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ABSTRACT

Federated Learning is a machine learning paradigm where multiple clients collab-
oratively train a global model by exchanging their locally trained model weights
instead of raw data. In the standard setting, every client trains the local model
for the same number of epochs. We introduce ALT (Adaptive Local Training),
a simple yet effective feedback mechanism that could be introduced at the client
side to limit unnecessary and degrading computations. ALT dynamically adjusts
the number of training epochs for each client based on the similarity between
their local representations and the global one, ensuring that well-aligned clients
can train longer without experiencing client drift. We evaluated ALT on federated
partitions of the CIFAR-10 and TinyImageNet datasets, demonstrating its effec-
tiveness in improving model convergence and stability.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has emerged as a machine learning approach pri-
oritizing privacy while fostering collaborative training, avoiding centralized data storage concerns.

Figure 1: Overview of the proposed Federated
learning strategy with dynamic local training
epochs.

Typically, in FL every client performs training
for the same number of local epochs (Karim-
ireddy et al., 2020; Li et al., 2021; Shenaj et al.,
2023). However, different clients could have
different computational capabilities, and com-
munication speeds, and the server might re-
quest updates when the training is not yet con-
cluded. In addition to that, when the clients’
data distribution is very heterogeneous, train-
ing each client for a fixed pre-defined number
of steps leads to client drift and complicates the
aggregation.

For this reason, we train for a variable num-
ber of local epochs across clients and training
rounds, similarly to (Li et al., 2020; Michieli
et al., 2022). In particular, we study the effect
of dynamic local epochs on the client side and
propose a client-side control strategy to mit-
igate representation drift, reduce communica-
tion costs, and improve performances.

Related Work. FedProx (Li et al., 2020) introduces a flexible framework that allows clients to per-
form variable amounts of local training, assuming that some clients may not complete their updates
within a fixed time window. Additionally, it employs a dynamic regularizer in the local objective to
mitigate the impact of inconsistent local updates.

Similarly, SCAFFOLD (Karimireddy et al., 2020) tackles client drift by estimating and correcting
update directions for both the server and clients, ensuring more stable local updates. However, while
these methods offer improvements, they fail to achieve significant performance gains over FedAvg in
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(a) Accuracy curve on
Cifar-10.
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(b) Accuracy curve on
TinyImagenet.

0 200 400 600 800 1000
Round

20

40

60

80

100

Cu
m

ul
at

iv
e 

su
m

 o
f e

po
ch

s

FedAvg, MOON
FedAvg+ALT
MOON+ALT

(c) Total number of epochs
per round on Cifar-10.
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(d) Cumulative epochs per
round on Cifar-10.

deep neural networks training, particularly when applied in realistic computer vision applications.
To address this limitation, MOON (Li et al., 2021) proposes a model-based contrastive learning
approach to enhance local training in non-IID settings. By enforcing similarity between the current
local model and the incoming global model, while discouraging similarity with the previous local
model, MOON effectively stabilizes training in deep networks.

Building on these insights, we introduce a simple yet effective mechanism to control the length of
local training, opening new research opportunities in adaptive and dynamic federated learning.

2 METHOD

Let us assume a set of clients K, where each client k ∈ K has access to a local set of samples
(Xk,Yk) from a dataset Dk with |Dk| = nk. At each communication round r ∈ {1, . . . , R}, the
server selects a subset of clients S ⊂ K and sets an adaptive threshold Th(r) = a+ b·r

R , that linearly
increases during the training (we set a = 0.1 and b = 0.8, see Appendix B for more details). Each
client s ∈ S then initializes its local model θrs with the global model θr and trains for Er

s local
epochs, where Er

s varies across clients and rounds.

At each training step, as usual in neural networks training, the local model is updated using gradient
descent on mini-batches B ⊂ Ds, i.e., θrs ← θrs − η∇Ls(θ

r
s ;B).

Let us denote with ps = f(ws,B) and pg = f(wg,B) the feature embeddings of the local and
global models for the considered batch: the local training halts as soon as the similarity condition
cos(ps, pg) < Th(r) is met, i.e., when the difference between the embeddings is smaller than the
threshold. If the condition is never met, it will stop as usual after the maximum number of local
epochs E is reached. Note that the threshold increases with time, i.e., the criteria becomes more and
more strict while the difference w.r.t. the starting model typically increases.

After local training, the client models are sent to the server, which aggregates them using standard
federated averaging, i.e.,: θr+1 =

∑
s∈S

ns

n θrs . The process is repeated for R rounds. The algorithm
is detailed in Appendix C.

3 RESULTS

We evaluate the performance of our algorithm on the CIFAR-10 (Krizhevsky et al., 2009), and Tiny-
Imagenet (Le & Yang, 2015) datasets. As a strong baseline for local training, we consider MOON.
We consider |K| = 100 clients (with 10% participation), and the data is partitioned according to the
Dirichlet distribution with the concentration parameter α = 100. By looking at the Figure, we can
notice that our method allows to reduce substantially carbon footprint by reducing the cumulative
epochs per round (sum of all clients epochs), and leads also to improved performance. In particular,
we notice that FedAvg + ALT (FedALT) could work similarly or better then MOON, while being
much more efficient.

4 CONCLUSION

In this work, we introduced a representation learning feedback mechanism to control the number
of local epochs reducing energy consumption and communication costs which can be seamlessly
integrated into FL algorithms.
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APPENDIX

A IMPLEMENTATION DETAILS

We adopt as feature extractor f a simple CNN with 2 convolutional layers for CIFAR-10, and
ResNet-50 for Tiny-Imagenet. We use the SGD optimizer with a learning rate 0.01 for all ap-
proaches. The SGD weight decay is set to 0.00001 and SGD momentum is set to 0.9. The batch size
is set to 64. The maximum number of local epochs E is set to 10, and the number of communication
rounds R is 1000 for Cifar-10 and 150 for TinyImagenet.

B SELECTION OF THE THRESHOLD FUNCTION

We experimented different threshold functions Th(r), including 3 simple approaches:

• Linear Increasing: Th(r) = 0.1 + 0.8 · r
R

• Linear Decreasing: Th(r) = 0.9− 0.8 · r
R

• Fixed: Th(r) = c, where c is a constant.

Among these strategies, the most effective was the linear increasing threshold. This approach en-
ables a ‘slow start,’ where early training rounds allow for more flexibility in local updates before
gradually enforcing stricter similarity constraints. This progressive tightening helps balance explo-
ration and convergence, leading to improved overall model performance. However, in practice, any
thresholding (including a fixed rule) is useful to reduce carbon footprint.
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C ALGORITHM

1: Input: Initialize model parameters θ
2: Initialize maximum rounds R
3: Initialize threshold parameters a, b
4: Server executes:
5: for r = 1 to R do
6: S ← Random subset of clients
7: Th(r)← a+ b∗r

R
8: for each client i ∈ S do
9: θi ← ClientUpdate(i, θ, r, Th(r))

10: end for
11: θ ←

∑
i∈S

ni

n θi
12: end for
13: ClientUpdate(i, θ, r, Th(r)):
14: if r = 1:
15: θi ← θ
16: θi := {wi, vi}
17: θg ← θ
18: θg := {wg, vg}
19: stop← False
20: for j = 1, 2, ..., E and stop = False do
21: for each batch B in Di do
22: pi ← f(wi,B)
23: pg ← f(wg,B)
24: if cos(pi, pg) < Th(r): stop← True
25: θg ← θg − η∇L(θg;B)
26: θi ← θg
27: return θi

Algorithm 1: Implementation of FedAvg with the ALT stopping criteria (FedALT)
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