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ABSTRACT

Safety mechanisms for diffusion and flow models have recently been developed
along two distinct paths. In robot planning, control barrier functions are employed
to guide generative trajectories away from obstacles at every denoising step by
explicitly imposing geometric constraints. In parallel, recent data-driven, negative
guidance approaches have been shown to suppress harmful content and promote
diversity in generated samples. However, they rely on heuristics without clearly
stating when safety guidance is actually necessary. In this paper, we first introduce
a unified probabilistic framework using a Maximum Mean Discrepancy (MMD)
potential for image generation tasks that recasts both Shielded Diffusion (Kirchhof
et al., 2025) and Safe Denoiser (Kim et al., 2025b) as instances of our energy-
based negative guidance against unsafe data samples. Furthermore, we leverage
control-barrier functions analysis to justify the existence of a critical time window
in which negative guidance must be strong; outside of this window, the guidance
should decay to zero to ensure safe and high-quality generation. We evaluate our
unified framework on several realistic safe generation scenarios, confirming that
negative guidance should be applied in the early stages of the denoising process
for successful safe generation.

Warning: This paper contains disturbing content, including censored images of nudity and sexually
explicit text prompts, presented for research purposes only.

1 INTRODUCTION

Diffusion and flow models are no longer just research tools — they are now entering high-stakes
domains, such as autonomy, medicine, and the creative industries. As generative models transition
from experimental settings to real-world deployment, ensuring safety has become an urgent objec-
tive. In robot planning, unsafe generations can cause physical harm, while in image generation,
unsafe outputs can propagate misinformation, bias, or privacy violations. Developing principled
methods for safe generation in diffusion and flow models is therefore critical for their trustworthy
adoption across domains.

Early safety-aware robot planning uses Control Barrier Functions (CBFs), and formulates either the
gradient of CBFs or a Quadratic Program (QP) at each step to project the generative step onto the
safe space. These methods, while effective in 2D/3D planning, are not derived from a probabilistic
view of generation and thus do not account for the generation trajectories in diffusion and flow
matching, in which safety is a semantic property of distributions. Recently, to resolve these issues,
Xiao et al. (2025) embedded finite-time diffusion invariance, i.e., a form of specification consisting
of safety constraints, into the denoising diffusion procedure. However, they enforce guidance at all
denoising (or flow) time steps, without analyzing when guidance is truly necessary.

Recent training-free image generation approaches propose directly applying negative guidance to
the generative dynamics. For instance, Shielded Diffusion (SPELL) (Kirchhof et al., 2025) aug-
ments the reverse stochastic differential equations (SDEs) or ordinary differential equations (ODEs)
with sparse and radial repulsive forces that activate when the expected clean sample approaches a
protected set. As another example, Safe Denoiser (Kim et al., 2025b) derives a principled denoiser
decomposition into safe and unsafe components, resulting in a weighted, kernel-based repulsive field
that repels unsafe datasets. This paper empirically demonstrates that negative guidance is initially
strong and gradually fades over time. However, neither line provides a principled characterization
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(a) Adversarial nudity prompts

(b) Memorization

Figure 1: (a) By incorporating SAFREE Yoon et al. (2024) and SLD Schramowski et al. (2023), our
method avoids generating inappropriate images. (b) On artificially memorized SDv2.1 (Somepalli
et al., 2023), it mitigates memorization, with early-stopped negative guidance preserving quality,
enhancing diversity, and revealing a critical time window. All images are sampled at the top 5%
most similar to the Imagenette training set.

of the critical window, in which negative guidance should be strong, and outside of the window, the
guidance should be weak or absent. In this paper, we propose an energy-based negative guidance
framework, where we describe a negative guidance in terms of the gradient of a potential that pe-
nalizes proximity to an unsafe distribution (or set) using the Maximum Mean Discrepancy (MMD)
potential, given in equation 5. Interestingly, the gradient of the MMD potential yields a repulsive
vector field, which allows us to derive both the Safe Denoiser (characterized by weighted kernel re-
pulsion) and Shielded Diffusion (characterized by radial repulsion after radius-bandwidth matching),
providing a unified framework for negative guidance. Furthermore, we apply the control-barrier the-
orem to our unified framework to justify why negative guidance should be strong at the beginning
of the denoising process and fade out after a certain point in time, which we refer to as the critical
window. Our method is called Safety-Guided Flow (SGF) and provides the main contributions
summarized below:

• An energy-based formulation of negative guidance using the Maximum Mean Discrepancy
(MMD) potential.

• Propositions showing the equivalence between the gradient of the kernel MMD potential
and the repulsive fields of Shielded Diffusion and Safe Denoiser (radius–bandwidth match-
ing for Shielded Diffusion; and weighted-kernel form for Safe Denoiser) under mild con-
ditions.

• Application of the control-barrier function theorem to justify the time-varying strength of
negative guidance relative to the critical window in diffusion/flow time, during which guid-
ance must be strong, and thereafter a decaying schedule is necessary.

2 RELATED WORKS

Safety constrained robot planning. Many papers guarantee safety to diffusion/flow-matching
planners by embedding constraints via CBFs or related invariance tools (Nguyen & Sreenath, 2016;
Glotfelter et al., 2017). SAFEDIFFUSER enforces finite-time invariance constraints with respect to
generated policies to keep trajectories within a safe set, providing theoretical guarantees for planning
tasks (Xiao et al., 2025). SAFE FLOW MATCHING introduces flow-matching barrier functions,
inspired by CBFs, enabling training-free, real-time safety enforcement for trajectories generated by
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flow matching (Dai et al., 2025). UNICONFLOW unifies equality and inequality constraints through
a prescribed-time zeroing function and QP-based guidance during inference (Yang et al., 2025).
These methods work well for low-dimensional robot states with engineered unsafe regions, but they
lack a probabilistic view of the data and enforce guidance without considering its time-criticality.

Training-free negative guidance in image diffusion. SHIELDED DIFFUSION (SPELL) adds
sparse repellency to the reverse dynamics: when the predicted clean sample enters a radius-r neigh-
bourhood of a protected (unsafe) set, a ReLU-weighted radial push is added to the score, and other-
wise no correction is applied (Kirchhof et al., 2025). In terms of quality–diversity trade-offs, SPELL
shows favourable Pareto fronts when r is tuned and guidance is interval-limited, yet strong always-
on potentials (“particle guidance”) can substantially degrade precision/density and worsen FID. The
choice of radius, overcompensation, and—crucially—the time window over which repellency should
act remain heuristic. SAFE DENOISER explicitly subtracts an “unsafe” component from the data de-
noiser, yielding a weighted-kernel repellency away from an unsafe set and a theoretically motivated
penalty weight β∗(xt) (Kim et al., 2025b). The penalty weight is only activated in early denoising
steps, t ∈ [0.78, 1.0], motivated by the observation that early denoising sets the coarse structure, and
later steps refine the details. Their goal is to prevent globally harmful content rather than sharpen
details. While both SPELL and Safe Denoiser are training-free and practical, when negative guid-
ance should be strongest is left to empirical schedules, without a formal reach–avoid analysis in the
denoising process like in our work.

3 BACKGROUND

3.1 DIFFUSION MODELS AND FLOW MATCHING

Diffusion models and flow matching represent two related approaches to generative modelling,
both mapping a simple noise distribution into a complex data distribution. A diffusion model de-
fines a forward noising process: qt(xt|x0) = N (xt;αtx0, σ

2
t I), where x0 ∼ pdata(x0). Vari-

ants differ in the choice of coefficients (αt, σt) and the training target such as noise-prediction
ϵθ(xt, t) in (Ho et al., 2020), score-prediction∇xt log pt(xt) (Song et al., 2021), and data-prediction
E[x0|xt] (Karras et al., 2022). Sampling is performed via the ordinary differential equation (ODE):
dx
dt = f(x, t) − g2(t)∇x log pt(x), where each model determines drift f(x, t) and diffusion scale
g2(t). Flow matching generalizes this by directly learning a velocity field vθ(xt, t) that defines the
transport from noise to data in a single, deterministic trajectory, avoiding long sampling chains:

ẋt = fθ(xt, t), x1 ∼ N (0, I). (1)

Since directly minimizing vθ(xt, t) is intractable, training uses a conditional flow loss under an
optimal-transport, linear, or Gaussian path (Lipman et al., 2022). A common choice is the Gaussian
flow matching: xt = (1 − t)x0 + tϵ, where the noise is Gaussian, reducing to diffusion with
αt = 1− t and σt = t.

For sampling, both approaches discretize the ODE using Euler steps. For diffusion models, the
sampling follows (Gao et al., 2024):

xs = αsE[x0|xt] +
σs

σt
(xt − αtE[x0|xt]), (2)

for a time step s < t. The sampling in Gaussian flow matching follows (Gao et al., 2024) for s < t:
xs = xt + (s − t)vθ(xt, t). What follows describes two recent negative guidance methods, which
modify the data-prediction term given in Equation 2 during sampling.

Notation. We denote the model’s predicted clean sample by zt ≡ E[x0|xt]. We denote an
unsafe dataset that contains N number of samples that are in the same space as x (raw or fea-
ture space as appropriate) by D− = {yi}Ni=1, and the radial basis function (RBF) kernel by
kσ(x,y) = exp(−∥x − y∥2/(2σ2)), where the bandwidth is σ > 0. From an algorithmic im-
plementation standpoint, we adopt a unified diffusion-style time index with source at t = 1 and
target at t = 0 for both diffusion and flow-matching models. For the analytic control-barrier argu-
ment in Subsection 4.4, however, we introduce a separate forward time variable s ∈ [0, 1] that is
used only for theoretical clarity.
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3.2 SHIELDED DIFFUSION (SPELL): SPARSE RADIAL REPELLENCY

Shielded Diffusion (Kirchhof et al., 2025) augments the sampling process when the expected data-
prediction E[x0|xt] falls within a shield, where shielded areas contain negative datapoints yj’s (to
avoid) in D−. In particular, Shielded Diffusion employs a radial, thresholded repulsive force away
from protected (negative) samples using:

Frad(xt;yj) = α
(
r − ∥zt − yj∥

)
+

zt − yj

∥zt − yj∥
, (3)

where zt = E[x0|xt], r is a shield radius, and α a strength parameter. The total guidance sums
Equation 3 over j and is sparse—it activates only when ∥zt − yj∥ < r. Empirically, SPELL’s
interventions are strongest early in reverse time and tend to “finish” before the end of generation,
hinting at the existence of a critical time window.

3.3 SAFE DENOISER: DECOMPOSING THE DENOISER INTO SAFE AND UNSAFE PARTS

Safe Denoiser partitions the data distribution into safe/unsafe components, defining the correspond-
ing conditional expectations (denoisers). Let Edata[x|xt] denote the model’s data denoiser. Using
indicator functions, 1safe(x), taking the value of 1 if x is safe and 0 if not: similarly, 1unsafe(x) taking
the value of 1 if x is unsafe and 0 if not. These indicator functions are the partition of the unity,
resulting in 1 = 1safe(x) + 1unsafe(x) for all x ∈ supp(pdata). Then, the following relation holds:
Theorem 1 (Theorem 3.2 in (Kim et al., 2025b). Safe vs. data/unsafe denoisers). There exists a
nonnegative weight β∗(xt)—monotone in the posterior likelihood that xt originates from the unsafe
set—such that

Esafe[x|xt] = Edata[x|xt] + β∗(xt)
(
Edata[x | xt]− Eunsafe[x | xt]

)
. (4)

Intuitively, equation 4 subtracts an “unsafe” component from the data denoiser, with β∗ adapting
to how unsafe the current state appears. In practice, Safe Denoiser uses an empirical estimator to
approximate Eunsafe[x|xt] ≈

∑
yi∈D− qt(xt|yi)yi, where the forward corruption density qt(xt|yi)

is Gaussian. In image generation, however, Safe Denoiser heuristically applies the negative guidance
only on a early segment of the DDPM index (e.g., indices 780 :1000 out of 1000), equivalently, the
reverse-time interval t ∈ [0.78, 1], to target global semantics. A time-varying threshold βt can be
used to deactivate guidance once the state is deemed sufficiently far from D−.

4 METHOD

The methods above (Shielded Diffusion and Safe Denoiser) modify the sampling trajectory based
on the expected data prediction Edata[x | xt]. We aim to modify the vector field in flow matching in
a similar manner to achieve the same effect, moving our generated samples away from the negative
data samples. What quantity makes sense to use to alter the vector field accurately?

4.1 OUR METHOD: SAFETY-GUIDED FLOW (SGF)

A popular family of distance measures in machine learning is integral probability metrics (IPMs),
defined by D(P,Q) = supf∈F

∣∣∫
M

fdP −
∫
M

fdQ
∣∣, where F is a class of real-valued bounded

measurable functions on M . If F = {f : ∥f∥H ≤ 1} (a unit ball in the reproducing kernel Hilbert
spaceH with a positive-definite kernel k), D(P,Q) yields the maximum mean discrepancy (MMD):
MMD(P,Q) = supf∈F

∣∣∫
M

fdP −
∫
M

fdQ
∣∣. In this case, finding a supremum is analytically

tractable, and the solution is the difference in the kernel mean embeddings of each probability mea-
sure: MMD(P,Q) = ∥Ex∼P [k(x, ·)] − Ey∼Q[k(y, ·)]∥H. For a characteristic kernel like the RBF
kernel, the squared MMD forms a metric: MMD2 = 0, if and only if P = Q (Sriperumbudur et al.,
2011). Several MMD estimators exist in closed form with fast convergence, which can be computed
by pairwise evaluations of k using points drawn from P and Q (Gretton et al., 2012).

In this work, we use MMD as a potential function to determine the amount of force required to
move away from the negative samples, depending on the proximity between the current sample’s
distribution (represented as a Dirac delta function centred at the current sample) and the distribution
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Neg. Dataset

t= 1

t= 0

(a)

fθ(x)

∇xE(x)

(b) (c) (d)

Figure 2: Motivation: 2D flow-matching toy example. (a) A pretrained flow with “negative” data
points highlighted in orange. (b) Learned velocity field fθ(x) together with the negative-guidance
direction ∇xE(x). This panel depicts samples at t = 0.8 (c) Samples generated with full nega-
tive guidance; squared Wasserstein distance to the target distribution (excluding negative regions)
W 2 = 1.009. (d) Samples generated with early-stop negative guidance; squared Wasserstein dis-
tance W 2 = 0.937. Applying full negative guidance either leaves mass near the unsafe set or distorts
nearby modes. In contrast, early stopping of the guidance reduces the probability of placing particles
near the unsafe region and produces samples that better match the target distribution.

of negative samples. First, we define the potential function as the (biased) squared MMD estimator
between a sample at time t denoted by {xt} and the negation set denoted byD− with an RBF kernel
with a length parameter σ by:

E(xt) ≡ M̂MD
2

kσ

(
{xt},D−), (5)

where M̂MD
2

kσ
(xt,D−) = k(xt,xt) +

1
N2

∑
i,j k(yi,yj) − 2

N

∑
i k(xt,yi). Then, we modify

equation 1 as
ẋt = fθ(xt, t) + λ(t)∇xE(xt), (6)

where λ(t) ≥ 0 is a guidance schedule. Since E increases as xt moves away from D− in kernel
feature space, the term +λ(t)∇E(xt) enforces a repulsion from unsafe data samples, with gradients:

∇xt
M̂MD

2

kσ
(xt,D−) = 2

σ2Z(xt)
[
xt −

N∑
i=1

wi(xt)yi

]
, (7)

where Z(xt) = 1
N

∑N
i=1 k(xt,yi) and wi(xt) = k(xt,yi)

N Z(xt)
. To understand how equation 7 plays

a role as a repulsive force, notice that each weighting term wi(xt) is proportional to k(xt,yi),
where an RBF kernel k(xt,yi) is large if the two input arguments are similar and small if they are
different, which drives xt away from its neighbours yi that have large k(xt,yi). See Figure 2 that
illustrates how the repulsive force induced by the gradient of MMD successfully avoids generating
negative samples. Similar repulsive forces based on the kernel-based distance were used in Stein
variational gradient descent (Liu & Wang, 2016; Liu, 2017), in which case the kernel distance
helps avoid the posterior samples from collapsing into modes of the posterior distribution. Our
algorithm is provided in Appendix. In the following, we describe how our choice of MMD as the
potential function added to the flow matching framework recasts both Safe Denoiser and Shielded
Diffusion as instances of potential-based negative guidance, thus establishing our proposal as a
unifying probabilistic framework for negative guidance.

4.2 RECOVERING SAFE DENOISER

Proposition 1 (Safe Denoiser as MMD-gradient guidance). For an RBF kernel kσ , the control
field ut(x) = λ(t)∇xMMD2

k(x,D−) equals, up to a positive scalar multiplication, the weighted
repellency field implemented by Safe Denoiser with x replaced by zt and a static bandwidth.

Sketch. The dataset self-terms are constants; the remaining term yields Equation 7, a convex com-
bination of differences x− yi with kernel weights. Evaluating the kernel at zt (predicted x0) with a
fixed σKDE recovers the implemented Safe Denoiser repellency up to a scale. The detailed proof is
illustrated in Subsection B.1.
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4.3 RECOVERING SHIELDED DIFFUSION

Shielded Diffusion (SPELL) uses the radial force equation 3, whereas our field uses the Gaussian
contribution of a single y to +∇xE:

FG(d;σ) = λ
2∥d∥
σ2

exp
(
− ∥d∥

2

2σ2

) d

∥d∥
, d = x− y.

The next result aligns their magnitudes at a prescribed distance, showing SPELL as a radius-
thresholded instance of MMD-gradient guidance.
Proposition 2 (Radius–bandwidth matching). Fix α, λ, r > 0 and let d = x−y. For any d0 ∈ (0, r)
there exists σ > 0 such that ∥Frad(d)∥ = ∥FG(d;σ)∥ at ∥d∥ = d0; explicitly,

(r − d0)σ
2 exp

( d20
2σ2

)
=

2λ

α
· 1
d0

.

For α = λ = 1, this yields σ =
d0

2W0

( (r−d0)d0

4

) , where W0 is the principal branch of the Lambert

W function.

The detailed proof is provided in Subsection C.1.

4.4 CRITICAL WINDOWS VIA CONTROL-BARRIER FUNCTIONS ANALYSIS

We now turn our attention to providing mathematical evidence for why it makes sense to impose neg-
ative guidance in the initial denoising stage, based on control-barrier functions (Nguyen & Sreenath,
2016; Glotfelter et al., 2017; Xiao et al., 2025). For simplicity, we assume that the integration of
velocity functions follow the forward time convention. We denote f̃ and β(s) for mathematical
evidence, apart from the notions fθ, λ(s) in earlier subsections.

Forward-time dynamics In this subsection, we work in forward time s ∈ [0, 1]:

dx

ds
= f̃(s, x) + β(s)∇xE(x), x0 ∼ N (0, I). (8)

We assume that there is a C1 control-barrier function h : Rd → R giving the safe set S = {h ≥ 0}
and the unsafe set U = {h < 0}. Additionally, we assume below that near the boundary between
the safe and unsafe set, called the boundary layer, the guidance of∇E is sufficiently strong, pulling
things away from the unsafe set, while at the same time the base drift f̃ has a sufficiently small
effect; combined, the resulting flow in Equation 8 effectively moves away from the unsafe set.
Assumption 1 (Boundary layer and alignment (forward time)). There exist δ > 0, measurable
L : [0, 1]→ R+ and constants µ > 0 ∈ (0, 1] such that for all x with |h(x)| ≤ δ and all s ∈ [0, 1]:

a. (Alignment) ∇h(x) · ∇E(x) ≥ µ.

b. (Bounds on base drift) |∇h(x)·f̃(s, x)| ≤ L(s) |h(x)|.

In our method, E was defined in such a way that ∇E forces away from the unsafe region, thus the
alignment assumption in the boudnary layer is natural. Also, the second assumption says the base
drift f̃ in the boundary layer has small effect on moving into or away from the unsafe region. This is
a strong assumption, but, it is still reasonable in the generative model: As the data is generated from
a complete noise (e.g. Gaussian), the fact that the denoising flow of f̃ reached the unsafe region
would mean that the data at that stage is much less noisy, meaning it is at a near final time. Near the
final time, it is reasonable to expect the strengh of denoiser f̃ is small.

Weighted control in a forward window For a function L ≥ 0 and a deadline sc ∈ (0, 1], define
the decreasing weight

w̄L(u) := exp
(∫ sc

u

L(τ) dτ
)
, u ∈ [0, sc],

6
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Table 1: Performance comparison on various datasets in safe generation against nudity prompts.

Method Fine
Tuning

Negative
Prompt

Negative
Guidance

Ring-A-Bell UnlearnDiff MMA-Diffusion COCO

ASR ↓ TR ↓ ASR ↓ TR ↓ ASR ↓ TR ↓ FID ↓ CLIP ↑
SD-v1.4 - - - 0.797 0.809 0.809 0.845 0.962 0.956 25.04 31.38
ESD ✓ ✗ ✗ 0.456 0.506 0.422 0.426 0.628 0.640 27.38 30.59
RECE ✓ ✗ ✗ 0.177 0.212 0.284 0.292 0.651 0.664 33.94 30.29

SLD ✗ ✓ ✗ 0.481 0.573 0.629 0.586 0.881 0.882 36.47 29.28
SLD + SafeDenoiser ✗ ✓ ✓ 0.354 0.429 0.526 0.485 0.481 0.549 36.59 29.10
SLD + Ours ✗ ✓ ✓ 0.228 0.294 0.353 0.431 0.297 0.357 36.83 28.13

SAFREE ✗ ✓ ✗ 0.278 0.311 0.353 0.363 0.601 0.618 25.29 30.98
SAFREE + SafeDenoiser ✗ ✓ ✓ 0.127 0.169 0.207 0.241 0.469 0.501 22.55 30.66
SAFREE + Ours ✗ ✓ ✓ 0.051 0.133 0.164 0.232 0.423 0.461 23.73 30.36

and the weighted mass of guidance on the critical window [0, sc],

ĪL(sc) :=

∫ sc

0

w̄L(u)β(u) du. (9)

Theorem 2 (Forward-time critical window). Under Assumption 1, if

e
∫ sc
0

L(τ) dτ h(x0) + µ ĪL(sc) ≥ δ, (10)

then h(xsc) ≥ δ (reach a δ-margin by time sc).

With this, we can provide a sufficient condition for the effectiveness of a time window [0, sc] for the
guided flow, whose proof is given in Appendix A.

Interpretation. Suppose that we are only interested in insuring a sufficiently safe result such as
h(xsc) > δ above. Note that only {β(u) : u ∈ [0, sc]} can influence h(xsc) (causality). Also, we
can view

∫ sc
0

β as the cost (budget) we can put for the time window [0, sc]. Inside this window,
w̄L(u) is decreasing in u when L ≥ 0. Therefore, when the budget

∫ sc
0

β is fixed, shifting the
guidance strength β from a later time u2 to an earlier u1 < u2 will strictly increase the sufficient
bound in equation 10. In short: earlier is better for safety guidance.

Turning guidance off after the deadline. Suppose further that for s ∈ [sc, 1], {h ≥ 0} is forward
invariant for the unguided flow dx/ds = f̃(s, x). This is not an unreasonable assumption in gener-
ative models, as near the final time the denoising effect of f̃ would be a fine-grained direction, and
if the flow of f̃ was already in the safe region, then it would keep being in the safe region near the
final time. Hence setting β ≡ 0 on [sc, 1] preserves safety while improving fidelity.

5 EXPERIMENTS

In this section, we validate our method across various applications, including safe generation against
nudity prompts, diverse images, and mitigation of memorization. All cases involve text-to-image
generation, as we adhere to baselines and demonstrate the real efficacy of our method. First, we show
that our method achieves better safety performance compared to baselines. Safety-related metrics are
presented in detailed individual subsections. In addition to safety-related metrics, we also showcase
our method achieve high image quality to calculate Fréchet Inception Distance (FID) (Heusel et al.,
2017) and prompt alignment by evaluating CLIP (Radford et al., 2021).

5.1 SAFE GENERATION AGAINST NUDITY PROMPTS

In this experiment, we strictly follow the experimental protocol established in previous studies (Yoon
et al., 2024; Kim et al., 2025b). In this policy, all baselines generate images for nudity prompts and
assess safety by leveraging the off-the-shelf model, NudeNet1. For metrics, the Attack Success
Rate (ASR) is denoted as it predicts a nude class probability exceeding 0.6 and Toxic Rate (TR) is
computed by the average of nude class probability. We also use same unsafe prompts generated by
Ring-A-Bell (Tsai et al., 2024), UnlearnDiff (Zhang et al., 2024), and MMA-Diffusion (Yang et al.,

1https://github.com/notAI-tech/NudeNet
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Table 2: Performance comparison of ’class-of-image’ task for diversity using ImageNet dataset.
✓indicates negative guidance with early stop = [1.0, 0.78], meanwhile ✗ points out full negative
guidance = [1.0, 0.0]

Model Early Stop FID ↓ CLIP ↑ AES ↑ Vendi ↑ Recall ↑ Precision ↑
SDv3 - 29.77 31.50 5.554 2.878 0.139 0.883
(λ = 1.0)
SPELL ✗ 51.76 28.14 5.190 5.560 0.300 0.530

✓ 48.50 28.17 5.051 5.872 0.353 0.521
Ours ✗ 36.81 30.47 5.727 3.126 0.119 0.811

✓ 31.81 30.78 5.560 3.076 0.135 0.836
(λ = 0.03)
SPELL ✗ 38.23 30.30 5.733 3.152 0.115 0.794

✓ 32.77 30.68 5.576 3.105 0.138 0.826
Ours ✗ 37.26 30.39 5.733 3.140 0.126 0.808

✓ 31.95 30.75 5.564 3.082 0.140 0.833

2024). These prompts are adversarially generated to extract harmful contents from Stable Diffusion
(SD)-v1.42 (Rombach et al., 2022). As negative datapoints, we also use the same negative datapoints
established in Safe Denoiser (Kim et al., 2025b). Specifically, we select 515 unsafe images from
I2P that exceed a nude probability of 0.6. For fair comparison, we use the same negative points for
Safe Denoiser and our model.

Table 1 presents our experimental results. As baselines, we consider training-based methods, specif-
ically ESD (Gandikota et al., 2023) and RECE (Gong et al., 2024), which erase velocity vectors cor-
responding to specific harmful keywords. We also include training-free methods SLD (Schramowski
et al., 2023) and SAFREE (Yoon et al., 2024), which utilize negative prompts. Additionally, we in-
corporate our method and Safe Denoiser (Kim et al., 2025b) with SLD and SAFREE. The objective
is to minimize Attack Success Rate (ASR) and Toxic Rate (TR) on adversarial nudity prompts
while preserving image quality on benign prompts. We observe training-free pipelines better satisfy
this goal as SAFREE comparably keeps FID, whereas ESD and RECE respectively increase FID
than SD-1.4. In terms of plug-and-play negative guidances, replacing Safe Denoiser with our guid-
ance yields consistent safety gains with little impact on image quality. On SAFREE, ASR drops
by 59.8%, 20.8%, and 9.8% on the three sets, meanwhile COCO-30K exhibits minimal changes
such as 1.2 FID and 0.3 CLIP compared to Safe Denoiser. This pattern also appears on SLD al-
though image quality metrics, FID and CLIP, overall lag behind SAFREE. These results indicate
that our training-free guidance achieves substantial safety improvements while essentially preserv-
ing benign-prompt image quality.

5.2 DIVERSITY

This experiment examines how negative guidance affects the diversity of generated images. We
follow the "class-to-image" protocol based on the ImageNet dataset (Russakovsky et al., 2015) using
the prompt “a photo of {class}.” Negative datapoints are sampled from training images as proposed
in Kirchhof et al. (2025), but we evaluate the first 500 classes for tractability. We report FID, CLIP,
and LAION-aesthetic V2 (AES)3 for image quality and Vendi score (Friedman & Dieng, 2023) and
Recall for diversity and Precision (Kynkäänniemi et al., 2019) for fidelity. We validate two values
of λ = {1.0, 0.03} with and without early stop. We summarize numerical comparison in Table 2.

Overall, our method records a better quality and diversity trade-off than SPELL. At λ = 1.0, SPELL
achieves very high diversity but severely degrades quality in FID 48.50 and CLIP 28.17. In contrast,
ours with early stop keeps quality much closer to SDv3 as FID and CLIP score 31.81 and 30.78
while still improving diversity over the SDv3 baseline by Vendi score 3.076 compared to 2.878.
At λ = 0.03, ours + early stop matches SPELL’s diversity as Vendi scores records 3.082 while
maintaining comparable quality and fidelity with FID of 31.95, CLIP of 30.75 and Precision of

2https://huggingface.co/CompVis/stable-diffusion-v1-4
3https://github.com/christophschuhmann/improved-aesthetic-predictor
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Figure 3: Memorization under ImageNette fine-tuning.

Table 3: Memorization and qual-
ity metrics on ImageNette-memorized
SD-v2.1. @Sim 95% denotes the
95th percentile of Gen–Train similar-
ity. Lower number is better.

Method @Sim 95% ↓ FID ↓ CLIP ↑
Mem’SDv2.1 0.437 41.19 31.78

Mem’SDv2.1 + Ours
Full 0.317 43.07 31.35
Early Stop 0.328 32.44 30.93
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Figure 4: Ablation on time windows of negative guidance

0.833 to SDv3. Hence, we observe that our method with early stop maintains diversity without
minimal degradation in general performance.

5.3 MEMORIZATION

We evaluate whether negative guidance mitigates memorization in diffusion models by following
the protocol of Somepalli et al. (2023). Concretely, SD-v2.1 is fine-tuned on ImageNette4, yielding
a memorized model(’Mem SDv2.1’). As reported in Figure 3a, this model exhibits a similarity
distribution between generated and training images (Gen-Train) that closely matches the distribution
between training images themselves (Train–Train), indicating memorization.

We apply our method in a training-free manner by using the training images as the negative set
during inference. This shifts the Gen–Train similarity distribution toward lower values, its mass
concentrated around 0.2 and reduces the high-similarity tail. Quantitatively, as shown in Table 3,
the 95th-percentile Gen–Train similarity (@Sim 95%) decreases from 0.437 (Mem’ SDv2.1) to
0.328 (Mem’ SDv2.1 + Ours) and a 24.7% relative reduction exhibits. Importantly, we observe
that image quality is preserved. FID improves from 41.19 to 32.44, which indicates relative 21.2%
improvement, while CLIP changes only marginally 31.78 to 30.93. We observe that our training-free
negative guidance substantially reduces memorization without sacrificing image quality.

5.4 ABLATION STUDIES

We analyze how the timing and duration of negative guidance affect safety. For analysis, we utilize
SAFREE + ours in Table 1. As t decrease from 1→ 0 along the denoising trajectory and let [ts, te]
denote the active window of negative guidance (ts > te). We consider three scheduling strategies
for the coefficient λ(t): First, equal per-step strength: λ(t) is constance within [1.0, te]. Second,
we call the equal budget. Specifically, we adjust λ so that

∫ ts
te

λ(t) dt is constant across different
window lengths. The last is shifted fixed-length window. A constant λ window of fixed width is
moved to later windows. We evaluate five windows respectively and report ASR on three nudity
prompt sets, keeping all other settings fixed. The experimental result is shown in Figure 4.

Across all datasets and scheduling strategies, the lowest ASR is obtained when guidance is involved
to the earliest steps, specifically for [1.0, 0.8] or [1.0, 0.6]. In contrast, ASR increases as the window

4https://github.com/fastai/imagenette

9

https://github.com/fastai/imagenette


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

extends or shifted into later times with respect to denoising time. This trend holds even under the
equal budget constraint (

∫
λ(t)dt), indicating that the time negative guidance involves becomes

crucial more than the case of equal per-step strength. We identify that applying negative guidance
briefly at the beginning and stopping early is optimal for safe generation.

5.5 COMPUTATION OVERHEAD

Table 4: Wall-clock time.

Models Time
(s/img)

SD-v1.4 3.18
+ SafeDenoiser (N = 515) 3.20
+ Ours (N = 515) 3.22

SAFREE 4.22
+ SafeDenoiser (N = 515) 4.24
+ Ours (N = 515) 4.32

+ SafeDenoiser (N = 3, 200) 4.29
+ Ours (N = 3, 200) 4.70

Our measurements confirm that the additional
cost of SGF is modest and dominated by the
base sampler. In Table 4, moving from SD-v1.4
to SAFREE increases the wall clock from 3.18s
to 4.22s per image, where the increase of 1.04
seconds outweighs the guidance overhead. On
top of SAFREE, Safe Denoiser adds 0.02s with
N = 515 and 0.07s with N = 3, 200. SGF adds
0.10s with N = 515 and 0.48s with N = 3, 200.
The growth from 0.10 seconds to 0.48 seconds
as the negative pool increases by our adaptive
bandwidth procedure outlined in Appendix D.1.
Specifically, this procedure requires sorting pair-
wise distances when SGF is called, which ex-
plains the gap to Safe Denoiser at very large N .
Despite this extra computation, the observed wall-clock time remains sublinear in practice due to
GPU parallelism, and the absolute overhead remains small compared with the increase of 1.04 sec-
onds observed when switching from SD-v1.4 to SAFREE.

6 CONCLUSION

We introduced a unified probabilistic framework for safe generation in diffusion and flow models,
showing that both existing heuristic methods and control-theoretic approaches can be understood
through the lens of potential-based negative guidance. By connecting Maximum Mean Discrepancy
potentials with control barrier analysis, we demonstrated that safety guidance is most critical during
a well-defined time window early in the denoising process, and that excessive guidance beyond this
window can harm sample quality. Our experiments across realistic safe generation tasks confirm that
adaptive, time-critical guidance achieves both safety and fidelity. This work provides a principled
foundation for future safety mechanisms in generative modelling, moving beyond ad hoc heuristics
toward systematically grounded approaches.

A limitation is that our proofs assume the gradient of the MMD guidance aligns with the ideal
control barrier field near the boundary. As future work, we will investigate ways to relax this as-
sumption by quantifying guidance mismatch, as previous studies have done in (Ben-Hamu et al.,
2024; Blasingame & Liu, 2025). A second limitation concerns the choice of the stopping time sc.
Although our theory certifies the existence of an early critical window, the representative windows
used in our experiments, such as [1.0, 0.8] and [1.0, 0.6], are selected through empirical validation
across tasks rather than computed from the theoretical analysis. Developing a principled, data driven
estimator for sc is an important future direction.

ETHICS STATEMENT

This paper presents a work aimed at developing a reliable and trustworthy Generative AI. Our re-
search addresses several potential societal consequences, particularly the ethical risks associated
with generative models. We focus on preventing the generation of NSFW content, including nudity,
and mitigating the risk of models memorizing and reproducing private information, such as human
faces from training datasets. We believe our work contributes to responsible AI use by reinforcing
ethical safeguards and promoting AI systems aligned with societal values and human rights.
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REPRODUCIBILITY STATEMENT

This paper provides comprehensive information to reproduce the main experimental results. To
enhance reproducibility, we have included our code in the supplementary material. Additionally, we
present all our hyperparameter settings and model details in Appendix.
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A PROOF OF THEOREM 2

In this section we provide the proof of Theorem 2. The proof follows from analyzing the ODE
system (8) in terms of the barrier function h. We first recall a basic ODE lemma:
Lemma 1 (Integrating factor (forward)). Let y′(s) = a(s) y(s) + b(s) with a ≥ 0. Then for any
sc ∈ (0, 1],

y(sc) = e
∫ sc
0

a y(0) +

∫ sc

0

e
∫ sc
u

a b(u) du.

The above result gives a comparison principle as follows:
Lemma 2 (Comparison (forward)). Let a± ≥ 0 and b be measurable. If y′ ≥ a−y + b, then

y(sc) ≥ e
∫ sc
0

a−
y(0) +

∫ sc

0

e
∫ sc
u

a−
b(u) du.

If y′ ≤ a+y + b, then

y(sc) ≤ e
∫ sc
0

a+

y(0) +

∫ sc

0

e
∫ sc
u

a+

b(u) du.

Proof. Solve the equalities z′ = a±z+b with z(0) = y(0) by Lemma 1. By the standard comparison
lemma, y ≥ z for the “≥” case and y ≤ z for the “≤” case, yielding the bounds at sc.

We can use this comparison principle to prove Theorem 2

Proof of the sufficient certificate. By chain rule and Assumption 1 (a).,

d

ds
h(xs) = ∇h·f̃(s, xs) + β(s)∇h·∇E(xs) ≥ L−(s) y(s) + µβ(s).

Apply Lemma 2 with a− = L− and b(u) = µβ(u):

h(xsc) ≥ e
∫ sc
0

L−
y(0) + µ

∫ sc

0

e
∫ sc
u

L−
β(u) du = e

∫ sc
0

L−
h(x0) + µ ĪL−(sc).

If the RHS ≥ δ, then h(xsc) ≥ δ.

Proof of the necessary certificate. Similarly,

d

ds
h(xs) = ∇h·f̃(s, xs) + β(s)∇h·∇E(xs) ≤ L+(s) y(s) + µβ(s),

by Assumption 1 (a) and (b). Apply Lemma 2 with a+ = L+:

h(xsc) ≤ e
∫ sc
0

L+

h(x0) + µ

∫ sc

0

e
∫ sc
u

L+

β(u) du = e
∫ sc
0

L+

h(x0) + µ ĪL+(sc),

If this upper bound < δ, then no trajectory can satisfy h(xsc) ≥ δ.
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B SAFE DENOISER: DECOMPOSING INTO SAFE AND UNSAFE DENOISERS

Safe Denoiser partitions the data distribution into safe/unsafe components and defines the corre-
sponding denoisers. Let Edata[x | xt] denote the model’s data denoiser (Kim et al., 2025b). The
unsafe denoiser and its safe counterpart are written as follows:

Eunsafe[x | xt] =
∫
x punsafe(x)qt(xt|x)

punsafe,t(xt)
dx, Esafe[x | xt] =

∫
xpsafe(x)qt(xt|x)

psafe,t(xt)
dx (B.1)

where qt is the forward diffusion kernel and psafe,t, punsafe,t are the induced marginals at time t. By
employing this setup, Kim et al. (2025b) derives Theorem 1 along with the corresponding coefficient
β∗(x) and partition function Zsafe as follows:

β∗(xt) =
Zunsafepunsafe,t(xt)

Zsafepsafe,t(xt)
, Zsafe =

∫
1safe(x)pdata(x)dx, Zunsafe =

∫
1unsafe(x) pdata(x) dx (B.2)

As xt becomes more likely unsafe, punsafe,t(xt) grows and β∗(xt) increases, yielding stronger
negative guidance; conversely, β∗(xt) decreases when xt is likely safe.

KDE for the unsafe denoiser and a practical weight Given unsafe data points D− = {yi}Ni=1,
Safe Denoiser practically estimates the unsafe denoiser as a mixture over the unsafe set with weights
proportional to the diffusion kernel:

Êunsafe[x | xt] =

N∑
i=1

wn(t,xt)y(i), wn(t,xt) =
qt(xt | yi)∑N

m=1 qt(xt | yi)
(B.3)

and approximates the weight in Equation B.2 by

β∗(xt) ≈ η · β(xt), β(xt) =

∫
punsafe(x)qt(xt | y)dx ≈

1

N

N∑
i=1

qt(xt | yi) (B.4)

with a scalar η > 0 controlling guidance strength. Equation B.3 makes explicit that the unsafe
denoiser is a normalized kernel smoother over the unsafe dataset.

Algorithmic practice in image generation tasks In the image generation tasks, Safe Denoiser op-
erates as follows. We first compute the model’s prediction on clean data manifold zt = Edata[x | xt]
by Tweedie’s formula (Efron, 2011; Chung et al., 2022; Kim et al., 2025a). Next, we consider to
replace the time-dependent Gaussian diffusion kernel qt(· | ·) by a static-bandwidth RBF kernel
kσKDE(a, b) = exp(−∥a−b∥2/2σ2

KDE) both for constructing the unsafe denoiser and for the numer-
ator of β. In practice, they consider a fixed σKDE chosen per variant of base models. (e.g., σKDE=1.0
for SLD, 3.15 for SAFREE). We then evaluate the KDE in the clean space using zt as the query to
stabilize distances:

Êunsafe[x | xt] ≈
∑N

i=1 w̃n(zt)yi, w̃n(zt) ∝ kσKDE(zt,yi), β̂(xt) ≈ η
N

∑N
n=1 kσKDE(zt,yi). (B.5)

This mirrors equation B.3–equation B.4 with qt replaced by kσKDE and the model’s zt estimate
as the query. Finally, we gate guidance to a early time window of DDPM indices, e.g., C =

{780, . . . , 1000} for 1000-step schedules, and optionally threshold by β̂(xt) to turn guidance off
when queries seem safe.

B.1 PROOF OF PROPOSITION 1

We show that Safe Denoiser is recovered by the MMD-gradient field used in our Safety-Guided
Flow. Let kσ be the RBF kernel used in equation B.5. Let’s start with the squared MMD estimator
defined in Equation 5 between the variable zt and D−:

E(zt) ≡ M̂MD
2

kσ

(
zt,D−) = kσ(zt, zt) +

1

N2

N∑
i,j=1

kσ(yi,yj)−
2

N

N∑
i=1

kσ(zt,yi).

and its gradient is (shown in Equation 7)

∇zt
E(zt) =

2
σ2 Z(zt)

[
zt −

∑N
i=1 wi(zt)yi

]
, Z(zt) =

1
N

∑N
i=1 kσ(zt,yi) wi(zt) =

kσ(zt,yi)
N ·Z(zt)

(B.6)
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On the other hand, the practical Safe Denoiser repellency direction (gSD(t)) is

gSD(t) := Edata[x | xt]− Êunsafe[x | xt] ≈ zt −
N∑
i=1

w̃i(zt)yi, (B.7)

with w̃i(zt) ∝ kσKDE
(zt,yi) (normalized as in Equation B.5). Matching kernels (σKDE=σ) gives

w̃i(zt) = wi(zt) and hence, by Equation B.6,

gSD(t) =
σ2

2Z(zt)
∇ztE(zt). (B.8)

Therefore the Safe Denoiser update

∆zt ∝ η β̂(xt) gSD(t)

is exactly an MMD-gradient step with an window-wise time schedule

λ(t,xt) ∝ η β̂(xt)
σ2

2Z(zt)
(Z(zt) > 0 ), (B.9)

applied in the clean space and transferred to zt. It implies that the usual x0-space steering commonly
used in diffusion guidance. In other words, Safe Denoiser’s practical direction equals the gradient
of the MMD potential E evaluated at zt, and its magnitude is controlled by implicitly considering
β̂(xt) and the kernel normalization Z(zt).

C SHIELDED DIFFUSION (SPELL)

We summarize the sparse-repellency mechanism of Shielded Diffusion (SPELL) (Kirchhof et al.,
2025) and provide a proof that its force field is recovered as a radius–thresholded instance of our
MMD-gradient guidance.

Setup and notation. Let xt ∈ Rd be the variable via a pretrained reverse-time sampler at t ∈
[0, 1], and let zt = E[X0 | Xt = xt] be the predicted clean (standard x0 estimate). A unsafe set S
is the union of closed balls of a common radius r > 0 centered at reference latents {yi}Ni=1:

S =

N⋃
i=1

{z : ∥zt − yi∥2 ≤ r }.

SPELL intervenes only when zt ∈ S.

Radial and thresholded repellency mechanism Denote d = z − y for a reference center y (we
use z = zt in practice). The SPELL force is radial and thresholded by the shield radius:

Frad(d) = α(r − ∥d∥)+
d

∥d∥
s.t (u)+ = max{u, 0}, α > 0 (C.10)

and is applied to the predicted clean through the corrected target ẑ′
t

SPELL
= zt +

∑
j Frad(zt;yj)

with an optional over-compensation α ≥ 0.

Weighted repellency form of the MMD gradient Our MMD potential E(x) defined in Section 4
implies a Gaussian radial contribution FG(d;σ) from a single negative y:

FG(d;σ) = λ
2∥d∥
σ2

exp
(
− ∥d∥

2

2σ2

) d

∥d∥
, d = z − y, λ > 0, (C.11)

which is precisely the gradient of the one to one MMD energy E(z) = kσ(z, z) + kσ(y,y) −
2kσ(z,y) with the RBF kσ . For a radial RBF kernel kσ and a finite negative set D− =
{yi}Ni=1, we can define weighted-repellency form of the MMD gradient as shown in Equation B.6

∇zM̂MD
2

kσ
(z,D−) = 2

σ2Z(z)
[
z −

∑
i wi(z)yi

]
with Z(z) = 1

N

∑
i kσ(z,yi) and wi(z) =

kσ(z,yi)/(N · Z(z)). For N=1 this reduces to equation C.11 up to a positive scale.
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C.1 PROOF OF PROPOSITION 2

We establish two hypotheses: (i) inside a predefined radius, the magnitude of the SPELL force
equation 3 can be matched by the Gaussian MMD force equation C.11 at any chosen distance
d0 ∈ (0, r) by an appropriate bandwidth σ; (ii) with this matching and radius, SPELL is recovered
as a radius-thresholded instance of MMD-gradient guidance.
Proposition 2. Fix α, λ, r > 0 and let d0 ∈ (0, r). There exists σ > 0 such that ∥Frad(d)∥ =
∥FG(d;σ)∥ at ∥d∥ = d0; equivalently,

α (r − d0) = λ
2d0
σ2

exp
(
− d20

2σ2

)
. (C.12)

Solving Equation C.12 in closed form via the Lambert W -function yields

σ2 = − d20

2W0

(
− α (r − d0) d0

4λ

) , and hence σ =
d0√

−2W0

(
− α(r−d0)d0

4λ

) , (C.13)

where W0 is the principal branch. A real solution exists whenever the argument lies in [−e−1, 0),
i.e., α(r−d0)d0

4λ ≤ e−1.

Proof. At ∥d∥ = d0, suppose α(r − d0) = λ 2d0

σ2 exp(− d2
0

2σ2 ) and set s :=
d2
0

2σ2 . This gives es

s =
4λ

α(r−d0)d0
, and we rearrange s e−s = α(r−d0)d0

4λ . Using −s e−s = −α(r−d0)d0

4λ and −s = W0(·)
yields s = −W0

(
− α(r−d0)d0

4λ

)
, and Equation C.13 follows from σ2 = d20/2s. The existence

condition is the standard domain restriction for W0.

Remark 1 (Equivalent forms). For α = λ = 1, one may report equation C.13 in various but equiv-
alent forms depending on branch/argument conventions from W0 Lambert function. The principal-
branch expression equation C.13 is the most transparent for analysis.

Proposition 3 (SPELL as radius–thresholded MMD guidance). Let E(x) = M̂MD
2

kσ
({x},D−) be

the MMD potential from Sec. 4 with an RBF kσ . Consider the thresholded guidance field F̃ (d) =
1{∥x− y∥ < r} · ∇xE(x) for each reference y in the shield. Then:

1. Directional alignment: F̃ (d) is radial and points along (x − y). This follows from
the weighted-repellency form of ∇E for a radial kernel by weighted-repellency form:

∇xM̂MD
2

kσ
({x},D−) = 2

σ2Z(x)
[
x −

∑
i wi(x)yi

]
, which for a single y reduces to

a radial vector proportional to (x− y).

2. Magnitude matching at a predefined d0 ∈ (0, r): choosing σ by Equation C.13 ensures
∥F̃ (d)∥ = ∥Frad(x − y)∥ at ∥x − y∥ = d0 by radius–bandwidth matching shown in
Proposition C.1.

Hence, with radius and a bandwidth σ matched at a representative d0, the SPELL field in Equation 3
is recovered as a radius–thresholded instance of our MMD-gradient guidance, up to scaling by λ, σ
in Equation C.13.

Practical mapping to zt. As in the main text, we apply the force in the clean space by evaluating
zt and steering the sampler through the corrected target x̂0, i.e., x ← zt in Equation C.11. The
sparsity of SPELL is thus obtained by hard gating, while our MMD view clarifies how the strength
can be matched at a chosen distance via σ.
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D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION ON SAFETY-GUIDED FLOW

We describe a simple and efficient PyTorch (Paszke et al., 2019) implementation of negative guid-
ance on Safety-Guided Flow. In all experimental cases, the kernel bandwidth parameter σ is adap-
tively set according to σ = γ = − log(ε)

1/N·k
∑N

i=1

∑k
j=1 ∥xi−yi,(j)∥2 , k = 3. The detailed procedure is

decribed in the function named estimate_rbf_gamma as below.

def grad_mmd(x: torch.Tensor, refs: torch.Tensor, gamma: float = -1.0, k: int = 3, eps: float
= 0.05, batch_size: int = 1024) -> Tuple[torch.Tensor, float]:
"""
Compute grad_x sum_j k(x_i, y_j) with the RBF kernel

k(x, y) = exp(-gamma * x - y^2).
Returns the batch of gradients (same shape as x) and a scalar summary.

x : [N, ...] current samples
refs : [M, ...] reference (negative) set
"""
orig_shape = x.shape
X = x.reshape(x.size(0), -1) # [N, D]
Y = refs.reshape(refs.size(0), -1) # [M, D]

# bandwidth selection (top-k heuristic) if gamma is not provided
if gamma <= 0:

gamma = estimate_rbf_gamma(X, Y, k=k, eps=eps)

# For K_ij = exp(-gamma * x_i - y_j^2),
# d/dx_i sum_j K_ij = sum_j -2 * gamma * K_ij * (x_i - y_j)
dK_dX = rbf_kernel_grad(X, Y, gamma, batch_size=batch_size) # [N, D]
return dK_dX.view(orig_shape), dK_dX.mean().item()

def rbf_kernel_grad(X: torch.Tensor, Y: torch.Tensor, gamma: float, batch_size: int = 1024) ->
torch.Tensor:

"""
Batched computation of:

G_i = sum_j -2 * gamma * exp(-gamma *x_i - y_^2) * (x_i - y_j)
"""
N, D = X.shape
out = torch.zeros_like(X)

for i in range(0, N, batch_size):
Xi = X[i:i+batch_size] # [b, D]
d2 = torch.cdist(Xi, Y, p=2)**2 # [b, M]
K = torch.exp(-gamma * d2) # [b, M]
diff = Xi.unsqueeze(1) - Y.unsqueeze(0) # [b, M, D]
grad = (-2.0 * gamma) * (K.unsqueeze(-1) * diff).sum(dim=1) # [b, D]
out[i:i+batch_size] = grad

# optional: free memory on GPU
del Xi, d2, K, diff, grad
if out.device.type == "cuda":

torch.cuda.empty_cache()
return out

def estimate_rbf_gamma(X: torch.Tensor, Y: torch.Tensor, k: int = 3, eps: float = 0.05,) ->
torch.Tensor:
"""
Top-k neighbor distance heuristic:

gamma = -log(eps) / mean_{i, j in N_k(i)} x_i - y_j^2
Skips the potential self-distance by starting from index 1.
"""
d2 = torch.cdist(X, Y, p=2)**2 # [N, M]
d2_sorted, _ = torch.sort(d2, dim=1)
k_eff = min(max(k, 1), d2_sorted.shape[1] - 1)
r2 = d2_sorted[:, 1:k_eff+1].mean().clamp_min(1e-12)
return -torch.log(torch.tensor(eps, device=X.device)) / r2

Negative guidance in Safety-Guided Flow is applied in the x0 space. In diffusion-based frame-
works, the scheduler typically provides a function that predicts x0. For flow matching, we adopt the
formulation using s = 0.

We also provide pseudo-code for our negative guidance, as illustrated in Algorithm 1. In image
generation tasks, we set N = 1. Since the estimation does not rely on sequential dependencies,
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Algorithm 1 Safety-Guided Flow (SGF)

Input: A pre-trained diffusion model ϵθ or a pre-trained flow-matching model vθ ; Unsafe data
D− = {yi}Ni=1; Coefficient for negative guidance λ(t); Time index for denoising steps t ∈ [T, 0];
Time windows for negative guidance C = [T, sc].
for t = T to 0 do
x̂0|t = E[x0|xt]← 1

αt

(
xt − σtϵθ(xt, t)

)
for SD-v1.4 and SD-v2.1

x̂0|t ← xt + (0− t) · vθ(xt, t) for SD-v3
If t ∈ C:

x′
0|t ← x̂0|t + λ(t) · ∇x̂0|tE(x̂0|t, D

−)
Else:

x′
0|t ← x̂0|t

xt−1 = Solver(xt, t,x
′
0|t)

end for

it naturally benefits from GPU-based parallelism, resulting in efficient computation. Consequently,

evaluating ∇M̂MD
2

kσ
becomes straightforward. The overall computational cost is comparable to

Safe Denoiser (Kim et al., 2025b) and SPELL (Kirchhof et al., 2025).

D.2 2D MOTIVATION EXAMPLE

This subsection provides implementation details for the 2D motivation example. For pre-training
flow functions, we utilize the code base of Lipman et al. (2024)5. This implementation includes a
function that learns the velocity function using MLP networks using total four of 512 dimensional
hidden layers and Swish activation and generates samples via an Euler-based ODE integrator pro-
vided by Chen (2018). In this experiment, we employ a second-order integrator, called Midpoint,
for accurate samples, with negative guidance applied only at each computation of the midpoint. The
heuristic approach was found to enhance the stability of the results. We generate samples through
50 integration steps. In this experiment, we use λ = 0.002, and the time windows for “Full” are
[1.0, 0.0] and “Early stop” are [1.0, 0.5]. During velocity function training, we use a batch size of
4, 096, 20, 001 training steps, and a learning rate of 0.0001. Additionally, we provide the code snip-
pet to generate training and negative datasets. When our safety-guided flow involves, we randomly
sample 2,048 datapoints for negative guidance. To obtain quantitative results, we use the Python
Optimal Transport library (POT)6 to calculate the Wasserstein distance with the ‘exact’ option.

D.3 SAFE GENERATION AGAINST NUDITY PROMPTS

We strictly follow the experimental setup of Yoon et al. (2024); Kim et al. (2025b). In particu-
lar, the construction of negative datapoints and the evaluation scripts are identical to their setup
(Kim et al., 2025b). For rigorous validation, we obtained the authors’ codebase and checkpoints
for training-based baselines (ESD and RECE) to ensure comparability. Here, we briefly summa-
rize implementation details. For comprehensive implementation details, please refer to Kim et al.
(2025b).

Nudity prompt datasets We evaluate on three widely used red-teaming benchmarks focused on
nudity. Ring-A-Bell generates adversarial prompts via white-box nudity attacks (Tsai et al., 2024).
During the dataset generation process, the white-box adversarial attack method did not directly
access the model parameters. Consequently, nudity images were produced across various models,
although the level of nudity was relatively low compared to black-box attack datasets we discuss
later. We adopt the curated subset of 79 prompts (from the original 285) used by previous baselines.
The curated split is available from the official repository of Gong et al. (2024)7 and Yoon et al.
(2024)8.

5https://github.com/facebookresearch/flow_matching
6https://pythonot.github.io
7https://github.com/CharlesGong12/RECE
8https://github.com/jaehong31/SAFREE
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def train_get(batch_size: int = 2000, device: str = ’cpu’, num_clusters: int = 8, r: float =
4.0, std: float = 0.4,

):
"""
Sample a 2D ring of Gaussian clusters.
Returns a tensor of shape [batch_size, 2] on the given device.
"""
cluster_ids = torch.randint(0, num_clusters, (batch_size,), device=device)
angles = 2 * np.pi * cluster_ids / num_clusters
cx = r * torch.cos(torch.tensor(angles, device=device))
cy = r * torch.sin(torch.tensor(angles, device=device))
x = cx + std * torch.randn(batch_size, device=device)
y = cy + std * torch.randn(batch_size, device=device)
data = torch.stack([x, y], dim=1)
return data.float()

def neg_get(batch_size: int = 200, region: int = 0, device: str = ’cpu’, num_clusters: int =
8, r: float = 4.0, std: float = 0.4):
"""
Generate a negative dataset by sampling only from cluster index
’region’ (0 <= region < num_clusters). Returns [batch_size, 2].
"""
# sample only from the specified region cluster
cluster_ids = torch.full((batch_size,), region, dtype=torch.long, device=device)
angles = 2 * np.pi * cluster_ids / num_clusters
cx = r * torch.cos(torch.tensor(angles, device=device))
cy = r * torch.sin(torch.tensor(angles, device=device))
x = cx + std * torch.randn(batch_size, device=device)
y = cy + std * torch.randn(batch_size, device=device)
data = torch.cat([x.unsqueeze(1), y.unsqueeze(1)], dim=1)
return data.float()

UnlearnDiff is a collection of text prompts designed to create harmful content from SD-v1.4 Zhang
et al. (2024). The dataset covers multiple not sale for work (NSFW) categories, including self-
harm, shocking content, and sexual content. In this work, we focus exclusively on the nudity subset,
consisting of 116 prompts obtained by removing 27 entries that overlapped with other NSFW cat-
egories (e.g., self-harm, shocking content), following the curation used in prior baselines. This
split ensures a fair comparison by isolating nudity-related prompts from unrelated harmful fac-
tors. The dataset is publicly available at https://github.com/CharlesGong12/RECE and
https://github.com/jaehong31/SAFREE.

MMA-Diffusion is considered as the most challenging benchmark among the three datasets, as it
is explicitly constructed to create sexual content through adversarial prompting (Yang et al., 2024).
Unlike natural human-written queries, many of its prompts are synthetic and semantically inco-
herent, but they are highly effective in generating sexual outputs in SD-v1.4. Because the dataset
relies on black-box adversarial attacks tailored to the parameters of SD-v1.4, its prompts do not
instantly transfer to other generative models. Despite their unnatural textual prompts, the result-
ing generations often contain highly unsafe imagery, making MMA-Diffusion an intensive test for
safety mechanisms. In other words, this benchmark probes a regime in which the base drift f̃
can dominate from the perspective of Equation 8. In our experiments, we adopt the curated set
of 1, 000 adversarial prompts distributed with the baseline repositories. This dataset is also avail-
able at the dataset is publicly available at https://github.com/CharlesGong12/RECE
and https://github.com/jaehong31/SAFREE.

Reference negative images For nudity-safe generation, we employ 515 reference images from
I2P Schramowski et al. (2023), all generated by SD-v1.4. Each image satisfies a NudeNet score
> 0.6 (nude class probability), following the criterion used in the manuscript. To provide readers
with a better understanding of the task, we have included visual representative samples shown in
Figure D.1 from Kim et al. (2025b). To ensure comparability, the 515 nudity references are attached
in the supplementary materials.

Hyper-parameters We follow the same generation pipeline as proposed in Kim et al. (2025b).
Specifically, we use SD-v1.49, as all adversarial prompts are constructed for this model by attack

9https://huggingface.co/CompVis/stable-diffusion-v1-4
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Figure D.1: Reference images for safe generation against nudity prompts

methods, ensuring consistency between the attack and the safety mechanism evaluation. This setup
utilizes the DDPM Sampler (Ho et al., 2020) with 50 denoising steps. For the bandwidth parameter
σ of the radial basis kernel function, we employ an empirical estimate during all negative guidance
computations, as discussed in Subsection D.1.

For the coefficient of negative guidance, we employ λ(t) = 0.0015 within the time window [1.0, 0.6]
for Table 1. For an ablation study, we consider the setup λ(t) = 0.03 with the time window [1.0, 0.8]
as a starting point. In Figure 4a and Figure 4c, we use λ(t) = 0.03 for all experiments, whereas we
use λ × ∆t = 0.006 for all cases in Figure 4b. For instance, the case with time window [1.0, 0.4]
utilizes λ(t) = 0.01.

D.4 DIVERSITY

We follow the protocol of Kirchhof et al. (2025). Because the authors’ codebase is not publicly
accessible, we re-implement their evaluation and apply our method under the same conditions. As
the underlying generative model, we use Stable Diffusion 3, a state-of-the-art flow-matching model
(Esser et al., 2024)10. Based on Table 1 of Kirchhof et al. (2025), where SPELL underperforms in
the flow-matching regime, we re-implement SPELL, and we observe that both ours and SPELL are
compatible on SD-v3 under identical settings. We adopt ImageNet-1k to obtain class-conditioned
text prompts and to measure the diversity of generated samples against the validation split. For
computational efficiency, we evaluate on the first half of the ImageNet classes (500 out of 1, 000).
Prompts are the canonical ImageNet class names with a template "a photo of a {class name}" .

Reference negative images For each class c used to form prompts, we construct a class-specific
reference set of negative datapoints from the ImageNet training split. To prevent leakage, this set is
strictly disjoint from the validation images used by the diversity metrics. We sample a fixed number
50 images per class and reuse the same negative points across all generations for class c to ensure
reproducibility.

Hyper-parameters We follow the same generation pipeline of Kirchhof et al. (2025). Specifi-
cally, we use SD-v3-medium with Euler Integration and 50 denoising steps. We employ CFG value
as 3.5 for fidelity and coverages. For the bandwidth parameter σ of the radial basis kernel func-
tion, we employ an empirical estimate during all negative guidance computations, as discussed in
Subsection D.1. As summarized in Table 2, we report results with λ(s) = 1.0 following Kirchhof
et al. (2025), and additionally a small-budget setting with λ(s) = 0.03. For SPELL, we follow same
hyper-parameter r = 200 described in Kirchhof et al. (2025).

D.5 MEMORIZATION

This experiment evaluates whether our negative guidance mitigates training-data memorization with
minimal impact on generation quality. We adopt the memorization-inducing training recipe of

10https://huggingface.co/stabilityai/stable-diffusion-3-medium
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Somepalli et al. (2023), using the official repository11 to overfit a diffusion model on ImageNette12.
We then apply our negative guidance at inference time. Following a worst-case assumption, we
treat the training split as a proxy for potentially memorized images and guide generation away from
them. We use ImageNette, a 10-class subset of ImageNet, with simple class-conditional prompts.
We use the template “An image of a {class name}”, which mirrors the class-name prompts used in
our diversity experiments.

Reference negative images Likewise the experiment of diversity, for each class c, we construct a
class-specific reference set of negative datapoints from the ImageNette training split.

Hyper-parameters. For overfitting, we start from SD-v2.113. When generating samples with the
memorized models, we follow the official configuration with the class level option and set CFG
to 7.5. Other sampler and denoising steps are maintained consistent with the official codebase for
comparability. For our MMD-based negative guidance, we use the empirical estimation in Subsec-
tion D.1 to determine all kernel bandwidth choices σ. We set λ(t) = 0.03 for both full and early
stop time windows. The early stop time window is defined as [1.0, 0.8].

E ADDITIONAL DISCUSSION

E.1 GENERATIVE MODELS OUTSIDE OUR THEORETICAL REGIME

The decreasing weight conclusion is a mathematical consequence of our forward-time dynamics
model as shown in Theorem 2. From the dynamics it follows that the guidance schedule is more
influential at an earlier time. Also, requiring less at a later time relies on Assumption 1, especially
(b); this assumption is natural for the situations where the drift diminishes near the end of the flow.
This holds in image based diffusion models that are commonly used for frontier image generation.
Specifically, the magnitude of the denoising updates typically becomes smaller as the process ap-
proaches the data manifold. Our theoretical result about earlier guidance being more effective is
derived under exactly this type of schedule.

However, there are diffusion language models where these conditions do not hold. Recent works on
masked diffusion LLMs (Ben-Hamu et al., 2025; Luxembourg et al., 2025; Kim et al., 2025c) aim
to reduce inference cost while preserving final performance by changing the unmasking pattern over
time. In many of these acceleration methods, the model starts with very conservative unmasking in
the early steps and then increases the number of unmasked tokens later, so the effective update size
can grow in the later part of the trajectory. This is the opposite trend from the standard image and
video schedules that we consider. In such cases, the assumptions used in our theorem are violated,
and one would need a more general analysis tailored to these acceleration schedules in order to
obtain a rigorous justification.

In contrast, for image and video generation, both our experiments and the reviewer’s understanding
rely on the usual schedulers whose step sizes and effective drift magnitudes decrease over time. In
this regime, the theoretical analysis in our paper is well aligned with the practical sampling behavior,
and the conclusion that earlier safety guidance is preferable is consistent with both the assumptions
and the empirical ablations.

E.2 SENSITIVITY TO THE SIZE AND QUALITY OF D−

Sensitivity to the size and quality of the negative set has already been carefully studied in the ablation
experiments of Safe Denoiser (Kim et al., 2025b), in particular in Figure 5(a). Since our method
recovers the Safe Denoiser, we expect the same qualitative trend to hold here as well. In that study,
when the number of negative samples is reduced, the attack success rate increases, which indicates
that it is important for the negative set to be large and diverse enough to cover the unsafe distribution
in a meaningful way.

11https://github.com/somepago/DCR
12https://github.com/fastai/imagenette
13https://huggingface.co/stabilityai/stable-diffusion-2-1
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This dependence on the data is not unique to SGF. Most defence methods that rely on data driven
signals, including learned pre-filter and post-filter approaches, require sufficient and representative
datapoints in order to learn or apply effective safety functions. In this sense, the need for a reasonably
rich negative set is a general limitation shared by defence methods and safe generation systems,
rather than a specific drawback of our framework.

F ADDITIONAL EXPERIMENTS

F.1 SAFE GENERATION AGAINST NUDITY PROMPTS
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Figure F.2: Ablation on time windows of negative guidance for Safe Denoiser

We conducted an ablation study using the same ablation study as depicted in Figure 4 to evaluate
SAFEE and Safe Denoiser. As shown in Figure F.2, we observe that the same patterns emerge across
all cases for budget, except for the case of “Ring-A-Bell” for the time window [1.0, 0.05] in the equal
λ(t) situation.

F.2 DIVERSITY

CFG Model Budget Time Windows FID ↓ CLIP ↑ AES ↑ Recall ↑ Vendi ↑ Converage ↑ Precision ↑ Density ↑
3.5 SDv3 - - 29.77 31.50 5.554 0.139 2.878 0.578 0.883 1.187

SPELL 0.03 [1.0, 0.78] 32.77 30.68 5.576 0.138 3.105 0.501 0.826 0.991
[1.0, 0.00] 38.23 30.30 5.733 0.115 3.152 0.435 0.794 0.828

1 [1.0, 0.78] 48.50 28.17 5.051 0.353 5.872 0.423 0.521 0.538
[1.0, 0.00] 51.76 28.14 5.190 0.300 5.560 0.370 0.530 0.490

Ours 0.03 [1.0, 0.78] 31.95 30.75 5.564 0.140 3.082 0.520 0.833 1.031
[1.0, 0.00] 37.26 30.39 5.733 0.126 3.140 0.451 0.808 0.860

1 [1.0, 0.78] 31.81 30.78 5.560 0.135 3.076 0.518 0.836 1.041
[1.0, 0.00] 36.81 30.47 5.727 0.119 3.126 0.457 0.811 0.886

5.5 SDv3 - - 34.58 31.41 5.651 0.082 2.692 0.511 0.855 1.086
SPELL 0.03 [1.0, 0.78] 36.27 31.18 5.660 0.086 2.686 0.488 0.836 1.020

[1.0, 0.00] 40.81 30.69 5.771 0.074 2.803 0.425 0.804 0.866
1 [1.0, 0.78] 34.58 30.86 5.596 0.125 3.060 0.474 0.793 0.926

[1.0, 0.00] 40.20 30.44 5.709 0.110 3.090 0.415 0.767 0.790
Ours 0.03 [1.0, 0.78] 36.00 31.21 5.660 0.076 2.680 0.489 0.840 1.044

[1.0, 0.00] 40.31 30.75 5.774 0.087 2.804 0.436 0.808 0.876
1 [1.0, 0.78] 35.87 31.22 5.656 0.081 2.677 0.493 0.841 1.035

[1.0, 0.00] 39.91 30.78 5.774 0.080 2.794 0.440 0.816 0.900

Table F.1: Extended performance comparison of ’class-of-image’ task for diversity using ImageNet
dataset including CFG= 5.0.

Table F.1 dives into the diversity and fidelity performance of both SPELL and our model, including
a CFG value of 5.5. Consistently, we observe that the early stop strategy doesn’t negatively impact
generation performance in FID and CLIP, but it actually enhances diversity metrics, particularly the
Vendi score. When comparing our model to SPELL, it overall achieves better performance, with a
notable improvement emerging at a CFG value of 3.5. Interestingly, high CFG values, such as 5.5,
have been reported to reduce the diversity of generated images by excessive dominance, resulting
in the overlooking of other aspects. This finding is also evident in the experiment conducted with a
CFG value of 5.5.
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F.3 MEMORIZATION

Numerical analysis is described in Table F.2 by varying a time window. In this experiment, we main-
tained the same λ(t) = 0.03 and measured FID and CLIP to assess image fidelity and alignment
with text and images. Additionally, we evaluated @Sim 95% to indicate how closely the generated
images resemble the training data points. We observed that the early stop strategy also improved
the FID scores, suggesting that negative guidance plays a crucial role in maintaining image quality.
Notably, unlike previous examples, we found that negative guidance positively impacts the miti-
gation of memorization when reviewing @Sim 95%, although its effect is not as significant as the
improvement in FID scores. Overall, we observed that the early stop strategy positively influences
generation performance without compromising on minimal performance sacrifices.

Model Time Windows Budget CLIP ↑ FID ↓ @Sim 95% ↓

Memorized SDv2.1

[1.0, 0.05] 0.03 31.35 43.07 0.317
[1.0, 0.2] 0.03 31.32 40.35 0.324
[1.0, 0.4] 0.03 31.15 36.97 0.334
[1.0, 0.6] 0.03 30.93 35.66 0.328
[1.0, 0.8] 0.03 30.93 32.44 0.338

Table F.2: Performance of similarity and image qulaity by varying a time window in memorization
experiments.

G GRAPHICAL EXAMPLES

G.1 SAFE GENERATION AGAINST NUDITY PROMPTS

Figure G.3: Generated images from baselines and our method on nudity prompts. We deliberately
chose challenging cases that remain difficult for recent models rather than trivial examples.
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(a) Case 1: Generated images varying time windows with same λ(t) = 0.03

(b) Case 2: Generated images varying time windows with same λ(t) = 0.03

Figure G.4: Generated images on challenging nudity prompts under varying negative-guidance win-
dows demonstrate the existence of a critical window. All images are generated by SAFREE + Ours.
As the window length increases, nudity attributes unexpectedly reappear. This phenomenon is simi-
lar to the third case in Figure 2c, where prolonged negative guidance amplifies instability, hindering
the denoising process and leaving samples concentrated in unsafe regions. This observation extends
to real nudity prompts.

(a) Case 3: Generated images varying time windows with same λ(t) = 0.03

(b) Case 4: Generated images varying time windows with same λ(t) = 0.03

Figure G.5: Generated images on challenging nudity prompts where previous methods fail. All
images are generated by SAFREE + Ours. While varying negative-guidance windows shows limited
effect for baselines, our method removes nudity while preserving the contextual semantics of the
prompts. However, we also observe that larger time windows reduce image fidelity, indicating the
importance of a critical window for guidance.
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G.2 SAFE GENERATION FOR INTELLECTURAL PROPERTY

We revisit intellectual property control in diffusion models under prompts that can reveal copy-
righted styles even when the artwork is never named. Safe Denoiser suggest three types of IP sensi-
tive prompts such as one that explicitly name the work or artist, another that provide only a textual
description, and the third that mention neither but still cause the model to reproduce the protected
style, which is the hardest case because text based defenses have no negative cue (Kim et al., 2025b).
Safe Denoiser pays attention to the third case with Munch’s The Scream. As shown in Figure G.6,
the prompt ”If Barbie were the face of the world’s most famous paintings” makes SD v1.4 produce
Barbie in a scene that closely matches the composition and style of the original painting despite the
absence of any reference to Munch or to The Scream.

We adopt the same setup where the four versions of The Scream are regarded as unsafe references
while keeping the Barbie prompt fixed. With an early guidance window [1.0, 0.8], our method pro-
duces sharp Barbie portraits whose backgrounds preserve texture yet avoid Munch’s style, whereas
extending the window to [1.0, 0.6], [1.0, 0.4], [1.0, 0.2], and [1.0, 0.05] progressively distorts geom-
etry and background. This trend aligns with our two-dimensional flow matching analysis presented
in Figure 2, which demonstrates that prolonged negative guidance distorts the distribution near the
unsafe region.

(a) Negative datapoints

(b) Generated images from the baselines and our method. Our method uses a variant of time windows.

Figure G.6: Style-level intellectual property control for The Scream. our method across different
time windows that remove the Munch style while preserving the Barbie concept. Out of time win-
dows, early window maintains image fidelity and effectively avoiding Munch’s style.
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G.3 UNCRATED IMAGES IN MEMORIZATION

Figure G.7: Generated images on artificially memorized SDv2.1 (Somepalli et al., 2023). All sam-
ples are drawn from the top 2% most similar to the Imagenette training set. In each block, the
leftmost column shows the generated image, while the subsequent ten columns correspond to the
top-1 through top-10 most similar images retrieved from the training split. Baseline models exhibit
strong memorization, often reproducing near-duplicates of training images.

Figure G.8: Generated images from our method on artificially memorized SDv2.1 (Somepalli et al.,
2023). As in Figure G.7, all samples are taken from the top 2% most similar to the Imagenette train-
ing set, with the leftmost column showing the generated image and the next ten columns presenting
the top-1 to top-10 most similar training images. Unlike baselines, our method mitigates memoriza-
tion, yielding more diverse generations while still preserving image quality, thanks to early-stopped
negative guidance that reveals a critical time window.
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