
Constrained Online Convex Optimization with Polyak Feasibility Steps

Spencer Hutchinson 1 Mahnoosh Alizadeh 1

Abstract
In this work, we study online convex optimiza-
tion with a fixed constraint function g : Rd →
R. Prior work on this problem has shown
O(
√
T ) regret and cumulative constraint satisfac-

tion
∑T

t=1 g(xt) ≤ 0, while only accessing the
constraint value and subgradient at the played ac-
tions g(xt), ∂g(xt). Using the same constraint
information, we show a stronger guarantee of any-
time constraint satisfaction g(xt) ≤ 0 ∀t ∈ [T ],
and matching O(

√
T ) regret guarantees. These

contributions are thanks to our approach of using
Polyak feasibility steps to ensure constraint sat-
isfaction, without sacrificing regret. Specifically,
after each step of online gradient descent, our
algorithm applies a subgradient descent step on
the constraint function where the step-size is cho-
sen according to the celebrated Polyak step-size.
We further validate this approach with numerical
experiments.

1. Introduction
We study the problem of online convex optimization (OCO)
where, in each round t = 1, 2, ..., T , a player chooses an ac-
tion xt from an action set X ⊆ Rd and then suffers the cost
ft(xt) according to an adversarially-chosen convex function
ft (Zinkevich, 2003). The player’s goal is to minimize the
regret with respect to the best single action in hindsight,

RegT :=

T∑

t=1

ft(xt)−min
x∈X

T∑

t=1

ft(x).

The OCO problem has emerged as a fundamental setting
for various machine learning domains, such as stochastic
optimization (Cesa-Bianchi et al., 2004), non-convex opti-
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mization (Cutkosky et al., 2023), and online control (Agar-
wal et al., 2019). Furthermore, the OCO problem is directly
relevant to various real-world settings, including online ad-
vertising (McMahan et al., 2013), internet of things (Chen &
Giannakis, 2018), and healthcare (Tewari & Murphy, 2017).

Despite the significance of the OCO problem, classical
methods for OCO, such as online gradient descent (OGD)
(Zinkevich, 2003) and regularized follow the leader (RFTL)
(Shalev-Shwartz & Singer, 2007), require orthogonal projec-
tions (or similarly costly operations) to ensure that the cho-
sen actions are feasible. Such operations are prohibitively
expensive in many applications, particularly when the action
set X has a complicated structure. Motivated by the high
computation cost of classical methods, Mahdavi et al. (2012)
introduced the problem of OCO with long-term constraints,
where the player is not required to ensure that the actions
are feasible, but instead aims to satisfy the constraints cu-
mulatively.

In particular, Mahdavi et al. (2012) considered the action
set to be represented by the sub-level set of a constraint
function, i.e. X = {x ∈ Rd : g(x) ≤ 0} for convex1

g : Rd → R. In this setting, Mahdavi et al. (2012) gave
an algorithm that enjoys O(T 3/4) regret and ensures cumu-
lative constraint satisfaction

∑T
t=1 g(xt) ≤ 0, while only

observing a subgradient and function value at the played
actions, i.e. gt = g(xt), st ∈ ∂g(xt). This algorithm
uses a primal-dual approach, in which it updates sequences
of actions (primal variables) and constraint penalties (dual
variables) to simultaneously minimize the regret and the
cumulative constraint value. Primal-dual approaches have
continued to be successful for this problem, as more recent
algorithms of this type have been shown to enjoy O(

√
T )

regret with the same constraint guarantees and constraint
feedback (Yu et al., 2017).

In this work, we take a new approach to this problem by
using what we call Polyak feasibility steps, which are sub-
gradient descent steps that are taken with respect to the con-
straint function and use the Polyak stepsize. This approach
is motivated by the fact that the Polyak stepsize is known to
be effective in unconstrained convex optimization (Polyak,

1Since the constraint function g : Rd → R is not assumed
to be differentiable, this setting can handle multiple constraints
g1, ..., gn by defining g(x) := maxi∈[n] gi(x).
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Table 1. State-of-the-art algorithms for OCO with a non-smooth functional constraint X = {x ∈ Rd : g(x) ≤ 0} and first-order feedback
gt = g(xt), st ∈ ∂g(xt). Our results are highlighted with gray . The results marked with * have been extended with Assumption 1 and
Theorem 7 in Mahdavi et al. (2012) as we show in Appendix A. The column “Known Strictly-Feasible Point?” is marked “Yes” if the
algorithm requires knowledge of an x ∈ Rd such that g(x) < 0, and “No” if not.

Reference Regret Constraint Guarantee Known Strictly-Feasible Point?

Mahdavi et al. (2012) O(T 3/4)
∑T

t=1 g(xt) ≤ 0 No
Jenatton et al. (2016) O(T 2/3)

∑T
t=1 g(xt) ≤ 0 No

Yuan & Lamperski (2018)* O(T 2/3)
∑T

t=1 g(xt) ≤ 0 No
Yu et al. (2017)* O(

√
T )

∑T
t=1 g(xt) ≤ 0 No

Corollary 1 O(
√
T ) g(xt) ≤ 0, ∀t ∈ [T ] Yes

Corollary 2 O(
√
T ) g(xt) ≤ 0, ∀t ≥ t0 = O(log(T )) No

Corollary 2 O(
√
T )

∑T
t=1 g(xt) ≤ 0 No

1969). As such, we expect it to be similarly effective when
applied to the constraint function in OCO. Accordingly, we
design an algorithm that alternates between gradient descent
steps with respect to the cost function, and Polyak feasibility
steps. This algorithm differs from primal-dual approaches
in that it maintains a single sequence of iterates (versus the
two sequences used by primal-dual algorithms).

We find that our approach enjoysO(
√
T ) regret and anytime

constraint satisfaction g(xt) ≤ 0 ∀t, while still only observ-
ing a subgradient and function value of the constraint at the
played actions. Unlike prior methods for constrained OCO,
which often trade feasibility for efficiency, our approach
enjoys both feasibility and efficiency. Indeed, our algorithm
maintains constraint satisfaction in all rounds, while using
the same constraint feedback as prior work and avoiding the
use of projections. Furthermore, our approach is relevant
to safety-critical applications, in which constraint satisfac-
tion is paramount and there is often only limited constraint
information available.

Our complete results are shown alongside prior work in
Table 1. As presented in this table, prior work has shown
cumulative constraint satisfaction

∑T
t=1 g(xt) ≤ 0 and re-

gret bounds as tight as O(
√
T ) (Mahdavi et al., 2012; Je-

natton et al., 2016; Yuan & Lamperski, 2018; Yu et al.,
2017). We show stronger anytime constraint satisfaction
g(xt) ≤ 0 ∀t ∈ [T ], while also guaranteeing O(

√
T ) re-

gret. However, unlike prior work, these guarantees require
that there is a known point x ∈ Rd that is strictly-feasible
g(x) < 0. Nonetheless, we show that when a strictly-
feasible point is not known, then we can guarantee constraint
satisfaction after O(log(T )) rounds, as well as cumulative
constraint satisfaction.

Also, note that Table 1 only includes algorithms that ac-
cess the constraint function via the constraint value and
subgradient at the played actions gt = g(xt), st ∈ ∂g(xt).
Therefore, it does not include the line of literature in con-

strained OCO that solves a convex optimization problem
with the constraint function in each round, e.g. (Yu & Neely,
2020; Yi et al., 2021; Guo et al., 2022). We discuss these
related works in more detail in the following section.

1.1. Related Work

In this section, we discuss related work on constrained OCO,
projection-free OCO, and constrained optimization.

1.1.1. CONSTRAINED OCO

Mahdavi et al. (2012) studied OCO with a fixed convex
constraint function g, and gave an algorithm with O(

√
T )

regret and O(T 3/4) cumulative violation
∑T

t=1 g(xt)
that used only first-order constraint feedback, gt =
g(xt), st ∈ ∂g(xt). This result was then generalized to
O(Tmax(β,1−β)) regret and O(T 1−β/2) cumulative viola-
tion for any β ∈ (0, 1) by Jenatton et al. (2016). The same
bounds were shown for a stronger notion of constraint viola-
tion

∑T
t=1[g(xt)]+ by Yuan & Lamperski (2018), who also

guaranteed that
∑T

t=1([g(xt)]+)
2 = O(T 1−β). Finally, Yu

et al. (2017) showed O(
√
T ) regret and O(

√
T ) cumulative

violation in the same setting. With the additional assumption
that the constraint gradient is lower bounded near the con-
straint boundary (Assumption 1 in Mahdavi et al. (2012)),
the aforementioned results can be extended to guarantee no
cumulative violation

∑T
t=1 g(xt) ≤ 0 as stated in Table 1.

We use the same assumption to show constraint satisfaction
for all rounds g(xt) ≤ 0 ∀t provided that there is a known
strictly-feasible point. Furthermore, the aforementioned
works use primal-dual algorithms, which are fundamentally
different from our approach of Polyak feasibility steps. In
particular, our approach uses the Polyak step-size and a
single sequence of iterates, while primal-dual algorithms
use two iterate sequences that are linked via the cost and
constraint functions.

There is also a line of literature on OCO with constraints
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that solves an optimization problem involving the constraint
function in each round, e.g. (Yu & Neely, 2020; Yi et al.,
2021; 2022; Guo et al., 2022). This differs from our algo-
rithm and those compared in Table 1, which only access
the constraint with first-order feedback at the played ac-
tions. We note that solving an optimization problem with
the constraint function in each round can introduce signifi-
cant computational cost.

Lastly, we point out that a related line of literature consid-
ers OCO with time-varying constraints, e.g. (Neely & Yu,
2017; Yu et al., 2017; Liakopoulos et al., 2019; Castiglioni
et al., 2022; Guo et al., 2022; Kolev et al., 2023). This
generalizes the fixed constraints that we consider. Nonethe-
less, to our knowledge, none of these works improve on
the guarantees shown in Table 1 for the case of non-smooth
constraints, and first-order feedback. We also point out that
Kolev et al. (2023) gives an algorithm that uses first-order
feedback and enjoys bounds on the violation in each round,
i.e. g(xt) ≤ O( 1√

t
). However, this work requires that con-

straint functions are smooth (i.e. have Lipschitz gradients),
making it distinct from our work and those considered in
Table 1. Furthermore, Kolev et al. (2023) uses a projection
on to a polytope in each round, which introduces additional
computational cost.

1.1.2. PROJECTION-FREE OCO

In parallel to the literature on constrained OCO, there is a
line of literature that considers projection-free OCO where
the feasible set is not treated as the sub-level set of a func-
tion, but rather defined as an arbitrary convex set. Hazan &
Kale (2012) initiated this literature by giving an algorithm
that accesses the feasible set via a linear optimization oracle
(LOO) instead of using projections. This is advantageous
because the LOO is often computationally cheaper than the
projection. LOO-based algorithms have received a signifi-
cant amount of attention, e.g. (Hazan & Kale, 2012; Chen
et al., 2019; Garber & Kretzu, 2020; 2022; Wang et al., 2024;
Garber & Kretzu, 2024). The state-of-the-art for LOO-based
algorithms with general convex costs and general convex
feasible sets is O(T 3/4) regret and 1 oracle call per a round
(Hazan & Kale, 2012). Although our methods give smaller
O(
√
T ) regret, we note that the first-order feedback that we

use is generally incomparable to the LOO oracle in terms
of computationally complexity. Indeed, the first-order feed-
back is cheaper to compute for some constraint functions,
while the LOO is cheaper to compute for other constraint
functions.2

2An example of this, pointed out by Garber & Kretzu (2022), is
the difference in computational complexity for first-order informa-
tion and LOO for the nuclear norm ball B∗ and spectral norm ball
B2 in the space of matrices. Computing first-order information
for B∗ and B2 is at worst a full-rank SVD (which is expensive)
and rank-one SVD (which is cheap), respectively. For the LOO,

There is also a growing body of literature that uses the mem-
bership oracle (MO) or separation oracle (SO) to access the
feasible set, e.g. (Levy & Krause, 2019; Garber & Kretzu,
2022; Mhammedi, 2022; Lu et al., 2023; Hu et al., 2023;
Mhammedi, 2024). The MO and SO are defined as follows.
Given a query point x ∈ Rd, the MO specifies whether
or not x is in the feasible set, while the SO returns a hy-
perplane that separates x from the feasible set (if x is not
in the feasible set). If the feasible set is the sub-level set
of a constraint function g (as we consider), then the MO
can be constructed by checking if g(x) > 0, and the SO
can be constructed using the first-order information at x,
i.e. g(x), ∂g(x).3 We use first-order information only at
the played actions, which can therefore only be used to
construct a separation oracle and membership oracle at the
played action. This is distinct from existing MO and SO-
based algorithms, which query the SO and MO at arbitrary
points (not just the played actions). Furthermore, existing
MO-based and SO-based algorithms require multiple oracle
calls per a round. Specifically, existing MO-based algo-
rithms use O(d log(T )) oracle calls per a round (Lu et al.,
2023; Mhammedi, 2022), and existing SO-based algorithms
use O(log(T )) oracle calls per a round (Mhammedi, 2022;
2024) or O(κ) oracle calls per a round (Garber & Kretzu,
2022). Note that we state these bounds for unrestricted T
and use κ to refer to the eccentricity of the feasible set, i.e.
κ = R/r with rB ⊆ X ⊆ RB, which can be arbitrarily
large. The fact that our algorithm only requires 1 oracle
call per a round can result in significant performance advan-
tages over these methods, particularly when the constraint is
costly to evaluate. Furthermore, our approach is applicable
to settings where there is only local constraint information
available.

1.1.3. CONSTRAINED OPTIMIZATION

Our approach is inspired by a line of literature in constrained
(offline) optimization that uses the Polyak step-size to en-
sure convergence to the feasible set, e.g. (Polyak, 2001;
Nedić, 2011; Nedić & Necoara, 2019; Necoara & Singh,
2022). However, we point out two key difficulties that arise
in the OCO setting: (a) the suboptimality gap of the iter-
ates ft(xt)− ft(x

⋆) is not guaranteed to be non-negative,
and (b) the constraint feedback is at the played action xt

and not at the “intermediate” iterate (labeled yt in Algo-
rithm 1). Challenge (a) is particularly difficult to handle
because the analysis approach used by Nedić (2011) (and
following works) relies on the suboptimality gap of the it-

the opposite is true in the B∗ requires a rank-one SVD and B2 a
full-rank SVD.

3Given the query point x and first-order information at this
point g = g(x), s ∈ ∂g(x), it follows from convexity that {y ∈
Rd : g + s⊤(y − x) ≤ 0} is a separating hyperplane w.r.t. X =
{x ∈ Rd : g(x) ≤ 0}.
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erates being non-negative. As a result, we require a new
analysis approach. However, our approach does suffer a
larger dependence on the problem parameters (such as the
subgradient bound Gg), which can be seen as the “cost”
of the adversarial online setting. To handle challenge (b),
we use the first-order approximation of the cost function
gt + s⊤t (yt − xt) in the Polyak step-size instead of the true
cost function g(yt). This first-order approximation avoids
the need for constraint information at the intermediate it-
erate yt, while maintaining the advantageous properties of
the Polyak step-size (see Section 3.4 for the details). Such
a first-order approximation is also advantageous in the of-
fline setup as seen in the recent work of Singh & Necoara
(2025), but the analysis in Singh & Necoara (2025) does
not extend to the OCO setting because it requires that the
suboptimality gap is non-negative (i.e. f(xt)− f(x⋆) ≥ 0)
and that the cost functions have Lipschitz gradients. Related
algorithm designs have also been considered in the literature
on constrained variational inequalities (Zhang et al., 2025),
although under the assumption that the constraint functions
have Lipschitz gradients (which does not hold in our setting).
We further discuss the differences between our algorithm
and the algorithm in Zhang et al. (2025) in Appendix B.

1.2. Notation

We use O(·) for big-O notation and Õ(·) for the same ig-
noring log factors. The 2-norm is denoted by ∥ · ∥ and the
2-norm ball is denoted by B = {x ∈ Rd : ∥x∥ ≤ 1}. Given
a natural number n, we use the notation [n] := {1, 2, ..., n}.
The transpose of a matrix M is denoted M⊤. A vector of
ones and zeros is denoted by 1 and 0, respectively. For
a given x ∈ R, we use the notation [x]+ = max(x, 0).
Lastly, for a point z ∈ Rd and closed convex set Y ⊆ Rd,
we use the notation dist(z,Y) = miny∈Y ∥z − y∥ and
ΠY(z) = argminy∈Y ∥z− y∥.

1.3. Overview

We specify the problem of OCO with constraints in Sec-
tion 2. Then, in Section 3, we give an algorithm for this
problem that uses our approach of Polyak feasibility steps.
In particular, Section 3.1 gives the description of this algo-
rithm, Section 3.2 gives the guarantees of O(

√
T ) regret

and anytime constraint satisfaction g(xt) ≤ 0, and Section
3.3 and 3.4 give the regret analysis and feasibility analysis,
respectively. Lastly, we give simulation results in Section 4
that demonstrate the functionality of our algorithm.

2. Problem Setup
We study the problem of online convex optimization with
functional constraints. In the following, we first describe
online convex optimization generally and then specify the
functional constraints.

Online Convex Optimization Online convex optimiza-
tion (OCO) is a repeated game between a player and an ad-
versary that is played over T rounds. In each round t ∈ [T ],
the player chooses an action xt from a convex action set
X ⊆ Rd, and then the adversary chooses a convex function
ft : Rd → R. The player aims to minimize the cumulative
regret,

RegT :=

T∑

t=1

ft(xt)−min
x∈X

T∑

t=1

ft(x),

We will use the standard assumptions that the action set is
bounded and that the cost functions have bounded gradients.
These are stated precisely in the following.

Assumption 1. There exists positive real R such that
X ⊆ RB.

Assumption 2. There exists positive real Gf such that
∥∇ft(x)∥ ≤ Gf for all x ∈ RB and t ∈ [T ].4

Functional Constraints Following Mahdavi et al. (2012),
we study the setting where the action set is defined by a
functional inequality constraint X = {x ∈ Rd : g(x) ≤ 0},
with g : Rd → R being non-smooth and convex. In the fol-
lowing, we assume that the constraint function has bounded
subgradients (Assumption 3) and that the subgradient norm
is lower-bounded near the boundary (Assumption 4). These
assumptions are also used by Mahdavi et al. (2012) and Je-
natton et al. (2016). We also note in Remark 1 that Assump-
tion 4 is implied by Slater’s condition (i.e. the existence of
a strictly-feasible point) provided that the other assumptions
hold. Lastly, note that since the constraint function is non-
smooth, this setting can be extended to multiple constraints
g1, .., gm by taking g(x) = maxi∈[m] gi(x).

Assumption 3. There exists a positive real Gg such that,
for all x ∈ RB, it holds that ∥∂g(x)∥ ≤ Gg .

Assumption 4. There exists positive reals σ, ϵ such that
X ′ = {x ∈ Rd : g(x) = −ϵ} is nonempty and
∥∂g(x)∥ ≥ σ for all x ∈ X ′.

Remark 1. Assumption 4 holds if Assumption 1 holds and
there exists a strictly-feasible point (i.e. Slater’s condition).
We show this in Appendix C.1.

3. Algorithm
In this section, we give Algorithm 1, which tackles OCO
with functional constraints using our approach of Polyak fea-
sibility steps. Notably, Algorithm 1 only uses one constraint
query in each round, at the played action gt = g(xt), st ∈

4This assumption can be weakened slightly for our guarantees
of anytime constraint satisfaction (i.e. Corollary 1). Specifically,
we only need that ∥∇ft(x)∥ ≤ Gf for all x ∈ X (rather than all
x ∈ RB). We discuss this later in Remark 2.
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∂g(xt), and therefore uses the exact same feedback as Mah-
davi et al. (2012). Despite this limited feedback, we will
show that Algorithm 1 ensures constraint satisfaction for all
rounds, i.e. g(xt) ≤ 0 for all t ∈ [T ].

3.1. Description

At a high-level, Algorithm 1 operates by alternating be-
tween gradient descent steps (line 4) and Polyak feasibility
steps (line 5). We discuss the key ingredients of our Polyak
feasibility steps in the following.

Polyak Step-size The design of our Polyak feasibility step
is motivated by the classical Polyak step-size (Polyak, 1969).
In unconstrained convex optimization, using subgradient de-
scent with the Polyak step-size is known to be optimal (Boyd
et al., 2003), and therefore it is a natural choice to ensure
strong feasibility guarantees when applied to the constraint
function. This classical step-size uses the function value and
subgradient at the current iterate to approximate the optimal
step-size in each update. In our setting, this would require
the constraint function value at the “intermediate iterate” yt,
which is not available. We address this next.

First-order Approximation As discussed previously, the
classical Polyak step-size cannot immediately be applied to
our setting because it would require the constraint function
value at the intermediate iterate yt. Although this is not
known in our setting, we do have constraint information at
the played action xt, which should not be too far from the
intermediate iterate yt. Therefore, we use the constraint
information at xt to construct a first-order approximation of
the constraint at yt,

g(yt) ≈ gt+s⊤t (yt−xt) ∈ g(xt)+∂g(xt)
⊤(yt−xt). (1)

As we will show in the analysis, this first-order approxima-
tion is sufficient to maintain the advantageous properties of
the Polyak step-size.

Constraint Tightening Another difficulty that arises in
our setting is that the gradient descent step in line 4 might
push the sequences of actions out of the feasible set. Indeed,
the cost functions are chosen adversarially and therefore we
have no guarantees about the direction of the gradient in
each round. Therefore, to ensure that the actions are feasi-
ble, we use a tightened version of the constraint function
g(x) + ρ where ρ > 0 is a tightening parameter that is to
be chosen appropriately. Given that the constraint function
is Lipschitz (via Assumption 3), this ensures that there is a
“buffer zone” between the points that satisfy the tightened
constraint g(x) + ρ ≤ 0 and the boundary of the true fea-
sible set defined by g(x) ≤ 0. Therefore, by choosing ρ
proportional to the cost step-size η, we can ensure that the
actions are feasible despite the adversarially-chosen cost

Algorithm 1 OGD with Polyak Feasibility Steps

input initial action x1 ∈ Rd, step size η > 0, tighten-
ing ρ ≥ 0.

1: for t = 1, 2, ..., T do
2: Play xt and receive ft.
3: Query constraint: gt = g(xt), st ∈ ∂g(xt).
4: Gradient descent: yt = xt − η∇ft(xt).
5: Polyak feasibility step:5

xt+1 = ΠRB

(
yt − [gt+s⊤t (yt−xt)+ρ]+

∥st∥2 st

)
.

6: end for

gradients. Note that tightening the constraint in this manner
is a common technique in the constrained OCO literature,
e.g. (Mahdavi et al., 2012; Jenatton et al., 2016).

Polyak Feasibility Steps Using the ingredients discussed
previously, we can put everything together to get our Polyak
feasibility steps. Indeed, the step-size in line 5 is,

[gt + s⊤t (yt − xt) + ρ]+
∥st∥2

, (2)

where the numerator uses the first-order approximation in (1)
and the tightening parameter ρ. As such (2) can be viewed
as the Polyak step-size that uses a first-order approximation
of the tightened constraint value g(yt) + ρ. In the analysis,
we will see that this step-size ensures that the constraint
value is greatly reduced in each step.

3.2. Guarantees

In this section, we give the regret guarantees and constraint
satisfaction guarantees for Algorithm 1. In particular, the
following theorem (Theorem 1) gives a bound on the regret
and constraint violation for an arbitrary choice of algorithm
parameters η, ρ. We will then show how these algorithm
parameters can be chosen to get several different guarantees.

Theorem 1. Let Assumptions 1, 2, 3 and 4 hold. Then,
playing Algorithm 1 with η > 0 and ρ ∈ [0, ϵ] ensures that,

RegT ≤
2R2

η
+

η

2
G2

fT +
Gfρ

σ
T,

g(xt) ≤ Ggγ
(t−1)/2dist(x1,Xρ) +

ηGgGf

1−√γ
− ρ, ∀t

where Xρ = {x ∈ Rd : g(x) ≤ −ρ} and γ = 1− σ2

G2
g

.

In the following, Corollary 1 specifies a choice of η and ρ
that ensures O(

√
T ) regret and anytime constraint satisfac-

tion. Note that this result requires that the initial action x1

is strictly-feasible. We also point out that these guarantees

5When st = 0, we take the update to be xt+1 = ΠRB (yt).
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still hold under a slightly weaker set of assumptions, which
we discuss in Remark 2.
Corollary 1. Let Assumptions 1, 2, 3 and 4 hold. Suppose
that g(x1) ≤ −α for some α ∈ (0, ϵ], and let ρ = α√

T
and

η = ξρ
GfGg

, where ξ = 1−√γ. It follows that the actions
chosen by Algorithm 1 satisfy,

RegT ≤
(
2GfGgR

2

ξα
+

Gfξα

2Gg
+

Gfα

σ

)√
T ,

g(xt) ≤ 0 ∀t ∈ [T ],

Remark 2. The guarantees in Corollary 1 also hold under
a slightly weaker set of assumptions. In particular, we only
need that ∥∇ft(x)∥ ≤ Gf for all x ∈ X (rather than all
x ∈ RB). We show this in Appendix C.4.

Next, we give Corollary 2, which shows that, when x1 is
in RB (and therefore is not necessarily feasible), then the
algorithm can ensure anytime constraint satisfaction after
O(log(T )) rounds. Corollary 2 also shows that when T is
sufficiently large, then the algorithm ensures that there is
cumulative constraint satisfaction

∑T
t=1 g(xt) ≤ 0. Note

that the requirement that T is sufficiently large is also used
by prior work that shows cumulative constraint satisfaction
(Mahdavi et al., 2012; Jenatton et al., 2016).
Corollary 2. Let Assumptions 1, 2, 3 and 4 hold. Consider
Algorithm 1 with x1 ∈ RB, η = ξϵ

2GfGg

√
T

and ρ = ϵ√
T

.
Then, it holds that,

RegT ≤
(
GfGgR

2

ξϵ
+

Gfξϵ

4Gg
+

Gf ϵ

σ

)√
T ,

g(xt) ≤ 0 ∀t ≥ 1 +
2G2

g

σ2
log

(
4GgR

√
T

ϵ

)
.

Furthermore, when
√
T ≥ 4RGg

ϵξ it additionally holds that,

T∑

t=1

g(xt) ≤ 0.

Lastly, we give another corollary below (Corollary 3) that
allows a small amount of violation in each round, while
eliminating the dependence on Gg in the regret bound. In
this case, the regret bound is 2RGf

√
T , which matches

what is attained by online gradient descent using a full
projection on to the action set in each round. At the same
time, the constraint violation satisfies g(xt) = O( 1√

T
).

Corollary 3. Let Assumptions 1, 2, 3 and 4 hold. Consider
Algorithm 1 with x1 ∈ RB, η = 2R

Gf

√
T

and ρ = 0. Then, it
holds that,

RegT ≤ 2RGf

√
T ,

g(xt) ≤ 2RGg exp

(
−σ2(t− 1)

2G2
g

)
+

2RGg

ξ
√
T

∀t ∈ [T ]

3.3. Regret Analysis

In this section, we give the regret analysis. We separate
the regret in to (I) the regret with respect to the tightened
feasible set, and (II) the cost of tightening the feasible set,

RegT =

T∑

t=1

(ft(xt)− ft(x
⋆
ρ))

︸ ︷︷ ︸
Term I

+

T∑

t=1

(ft(x
⋆
ρ)− ft(x

⋆)),

︸ ︷︷ ︸
Term II

(3)
where x⋆

ρ ∈ argminx∈Xρ

∑T
t=1 ft(x), and the tightened

feasible set is,

Xρ := {x ∈ Rd : g(x) ≤ −ρ}. (4)

We start with Term I. The key observation is that the Polyak
feasibility step (line 5) can be equivalently defined as the
projection on to the halfspace Ht in (5) below (with the
additional projection on to the ball). In fact, this halfspace
Ht contains the tightened feasible set Xρ and therefore pro-
jecting on to it will not increase the distance to any point in
Xρ. This is stated precisely in Fact 1.
Fact 1. The update for xt+1 in line 5 of Algorithm 1 is
equivalent to xt+1 = ΠRB(ΠHt

(yt)) where,

Ht = {x ∈ Rd : gt + s⊤t (x− xt) + ρ ≤ 0}. (5)

Furthermore, it holds thatHt ⊇ Xρ, and therefore that for
all x ∈ Xρ and v ∈ Rd,

∥ΠHt(v)− x∥ ≤ ∥v − x∥. (6)

In fact, the classical analysis of OGD (from Zinkevich
(2003)) only requires that the projection does not increase
the distance to the optimal action, which is ensured by (6)
in Fact 1. Therefore, it follows from (6) and the standard
analysis of OGD that we have a regret bound with respect
to the tightened feasible set, and thus,

Term I ≤ 2R2

η
+

η

2
G2

fT. (7)

We defer the complete proof of (7) to Appendix C.3.

Now, we look at Term II. We use Lemma 1 below, which
provides a bound on the distance to Xρ in terms of g. This
lemma is conceptually similar to Theorem 7 in Mahdavi
et al. (2012). However, it is more general in the sense
that it is a general error bound on the constraint function,
whereas Theorem 7 in Mahdavi et al. (2012) only provides
a bound on the difference in costs between a point in the
tightened feasible set and the original feasible set. The proof
of Lemma 1 is given in Appendix C.2.
Lemma 1. Let Assumptions 3 and 4 hold, and suppose that
ρ ∈ [0, ϵ]. Then, we have for all x ∈ RB that,

dist(x,Xρ) ≤
1

σ
[g(x) + ρ]+ (8)

6
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It follows from Lemma 1 and the cost gradient bound (As-
sumption 2) that,

Term II =

T∑

t=1

(ft(x
⋆
ρ)− ft(x

⋆))

≤
T∑

t=1

(ft(ΠXρ
(x⋆))− ft(x

⋆)) (a)

≤ GfTdist(x
⋆,Xρ) (b)

≤ GfT

σ
[g(x⋆) + ρ]+ ≤

Gfρ

σ
T, (c)

where (a) uses the minimality of x⋆
ρ, (b) uses the cost gradi-

ent bound, and (c) uses Lemma 1 and that g(x⋆) ≤ 0.

Combining the bounds on Term I and Term II yields,

RegT ≤
2R2

η
+

η

2
G2

fT +
Gfρ

σ
T,

which matches the bound in Theorem 1.

3.4. Feasibility Analysis

In this section, we give the feasibility analysis. The central
result in this section is Lemma 2 below, which shows that
the Polyak step-size shrinks the distance to a sub-level set of
g. This lemma combines the classical analysis of the Polyak
step-size from Polyak (1969) with Lemma 1.

Lemma 2 (Polyak Step-size). Let Assumption 3 and 4 hold,
and suppose that ρ ∈ [0, ϵ]. Furthermore, consider the
ρ-sublevel set of g, Xρ := {x ∈ Rd : g(x) + ρ ≤ 0}.
Consider any x ∈ RB and s ∈ ∂g(x) such that s ̸= 0, and
let,

x+ = ΠRB

(
x− [g(x) + ρ]+

∥s∥2
s

)
. (9)

Then, it holds that,

dist2(x+,Xρ) ≤
(
1− σ2

G2
g

)
dist2(x,Xρ). (10)

Proof. Let v = ΠXρ(x) and denote gρ(x) := g(x) + ρ.
First, note that if gρ(x) ≤ 0, then (9) becomes x+ = x
and therefore gρ(x

+) = gρ(x) ≤ 0 and (10) is satisfied
with both sides 0. Therefore, we take gρ(x) > 0 for the
remainder (which ensures that [gρ(x)]+ = gρ(x)). Then, it
follows that,

dist2(x+,Xρ) ≤ ∥x+ − v∥2

≤ ∥x− gρ(x)

∥s∥2
s− v∥2 (a)

= dist2(x,Xρ)− 2
gρ(x)

∥s∥2
s⊤(x− v)

+
gρ(x)

2

∥s∥2

≤ dist2(x,Xρ)−
gρ(x)

2

∥s∥2
(b)

≤ dist2(x,Xρ)−
gρ(x)

2

G2
g

(c)

≤
(
1− σ2

G2
g

)
dist2(x,Xρ), (d)

where (a) uses the Pythagorean theorem of the projection,
(b) uses that s⊤(x − v) ≥ gρ(x) − gρ(v) ≥ gρ(x) due to
the fact that s ∈ ∂g(x) and v ∈ Xρ, (c) uses that ∥s∥ ≤ Gg

due to Assumption 3, and (d) uses Lemma 1.

Using Lemma 2, we will show that the distance between the
action xt and the tightened feasible set Xρ will not increase
too much in each round, and therefore that xt always stays
close to Xρ. The key difficulty in doing so is that Lemma 2
uses the “exact” Polyak step-size, while Algorithm 1 uses
the first-order approximation of the constraint value in the
Polyak step-size (i.e. as in (2)). In order to handle this dis-
parity, we introduce the “fictitious” iterate zt+1. We define
zt+1 such that zt+1 = xt when st = 0, and otherwise take,

zt+1 = ΠRB

(
xt −

[gt + ρ]+
∥st∥2

st

)
.

We can interpret zt+1 as a feasibility step that is taken di-
rectly from the previous action xt. Importantly, the update
for zt+1 matches the form in (9) and therefore we will be
able to directly apply Lemma 2 to analyze zt+1.

Using zt+1, we study the distance between xt+1 and Xρ,

dist(xt+1,Xρ) ≤ ∥xt+1 −ΠXρ
(zt+1)∥

≤ ∥xt+1 − zt+1∥︸ ︷︷ ︸
Term I

+dist(zt+1,Xρ)︸ ︷︷ ︸
Term II

,

We start with Term I. First, note that zt+1 can be written as
zt+1 = ΠRB(ΠHt

(xt)), whereHt is the halfspace defined
in (5). Therefore, it follows that,

Term I = ∥ΠRB(ΠHt
(yt))−ΠRB(ΠHt

(xt))∥
≤ ∥ΠHt

(yt)−ΠHt
(xt)∥

≤ ∥yt − xt∥
= η∥∇ft(xt)∥
≤ ηGf ,

(11)

where the first two lines use the non-expansiveness of the
projection, and the last line uses the cost gradient bound.

Next, we look at Term II. If st = 0, then it holds that
zt+1 = xt and g(xt) = minx g(x) ≤ −ρ, which implies
that Term II = 0. Alternatively, if st ̸= 0, then applying
Lemma 2 yields (Term II)2 ≤ γ dist2(xt,Xρ), where γ :=

1− σ2

G2
g

. Therefore, it holds in any case that,

Term II ≤ √γdist(xt,Xρ)

7
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Figure 1. Experiment results for our algorithm (labeled PFS), alongside the algorithm from Yu et al. (2017) (labeled DPP). We also
include a version of the algorithm in Yu et al. (2017) where the constraint is tightened (labeled DPP-T). The points indicate the average
over 30 trials and the error bars and shading are ±1 standard deviation.

Combining Term I and Term II yields,

dist(xt+1,Xρ) ≤
√
γdist(xt,Xρ) + ηGf

≤ γt/2dist(x1,Xρ) + ηGf

t−1∑

s=0

(
√
γ)s

≤ γt/2dist(x1,Xρ) +
ηGf

1−√γ

where we apply the bound recursively in the second line, and
use the fact that γ ∈ [0, 1) in the third line. Then, applying
the the subgradient bound (Assumption 3),

g(xt) = g(xt)− g(ΠXρ
(xt)) + g(ΠXρ

(xt))

≤ Ggdist(xt,Xρ)− ρ

≤ Ggγ
(t−1)/2dist(x1,Xρ) +

ηGgGf

1−√γ
− ρ.

This matches the constraint violation guarantee in Theo-
rem 1.

4. Numerical Experiments
Although our primary contribution is our theoretical results,
we also give numerical experiments to demonstrate the func-
tionality of the algorithm and provide some empirical ver-
ification of the theoretical results.6 In these experiments,
we benchmark the performance of our algorithm with the
algorithm from Yu et al. (2017) as it has the best regret
bound among those in Table 1.

We consider a 2-dimensional toy setting with quadratic cost
functions ft(x) = 3∥x− vt∥2 and linear constraints Ax ≤
b. We generate vt by sampling uniformly from [0, 1]2, and
take A = [I −I]⊤ and b = 0.51, where we use I to denote
the 2 × 2 identity matrix. Therefore, we can define the
constraint function as g(x) = maxi∈[4] a

⊤
i x− bi, where ai

6Our experiment code is available at https://github.
com/shutch1/OCO-Polyak-Feasibility-Steps.
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x
2
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Figure 2. Actions chosen by our algorithm and the one from Yu
et al. (2017) in an experiment.

and bi are the ith row of A and b respectively.7 Accordingly,
we take Gf =

√
2, R = 1, Gg = 1, ϵ = 0.25 and σ = 1√

2
.

In this setting, we implement Algorithm 1 (labeled PFS)
with the algorithm parameters chosen according to Theo-
rem 1, as well as the algorithm in Yu et al. (2017) (labeled
DPP) with the algorithm parameters chosen according to
their Theorem 1, i.e. α = T, V =

√
T . We also implement

the algorithm from Yu et al. (2017) with a tightened con-
straint gρ(x) := g(x) + ρ for ρ ∈ [0, ϵ], as is used in our
algorithm and that in Mahdavi et al. (2012) and Jenatton
et al. (2016). Same as the aforementioned algorithms, we
use a decreasing ρ = min(ϵ, c√

T
), where c > 0 is a param-

eter that we tune to reduce the violation. We choose c = 20
to ensure that there is a small amount of constraint violation.
The tightened version of DPP is labeled DPP-T.

The results are shown in Figure 1. Precisely, Figure 1a
and Figure 1b show the regret and cumulative violation for
T = 2×103, 4×103, ..., 2×104, where the marker indicates

7Note that the constraint can also be written with the infinity-
norm: g(x) = ∥x∥∞ − b.
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the mean over the 30 trials and the errorbar indicates the
standard deviation. Figure 1c shows the instantaneous viola-
tion [g(xt)]+ at each round for a fixed T = 2× 104, where
the line shows the mean over 30 trials and the shading indi-
cates the standard deviation. In these results, DPP enjoys
smaller regret than PFS. However, DPP incurs constraint
violation, while PFS does not incur constraint violation. By
augmenting DPP with a tightened constraint, the constraint
violation can be substantially reduced as shown for DPP-T.
However, this also results in a larger regret.

To provide intuition on the operation of our algorithm, we
also include Figure 2, which shows every 300th action cho-
sen by the algorithms in one simulation trial. In this plot, it
can be seen that PFS takes a conservative approach in grad-
ually approaching the constraint boundary, which ensures
constraint satisfaction at the cost of larger regret.

5. Conclusion
In this work, we give an algorithm for constrained OCO
that uses Polyak feasibility steps to ensure anytime con-
straint satisfaction g(xt) ≤ 0 ∀t and O(

√
T ) regret, while

only receiving feedback on the function value and subgra-
dient at the played actions. We foresee this approach being
particularly relevant to safety-critical applications, where
constraints must be satisfied despite having only limited
constraint information.
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A. Extension of Prior Work to No Cumulative Constraint Violation
In this section, we show how the prior work Yu et al. (2017) and Yuan & Lamperski (2018) can be extended to show
cumulative constraint satisfaction

∑T
t=1 g(xt) ≤ 0 under Assumption 4 (which is the same as Assumption 1 in Mahdavi

et al. (2012)). This follows a similar approach to Theorem 8 in (Mahdavi et al., 2012), but we give it for completeness.

The algorithm in Yu et al. (2017) guarantees RegT ≤ CR

√
T and

∑T
t=1 g(xt) ≤ CV

√
T for some constants CR, CV > 0.

Therefore, by applying this algorithm to the tightened constraint gρ(x) := g(x) + ρ, we can guarantee that
∑T

t=1 gρ(xt) ≤
CV

√
T and,

RegρT :=

T∑

t=1

ft(xt)− min
x∈Xρ

T∑

t=1

ft(x) ≤ CR

√
T , (12)

where Xρ is the sub-level set of the tightened constraint defined in (4). Choosing ρ = min
(
ϵ, CV√

T

)
(where ϵ is defined in

Assumption 4) and taking T ≥ C2
V

ϵ2 ensures that,

T∑

t=1

g(xt) =

T∑

t=1

gρ(xt)− ρT ≤ CV

√
T −min

(
ϵ,

CV√
T

)
T = 0. (13)

Then, with x⋆
ρ ∈ argminx∈Xρ

∑T
t=1 ft(x),

RegT = RegρT +

T∑

t=1

(ft(x
⋆
ρ)− ft(x

⋆)) ≤ RegρT +

T∑

t=1

(ft(ΠXρ
(x⋆))− ft(x

⋆)) ≤ RegρT + TGgdist(x
⋆,Xρ)

Then, applying Lemma 1 and (12), and using the fact that g(x⋆) ≤ 0 yields,

RegT ≤ CR

√
T + T

Gg

σ
[g(x⋆) + ρ]+ ≤ CR

√
T + T

Gg

σ
ρ ≤ CR

√
T +

GgCV

σ

√
T .

Therefore, we have shown that the algorithm from Yu et al. (2017) can be extended to show O(
√
T ) regret and cumulative

constraint satisfaction
∑T

t=1 g(xt) ≤ 0, provided that Assumption 4 holds and that T is sufficiently large, i.e. T ≥ C2
V

ϵ2 .
Note that the requirement that T is sufficiently large is also required by other works that guarantee cumulative constraint
satisfaction, e.g. (Mahdavi et al., 2012; Jenatton et al., 2016).

We can use a similar process to give guarantees for Yuan & Lamperski (2018). The original guarantees in Yuan & Lamperski
(2018) are of the form RegT ≤ CRT

max(β,1−β) and
∑T

t=1[g(xt)]+ ≤ CV T
1−β/2. Therefore, choosing ρ = min

(
ϵ, CV

Tβ/2

)

and taking T ≥ C
2/β
V

ϵ2/β
ensures that

∑T
t=1 g(xt) ≤ 0. Also, the resulting regret is,

RegT ≤ CRT
max(β,1−β) +

GgCV

σ
T 1−β/2.

The order of the bound max(β, 1− β, 1− β/2) is minimized when β = 2
3 and therefore, we get that RegT = O(T 2/3).

Note that Yuan & Lamperski (2018) also gives a bound of the form
∑T

t=1([g(xt)]+)
2 ≤ CV T

1−β , and therefore one might
hope to guarantee

∑T
t=1([g(xt)]+)

2 ≤ 0. Unfortunately, the analysis approach does not immediately show this because the
tightening parameter ρ cannot be used to cancel out the violation as in (13).

B. Comparison of Algorithm with Related Work
In this section, we discuss the differences between our algorithm design and the algorithm design in Zhang et al. (2025),
which studies constrained variational inequalities. Although Zhang et al. (2025) studies a different setting and therefore uses
a different analysis, there are some apparent similarities in algorithm design that we discuss here. To illustrate the similarities
and differences, we can write our algorithm in a different form that allows for more direct comparison. In particular, when
the cost functions are fixed ft = f and the constraint function is smooth, we can write our algorithm (with ρ = 0) as,

xt+1 = ΠRB

(
xt − η∇f(xt)−

[g(xt)− η∇f(xt)
⊤∇g(xt)]+

||∇g(xt)||2
∇g(xt)

)
, (14)
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and the algorithm in Zhang et al. (2025) can be written as (see their Algorithm 2),

xt+1 = xt − η∇f(xt)− η
[αg(xt)−∇f(xt)

⊤∇g(xt)]+
||∇g(xt)||2

∇g(xt). (15)

In both algorithms, the step-size η is Θ( 1√
T
) and α = Gg/R in (15). As such, we can see several differences:

• Zhang et al. (2025) applies the step-size η to the entire third term in (15), while our algorithm in (14) applies the step
size only to∇f(xt)

⊤∇g(xt) within the third term.

• Zhang et al. (2025) applies the scaling α to g(xt) in (15), while our algorithm uses no such scaling in (14).

• Zhang et al. (2025) uses an additional constraint to ensure that the iterates are bounded, whereas we use a projection on
to RB.

C. Missing proofs
C.1. Proof of Remark 1

In this section, we show that Slater’s condition implies Assumption 4, provided that Assumption 1 holds.

Proposition 1. Let Assumption 1 hold. Then, suppose that Slater’s condition holds, i.e. there exists positive real ξ and
y ∈ Rd such that g(y) ≤ −ξ. It follows that Assumption 4 holds with ϵ = cξ and σ = (1− c) ξ

2R for any c ∈ (0, 1).

Proof. It holds that X ′ = {x ∈ Rd : g(x) = −ϵ} is non-empty because there exists z,y such that g(z) = 0 (given that X
is nonempty and compact) and g(y) ≤ −ξ. Specifically, since −ϵ ∈ [−ξ, 0] and g is continuous (via Corollary 10.1.1 in
(Rockafellar, 1970)), it holds that there exists z such that g(z) = −ϵ.

Then, we show that ∥∂g(x)∥ ≥ σ for all x ∈ X ′. Indeed for all x ∈ X ′, it holds for all s ∈ ∂g(x) that,

− ξ ≥ g(y) ≥ g(x) + s⊤(y − x) = −ϵ+ s⊤(y − x) ≥ −ϵ− ∥s∥∥y − x∥ ≥ −ϵ− 2∥s∥R

=⇒ ∥s∥ ≥ ξ − ϵ

2R
= (1− c)

ξ

2R
= σ,

where we use the fact that ∥y − x∥ ≤ 2R given that x,y ∈ X ⊆ RB.

C.2. Proof of Lemma 1

In this section, we give the proof of Lemma 1. This proof relies on the following lemma, which gives several properties of
the projection on to the sub-level set of a convex function.

Lemma 3. Consider a closed convex function h : Rd → R, where we use the notation S = {x ∈ Rd : h(x) ≤ 0}. Let K be
a convex set such that S ⊆ K. Assume that, for all x ∈ K, it holds that ∥s∥ ≤ G for all s ∈ ∂h(x), and when h(x) = 0, it
holds that ∥s∥ ≥ σ for all s ∈ ∂h(x). Then, take any x ∈ K such that h(x) > 0. Let z = Πx:h(x)≤0(x) and sx ∈ ∂h(x).
There exists γ ≥ 0 and sz ∈ ∂h(z) such that:

1. h(z) = 0,

2. x− z = γ sz
∥sz∥ ,

3. γ ≤ h(x)
∥sz∥ ,

4. ∥sz∥2 ≤ s⊤x sz ,

5. ∥sx∥ ≥ ∥sz∥.

Proof. First, note that the S := {x ∈ Rd : h(x) ≤ 0} is a closed and convex set so this projection is well-defined. Then, we
show each point in the following.

12
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1. Suppose the contrary, i.e. that h(z) ≤ −ϵ for some ϵ > 0. It follows that z+ ϵ
GB ⊆ S as

sup
v∈B

h(z +
ϵ

G
v) ≤ h(z) +G

ϵ

G
≤ −ϵ+ ϵ = 0.

Therefore, z′ = z+ x−z
∥x−z∥

ϵ
G ∈ S and

∥z′ − x∥ = ∥z+ x− z

∥x− z∥
ϵ

G
− x∥ =

(
1− ϵ

∥x− z∥G

)
∥z− x∥ < ∥z− x∥,

contradicting the optimality of z as the minimizer of the distance to S.

2. Since z = ΠS(x) and S is a closed convex set, we know that the vector x − z is normal to S at z. Furthermore,
S = {x : h(x) ≤ h(z) = 0} and the conditions of the lemma ensures that 0 is not a subgradient of h at z (and therefore z
is not a minimum of h) so (Rockafellar, 1970) (Corollary 23.7.1) tells us that there exists λ ≥ 0 such that x− z ∈ λ∂h(z).
Therefore, there exists γ ≥ 0 and sz ∈ ∂h(z) such that x− z = γ sz

∥sz∥ .

3. It follows from the definition of subgradient of h that,

h(x) ≥ h(z) + s⊤z (x− z) = s⊤z (x− z) = γ
s⊤z sz
∥sz∥

= γ∥sz∥.

Rearranging yields,

γ ≤ h(x)

∥sz∥
.

4. From the monotonicity of the subgradients of a convex function, it holds that

0 ≤ (sz − sx)
⊤(z− x) = − γ

∥sz∥
(sz − sx)

⊤sz

=⇒ 0 ≥ (sz − sx)
⊤sz

=⇒ ∥sz∥2 ≤ s⊤x sz.

5. From #4 and Cauchy-Schwarz,

∥sz∥2 ≤ s⊤x sz ≤ ∥sx∥∥sz∥ =⇒ ∥sx∥ ≥ ∥sz∥.

Then, we give the proof of Lemma 1 in the following.

Proof of Lemma 1. We use the notation gρ(x) := g(x) + ρ. First note that when gρ(x) ≤ 0, then x ∈ Xρ and therefore (8)
holds with both sides zero. Next, we consider the case where gρ(x) > 0. To do so, we will first show that the subgradient
norm of gρ(x) is lower bounded at all x such that gρ(x) = 0. In particular, consider any x such that gρ(x) = 0 (which
necessarily satisfies x ∈ RB), and let z = Πg(x)≤−ϵ(x) and sz ∈ ∂g(z). Then, it follows from Assumption 4 that ∥sz∥ ≥ σ
and therefore we can apply Lemma 3 #5 by setting K ← RB, h← g + ϵ, σ ← σ to get that for all sx ∈ ∂g(x),

∥sx∥ ≥ ∥sz∥ ≥ σ.

Note that we have used the fact that ∂(g(x) + ϵ) = ∂gρ(x) = ∂g(x) since they only vary by a constant. Since we know that
the subgradient norm of gρ is lower bounded at the boundary of Xρ, we can apply Lemma 3 #3 with K ← RB, h ← gρ,
G← Gg and σ ← σ to get that,

dist(x,Xρ) ≤
gρ(x)

∥sz∥
≤ gρ(x)

σ
,

which verifies (8).
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C.3. Proof of (7)

In this section, we prove (7). This combines Fact 1 with the classical online gradient descent analysis from (Zinkevich,
2003).

Proof of (7). Given that x⋆
ρ ∈ Xρ ⊆ Ht and x⋆

ρ ∈ Xρ ⊆ X ⊆ RB (and bothHt and RB are convex), it holds that,

∥xt+1 − x⋆
ρ∥2 = ∥ΠRB(ΠHt

(yt+1))− x⋆
ρ∥2

≤ ∥ΠHt
(yt+1)− x⋆

ρ∥2

≤ ∥yt+1 − x⋆
ρ∥2

≤ ∥xt − η∇ft(xt)− x⋆
ρ∥2

= ∥xt − x⋆
ρ∥2 − 2η∇ft(xt)

⊤(xt − x⋆
ρ) + η2∥∇ft(xt)∥2.

Using this and the convexity of ft, it follows that

Term I =

T∑

t=1

(ft(xt)− ft(x
⋆
ρ))

≤
T∑

t=1

∇ft(xt)
⊤(xt − x⋆

ρ)

≤ 1

2η

T∑

t=1

(∥xt − x⋆
ρ∥2 − ∥xt+1 − x⋆

ρ∥2) +
η

2

T∑

t=1

∥∇ft(xt)∥2

=
1

2η
(∥x1 − x⋆

ρ∥2 − ∥xT+1 − x⋆
ρ∥2) +

η

2

T∑

t=1

∥∇ft(xt)∥2

≤ 2

η
R2 +

η

2
G2

fT

where the third inequality uses Assumptions 1 and 2.

C.4. Proof of Remark 2

In this section, we show that the guarantees of Corollary 1 hold under slightly weaker assumptions. In particular, we use the
following Assumption 5 instead of Assumption 2. Assumption 5 is weaker than Assumption 2 in that it only requires that
the cost gradients are bounded for all x ∈ X , rather than all x ∈ RB.

Assumption 5. There exists positive real Gf such that ∥∇ft(x)∥ ≤ Gf for all x ∈ X and t ∈ [T ].

We then state the guarantees as a proposition and prove it.

Proposition 2. Let Assumptions 1, 3, 4 and 5 hold. Suppose that g(x1) ≤ −α for some α ∈ (0, ϵ], and let ρ = α√
T

and

η = ξρ
GfGg

, where ξ = 1−√γ. It follows that the actions chosen by Algorithm 1 satisfy,

RegT ≤
(
2GfGgR

2

ξα
+

Gfξα

2Gg
+

Gfα

σ

)√
T ,

g(xt) ≤ 0 ∀t ∈ [T ],

Proof. First, we show that ∥∇ft(xt)∥ ≤ Gf for all t ∈ [T ] by induction over the first τ rounds. The base case holds because
x1 ∈ Xρ ⊆ X and therefore ∥∇ft(xt)∥ ≤ Gf by Assumption 5. For the induction step, suppose that ∥∇ft(xt)∥ ≤ Gf

for all t ∈ [τ ]. Then, note that the feasibility analysis in Section 3.4 only requires that the cost gradient is bounded at the
previously played actions. In particular, this bound is applied in (11). Therefore, it holds that,

g(xτ+1) ≤ Ggγ
t/2dist(x1,Xρ) +

ηGgGf

1−√γ
− ρ,
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implying that g(xτ+1) ≤ 0 with the specified choice of algorithm parameters. Since xτ+1 ∈ X , it holds that
∥∇fτ+1(xτ+1)∥ ≤ Gf , and together with the induction hypothesis, it holds that ∥∇ft(xt)∥ ≤ Gf for all t ∈ [τ + 1] and
the induction step is complete. Thus, it holds that ∥∇ft(xt)∥ ≤ Gf for all t ∈ [T ]. Along the way, we have also shown that
xt ∈ X for all t ∈ [T ].

Next, we show that, because the cost gradients are bounded at the actions, the regret bound holds. In particular, the analysis
of Term I in the regret analysis (see Section 3.3) holds because it only requires that ∥∇ft(xt)∥ ≤ Gf for all t ∈ [T ] (as
shown in Section C.3). The analysis of Term II requires that ft(ΠXρ

(x⋆)) − ft(x
⋆) ≤ Gf∥ΠXρ

(x⋆) − x⋆∥. This holds
because the cost gradients are assumed to be bounded on X and therefore all ft are Lipschitz on X .
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