
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ADAPTIVE LOCAL TRAINING IN
FEDERATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning is a machine learning paradigm where multiple clients collab-
oratively train a global model by exchanging their locally trained model weights
instead of raw data. In the standard setting, every client trains the local model
for the same number of epochs. We introduce ALT (Adaptive Local Training),
a simple yet effective feedback mechanism that could be introduced at the client
side to limit unnecessary and degrading computations. ALT dynamically adjusts
the number of training epochs for each client based on the similarity between
their local representations and the global one, ensuring that well-aligned clients
can train longer without experiencing client drift. We evaluated ALT on federated
partitions of the CIFAR-10 and TinyImageNet datasets, demonstrating its effec-
tiveness in improving model convergence and stability.

1 INTRODUCTION

Federated learning (FL) (McMahan et al., 2017) has emerged as a machine learning approach pri-
oritizing privacy while fostering collaborative training, avoiding centralized data storage concerns.

Figure 1: Overview of the proposed Federated
learning strategy with dynamic local training
epochs.

Typically, in FL every client performs training
for the same number of local epochs (Karim-
ireddy et al., 2020; Li et al., 2021; Shenaj et al.,
2023). However, different clients could have
different computational capabilities, and com-
munication speeds, and the server might re-
quest updates when the training is not yet con-
cluded. In addition to that, when the clients’
data distribution is very heterogeneous, train-
ing each client for a fixed pre-defined number
of steps leads to client drift and complicates the
aggregation.

For this reason, we train for a variable num-
ber of local epochs across clients and training
rounds, similarly to (Li et al., 2020; Michieli
et al., 2022). In particular, we study the effect
of dynamic local epochs on the client side and
propose a client-side control strategy to mit-
igate representation drift, reduce communica-
tion costs, and improve performances.

Related Work. FedProx (Li et al., 2020) introduces a flexible framework that allows clients to per-
form variable amounts of local training, assuming that some clients may not complete their updates
within a fixed time window. Additionally, it employs a dynamic regularizer in the local objective to
mitigate the impact of inconsistent local updates.

Similarly, SCAFFOLD (Karimireddy et al., 2020) tackles client drift by estimating and correcting
update directions for both the server and clients, ensuring more stable local updates. However, while
these methods offer improvements, they fail to achieve significant performance gains over FedAvg in

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

FedAvg
FedAvg+ALT
MOON
MOON+ALT

(a) Accuracy curve on
Cifar-10.

0 20 40 60 80 100 120 140
Round

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ac
cu

ra
cy

FedAvg
FedAvg+ALT
MOON
MOON+ALT

(b) Accuracy curve on
TinyImagenet.

0 200 400 600 800 1000
Round

20

40

60

80

100

Cu
m

ul
at

iv
e 

su
m

 o
f e

po
ch

s

FedAvg, MOON
FedAvg+ALT
MOON+ALT

(c) Total number of epochs
per round on Cifar-10.

0 200 400 600 800 1000
Round

0

20000

40000

60000

80000

100000

Cu
m

ul
at

iv
e 

su
m

 o
f e

po
ch

s

FedAvg, MOON
FedAvg+ALT
MOON+ALT

(d) Cumulative epochs per
round on Cifar-10.

deep neural networks training, particularly when applied in realistic computer vision applications.
To address this limitation, MOON (Li et al., 2021) proposes a model-based contrastive learning
approach to enhance local training in non-IID settings. By enforcing similarity between the current
local model and the incoming global model, while discouraging similarity with the previous local
model, MOON effectively stabilizes training in deep networks.

Building on these insights, we introduce a simple yet effective mechanism to control the length of
local training, opening new research opportunities in adaptive and dynamic federated learning.

2 METHOD

Let us assume a set of clients K, where each client k ∈ K has access to a local set of samples
(Xk,Yk) from a dataset Dk with |Dk| = nk. At each communication round r ∈ {1, . . . , R}, the
server selects a subset of clients S ⊂ K and sets an adaptive threshold Th(r) = a+ b·r

R , that linearly
increases during the training (we set a = 0.1 and b = 0.8, see Appendix B for more details). Each
client s ∈ S then initializes its local model θrs with the global model θr and trains for Er

s local
epochs, where Er

s varies across clients and rounds.

At each training step, as usual in neural networks training, the local model is updated using gradient
descent on mini-batches B ⊂ Ds, i.e., θrs ← θrs − η∇Ls(θ

r
s ;B).

Let us denote with ps = f(ws,B) and pg = f(wg,B) the feature embeddings of the local and
global models for the considered batch: the local training halts as soon as the similarity condition
cos(ps, pg) < Th(r) is met, i.e., when the difference between the embeddings is smaller than the
threshold. If the condition is never met, it will stop as usual after the maximum number of local
epochs E is reached. Note that the threshold increases with time, i.e., the criteria becomes more and
more strict while the difference w.r.t. the starting model typically increases.

After local training, the client models are sent to the server, which aggregates them using standard
federated averaging, i.e.,: θr+1 =

∑
s∈S

ns

n θrs . The process is repeated for R rounds. The algorithm
is detailed in Appendix C.

3 RESULTS

We evaluate the performance of our algorithm on the CIFAR-10 (Krizhevsky et al., 2009), and Tiny-
Imagenet (Le & Yang, 2015) datasets. As a strong baseline for local training, we consider MOON.
We consider |K| = 100 clients (with 10% participation), and the data is partitioned according to the
Dirichlet distribution with the concentration parameter α = 100. By looking at the Figure, we can
notice that our method allows to reduce substantially carbon footprint by reducing the cumulative
epochs per round (sum of all clients epochs), and leads also to improved performance. In particular,
we notice that FedAvg + ALT (FedALT) could work similarly or better then MOON, while being
much more efficient.

4 CONCLUSION

In this work, we introduced a representation learning feedback mechanism to control the number
of local epochs reducing energy consumption and communication costs which can be seamlessly
integrated into FL algorithms.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

REFERENCES

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

Qinbin Li, Bingsheng He, and Dawn Song. Model-contrastive federated learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 10713–10722, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and sys-
tems, 2:429–450, 2020.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelli-
gence and Statistics (AISTATS), pp. 1273–1282. PMLR, 2017.

Umberto Michieli, Marco Toldo, and Mete Ozay. Federated learning via attentive margin of semantic
feature representations. IEEE Internet of Things Journal, 10(2):1517–1535, 2022.

Donald Shenaj, Giulia Rizzoli, and Pietro Zanuttigh. Federated learning in computer vision. IEEE
Access, 2023.

APPENDIX

A IMPLEMENTATION DETAILS

We adopt as feature extractor f a simple CNN with 2 convolutional layers for CIFAR-10, and
ResNet-50 for Tiny-Imagenet. We use the SGD optimizer with a learning rate 0.01 for all ap-
proaches. The SGD weight decay is set to 0.00001 and SGD momentum is set to 0.9. The batch size
is set to 64. The maximum number of local epochs E is set to 10, and the number of communication
rounds R is 1000 for Cifar-10 and 150 for TinyImagenet.

B SELECTION OF THE THRESHOLD FUNCTION

We experimented different threshold functions Th(r), including 3 simple approaches:

• Linear Increasing: Th(r) = 0.1 + 0.8 · r
R

• Linear Decreasing: Th(r) = 0.9− 0.8 · r
R

• Fixed: Th(r) = c, where c is a constant.

Among these strategies, the most effective was the linear increasing threshold. This approach en-
ables a ‘slow start,’ where early training rounds allow for more flexibility in local updates before
gradually enforcing stricter similarity constraints. This progressive tightening helps balance explo-
ration and convergence, leading to improved overall model performance. However, in practice, any
thresholding (including a fixed rule) is useful to reduce carbon footprint.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

C ALGORITHM

1: Input: Initialize model parameters θ
2: Initialize maximum rounds R
3: Initialize threshold parameters a, b
4: Server executes:
5: for r = 1 to R do
6: S ← Random subset of clients
7: Th(r)← a+ b∗r

R
8: for each client i ∈ S do
9: θi ← ClientUpdate(i, θ, r, Th(r))

10: end for
11: θ ←

∑
i∈S

ni

n θi
12: end for
13: ClientUpdate(i, θ, r, Th(r)):
14: if r = 1:
15: θi ← θ
16: θi := {wi, vi}
17: θg ← θ
18: θg := {wg, vg}
19: stop← False
20: for j = 1, 2, ..., E and stop = False do
21: for each batch B in Di do
22: pi ← f(wi,B)
23: pg ← f(wg,B)
24: if cos(pi, pg) < Th(r): stop← True
25: θg ← θg − η∇L(θg;B)
26: θi ← θg
27: return θi

Algorithm 1: Implementation of FedAvg with the ALT stopping criteria (FedALT)

4


	Introduction
	Method
	Results
	Conclusion
	Implementation details
	Selection of the Threshold function
	Algorithm

