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ABSTRACT

Large Language Models (LLMs) embed sensitive, human-generated data, prompt-
ing the need for unlearning methods. Although certified unlearning offers strong
privacy guarantees, its restrictive assumptions make it unsuitable for LLMs, giving
rise to various heuristic approaches typically assessed through empirical evaluations.
These standard evaluations randomly select data for removal, apply unlearning
techniques, and use membership inference attacks (MIAs) to compare unlearned
models against models retrained without the removed data. However, to ensure
robust privacy protections for every data point, it is essential to account for scenar-
ios in which certain data subsets face elevated risks. Prior research suggests that
outliers, particularly including data tied to minority groups, often exhibit higher
memorization propensity which indicates they may be more difficult to unlearn.
Building on these insights, we introduce a complementary, minority-aware evalua-
tion framework to highlight blind spots in existing frameworks. We substantiate
our findings with carefully designed experiments, using canaries with personally
identifiable information (PII) to represent these minority subsets and demonstrate
that they suffer at least 20% higher privacy leakage across various unlearning
methods, MIAs, datasets, and LLM scales. Our proposed minority-aware evalua-
tion framework marks an essential step toward more equitable and comprehensive
assessments of LLM unlearning efficacy.

1 INTRODUCTION

Large Language Models (LLMs) are trained on vast and diverse datasets, often sourced from public
content on the web, much of which is generated by humans (Touvron et al., 2023; Ouyang et al.,
2022). This practice raises significant ethical concerns, particularly when the data includes sensitive
information, leading to potential privacy violations. Individuals whose data has been used may seek
to exercise their “right to be forgotten", a protection guaranteed by regulations such as the General
Data Protection Regulation (GDPR) (Krzysztofek, 2018).

The ideal approach to fulfilling such a request is to retrain the LLM from scratch, excluding the data to
be removed. However, this solution is prohibitively expensive and impractical for large-scale models.
To address this, the concept of machine unlearning has emerged as a promising alternative. It seeks to
efficiently modify the LLM so that it becomes statistically indistinguishable from a model retrained
from scratch. In this way, no adversary could confidently determine whether a model has undergone
an unlearning process or been retrained, ensuring compliance with the “right to be forgotten”.

Unfortunately, it remains an open problem to enforce the formal unlearning guarantee for deep
neural networks and LLMs without exact retraining. Despite recent progress in theoretical unlearning
research (Guo et al., 2020; Sekhari et al., 2021; Neel et al., 2021; Ullah et al., 2021; Chien et al., 2023;
Ullah & Arora, 2023; Chien et al., 2024a;b), their restrictive assumptions limit practical applicability
to deep neural networks and LLMs. Concurrently, researchers have developed efficient unlearning
heuristics and empirically evaluated their efficacy (Golatkar et al., 2020a;b; Graves et al., 2021;
Liu et al., 2024a;c; Yao et al., 2024), often by comparing approximately unlearned models to those
retrained from scratch (Pawelczyk et al., 2024a). Among the various evaluation methods, membership
inference attacks (MIAs) (Shokri et al., 2017), originally developed to infer data usage during training,
have been widely adopted for assessing unlearning performance (Shi et al., 2024b).
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Figure 1: Illustration of our proposed LLM unlearning approaches (highlighted in red), when
compared with the existing pipeline. Standard LLM unlearning evaluation typically involves randomly
sampling data for removal from the training set (Case 1), which may underestimate privacy leakage
for minority groups. In contrast, we design experiments to assess unlearning efficacy by removing
canaries (deliberately inserted data points) related to minority groups (Case 2) and by directly
removing data from minority groups (Case 3). Our approach provides a more comprehensive,
minority-aware evaluation by considering the worst result across the three settings.

We identify a critical pitfall in the aforementioned LLM unlearning efficacy evaluation. While
literature indicates that memorization levels in LLMs vary significantly across individual training
samples (Feldman & Zhang, 2020; Carlini et al., 2022), current unlearning evaluation methods for
them only capture “average-case” performance through random data removal from the training set.
This approach inadequately addresses privacy risks for hard-to-unlearn data, failing to account for
challenging scenarios necessitating rigorous privacy protection (Steinke & Ullman, 2020; Aerni et al.,
2024). It neglects the principle that every individual’s right to be forgotten should be upheld equally,
thus ignoring data from minority groups, which are often treated as outliers and can be more resistant
to unlearning due to the aforementioned stronger memorization effects (Carlini et al., 2022; Nasr
et al., 2021; 2023). Consequently, standard unlearning evaluation significantly underestimates privacy
risks for these groups, overlooking crucial social responsibilities in personal data protection.

Contributions. Motivated by the privacy auditing literature (Jagielski et al., 2020; Steinke et al.,
2024), we conduct a synthetic experiment on unlearning injected canaries pertaining to minority
groups. We choose Personally Identifiable Information (PII) as a representative minority identifier,
while noting that our approach extends to broader cases. We show that minorities suffer from at
least 20% more privacy leakage in most cases across combinations of six unlearning approaches,
three MIA variants, three datasets, and two LLMs of different scales. These results underscore
the prevalence of the issue in practical settings, highlighting the need for a more effective LLM
unlearning evaluation, particularly in regard to privacy risks for minority groups. Accordingly, we
propose a minority-aware LLM unlearning evaluation protocol (Figure 1) as an initial step toward
this goal. With this minority-aware protocol, we benchmark existing unlearning approaches and
investigate the effects of forget set size as well as unlearning complexity. This study provides a
more holistic understanding of different LLM unlearning approaches for practitioners. Notably, we
observe that Langevin Unlearning—the only approach incorporating noise—achieves a favorable
privacy-utility trade-off compared to noiseless methods such as SCRUB and Gradient Ascent (GA),
suggesting a potential crucial role of noise incorporation in effective unlearning. In summary, these
insights underline the critical role of our minority-aware evaluation framework in advancing equitable
assessments of unlearning efficacy across different methods.

2 RELATED WORK

Privacy auditing is a fundamental yet challenging aspect of LLM unlearning due to the difficulty of
distinguishing training samples effectively (Duan et al., 2024). Various privacy-related metrics, such
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as exposure (Carlini et al., 2019), mean reciprocal rank (Wu et al., 2023), extraction likelihood (Jang
et al., 2022), and truth ratio (Maini et al., 2024), have been proposed to probe privacy leakage. Among
these, MIAs remain one of the most crucial tools for evaluating machine unlearning methods (Liu
et al., 2024b). Standard MIAs typically involve training numerous shadow models independently to
empirically approximate the distribution (Carlini et al., 2022). This approach has also been adopted
for LLM unlearning, as seen in the NeurIPS 2023 Machine Unlearning Challenge1 (which compares
the point-wise output distributions of multiple unlearned and retrained models to perform MIAs)
and Kurmanji et al. (2024); Pawelczyk et al. (2024b). Hayes et al. (2024) further highlights the
limitations of average-case evaluations and introduces a specialized per-sample MIA method for
unlearning evaluation. Their approach focuses on unlearning a randomly selected subset of training
data by training a series of shadow models and performing per-sample MIA using a likelihood ratio
test under Gaussian fitting (Carlini et al., 2022).

A major downside of MIA approaches involving shadow models is their computational expense, as
they require training a large number of LLMs independently (Liu et al., 2024b). To address this
downside, another line of research compares the outputs of models using different statistical metrics
without requiring shadow models (Zhang et al., 2024; Liu et al., 2024a;c; Yao et al., 2024; Li et al.,
2024), making these methods more computationally feasible (Maini et al., 2024). For instance, Shi
et al. (2024b) measures privacy risk through the normalized AUC difference between unlearned and
retrained models, using MIAs such as Min-K% (Shi et al., 2024a). However, these works typically
select the forget set randomly from the training set, corresponding to an average-case evaluation. Our
study highlights a critical limitation of this approach: the privacy risks of minority populations within
the training set are severely underestimated because minority data are less likely to be selected in
the unlearning evaluation pipeline. By focusing on minority-aware scenarios, our work provides a
more comprehensive perspective on unlearning evaluation and privacy risks. Concurrently, Zhao et al.
(2024) investigates how variations in the memorization of image representations impact unlearning
performance. This aligns with our work, as we further demonstrate that, in text and natural language
settings, minority data often suffer from a degradation in unlearning efficacy.

3 PRELIMINARIES

Machine unlearning (Cao & Yang, 2015; Bourtoule et al., 2021) has emerged as an important direction
in trustworthy language models. It was initially motivated by privacy due to “the right to be forgotten”
from GDPR and later extended to other legal and ethical concerns, including copyright (Yao et al.,
2024), biased or outdated information mitigation (Liu et al., 2024b), hallucination removal (Yao et al.,
2023), entity forgetting (Maini et al., 2024) and data poisoning removal (Pawelczyk et al., 2024a). In
this work, we focus on the privacy aspect of the problem, albeit our methodology extends to other
cases whenever the indistinguishability to the retrained model is an appropriate metric.

We briefly state the generic machine unlearning setting for privacy. Assume a training dataset Dtrain
and a holdout test set Dtest are given. Let Mlearn ← A(M0, Dtrain) be the language model trained
on Dtrain starting from an initial model M0 via the training algorithm A, which may be either a
pre-trained language model or random initialization. Once the model is trained, we receive data
removal requests that partition the training set Dtrain = Dforget ∪Dkeep into a subset to be forgotten
later Dforget and a keep set Dkeep. An unlearning algorithm U takes Mlearn, Dforget and Dtrain as input to
return an updated model Munlearn ← U(Mlearn, Dforget, Dtrain). It is worth noting that Munlearn depends
on the choice of Dforget. The gold standard to adhere to “the right to be forgotten” is retraining without
Dforget, namely Mretrain ← A(M0, Dtrain \Dforget). We say U achieves good unlearning efficacy if
Munlearn and Mretrain are indistinguishable in their behavior m(Munlearn, D) ≈ m(Mretrain, D) on any
corpus D, where m is any evaluation metric. Since Munlearn and Mretrain depend on the choice Dforget,
such approximation should be taken over the worst case ideally.

3.1 EFFICIENT MIAS FOR LLM UNLEARNING

As previously discussed, the effectiveness of unlearning methods can be measured by the indistin-
guishability between the resulting unlearned models and an exactly retrained model. MIA is often
leveraged to determine whether a specific sample is part of the training set and is widely applied to

1https://unlearning-challenge.github.io/assets/data/Machine_Unlearning_
Metric.pdf
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audit training data privacy leakage. Therefore, to evaluate the efficacy of an unlearning approach, we
consider the PrivLeak (PL) metric (Shi et al., 2024b) defined as follows:

PrivLeak (PL) =
AUC(Munlearn;Dforget, Dtest)− AUC(Mretrain;Dforget, Dtest)

AUC
(
Mretrain;Dforget, Dtest

) (1)

where AUC is the AUC-ROC score of an MIA (Ye et al., 2022) that tries to discriminate samples
from Dforget and Dtest based on the output statistics (e.g. loss) of a given model M . By normalizing
the difference in AUC scores between Munlearn and Mretrain using the AUC of Mretrain, the metric
accounts for the inherent difficulty of distinguishing the forget and test sets. Note that for an
effective unlearning method, the metric should be around zero since the behavior of Munlearn,Mretrain
are indistinguishable. A larger magnitude of the PL metric implies a greater amount of privacy
information that has been leaked under the tested MIA. A positive value indicates that the sample has
not been fully forgotten, as the attacker has a higher AUC for Munlearn than Mretrain. Conversely, a
negative metric value suggests over-forgetting, which still indicates that Munlearn differs from Mretrain
and thus cause privacy breaches. Finally, note that an effective unlearning solution should lead to a
small PL metric for any choice of MIA. In this work, we consider three popular MIAs and report the
corresponding PL metric.

• lossMIA (Yeom et al., 2018): Determines membership of a sample x for a model M based on its
loss ℓ(M ;x).

• zlibMIA (Carlini et al., 2021): Determines membership of a sample based on the sample loss
normalized by its zlib compression size, ℓ(M ;x)/zlib(x).

• Min-K% (Shi et al., 2023): Selects the lowest K% of token likelihoods and leverages the corre-
sponding negative log-likelihood for membership inference.

4 THE UNDERESTIMATED PRIVACY RISK OF DATA MINORITIES

Recall that both the unlearned Munlearn ← U(Mlearn, Dforget, Dtrain) and retrained Mretrain ←
A(M0, Dtrain \Dforget) language models depend on the choice of the forget set Dforget. Whenever we
estimate the privacy leakage of an unlearning method U via some evaluation m, it is important to ac-
count for potential high-risk partitions of Dforget to ensure a comprehensive assessment of privacy risk.
Unfortunately, the current LLM unlearning evaluation pipeline overlooks this critical aspect, where
the partition leading to Dforget is chosen uniformly at random (Jang et al., 2023; Chen & Yang, 2023;
Yao et al., 2024; Maini et al., 2024; Zhang et al., 2024; Shi et al., 2024b). The reported privacy risk
therein hence corresponds to the “average case”, which may significantly underestimate the privacy
risk of highly privacy-sensitive points that request unlearning. It is known in the privacy literature
that some rare training samples (minorities) may have an outsized effect on model memorization
compared to common training samples (majorities) (Feldman & Zhang, 2020; Carlini et al., 2022).
Intuitively, a similar phenomenon persists for unlearning.

Table 1: Top three most
frequent and least frequent
area codes within Enron
dataset.

Area code Count
713 (Houston) 135,307
800 (Toll-free) 11,902
212 (New York) 10,739
484 (Allentown) 1

Here we utilize the Enron dataset as a case study. This dataset comprises
535,703 authentic emails from 158 employees of the Enron Corpora-
tion. It is a standard benchmark dataset for studying PII leakage, where
the phone number is one form of PII that has been extensively stud-
ied (Lukas et al., 2023). The phone numbers here follow the format of
the U.S. phone numbers (e.g., 123-456-7890), with the first three digits
serving as the area code, representing the location where the number
holder applied for the number. Such information is considered sensitive
as it leaks not only the phone number itself, but also the geographic
information pertaining to the number holder.

Table 1 illustrates the least frequent and three most frequent area
codes in the Enron dataset. The area code distribution is far from uniform. Conse-
quently, if emails containing phone numbers are uniformly sampled for the forget set Dforget,
minority data, such as emails with rare area codes like 484, are unlikely to be included due to their
lower frequency. If unlearning minority data is inherently more challenging and results in greater
privacy leakage, the existing evaluation pipeline may underestimate privacy risks for minorities.

4.1 VERIFY UNDERESTIMATED PRIVACY RISKS OF MINORITY VIA CANARY INJECTION

4
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[…] Body: […] I have forwarded your
request to Zarin Imam at EES. Her 
phone number is 713-853-7107.  […]

𝐷𝐷forget 𝐷𝐷canary 𝐷𝐷minority

[…] Body: […] I have forwarded your
request to Zarin Imam at EES. Her 
phone number is 484-853-7107.  […]

[…] Body: email address: 
spalmer@cfg.nef.com Home 
address: 264 Iven Ave. Apt 3-A St. 
Davids, PA 19087 […] Cell Phone: 
484-432-5656 […]

Identical except area codes are replaced to least frequent one (i.e., 484).
Replace the entire email with the 
email containing phone number
with least frequent area code.

[…] Body: […] I have forwarded your 
request to Zarin Imam at EES. Her 

phone number is 713-853-7107.  […]

𝐷𝐷forget
[…] Body: […] I have forwarded your 
request to Zarin Imam at EES. Her 
phone number is 484-853-7107.  […]

𝐷𝐷canary
[…] Body: email address: 
spalmer@cfg.nef.com Home 
address: 264 Iven Ave. Apt 3-A St. 
Davids, PA 19087 […] Cell Phone: 
484-432-5656 […]

𝐷𝐷minority

Identical except area codes are replaced with the least frequent one (i.e., 484).
Replace the entire email with the 
email containing phone number 
with least frequent area code.

Figure 3: Illustration of the forget set Dforget, the construction of the canary set Dcanary, and the
minority set Dminority for the Enron dataset. The minority set consists of emails with phone numbers
containing the least frequent area codes. A histogram and distribution of area codes (e.g., 713 as the
most frequent and 484 as the least frequent) are shown in Figure 2 and Table 1.

Figure 2: Area code histogram
in Enron Dataset.

To rigorously show that removing data from minority2 populations
indeed leads to higher unlearning privacy leakage, we design ex-
periments based on the idea of canaries in the privacy auditing
literature (Jagielski et al., 2020; Steinke et al., 2024). For simplicity,
we focus on the scenario where data removal requests pertain to PIIs,
where each training sample x ∈ D

(1)
train consists of PIIs such as phone

numbers or organizations. We choose PIIs as a representative minor-
ity identifier, albeit a similar idea extends beyond PIIs. We consider
the following cases, see Figure 1 for an illustration. 1) Random:
we randomly partition D

(1)
train = Dforget ∪Dkeep as in the standard un-

learning evaluation pipeline. This leads to M
(1)
learn ← A(M0, D

(1)
train).

2) Canary: For the same forget set Dforget = {xi}ni=1, we construct a canary set Dcanary = {x′
i}ni=1,

where each x′
i is identical to xi except that only the PII is replaced by the least frequent one among

D
(1)
train, isolating the impact of non-PII components. Finally, we construct a synthetic training set

D
(2)
train = Dcanary ∪ Dkeep, which leads to M

(2)
learn ← A(M0, D

(2)
train). By executing the same unlearn-

ing evaluation process for both cases M
(1)
learn and M

(2)
learn, we aim to show that the privacy risk for

Canary is much higher than Random. By applying the same unlearning algorithm for removing
Dforget and Dcanary, we obtain the unlearned model M (1)

unlearn and M
(2)
unlearn respectively. The privacy

leakage (PL) is then computed for these cases as described in Section 3.1. The calculation of PL
for Canary entails replacing Dforget with Dcanary in Eq. equation 1. Note that the retrained model
Mretrain ← A(M0, Dkeep) is identical for both scenarios.

An illustrative example of canary construction is provided in Figure 3. Note that for each email
within Dforget in Random, we construct the corresponding canary by only replacing its area code
with the least frequent one (i.e., 484). This design is critical as we ensure the other part of the email
is identical to the original email. Hence, if the privacy leakage of Canary is greater than Random,
it must be due to the difference in the area code. We repeat the similar canary construction for the
other PII such as email domain and year of legal judgment for different datasets.

4.2 QUANTIFY THE UNDERESTIMATED PRIVACY RISK OF UNLEARNING MINORITY

While our synthetic experiment on canary injection may be used to verify whether the unlearning
privacy risk of minority populations is underestimated in the standard LLM unlearning evaluation
pipeline, it cannot quantify the privacy risk for minorities in the real-world setting. We further design
the third case aiming at quantifying the amount of underestimated privacy risk by directly choosing
data to be removed containing the least frequent PII. 3) Minority: construct a set Dminority that
is of the same size as Dforget in Random, which consists of samples with the least frequent PII
within the dataset. By comparing the computed privacy risk of Random and Minority, we can
quantify the amount of underestimated privacy risk for data removal from minority groups compared
to the average case. If the resulting privacy risk is significantly higher than Random, any conclusion
pertaining to unlearning efficacy drawn from Random can be misleading and the right to be forgotten
of minorities is overlooked.

2Minority here refers to any subset of the data, defined by some shared value, that is under-represented in the
training set. This term is generic and may apply to any type of attribute, demographic or otherwise.
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5 UNLEARNING METHODS

We evaluate the following popular unlearning approaches in the literature. With a slight abuse of
notation, we denote M for both the model and its parameters for simplicity.

• Random Labels (RL) (Golatkar et al., 2020a; Yao et al., 2024): In the context of next-token
prediction, this method involves randomly selecting tokens from the entire vocabulary during
training on Dforget, aiming to disturb the model’s learning from this dataset. The intuition behind this
approach is that a model uninformed by Dforget should behave as though it is randomly guessing the
next token. However, as argued in Yao et al. (2024), this intuition may not always hold, depending
on the specific scenario.

• Exact Unlearning (EUk) and Catastrophic Forgetting (CFk) (Goel et al., 2022): Exact unlearning
can be done by retraining the entire model from scratch on Dkeep, albeit it is prohibitively expansive
in practice. Goel et al. (2022) proposes EUk method, which retrains only the last k layers of the
model while freezing the other layers. As a result, it is computationally cheaper than retraining the
entire model. They also propose the CFk method, which continues training the last k layers on the
Dkeep without retraining from scratch, while freezing the other layers.

• Gradient Ascent (GA) (Golatkar et al., 2020a; Graves et al., 2021; Jang et al., 2023): Gradient
ascent is arguably the most popular heuristic for machine unlearning. It seeks to remove the
influence of the Dforget from the trained model by reversing the gradient updates associated with
Dforget. Notably, researchers have reported that gradient ascent can lead to significant model utility
degradation in some cases (Ilharco et al., 2023; Pawelczyk et al., 2024a).

• NegGrad+ (Kurmanji et al., 2024): NegGrad+ is a combination of gradient ascent on Dforget and
gradient descent on Dkeep. It finetunes the current model by optimizing:

β · Êx∼Dkeep [ℓ(M ;x)]− (1− β)Êx∼Dforget [ℓ(M ;x)]

where β ∈ (0, 1) is a hyperparameter and Ê is the empirical expectation. The intuition is to “review”
the information from Dkeep in order to prevent the model degradation due to the gradient ascent.

• SCRUB (Kurmanji et al., 2024): SCalable Remembering and Unlearning unBound (SCRUB) is a
state-of-the-art unlearning method that leverages a student-teacher framework. It updates the model
by optimizing the objective:

Êx∼Dkeep [KL(Mlearn(x)∥M(x)) + ℓ(M ;x)]− Êx∼Dforget [KL(Mlearn(x)∥M(x))]

where KL is the Kullback-Leibler divergence. SCRUB shares a similar intuition with NegGrad+,
which can also be viewed as a combination of gradient ascent on Dforget and descent on Dkeep.
Nevertheless, instead of directly employing the original loss ℓ, SCRUB leverages the KL divergence
to the original model Mlearn. It provides a different regularization compared to NegGrad+.

• Langevin Unlearning (Chien et al., 2024a;b): Langevin Unlearning leverages noisy gradient
descent for machine unlearning. Specifically, during the training process, it replaces the common
gradient descent with DP-SGD (Abadi et al., 2016). For unlearning process, it finetunes the model
on Dkeep with DP-SGD as well. Chien et al. (2024a) establishes a smooth theoretical connection
between differential privacy and unlearning and shows that Langevin Unlearning can provide a
formal privacy guarantee for non-convex problems. Unfortunately, they mentioned that the resulting
privacy bound is too loose to be applied in practice. We test Langevin Unlearning empirically in our
experiments.

All the above unlearning methods fall under approximate unlearning (Thudi et al., 2022), valued
for their practical efficiency. In contrast, exact unlearning methods, such as the sharding-based
framework SISA (Bourtoule et al., 2021), demand significant computational and storage resources.
Although SISA achieves exact unlearning by training multiple models independently on disjoint
data partitions, this not only deviates from standard machine learning workflows but also introduces
considerable memory overhead.

5.1 ENFORCING THE SAME COMPUTATION BUDGET FOR UNLEARNING METHODS

We categorize all methods as follows: those that only require the forget set (RL, GA), those that
only require the keep set (EUk, CFk, Langevin), and those that require both the forget and keep

6
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Table 2: The privacy leakage (PL) for each unlearning method against different attackers for GPT-2
/ Llama-2 7B on the Enron-Phone dataset. The number in the parenthesis is the excess ratio of PL
magnitude for cases Canary and Minority compared to Random, where a larger PL magnitude
implies a more severe underestimation of privacy leakage in the standard evaluation (Random). Bold
font indicates the case that the amount of underestimated privacy leakage is at least 20%.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

Enron-Phone Dataset / GPT-2

No Unlearn 0.190 0.283 (49%↑) 0.340 (79%↑) 0.052 0.076 (48%↑) 0.064 (24%↑) 0.300 0.447 (49%↑) 0.524 (75%↑)

RL 0.118 0.191 (61%↑) 0.210 (77%↑) 0.044 0.067 (52%↑) 0.060 (37%↑) 0.258 0.401 (55%↑) 0.447 (73%↑)
EUk 0.027 0.080 (198%↑) 0.124 (362%↑) 0.035 0.051 (47%↑) 0.052 (49%↑) 0.092 0.215 (134%↑) 0.223 (143%↑)
CFk 0.190 0.278 (46%↑) 0.337 (77%↑) 0.053 0.075 (41%↑) 0.064 (21%↑) 0.298 0.435 (46%↑) 0.514 (73%↑)
GA 0.089 0.140 (57%↑) 0.127 (42%↑) 0.024 0.042 (73%↑) 0.026 (7%↑) 0.151 0.242 (60%↑) 0.171 (13%↑)

NegGrad+ 0.183 0.271 (48%↑) 0.327 (79%↑) 0.052 0.073 (42%↑) 0.058 (13%↑) 0.293 0.435 (48%↑) 0.511 (74%↑)
SCRUB 0.167 0.251 (50%↑) 0.321 (92%↑) 0.048 0.070 (44%↑) 0.062 (28%↑) 0.295 0.450 (52%↑) 0.527 (78%↑)

Langevin 0.093 0.144 (54%↑) 0.157 (69%↑) 0.024 0.037 (54%↑) 0.027 (12%↑) 0.160 0.258 (61%↑) 0.264 (65%↑)

Enron-Phone Dataset / Llama-2 7B

No Unlearn 0.060 0.242 (303%↑) 0.172 (187%↑) 0.034 0.098 (188%↑) 0.067 (97%↑) 0.076 0.115 (51%↑) 0.179 (136%↑)

RL -0.242 -0.084 (65%↓) -0.055 (77%↓) -0.005 0.065 (1400%↑) 0.102 (2140%↑) -0.123 -0.073 (41%↓) 0.012 (90%↓)
EUk 0.057 0.246 (332%↑) 0.185 (225%↑) 0.039 0.106 (172%↑) 0.082 (110%↑) 0.063 0.132 (110%↑) 0.189 (200%↑)
CFk 0.057 0.236 (314%↑) 0.168 (195%↑) 0.032 0.094 (194%↑) 0.063 (97%↑) 0.072 0.108 (50%↑) 0.171 (138%↑)
GA -0.562 -0.430 (23%↓) -0.464 (17%↓) -0.014 0.038 (371%↑) 0.083 (593%↑) -0.625 -0.459 (27%↓) -0.517 (17%↓)

NegGrad+ -0.074 -0.184 (149%↑) -0.040 (46%↓) -0.021 -0.048 (129%↑) -0.002 (90%↓) -0.069 -0.271 (293%↑) -0.057 (17%↓)
SCRUB 0.059 0.162 (175%↑) 0.170 (188%↑) 0.034 0.063 (85%↑) 0.065 (91%↑) 0.074 -0.031 (58%↓) 0.177 (139%↑)

Langevin 0.033 0.180 (445%↑) 0.104 (215%↑) 0.016 0.068 (325%↑) 0.036 (125%↑) 0.033 0.055 (67%↑) 0.091 (176%↑)

sets (NegGrad+, SCRUB). Since machine unlearning is about the trade-off between privacy-utility-
efficiency (Guo et al., 2020; Chien et al., 2024a; Liu et al., 2024c), we carefully ensure a similar
computational complexity for all tested unlearning methods when demonstrating the privacy-utility
trade-off. We define a Complexity Unit as the gradient computation budget of one training epoch
on |Dforget| samples and limit all unlearning methods to a maximum of 10 Complexity Units. Since
|Dforget| = U is roughly 1% of |Dtrain| throughout our experiments, all unlearning methods are indeed
much more efficient than retraining from scratch (Pawelczyk et al., 2024a).

For unlearning approaches that leverage Dforget only, they can be tuned via unlearning process for
at most 10 epochs. For those that leverage Dkeep only, we randomly subsample it to size U for
each epoch and unlearn for at most 10 epochs. For methods that leverage both Dforget and Dkeep
simultaneously, we limit their maximum unlearning epoch to 5. The situation is slightly more
complicated for EUk and CFk approaches since only the last k layers are trained to save computation.
We randomly select U/r samples from the keep set in each epoch, where r is the ratio of trainable
parameters in the last k layers compared to the total number of parameters in the model. Our setup
ensures that all tested unlearning approaches exhibit a similar unlearning computational complexity
for a fair comparison. We optimize the unlearning epoch for each method under the 10 Complexity
Unit constraint by the following criterion: if the perplexity of the unlearned model on Dtrain increases
by more than 1 point compared to that of the initial model (No Unlearn), we stop at the first epoch
where this condition is met; otherwise, we use the checkpoint from the last epoch.

6 EXPERIMENTS

Datasets. Our LLM unlearning evaluation is conducted on two representative PII datasets: En-
ron (Klimt & Yang, 2004) and ECHR (Chalkidis et al., 2019). The Enron dataset contains corporate
emails released by the Federal Energy Regulatory Commission, while the ECHR dataset comprises
legal case information from the European Court of Human Rights. For our experiments, we focus
on specific PIIs based on their distributions: phone numbers (Enron-Phone) and email domains
(Enron-Email) in Enron, and the year of judgment (ECHR-Year) in ECHR. Data minorities are
defined based on these PIIs. Detailed dataset statistics are provided in App. A.1. Our study centers
on instance-level unlearning, treating each individual as a single record.

General Settings. We focus on the fine-tuning scenario, where the initial model M0 is a pretrained
LLM (GPT-2 (Radford et al., 2019) or Llama-2 7B (Touvron et al., 2023)). The fine-tuned model
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Mlearn is obtained by training M0 on a dataset Dtrain for 5 epochs. In the GPT-2 experiments, both the
training and test sets contain 10,000 samples, subsampled from the full dataset. For Llama-2, we
employ efficient fine-tuning using LoRA (Hu et al., 2021); both the training and test sets consist of
50,000 samples, subsampled from the entire dataset. In all cases, the forget set size is set to 1% of the
training set size. The models are optimized using the AdamW optimizer with a constant learning rate
of 10−5, following the settings described in Shi et al. (2024b). During the unlearning process, all
unlearning methods are constrained to the same computational budget—not exceeding 10 complexity
units—as detailed in Section 5.1. We ensure that the unlearning complexity of each method is similar
to allow for a fair comparison. Our ultimate goal is to achieve a superior privacy-utility-efficiency
trade-off. We utilize MIA to estimate the empirical privacy risk measured by the PL metric as
described in Section 3.1. For evaluating the utility of the LLMs, we report the perplexity following
standard practices in the literature (Radford et al., 2019; Zhang et al., 2022), where a lower perplexity
indicates that the model is more confident in its predictions. Additional details are provided in App. B.

6.1 STANDARD APPROACHES UNDERESTIMATE PRIVACY RISK FOR MINORITIES.

We report the results pertaining to the Enron-Phone, Enron-Email, and the ECHR-Year datasets. The
experiment setting follows the explanation in Section 4 and further details are relegated to App. A.1.
Table 2 shows that across all three attackers (lossMIA, zlibMIA, and Min-K%), all six unlearning
methods and original model (no unlearning), the privacy leakage measure is significantly larger when
unlearning canaries and minorities on Enron-Phone dataset for GPT-2 and Llama-2 7B respectively.
Notably, in almost all cases the privacy leakage is underestimated for at least 20%. A similar
phenomenon holds for the Enron-Email and ECHR-Year (Table 4, 5, 6, 7 in App. C.1) datasets.
These results verify our claim that the current LLM unlearning evaluation indeed understated the
privacy risk, especially for minorities. Our results call for a more careful empirical LLM unlearning
evaluation, where considering canaries and minorities as we described can be an effective first step.

6.2 BENCHMARKING UNLEARNING APPROACHES UNDER MINORITY-AWARE EVALUATION.

Combine All Privacy Evaluation

(a) (b) (c) (d)

GPT-2 Llama-2

Phone Email

(e) (f) (g) (h)

GPT-2 Llama-2

Figure 4: Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 and
Llama-2 on Enron-Phone (Left) and Enron-Email (Right) datasets. (a),(c),(e),(g): Maximum pri-
vacy leakage (PL) over three cases (Random, Canary, and Minority) for Min-K% attack.
(b),(d),(f),(h): Worst perplexity over the three cases of each method. More results on lossMIA
and zlibMIA attackers are deferred to App. C.2.

Motivated by our observations, we propose the minority-aware LLM unlearning evaluation. Instead of
reporting the privacy leakage (PL) score under the Random case, we propose to report the magnitude
of maximum PL score of three settings (Random, Canary, and Minority) . This provides a
better privacy risk estimation while keeping the entire evaluation pipeline efficient. Besides, we
report the corresponding worst-case perplexity as the utility measure for each unlearning approach.
We benchmark the popular unlearning methods under our new evaluation pipeline, where the result is
summarized in Figure 4 for GPT-2 and Llama-2 on the Enron-Phone and Enron-Email datasets. See
App. C.2 for additional results.

We found that Langevin Unlearning offers the best balance between privacy and utility empirically.
Note that while gradient ascent has on-par performance compared to Langevin Unlearning on the
Enron-Phone dataset, it significantly degrades the model utility on the Enron-Email dataset. This
echoes the finding of Ilharco et al. (2023); Pawelczyk et al. (2024a), albeit for different tasks. We
found that gradient ascent is inherently unstable. In contrast, unlearning methods that leverage keep
set Dkeep are much more stable, including Langevin Unlearning and SCRUB.
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(a) (b)

(a) (b)

The effect of unlearning epochs for each
unlearning approach.(a): Maximum PL
with the attacker being Min-K%. (b):
Model perplexity.

(a) (b)

(a) (b)

The effect of forget set size for each unlearning approach.(a):
Maximum PL with the attacker being Min-K%. (Results on loss-
MIA, zlibMIA are deferred to App. C.5). (b): Model perplexity.

Figure 5: Ablation studies on unlearning iterations and forget set size.

We also present results using utility metrics, including BERTScore (Zhang et al., 2019) and
ROUGE (Lin, 2004), which capture semantic meaning. These results, provided in App. C.3, exhibit a
consistent trend.

6.3 ABLATION STUDIES.
We present ablation studies on the Enron-Phone dataset using the GPT-2 model, unless otherwise
specified, and further results are deferred to App. C.4, C.5 and C.6.

Privacy-Utility Trade-off. We analyze the privacy-utility trade-off curves for stable methods
like Langevin Unlearning and SCRUB, along with the widely used GA. For Langevin Un-
learning, we adjust the noise scale during training and unlearning. In SCRUB, we vary the
weights that balance the loss and KL regularizer terms in its objective function (Sec. 5). For
GA, we explore different learning rates ranging from 1e−7 to 1e−3. As shown in Fig.6,

Figure 6: Privacy-utility
Trade-off Curves for GPT-2.

these curves are evaluated on the Enron-Phone and Enron-Email
datasets. The results indicate that Langevin Unlearning (Green Line)
outperforms SCRUB (Purple Line) with a superior privacy-utility
trade-off. Notably, while GA performs reasonably well on the Enron-
Phone dataset, its trade-off on Enron-Email is significantly weaker,
revealing its instability. Detailed hyperparameter tuning for these
methods is provided in App.C.6.

Unlearning Iteration. We investigate the effect of unlearning epochs
on privacy (Max PL) and utility (perplexity) for each unlearning ap-
proach in Fig. 5 (Left). We observe that RL and GA are unstable in PL
score. Furthermore, these two methods can lead to significant model
utility degradation in terms of perplexity, where even unlearning for
2 epochs can already result in a model breakdown. This observation
again demonstrates that gradient ascent, albeit being simple and pop-
ular, is not a reliable LLM unlearning solution. We should focus on
stable unlearning solutions such as SCRUB and Langevin Unlearning.

Size of Forget Set. In Fig. 5 (Right), we report the effect of different
forget set sizes on the privacy (Max PL) and utility (Perplexity) trade-
offs for each unlearning method. We find that both the GA and RL methods are highly sensitive to
the forget set size, leading to significant model utility degradation and poor reliability in practice. In
contrast, methods like Langevin Unlearning demonstrate good performance in terms of stability.

7 CONCLUSIONS

We identify a critical limitation in the typical evaluation pipeline for LLM unlearning efficacy: privacy
risks to minority groups in the training data are often underestimated. Through carefully designed
experiments using unlearning canaries tied to minority groups, inspired by privacy auditing research,
we demonstrate that minority groups face at least 20% greater privacy leakage on average. Using
personally identifiable information (PII) as a proxy for minority identifiers, we emphasize the need
for more rigorous evaluations to ensure the right to be forgotten applies universally. Benchmarking
existing unlearning methods with our minority-aware evaluation reveals that popular heuristics like
gradient ascent are unstable and can degrade model utility. In contrast, methods such as Langevin
Unlearning achieve a more favorable privacy-utility trade-off.
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A DATASET

A.1 DATASET DETAILS

In this paper, we examine two representative PII datasets: Enron and ECHR, described as follows:

• Enron (Klimt & Yang, 2004). The Enron dataset consists of 536,000 authentic emails from 158
employees of the Enron Corporation, made publicly available by the Federal Energy Regulatory
Commission following an investigation. Each email typically includes the sending timestamp,
sender and recipient information, a greeting, the main content, and a footer containing the sender’s
personal details.

• ECHR (Chalkidis et al., 2019). The ECHR dataset comprises case records from the European
Court of Human Rights. Each record contains a series of factual lists that detail the specifics of a
case. In our experiments, we further decompose these cases into individual facts, with each fact
forming a distinct sample, averaging around 80 tokens in length. In total, the dataset includes around
118,000 samples.

A.2 PII SELECTION

As outlined in Sec. 4, we selected U.S. phone numbers from the Enron dataset based on a criterion
aimed at analyzing privacy risks in minority groups. To ensure the PII distribution was imbalanced,
reflecting both minority and majority groups, we additionally selected two standard PII types (Lukas
et al., 2023): email addresses (Enron) and years (ECHR). The distributions of these PII counts are
depicted in Fig. 7.
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Figure 7: Histogram of email addresses (Enron-Email) and years (ECHR-Year).

A.3 PREPROCESSING AND DATASET SPLIT

Dataset Preprocess. In our experiments, since the average token length of Enron samples is
approximately 770, we controlled the token length of each fact to ensure the model could effectively
memorize the samples. We randomly selected three coherent sentences from each sample, and if the
sample contained specific PIIs of interest, we prioritized selecting sentences around them. We will
keep the original samples for the ECHR dataset.

Dataset Construction. We begin by searching the dataset for occurrences of specific PIIs and
analyzing their distribution. To form the minority set used in our Minority setting, we select 100
samples containing the least frequent PIIs; this set serves as our forget set. In the Random setting,
we construct the forget set by randomly selecting 100 samples containing PIIs. To create the canary
set, we replace the PIIs in the forget set (Random setting) with the least frequent PII found in the
dataset. From the remaining data, we randomly select samples to create the training and test sets. For
experiments with GPT-2 (117M), we uniformly at random selected 10,000 samples each for both the
training and test sets. For Llama-2 7B, we uniformly at random selected 50,000 samples for both the
training and test sets.
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B EXPERIMENTAL DETAILS

B.1 COMPUTE CONFIGURATIONS

All experiments were conducted using 8 NVIDIA A100 GPUs (80GB) and 14 NVIDIA RTX 6000
Ada GPUs (48GB).

B.2 UNLEARNING EXPERIMENT SETUP

Unlearning Algorithms. For all unlearning methods, we use a constant learning rate of 10−5 and a
batch size of 32, consistent with the fine-tuning stage. Note that some unlearning algorithms require
additional hyperparameters. We follow the common designs from previous literature (Pawelczyk
et al., 2024a) and detail the hyperparameter selection as follows:

• EUK and CFK. In our experiments, we set the number of retrained layers to k = 3 for both
GPT-2 and Llama-2 (LoRA) models. For GPT-2, the unfrozen trainable parameters account for
approximately 16% of the total parameters, while for Llama-2 7B, the unfrozen parameters account
for around 10%.

• NegGrad+. As noted in the main text, the hyperparameter β balances samples between Dforget and
Dkeep. In these experiments, we set β = 0.999.

• SCRUB. In the SCRUB method, three hyperparameters are used to balance the loss function on the
keep set and the KL regularizers on both the keep and forget sets. According to the definition of the
objective function in Section 5, three terms are weighted sequentially by setting: α = 0.5, β = 1,
and γ = 0.01.

• Langevin Unlearning. The Langevin Unlearning method leverages noisy gradient descent to
unlearn samples from the forget set. In our experiments, we set the Gaussian noise scale to
σ = 5e− 4 (for GPT-2) and σ = 5e− 3 (for Llama-2), and the clipping norm to 1.

Unlearning Epoch Selection. As outlined in Section 5.1, all unlearning methods are constrained
to a maximum of 10 complexity units, and the optimal epoch for each method is selected based on
whether the perplexity of the unlearned model on Dtrain increases by more than 1 point. Under our
computational budget, methods that only require the forget set (RL, GA) are run for 10 epochs, while
methods requiring both the keep and forget sets (NegGrad+, SCRUB) are limited to 5 epochs, due
to the equal-sized cycling between the two sets. For methods that only require the keep set (EUK,
CFK, Langevin), we use 10 epochs, with varying sample sizes for EUK and CFK, as some model
parameters remain frozen. The selected epoch for each method in each experiment is detailed in
Table 3.

Table 3: Epochs comparison between unlearning methods on GPT2 and LLaMA2 models.

Unlearning Methods GPT-2 Llama-2 7B
Enron ECHR Enron ECHR

RL Epoch 1 Epoch 1 Epoch 1 Epoch 1
EUk Epoch 10 Epoch 10 Epoch 10 Epoch 10
CFk Epoch 10 Epoch 10 Epoch 10 Epoch 10
GA Epoch 1 Epoch 1 Epoch 1 Epoch 1
NegGrad+ Epoch 5 Epoch 5 Epoch 1 Epoch 5
SCRUB Epoch 5 Epoch 5 Epoch 5 Epoch 5
Langevin Epoch 10 Epoch 10 Epoch 10 Epoch 10

Attack Method Hyperparameters. We employed three attack methods in our evaluation pipeline.
For lossMIA and zlibMIA, there are no hyperparameters to tune. The Min-K% method is based on
the observation that non-member examples tend to have more tokens with lower likelihoods compared
to member examples. In this method, the hyperparameter K controls the selection of the bottom K%
of tokens in each sample based on their likelihoods. Following previous recommendations in Duan
et al. (2024); Shi et al. (2024a), we set K = 20 in our experiments.
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Table 4: The privacy leakage (PL) for each unlearning method against different attackers for GPT-2
on the Enron-Email dataset.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority
No Unlearn 0.303 0.535 (77%↑) 1.145 (278%↑) 0.200 0.309 (54%↑) 0.262 (31%↑) 0.529 0.934 (76%↑) 1.468 (178%↑)

RL 0.033 0.153 (366%↑) 0.448 (1265%↑) 0.062 0.142 (127%↑) 0.121 (94%↑) 0.431 0.772 (79%↑) 1.200 (179%↑)
EUk 0.232 0.440 (89%↑) 0.582 (150%↑) 0.135 0.229 (70%↑) 0.152 (13%↑) 0.501 0.886 (77%↑) 1.034 (106%↑)
CFk 0.296 0.515 (74%↑) 1.139 (285%↑) 0.197 0.295 (49%↑) 0.260 (32%↑) 0.526 0.905 (72%↑) 1.478 (181%↑)
GA -0.279 -0.173 (38%↓) 0.739 (165%↑) -0.119 -0.037 (69%↓) 0.168 (41%↑) -0.390 -0.304 (22%↓) 1.034 (165%↑)

NegGrad+ 0.265 0.471 (77%↑) 1.103 (316%↑) 0.179 0.269 (50%↑) 0.251 (40%↑) 0.496 0.864 (74%↑) 1.434 (189%↑)
SCRUB 0.286 0.499 (74%↑) 1.097 (283%↑) 0.190 0.289 (52%↑) 0.253 (34%↑) 0.519 0.902 (74%↑) 1.473 (184%↑)

Langevin 0.154 0.319 (107%↑) 0.606 (293%↑) 0.086 0.178 (107%↑) 0.124 (44%↑) 0.336 0.645 (92%↑) 0.940 (180%↑)

Table 5: The privacy leakage (PL) for each unlearning method against different attackers for GPT-2
on ECHR-year datasets.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority
No Unlearn 0.198 0.247 (25%↑) 0.263 (33%↑) 0.086 0.103 (20%↑) 0.122 (42%↑) 0.213 0.276 (30%↑) 0.299 (40%↑)

RL 0.161 0.213 (32%↑) 0.234 (45%↑) 0.067 0.088 (31%↑) 0.086 (28%↑) 0.190 0.259 (36%↑) 0.257 (35%↑)
EUk 0.125 0.176 (41%↑) 0.138 (10%↑) 0.067 0.088 (31%↑) 0.070 (4%↑) 0.114 0.187 (64%↑) 0.135 (18%↑)
CFk 0.188 0.234 (24%↑) 0.260 (38%↑) 0.084 0.095 (13%↑) 0.120 (43%↑) 0.209 0.264 (26%↑) 0.295 (41%↑)
GA 0.067 0.027 (60%↓) 0.105 (57%↑) 0.024 0.019 (21%↓) 0.038 (58%↑) 0.090 -0.019 (79%↓) 0.143 (59%↑)

NegGrad+ 0.183 0.221 (21%↑) 0.247 (35%↑) 0.071 0.088 (24%↑) 0.112 (58%↑) 0.191 0.237 (24%↑) 0.274 (43%↑)
SCRUB 0.179 0.223 (25%↑) 0.253 (41%↑) 0.080 0.099 (24%↑) 0.116 (45%↑) 0.197 0.253 (38%↑) 0.289 (47%↑)

Random Seed Selection. In all our experiments, we followed the common practice and fixed our
random seed to be 42.

C ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present supplementary experimental results to further substantiate our claims in
the main text.

C.1 EXPERIMENTS ON ENRON-EMAIL AND ECHR-YEAR DATASETS

In Tables 4, 7, 5 and 7, we report the PL scores for all three attackers across the three scenarios
on the Enron-email, ECHR-year datasets for GPT-2 and Llama-2, respectively. The results support
our claim that the current LLM unlearning evaluation (Random setting) significantly underestimates
privacy risk.

Table 6: The privacy leakage (PL) for each unlearning method against different attackers for Llama-2
7B on the Enron-Email dataset.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

No Unlearn 0.050 0.282 (464%↑) 0.174 (248%↑) 0.046 0.236 (413%↑) 0.095 (106%↑) 0.064 0.474 (640%↑) 0.224 (250%↑)

RL -0.609 -0.567 (7%↓) -0.821 (12%↓) -0.832 -0.874 (5%↑) -0.478 (43%↓) -0.931 -0.931 (0%) -0.849 (9%↓)
EUk 0.037 0.241 (551%↑) 0.169 (356%↑) 0.015 0.186 (1140%↑) 0.102 (580%↑) 0.040 0.364 (810%↑) 0.206 (415%↑)
CFk 0.049 0.264 (438%↑) 0.169 (245%↑) 0.046 0.220 (378%↑) 0.090 (96%↑) 0.062 0.436 (603%↑) 0.218 (251%↑)
GA -0.512 -0.692 (35%↑) 0.059 (89%↓) -0.435 -0.232 (47%↓) 0.184 (58%↓) -0.569 -0.479 (16%↓) 0.294 (48%↓)

NegGrad+ -0.931 -0.929 (2%↓) -0.821 (12%↓) -0.832 -0.874 (5%↑) -0.478 (43%↓) -0.931 -0.931 (0%) -0.849 (9%↓)
SCRUB 0.040 0.257 (543%↑) 0.174 (335%↑) 0.034 0.209 (515%↑) 0.095 (179%↑) 0.056 0.426 (661%↑) 0.224 (300%↑)

Langevin 0.022 0.191 (768%↑) 0.048 (118%↑) 0.020 0.141 (605%↑) 0.021 (5%↑) 0.035 0.339 (868%↑) 0.079 (126%↑)

C.2 MORE RESULTS ON MINORITY-AWARE EVALUATION

In this section, we present further benchmarking results for unlearning approaches under minority-
aware LLM evaluation. Following the same setup as Section 6.2, Fig. 8 reports the maximum PL
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Table 7: The privacy leakage (PL) for each unlearning method against different attackers for Llama-2
7B on the ECHR-year dataset.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

No Unlearn 0.056 0.094 (68%↑) 0.076 (35%↑) 0.030 0.048 (60%↑) 0.096 (220%↑) 0.067 0.114 (70%↑) 0.138 (106%↑)

RL -0.069 0.044 (36%↓) -0.532 (671%↑) -0.024 0.029 (21%↑) -0.192 (700%↑) -0.034 0.070 (106%↑) -0.458 (1247%↑)
EUk 0.059 0.084 (42%↑) 0.079 (34%↑) 0.030 0.044 (47%↑) 0.079 (163%↑) 0.065 0.110 (69%↑) 0.153 (135%↑)
CFk 0.056 0.088 (57%↑) 0.073 (30%↑) 0.028 0.044 (57%↑) 0.088 (214%↑) 0.063 0.106 (68%↑) 0.131 (108%↑)
GA -0.046 -0.376 (717%↑) -0.624 (1257%↑) -0.016 -0.120 (650%↑) -0.267 (1569%↑) -0.063 -0.404 (541%↑) -0.574 (811%↑)

NegGrad+ 0.024 -0.272 (1033%↑) -0.624 (2500%↑) 0.012 -0.099 (725%↑) -0.235 (1858%↑) 0.026 -0.404 (1454%↑) -0.663 (2449%↑)
SCRUB 0.056 0.094 (68%↑) 0.073 (30%↑) 0.030 0.048 (60%↑) 0.090 (200%↑) 0.067 0.112 (67%↑) 0.139 (107%↑)

Langevin 0.026 0.052 (100%↑) 0.041 (58%↑) 0.010 0.025 (150%↑) 0.046 (360%↑) 0.028 0.062 (121%↑) 0.078 (179%↑)

score under lossMIA and zlibMIA attackers on Enron-Phone and Enron-Email and Fig. 9 reports
the maximum PL score and worst-case perplexity for various unlearning methods on ECHR-Year
(GPT-2) dataset.

(a) (b) (c) (d)

GPT-2 Llama-2

(e) (f) (g) (h)

GPT-2 Llama-2

Phone Email

GPT-2 and Llama-2 on Enron-Phone and Enron-Email dataset

Figure 8: Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 and
Llama-2 on Enron-Phone and Enron-Email dataset. (a),(c),(e),(g): Maximum privacy leakage (PL)
over three cases (Random, Canary, and Minority) for lossMIA attack. (b),(d),(f),(h): Maximum
privacy leakage (PL) over three cases (Random, Canary, and Minority) for zlibMIA attack.

ECHR – GPT2

(a) (b) (c) (d)

Figure 9: Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 on
ECHR-year dataset. (a)-(c): Maximum privacy leakage (PL) over three cases (Random, Canary, and
Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d): Worst perplexity over the
three cases of each method.

We observe that both GA and Langevin Unlearning methods maintain a favorable balance between
privacy and utility. However, GA can be sensitive to the forget set size and the number of unlearning
iterations (Section 6.3). In practice, the GA method should be applied with caution, whereas more
stable approaches like Langevin Unlearning offer a better trade-off in terms of privacy, utility, and
stability.

C.3 RESULTS ON OTHER UTILITY METRICS

In this section, we report the worst-case utility performance across three settings (Random, Canary,
and Minority) using utility metrics BERTScore (Zhang et al., 2019) and ROUGE score (Lin,
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ECHR – Llama

(a) (b) (c) (d)

Figure 10: Benchmarking unlearning approaches via our minority-aware evaluation for Llama-2 on
ECHR Year dataset. (a)-(c): Maximum privacy leakage (PL) over three cases (Random, Canary, and
Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d): Worst perplexity over the
three cases of each method.

2004), which capture semantic meaning, on the Enron-Email dataset. The results are shown in Fig.11
(GPT-2) and Fig.12 (Llama-2). As illustrated in the figures, the performance of Random Label and
gradient-ascent-based methods (Gradient Ascent and NegGrad+) is unstable under all utility metrics
(Perplexity, BERTScore, and ROUGE). In contrast, Langevin Unlearning demonstrates relatively
stable performance and achieves a favorable privacy-utility trade-off.

(a) (b) (c)

(d)

Enron-email-gpt2

(e) (f)
Figure 11: Benchmarking unlearning approaches via our minority-aware evaluation for GPT-2 on
Enron-email dataset. (a)-(c): Maximum privacy leakage (PL) over three cases (Random, Canary,
and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d-f): Worst utility
performance over the three cases of each method.

C.4 FURTHER DETAILS AND RESULTS ON LANGEVIN UNLEARNING

In this section, we provide additional details and results on the Langevin Unlearning methods. As
mentioned in Section 5, Langevin leverages noisy gradient descent and involves training the model on
the dataset Dtrain using DP-SGD. Furthermore, Langevin conducts machine unlearning by fine-tuning
the model on the dataset Dkeep with DP-SGD as well.

It is important to note that for the Langevin Unlearning method, the training process incorporates
noise. Consequently, our retrain baseline is adjusted to train the initial model on Dkeep using DP-SGD
for 5 epochs. Furthermore, in Table 8 and 9, we report the effectiveness of Langevin Unlearning by
evaluating it against three MIA methods (lossMIA, zlibMIA, and Min-K%) across different datasets
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(a) (b) (c)

(d)

Enron-email-llama2

(e) (f)
Figure 12: Benchmarking unlearning approaches via our minority-aware evaluation for Llama-2 on
Enron-email dataset. (a)-(c): Maximum privacy leakage (PL) over three cases (Random, Canary,
and Minority) for lossMIA, zlibMIA, and Min-K% attacks respectively. (d-f): Worst utility
performance over the three cases of each method.

on GPT-2. These evaluations are conducted across three scenarios (Random, Canary, Minority),
assessing the PL scores, the maximum PL scores and the worst-case perplexity. By comparing
the results of the Noisy No Unlearn baseline (which fine-tunes the initial model with DP-SGD
for 5 epochs) with those of the Langevin Unlearning method, we observe that minority scenarios
(Canary, Minority) lead to significantly higher privacy leakage, and Langevin Unlearning
achieves superior privacy-utility trade-offs. Additionally, in practical applications, the number of
steps employing noisy gradient descent can be tailored based on the acceptable computational costs,
thereby enabling potentially better privacy-utility trade-offs. This flexibility allows practitioners to
balance the trade-off between enhanced privacy and computational efficiency according to specific
application requirements.

Table 8: The privacy leakage (PL) for Langevin Unlearning against different attackers for GPT-2 on
All datasets.

Method PL (lossMIA) PL (zlibMIA) PL (Min-K%)

Random Canary Minority Random Canary Minority Random Canary Minority

Enron-phone

Noisy No Unlearn 0.097 0.152 (57%↑) 0.170 (75%↑) 0.024 0.039 (63%↑) 0.033 (38%↑) 0.164 0.259 (58%↑) 0.268 (63%↑)
Langevin 0.092 0.144 (57%↑) 0.157 (71%↑) 0.024 0.037 (54%↑) 0.027 (13%↑) 0.159 0.259 (63%↑) 0.264 (66%↑)

Enron-email

Noisy No Unlearn 0.156 0.342 (119%↑) 0.642 (312%↑) 0.102 0.193 (89%↑) 0.130 (27%↑) 0.344 0.691 (101%↑) 0.945 (175%↑)
Langevin 0.154 0.319 (107%↑) 0.606 (294%↑) 0.097 0.178 (84%↑) 0.124 (28%↑) 0.336 0.645 (92%↑) 0.939 (179%↑)

ECHR-year

Noisy No Unlearn 0.101 0.152 (51%↑) 0.122 (21%↑) 0.049 0.067 (37%↑) 0.064 (31%↑) 0.122 0.180 (48%↑) 0.145 (19%↑)
Langevin 0.103 0.140 (36%↑) 0.125 (21%↑) 0.049 0.061 (24%↑) 0.065 (33%↑) 0.117 0.168 (44%↑) 0.146 (25%↑)

C.5 MORE RESULTS ON FORGET SET SIZE

In this section, we report additional results on the impact of forget set size for each unlearning method,
using LossMIA and ZlibMIA attackers. As shown in Fig. 13, similar to the results in the main text,
both RL and GA methods are sensitive to the forget set size, whereas methods like SCRUB and
Langevin Unlearning demonstrate greater stability.
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Table 9: Maximum PL Scores and Worst-case Perplexity for Noisy No Unlearn and Langevin across
Datasets on GPT-2

Dataset Methods lossMIA zlibMIA Min-K% Perplexity

Enron
phone

Noisy No Unlearn 0.170 0.039 0.268 13.87
Langevin 0.157 (7.65%↓) 0.037 (5.13%↓) 0.264 (1.49%↓) 13.88

Enron
email

Noisy No Unlearn 0.642 0.193 0.945 12.52
Langevin 0.606 (5.61%↓) 0.178 (7.77%↓) 0.939 (0.63%↓) 12.61

ECHR
year

Noisy No Unlearn 0.152 0.067 0.180 12.75
Langevin 0.140 (7.89%↓) 0.061 (8.96%↓) 0.168 (6.67%↓) 12.78

(a) (b)

(a) (b)

Figure 13: The effect of forget set size for each unlearning approach. (a)(b): Maximum PL over three
cases (Random, Canary, Minority) with the attacker being lossMIA and zlibMIA respectively.

C.6 MORE DETAILS ON THE PRIVACY-UTILITY TRADE-OFF CURVES FOR LANGEVIN
UNLEARNING AND SCRUB METHODS

This section provides an comprehensive experiments of the privacy-utility trade-off curves for the
Langevin Unlearning and SCRUB methods, as introduced in Sec. 6.3. We detailed the hyperparame-
ters used in the ablation study as follows:
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Figure 14: Privacy-utility transition curves for Enron-Phone dataset with hyperparameter β = 1 (Top)
and hyperparameter β = 1e− 3 (Bottom).

Langevin Unlearning. For the Langevin Unlearning method, we fix the clipping norm to 1 and vary
the noise scale added during training to control the privacy-utility trade-off. In experiments with the
GPT-2 model, the noise scale σ is adjusted across the values {1e− 4, 3e− 4, 5e− 4, 8e− 4, 1e− 3}.
Table 18 and 19 present the AUC scores under various attackers (lossMIA, zlibMIA, Min-k%) and
utility (perplexity) on the Enron-Phone and Enron-Email datasets, respectively.

SCRUB. The SCRUB training objective comprises the original loss ℓ on the keep set, along with
two KL divergence regularizers on the keep and forget sets. These terms are balanced by three
hyperparameters:

Êx∼Dkeep [αKL(Mlearn(x)∥M(x)) + βℓ(M ;x)]− Êx∼Dforget [γKL(Mlearn(x)∥M(x))]. (2)
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Figure 15: Privacy-utility transition curves for Enron-Email dataset with hyperparameter β = 1 (Top)
and hyperparameter β = 1e− 3 (Bottom).

Figure 16: Privacy-utility trade-off curves under lossMIA and zlibMIA.

We conducted an extensive hyperparameter search, setting β to 1 and 1e−3 in separate configurations.
For each fixed β, α and γ are independently varied from {1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e−
2, 1e− 1, 5e− 1, 1}. Fig. 14 and 15 illustrates the resulting transition curves, showing the maximum
privacy leakage (PL) for three scenarios (Random, Canary, Minority) across different attackers
(lossMIA, zlibMIA, Min-k%) and utility (perplexity) metrics on both Enron-Phone and Enron-Email
datasets. The transition curves highlight how SCRUB’s performance depends on balancing the
three objective terms. Notably, when the KL regularizer weight on the keep set is greater than or
equal to that on the forget set, SCRUB achieves relatively high utility, albeit with increased privacy
leakage. Besides, we observe in our experiments that the zlibMIA attacker fails to capture the inherent
privacy-utility trade-off for SCRUB as demonstrated in the transition curves.

We further report the privacy-utility trade-off curves for both methods under attacker being lossMIA
and zlibMIA. Similar to the results demonstrated in Sec. 6.3, Langevin Unlearning method achieves
the best trade-off performance over SCRUB method.

C.7 PRIVACY UNDERESTIMATION ACROSS COMPLEXITY UNITS
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Figure 17: Degree of the largest
underestimation in privacy leakage
(Canary, Minority) compared
to Random settings across varying
Complexity Units.

In Fig. 17, we report the degree of largest underestimation
(Canary & Minoirty settings) in privacy leakage compared
to Random settings across different complexity units under
Min-k% attacker. As demonstrated in the figure, under differ-
ent complexity units, the privacy leakage for each unlearning
methods are severely underestimated. Detailed results under
each settings are reported in Table 10 and 11.

C.8 RESULTS ON AUC SCORES,
PERPLEXITY ACROSS DIFFERENT MODELS AND DATASETS.

We further report the AUC scores under different attackers (loss-
MIA, zlibMIA, Min-K%) and utility (perplexity) over holdout
test set Dtest for GPT-2 and Llama-2 in Table. 12-17.
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Discussion on TPR@low FPR Metric: Note that aside from
the AUC score, a commonly reported metric for privacy evaluation is TPR@low FPR (Carlini et al.,
2022), where the low FPR is often set to 0.01. However, in our scenario, the canary size is set to 100
(1% of the total training set size). At FPR = 0.01, the TPR would be calculated based on only a few
canary samples, making the overall score very coarse. To avoid the impact of this coarse granularity
on our experimental results, we primarily focus on the AUC score.

Table 10: PL Scores for MIA across Three Settings for GPT-2 on Enron (Phone) under Different
Complexity Units.

Enron-Phone GPT-2 Min-k%

Methods Complexity Units 2 Complexity Units 4 Complexity Units 10

Random Canary Minority Random Canary Minority Random Canary Minority

Random Label 0.166 0.284 0.136 -0.059 0.037 0.290 0.168 0.320 0.355
EUk 0.068 0.169 0.234 0.068 0.174 0.202 0.092 0.216 0.223
CFk 0.302 0.445 0.518 0.300 0.438 0.519 0.298 0.435 0.514
Gradient Ascent -0.175 -0.245 -0.203 -0.245 -0.469 -0.352 -0.031 -0.012 -0.427
NegGrad+ 0.309 0.452 0.543 0.309 0.447 0.529 0.298 0.452 0.510
Scrub 0.311 0.443 0.525 0.313 0.447 0.525 0.306 0.445 0.532
Langevin 0.163 0.259 0.265 0.161 0.259 0.265 0.159 0.259 0.265

Table 11: Perplexity for MIA across Three Settings for GPT-2 on Enron (Phone) under Different
Complexity Units.

Enron-Phone GPT-2 Perplexity

Methods Complexity Units 2 Complexity Units 4 Complexity Units 10

Random Canary Minority Random Canary Minority Random Canary Minority

Random Label 29.85 28.93 30+ 30+ 30+ 30+ 30+ 30+ 30+
EUk 30+ 30+ 30+ 30+ 30+ 30+ 23.64 23.65 26.60
CFk 12.72 12.71 12.72 12.72 12.72 12.73 12.67 12.67 12.67
Gradient Ascent 16.63 15.76 29.28 30+ 30+ 30+ 30+ 30+ 30+
NegGrad+ 12.86 12.87 12.83 12.84 12.86 12.88 12.83 12.80 12.88
Scrub 12.94 12.95 12.96 13.11 13.09 13.19 13.09 12.88 12.96
Langevin 13.84 13.85 13.88 13.85 13.86 13.88 13.84 13.88 13.88
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Table 12: AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone
Numbers)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.533 0.531 0.422 0.694 0.693 0.619
Retrain 0.448 0.414 0.315 0.660 0.644 0.582
Noisy No Unlearn 0.474 0.464 0.365 0.678 0.674 0.606
Noisy Retrain 0.432 0.403 0.312 0.662 0.649 0.587

Unlearning Methods
Random Label 0.501 0.493 0.381 0.689 0.687 0.617
Langevin 0.472 0.461 0.361 0.678 0.673 0.603
EUk 0.460 0.447 0.354 0.683 0.677 0.612
CFk 0.533 0.529 0.421 0.695 0.692 0.619
Gradient Ascent 0.488 0.472 0.355 0.676 0.671 0.597
NegGrad+ 0.530 0.526 0.418 0.694 0.691 0.616
SCRUB 0.523 0.518 0.416 0.692 0.689 0.618

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.594 0.592 0.471 12.72 12.72 12.72
Retrain 0.457 0.409 0.309 12.74 12.74 12.74
Noisy No Unlearn 0.518 0.511 0.393 13.84 13.85 13.87
Noisy Retrain 0.445 0.406 0.310 13.84 13.84 13.83

Unlearning Methods
Random Label 0.575 0.573 0.447 14.49 14.41 14.86
Langevin 0.516 0.511 0.392 13.84 13.88 13.88
EUk 0.499 0.497 0.378 23.64 23.65 23.60
CFk 0.593 0.587 0.468 12.67 12.67 12.67
Gradient Ascent 0.526 0.508 0.362 13.22 13.20 14.10
NegGrad+ 0.591 0.587 0.467 12.86 12.86 12.88
SCRUB 0.592 0.593 0.472 13.00 12.98 12.96
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Table 13: AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Email)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.555 0.551 0.354 0.462 0.462 0.563
Retrain 0.426 0.359 0.165 0.385 0.353 0.446
Noisy No Unlearn 0.488 0.483 0.271 0.422 0.421 0.512
Noisy Retrain 0.422 0.360 0.165 0.383 0.353 0.453

Unlearning Methods
Random Label 0.440 0.414 0.239 0.409 0.403 0.500
Langevin 0.487 0.475 0.265 0.420 0.416 0.509
EUk 0.525 0.517 0.261 0.437 0.434 0.514
CFk 0.552 0.544 0.353 0.461 0.457 0.562
Gradient Ascent 0.307 0.297 0.287 0.339 0.340 0.521
NegGrad+ 0.539 0.528 0.347 0.454 0.448 0.558
SCRUB 0.548 0.538 0.346 0.458 0.455 0.559

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.607 0.611 0.506 12.11 12.11 12.12
Retrain 0.397 0.316 0.205 12.19 12.19 12.19
Noisy No Unlearn 0.516 0.519 0.387 12.51 12.52 12.50
Noisy Retrain 0.384 0.307 0.199 12.48 12.48 12.48

Unlearning Methods
Random Label 0.568 0.560 0.451 15.87 16.13 13.54
Langevin 0.513 0.505 0.386 12.58 12.58 12.61
EUk 0.596 0.596 0.417 23.58 23.70 23.58
CFk 0.606 0.602 0.508 12.14 12.15 12.15
Gradient Ascent 0.242 0.220 0.417 27.30 21.86 14.53
NegGrad+ 0.594 0.589 0.499 12.34 12.34 12.37
SCRUB 0.603 0.601 0.507 12.15 12.15 12.32
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Table 14: AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on ECHR (Year)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.661 0.650 0.658 0.532 0.524 0.560
Retrain 0.552 0.521 0.521 0.490 0.475 0.499
Noisy No Unlearn 0.600 0.592 0.581 0.514 0.509 0.535
Noisy Retrain 0.545 0.514 0.518 0.490 0.477 0.503

Unlearning Methods
Random Label 0.641 0.632 0.643 0.523 0.517 0.542
Langevin 0.601 0.586 0.583 0.514 0.506 0.536
EUk 0.621 0.613 0.593 0.523 0.517 0.534
CFk 0.656 0.643 0.656 0.531 0.520 0.559
Gradient Ascent 0.589 0.535 0.576 0.502 0.484 0.518
NegGrad+ 0.653 0.636 0.650 0.525 0.517 0.555
SCRUB 0.651 0.637 0.653 0.529 0.522 0.557

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.671 0.661 0.673 11.81 11.81 11.81
Retrain 0.553 0.518 0.518 11.82 11.82 11.82
Noisy No Unlearn 0.615 0.609 0.586 12.74 12.74 12.75
Noisy Retrain 0.548 0.516 0.512 12.73 12.73 12.73

Unlearning Methods
Random Label 0.658 0.652 0.651 12.70 12.70 12.67
Langevin 0.612 0.603 0.587 12.78 12.78 12.78
EUk 0.616 0.615 0.588 22.04 22.06 22.00
CFk 0.669 0.655 0.671 11.78 11.78 11.79
Gradient Ascent 0.603 0.508 0.592 12.11 12.20 12.11
NegGrad+ 0.659 0.641 0.660 12.01 12.04 12.03
SCRUB 0.662 0.649 0.668 12.02 12.03 12.01
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Table 15: AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on Enron (Phone
Number)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.614 0.606 0.551 0.578 0.571 0.575
Retrain 0.579 0.488 0.470 0.559 0.520 0.539
Noisy No Unlearn 0.605 0.598 0.539 0.578 0.572 0.576
Noisy Retrain 0.584 0.500 0.482 0.568 0.533 0.554

Unlearning Methods
Random Label 0.439 0.447 0.444 0.556 0.554 0.594
Langevin 0.603 0.590 0.532 0.577 0.569 0.574
EUk 0.612 0.608 0.557 0.581 0.575 0.583
CFk 0.612 0.603 0.549 0.577 0.569 0.573
Gradient Ascent 0.253 0.278 0.252 0.551 0.540 0.584
NegGrad+ 0.536 0.398 0.451 0.547 0.495 0.538
SCRUB 0.613 0.567 0.550 0.578 0.553 0.574

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.611 0.610 0.579 9.45 9.47 9.48
Retrain 0.568 0.547 0.491 9.48 9.48 9.48
Noisy No Unlearn 0.600 0.602 0.570 10.21 10.21 10.21
Noisy Retrain 0.579 0.565 0.516 10.19 10.19 10.19

Unlearning Methods
Random Label 0.498 0.507 0.497 2124 2559 2445
Langevin 0.598 0.596 0.563 10.20 10.21 10.20
EUk 0.604 0.619 0.584 11.00 11.24 10.82
CFk 0.609 0.606 0.575 9.43 9.45 9.46
Gradient Ascent 0.213 0.296 0.237 4e9 8e9 2e9
NegGrad+ 0.529 0.399 0.463 9.82 9.90 9.85
SCRUB 0.610 0.530 0.578 9.45 9.48 9.48
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Table 16: AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on Enron (Email)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.628 0.613 0.418 0.548 0.539 0.451
Retrain 0.598 0.478 0.356 0.524 0.436 0.412
Noisy No Unlearn 0.594 0.572 0.393 0.515 0.502 0.443
Retrain 0.579 0.470 0.375 0.503 0.433 0.434

Unlearning Methods
Random Label 0.234 0.207 0.394 0.333 0.333 0.458
Langevin 0.592 0.560 0.393 0.513 0.494 0.443
EUk 0.620 0.593 0.416 0.532 0.517 0.454
CFk 0.627 0.604 0.416 0.548 0.532 0.449
Gradient Ascent 0.292 0.147 0.377 0.296 0.335 0.488
NegGrad+ 0.041 0.034 0.064 0.088 0.055 0.215
SCRUB 0.622 0.601 0.418 0.542 0.527 0.451

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.632 0.619 0.421 4.83 4.84 4.84
Retrain 0.594 0.420 0.344 4.84 4.84 4.84
Noisy No Unlearn 0.592 0.569 0.397 5.38 5.38 5.38
Noisy Retrain 0.570 0.410 0.368 5.39 5.39 5.39

Unlearning Methods
Random Label 0.230 0.181 0.330 730 542 255
Langevin 0.590 0.549 0.397 5.36 5.36 5.37
EUk 0.618 0.573 0.415 5.42 5.53 5.37
CFk 0.631 0.603 0.419 4.83 4.83 4.83
Gradient Ascent 0.256 0.219 0.445 4e8 6e12 6e12
NegGrad+ 0.041 0.029 0.052 12.15 14.73 6.20
SCRUB 0.627 0.599 0.421 4.86 4.86 4.86
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Table 17: AUC Scores for MIA and Perplexity across Three Settings for Llama-2 on ECHR (Year)

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

No Unlearn 0.570 0.547 0.726 0.513 0.499 0.513
Retrain 0.540 0.500 0.675 0.498 0.476 0.468
Noisy No Unlearn 0.556 0.532 0.721 0.504 0.491 0.510
Noisy Retrain 0.541 0.502 0.685 0.498 0.476 0.476

Unlearning Methods
Random Label 0.503 0.522 0.316 0.486 0.490 0.378
Langevin 0.555 0.528 0.715 0.503 0.488 0.498
EUk 0.572 0.542 0.728 0.513 0.497 0.505
CFk 0.570 0.544 0.724 0.512 0.497 0.509
Gradient Ascent 0.515 0.312 0.254 0.490 0.419 0.343
NegGrad+ 0.553 0.364 0.254 0.504 0.429 0.358
SCRUB 0.570 0.547 0.724 0.513 0.499 0.510

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

No Unlearn 0.573 0.559 0.686 4.89 4.89 4.89
Retrain 0.537 0.502 0.603 4.89 4.89 4.89
Noisy No Unlearn 0.553 0.541 0.675 5.03 5.03 5.02
Noisy Retrain 0.537 0.504 0.616 5.02 5.02 5.02

Unlearning Methods
Random Label 0.519 0.537 0.327 90 129 127.43
Langevin 0.552 0.535 0.664 5.03 5.03 5.03
EUk 0.572 0.557 0.695 5.27 5.21 5.32
CFk 0.571 0.555 0.682 4.87 4.88 4.87
Gradient Ascent 0.503 0.299 0.257 7.94 10.68 29.48
NegGrad+ 0.551 0.299 0.203 4.96 5.10 5.41
SCRUB 0.573 0.558 0.687 4.88 4.88 4.87
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Table 18: AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone
Number) for Noisy Learning

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.541 0.536 0.427 0.699 0.697 0.621
Noisy Retrain 1e-4 0.446 0.412 0.309 0.658 0.643 0.577
Langevin 1e-4 0.540 0.535 0.424 0.698 0.695 0.619

Noisy No Unlearn 3e-4 0.492 0.484 0.381 0.682 0.678 0.607
Noisy Retrain 3e-4 0.436 0.405 0.311 0.660 0.647 0.583
Langevin 3e-4 0.492 0.483 0.379 0.682 0.678 0.606

Noisy No Unlearn 5e-4 0.474 0.464 0.365 0.678 0.674 0.606
Noisy Retrain 5e-4 0.432 0.403 0.312 0.662 0.649 0.587
Langevin 5e-4 0.472 0.461 0.361 0.678 0.673 0.603

Noisy No Unlearn 8e-4 0.463 0.450 0.352 0.677 0.672 0.606
Noisy Retrain 8e-4 0.428 0.401 0.311 0.664 0.653 0.590
Langevin 8e-4 0.460 0.448 0.350 0.676 0.670 0.604

Noisy No Unlearn 1e-3 0.459 0.446 0.348 0.677 0.671 0.606
Noisy Retrain 1e-3 0.427 0.400 0.311 0.665 0.655 0.592
Langevin 1e-3 0.456 0.443 0.347 0.675 0.670 0.604

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.599 0.599 0.465 12.26 12.24 12.27
Noisy Retrain 1e-4 0.454 0.410 0.303 12.25 12.25 12.25
Langevin 1e-4 0.598 0.596 0.460 12.32 12.32 12.33

Noisy No Unlearn 3e-4 0.538 0.535 0.409 13.20 13.20 13.21
Noisy Retrain 3e-4 0.447 0.405 0.308 13.19 13.19 13.19
Langevin 3e-4 0.538 0.535 0.408 13.24 13.24 13.22

Noisy No Unlearn 5e-4 0.518 0.511 0.393 13.84 13.85 13.87
Noisy Retrain 5e-4 0.445 0.406 0.310 13.84 13.84 13.83
Langevin 5e-4 0.516 0.511 0.392 13.84 13.88 13.88

Noisy No Unlearn 8e-4 0.505 0.498 0.378 14.40 14.39 14.39
Noisy Retrain 8e-4 0.442 0.405 0.313 14.42 14.42 14.42
Langevin 8e-4 0.502 0.497 0.376 14.44 14.44 14.43

Noisy No Unlearn 1e-3 0.500 0.492 0.374 14.71 14.70 14.70
Noisy Retrain 1e-3 0.440 0.408 0.313 14.73 14.73 14.73
Langevin 1e-3 0.497 0.487 0.371 14.74 14.74 14.73
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Table 19: AUC Scores for MIA and Perplexity across Three Settings for GPT-2 on Enron (Phone
Email) for Noisy Learning

AUC - LossMIA AUC - ZlibMIA
Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.584 0.587 0.369 0.480 0.483 0.578
Noisy Retrain 1e-4 0.431 0.362 0.165 0.387 0.356 0.447
Langevin 1e-4 0.584 0.578 0.368 0.479 0.476 0.579

Noisy No Unlearn 3e-4 0.512 0.511 0.311 0.436 0.436 0.535
Noisy Retrain 3e-4 0.424 0.360 0.164 0.384 0.353 0.449
Langevin 3e-4 0.510 0.499 0.309 0.432 0.429 0.534

Noisy No Unlearn 5e-4 0.488 0.483 0.271 0.422 0.421 0.512
Noisy Retrain 5e-4 0.422 0.360 0.165 0.383 0.353 0.453
Langevin 5e-4 0.487 0.475 0.265 0.420 0.416 0.509

Noisy No Unlearn 8e-4 0.470 0.464 0.248 0.414 0.412 0.503
Noisy Retrain 8e-4 0.417 0.357 0.170 0.383 0.354 0.459
Langevin 8e-4 0.471 0.457 0.243 0.411 0.406 0.500

Noisy No Unlearn 1e-3 0.463 0.456 0.243 0.410 0.408 0.500
Noisy Retrain 1e-3 0.414 0.354 0.172 0.381 0.355 0.462
Langevin 1e-3 0.462 0.450 0.237 0.408 0.403 0.499

AUC - Min-K% Perplexity
Random Canary Minority Random Canary Minority

Noisy No Unlearn 1e-4 0.651 0.661 0.528 12.18 12.25 12.16
Noisy Retrain 1e-4 0.407 0.318 0.210 12.25 12.25 12.25
Langevin 1e-4 0.655 0.655 0.532 12.27 12.28 12.27

Noisy No Unlearn 3e-4 0.553 0.562 0.420 12.31 12.34 12.28
Noisy Retrain 3e-4 0.390 0.311 0.199 12.23 12.23 12.23
Langevin 3e-4 0.552 0.547 0.421 12.38 12.39 12.38

Noisy No Unlearn 5e-4 0.516 0.519 0.387 12.51 12.52 12.50
Noisy Retrain 5e-4 0.384 0.307 0.199 12.48 12.48 12.48
Langevin 5e-4 0.513 0.505 0.386 12.58 12.58 12.61

Noisy No Unlearn 8e-4 0.478 0.483 0.355 12.83 12.80 12.82
Noisy Retrain 8e-4 0.369 0.298 0.200 12.84 12.84 12.84
Langevin 8e-4 0.477 0.469 0.349 12.87 12.86 12.89

Noisy No Unlearn 1e-3 0.465 0.467 0.341 13.01 12.98 13.01
Noisy Retrain 1e-3 0.365 0.296 0.201 13.02 13.02 13.02
Langevin 1e-3 0.462 0.453 0.335 13.04 13.03 13.06
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