hessian matrix, and high-order terms are ignored for simple derivation. For a
converged model, its gradient is close to 0, e.g., [∂J∂x

∂J
∂w ] = 0, yielding

∆J ≈ 1

2
E

[[
∆x
∆w

]T
·Hx,w ·

[
∆x
∆w

]]
. (7)

Subsequently, Eq. (7) can be further expanded as:

∆J ≈ 1

2
E[

∂2J

∂x2
∆x2 +

2∂2J

∂x∂w
∆x∆w +

∂2J

∂w2
∆w2]. (8)

As seen, the R-D loss not only depends on the quantization error, e.g., ∆x2 and ∆w2, but also
is related to the second-order derivatives of J . Particularly, even having all positive second-order
derivatives, the different sign of ∆x and ∆w would lead to a negative cross term ∆w∆x, suggesting
that a larger absolute error of quantization may not lead to a larger R-D loss. Similar observation
was also discussed in Nagel et al. (2020).

As a toy example, suppose a symmetric Hessian matrix as

Hx,w =

[
1 0.5
0.5 1

]
. (9)

Then, the R-D loss can be rewritten as

∆J ≈ 1

2
E
[
∆x2 +∆x∆w +∆w2

]
. (10)

If we happen to have a case with a larger quantization error, e.g., [∆x,∆w] = [0.4,−0.4], and
the other scenario with a smaller quantization error [0.3, 0.3], the R-D loss is 0.08 and 0.135
respectively. As seen, larger quantization error gives smaller R-D loss.

Localized Non-monotonic Behavior. In the meantime, we visualize the absolute quantization error
of weight, e.g., ∆w with compression task loss measured by the ∆J , which further confirms the
theoretical justification aforementioned. As seen in Fig. 2, although over a wide range of ∆w,
it is monotonically related with the R-D loss ∆J in compression task; it presents localized non-
monotonic behavior where the minimization of quantization error does not lead to the minimum of
∆J , which, consequently, degrades the overall compression performance of underlying LIC model
if we pursue the minimization of quantization error for model quantization.

As a result, to best retain the identical compression efficiency of quantized LIC as its floating-point
counterpart, we propose to optimize the PTQ from the rate-distortion perspective for underlying
compression task.
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Figure 2: Compress Task Loss vs. Quanti-
zation Error. Localized non-monotonic be-
havior is presented where the minimization
of quantization error ∆w does not lead to the
minimal loss of rate-distortion metric (∆J).
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Figure 3: Exemplified weight and activation
distribution of two channels for a given layer.
Other layers exhibit similar distribution from
a channel to another.

4.2 RATE-DISTORTION OPTIMIZED SCALING

As for the compression task, the optimization target in PTQ is to minimize the R-D loss by consid-
ering the distortion D and bite rate R jointly (Davisson, 1972). For a typical VAE structure with
conditional context modeling, its R-D loss is

J = λ ·D +RŶ +RẐ = λ ·D(X, X̂) + E[− log2(pŶ (Ŷ |Ẑ))] + E[− log2(pẐ(Ẑ))], (11)

where R = RŶ +RẐ is the total bit rate consumed by the latent feature Ŷ and hyper prior Ẑ, and
D is the distortion between the original X and its reconstruction X̂ , which is typically computed
using MSE or MS-SSIM. Besides, pŶ and pẐ are the probability distribution of respective Ŷ and
Ẑ for entropy coding. We adapt Lagrange multiplier λ for various bit rates as they do in (Minnen
et al., 2018; Cheng et al., 2020; Lu et al., 2022).

For any pretrained floating-point LIC model J0, the examination of the proposed RDO-PTQ is
defined below to derive proper scaling factor for the quantization of activation, weight and bias, e.g.,

sx, sw, sb = argmin
sx,sw,sb

∥Ĵ − J0∥2 = argmin
sx,sw,sb

∥(R̂+ λ · D̂)− (R0 + λ ·D0)∥2. (12)

It is impractical to optimize all layers of a LIC model at once because the accumulation of quanti-
zation errors from layer to layer (e.g., forward and backprop) makes it extremely difficult for such a
great amount of parameters (e.g., weight, bias, activation) to converge fastly and reliably. We there-
fore suggest to apply the layer-wise quantization to progressively optimize the parameters. Usually,
parameters at former layer are fixed for the optimization of successive layers. As for the parameter
quantization at l-th layer, all parameters from the very first to (l − 1)-th layer are already quantized
and fixed for optimization; while floating-point parameters from (l+1)-th layer to the last layer are
kept without change. Thus, Eq. (12) is reformulated as:

slx, s
l
w, slb = argmin

slx,s
l
w,slb

∥Ĵ(x̂l, ŵl, b̂l)− J0(x
l,wl, bl)∥2, (13)

where x̂l = Λ(ŵl−1x̂l−1 + b̂l−1) with Λ(·) as a nonlinear activation function like ReLU. Besides,
inspired by AdaQuant (Hubara et al., 2020) , AdaRound (Nagel et al., 2020) and BRECQ (Li et al.,
2020), a continuous variable vl is added to the weight parameter for better rounding,

ŵl = Q(wl + vl), (14)

where Q(·) is the quantization function. Note that the same operation for the weight is applied to
the bias as well. Further details are provided in the supplementary material.
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4.3 DYNAMIC RANGE DETERMINATION

In Eq. (3), when the bit width precision is given, scaling factor, e.g., slw, slb or slx, is only related to
the dynamic range rl of corresponding data tensor, e.g., wl, bl, or xl. For the uniform quantization
used mostly, the derivation of scaling factor is equivalent to the determination of the dynamic range.
In general, weight, bias and activation assume the similar Gaussian distribution (Hong et al., 2020),
and their ranges are approximated below.

Weight. As shown in Fig. 3, weight distribution not only varies from one layer to another of a given
LIC model, but also from one channel to another at a given layer. This suggests us to model the
range of weight tensor using

rl,kw = N l,k
w ·max(|wl,k|), (15)

with max(|wl,k|) directly computed from k-th channel weights at l-th layer. As seen, our method
mainly attempts to determine the proper N l,k

w channel-wisely for weight quantization. Although Sun
et al. (Sun et al., 2021) did the similar channel-wise grouping to clip weights for fixed-point pro-
cessing, model retraining was required for finetuning, which largely differs from our PTQ solution.

Activation. Feature activations are closely related to the original image input. However, Hong et
al. (Hong et al., 2020) enforced a fixed dynamic range per layer, e.g., [µ− 3σ, µ+3σ] to normalize
the activation, which is apparently sub-optimal without thoroughly considering the dynamics of
input content. After carefully examining the activation distribution, the channel-wise variations in
activation tensor are also considered, leading to

rl,kx = N l,k
x ·max(|xl,k|). (16)

Bias. First, the range of bias is approximated layerwisely using

rlb = N l
b ·max(|bl|), (17)

to determine the scaling factor slb using Eq. (3).

Typically, bias term is augmented with the product of weight and activation to output feature activa-
tion of current l-th layer as the input of next (l+1)-th layer. Even though we enforce INT8 precision
for all data tensor, in practice, a 32-bit accumulator is often used to host intermediate data x̂l

imd to
avoid potentially data overflow. This suggests:

x̂l
imd = ŵl · x̂l + b̂l. (18)

Here, we wish to simply scale 32-bit x̂l
imd to have 8-bit x̂l+1 to input the (l + 1)-th layer.

By combining Eq. (2), as long as we have

b̃lint = ⌊ slb
slw · slx

· blint⌉. (19)

we then arrive at

x̂l
imd = slw ·wl

int · slx · xl
int + slb · blint = slw · slx · (wl

int · xl
int + b̃lint), (20)

which shows that we can simply scale 32-bit x̂l
imd to derive 8-bit input xl+1

int , i.e., xl+1
int =

x̂l
imd

sl+1
x

.

Often time, slb
slw·slx

≫ 1 in Eq. (19) which would not affect the task performance due to rounding
operation. We call the operation defined in Eq. (19) bias rescaling which is used to enforce strict
INT8 computation layer by layer.

On the contrary, many existing works either simply assume the INT32 precision, or brutally enforce
zeros, for bias. Such inappropriate processing of bias may lead to catastrophic results. For example,
having the bias in INT32 precision may cause data overflow of the INT32 accumulator; while setting
bias as zero would degrade the model performance significantly. More details can be found in
supplementary materials.
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Algorithm 1 RDO-PTQ for Learned Image Compression
Input: Floating-point model; Calibration image set
Output: The quantized model; Optimized scaling factors

1: for l in {L}Ll=1 do
2: repeat
3: repeat
4: Initial sl,kw , slb
5: Quantize l-th layer and forward propagation
6: Update N l,k

w , N l
b by SGD (Hinton et al., 2012; Kingma & Ba, 2014)

7: until sl,kw , slb = argmin∥(R̂+ λ · D̂)− J0∥2
8: repeat
9: Initial sl,kx

10: Forward propagation
11: Update N l,k

x by SGD
12: until sl,kx = argmin∥(R̂+ λ · D̂)− J0∥2
13: until Convergence or excess limitation
14: end for

4.4 SUMMARY

The overall RDO-PTQ process is summarized in Algorithm 1. We optimize the model from one
network layer to another where dynamic range and scale factor for weight and bias are processed
first, and then the activation. When the rate-distortion loss reaches at its minimum, the optimization
for l-th layer is completed and all settings are fixed for the optimization of (l + 1)-th layer. Such
process continues until the last layer of the model. Note that except for the bias that we apply the
layer-wise processing with rescaling, we perform channel-wise quantization for both weight and
activation parameters.

5 EXPERIMENTS

Extensive experiments are conducted to report the efficiency of the proposed RDO-PTQ for LIC
model quantization.

5.1 COMPARISON SETUP

Pretrained FP32 LICs. We choose three popular LIC models in their native FP32 format for evalu-
ation, namely Minnen2018 (Minnen et al., 2018), Cheng2020 (Cheng et al., 2020) and Lu2022 (Lu
et al., 2022). For instance, Minnen2018 is a seminal work first introducing the joint exploration
of hyperprior and autoregressive neighbors for entropy coding of latent features; and Cheng2020
is one of several works which first proposed to apply attention mechanism to better aggregate in-
formation. Both Minnen2018 and Cheng2020 rely on stacked convolutions while Lu2022 is one
of several earlier attempts that uses both convolution and self-attention. Subsequent results report
the generalization of our RDO-PTQ to these representative models regardless of its key unit (e.g.,
convolution or self-attention, ReLU or GDN, etc), which is attractive to practical applications.

Pretrained models are directly obtained from their open resource websites2 3, respectively. Models
used in comparison are trained using MSE loss for distortion measurement in R-D metric. Results
for MS-SSIM loss trained models are provided in supplemental material. For each model, six bitrates
are experimented by setting six different λs, e.g., {0.0018, 0.0035, 0.0067, 0.013, 0.025, 0.0483}
directly without any finetuning.

Alternative PTQs. Given that Lu2022 currently demonstrates the leading compression efficiency,
we mainly use it as the baseline to implement other model quantization schemes. Unfortunately, to
the best of our knowledge, we are not aware of any open-resource PTQ method specifically for LIC
models. For fair comparison, we implement the Range-Adaptive Quantization (RAQ) (Hong et al.,

2https://github.com/InterDigitalInc/CompressAI
3https://github.com/lumingzzz/TinyLIC
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Table 1: BD-rate loss over floating-point models
Model Lu2022 Cheng2020 Minnen2018

Method Ours FQ-ViT RAQ Ours RAQ Ours RAQ

Kodak 3.70% 7.06% 29.40% 4.88% 27.84% 5.84% 30.41%

Tecnick 6.21% 12.13% 31.04% 6.86% 29.95% 8.23% 31.55%

2020) originally requiring model retraining as a PTQ approach; On the other hand, we also include
the FQ-ViT (Lin et al., 2022) for comparative study. It is a PTQ method originally designed for
image classification and objective detection using Transformer backbone. Here we extend its main
idea to support the compression task. Besides, we compared MSE optimization and two methods
(Sun et al., 2020; 2021) with retraining in the ablation experiment, and the more details are provided
in the supplementary material.

Testing Datasets. Two popular datasets that contain diverse images are used for evaluation, i.e., the
Kodak dataset with the image size of 768×512, Tecnick dataset with the image size of 1200×1200.
The Peak Signal-to-Noise Ratio (PSNR) measures the image quality and bits per pixel (bpp) reports
the consumption of compressed bitrate.

5.2 EVALUATION

Quantitative Performance. We plot R-D curves in Fig. 8 of supplementary material for various
floating-point LIC models and their quantized INT8 counterparts, and further report the BD-rate
performance (Bjontegaard, 2001) over 32-bit floating-point models for different PTQ approaches in
Table 1. In the meantime, compression efficiency using both VVC Intra (VTM) and HEVC Intra
(BPG) are also exemplified to help understand the relative performance gaps between quantized LIC
and traditional image coder.

As seen, quantized INT8 LICs using our RDO-PTQ provide the least BD-rate loss to corresponding
floating-point LIC models, greatly outperforming other PTQ alternatives (see averaged results in
Table 1 and curves in Fig. 8). More importantly, having the anchor of Lu2022 [FP32], Lu2022
[INT8] using our RDO-PTQ provides similar performance as the VVC Intra on Kodak dataset, and
largely outperforms it on Tecnick dataset.

As visualized in Fig. 8, the BD-rate loss enlarges at higher bitrates for the proposed RDO-PTQ
on various floating-point LICs. One potential reason is the increase of channels for high bitrate
LIC models (e.g., from 192 to 320). Note that we optimize the PTQ channel-wisely, accumulated
quantization error is typical larger for the model with more channels. Such problem can be possibly
resolved by optimizing the PTQ for all layers at once which however may need excessive amount of
computations. This is an interesting topic for further study.

We notice that Sun et al. (Sun et al., 2022) also introduced a PTQ method to quantize LICs recently.
They demonstrated that the influence of quantization error to the final reconstruction was different
across channels. As a result, they manually categorized channels whose quantization may lead
to larger reconstruction error into different groups. Although they included the reconstruction error
instead of the quantization error into the discussion, they did not connect reconstruction performance
with the weight, bias, and activation following the R-D optimization means, which is very different
from our proposed RDO-PTQ. Unfortunately, we do not find any publicly accessible material for us
to perform the comprehensive comparison.

5.3 ABLATION STUDIES

Dynamic Range. Previous methods usually tend to clip large parameter values to control the dy-
namic range, while our proposed RDO-PTQ, by contrast, optimizes the dynamics of tensor for
better R-D performance. Without any publicly accessible resources, we manually reproduced the
two SOTA methods (Sun et al., 2020; 2021) for comparison. More details of the experiment can be
found in the supplementary materials. Fig.4 shows the result of weight only quantization. Fig. 5
shows the result of quantizing weight and activation.
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Figure 4: Weight only quantization.
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Figure 5: Weight and activation quantization.
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Noted that Sun et al. (2020; 2021) only quantize weights in their work, as a result, we add the
quantization of activations channel-wisely for fair comparison. The BD-rate losses over Lu2022
are 4.43% and 6.78% respectively which are higher than ours. Besides, the results illustrate the
sub-optimality of MSE optimization.

Bias Rescaling. Taking INT32 bias without rescaling as the reference, we test the effect of bias
rescaling on Lu2022. The common Min-Max quantization is adopted without quantizing activation,
which does not require the calibration set and does not introduce quantization error of activation,
which generally simplifies the problem for discussion. We test performance on Kodak dataset. As
shown in Fig. 6, bias rescaling for fully 8-bit processing has no negative impact on performance.

The Size of Calibration Set. We randomly select images from ImageNet to formulate the calibra-
tion set for quantization factor determination in our RDO-PTQ. As shown in Fig. 7, when the size
of calibration set increases to 10, there is basically no loss to the R-D performance compared with
the floating point model. Therefore, we adopt 10 images for calibration in this work.

6 CONCLUSION

This paper studied the PTQ to directly quantize off-the-shelf, pretrained floating-point image com-
pression models for their fixed-point counterparts. To retain the compression efficiency as the native
floating-point LICs, we suggested the R-D optimized PTQ which was first justified theoretically and
then proved experimentally. In RDO-PTQ, we determined the proper ranges of weight and activation
channel-wisely from one layer to another, and layer-wise ranges of bias for subsequent rescaling,
to which a tiny set of images (e.g., about 10) were sufficient to calibrate these model quantization
related factors. Results revealed the superior efficiency of the proposed method, presenting large
performance improvements to existing approaches. More importantly, our method did not require
any model retraining, and offered a push-bottom solution for all existing LICs. An interesting topic
for further study is to reduce the quantization loss at high bitrates.
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