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ABSTRACT

Self-supervised image denoising aims to reconstruct signal from a noisy image
with no additional information. Typically, this is accomplished by means of spe-
cific frameworks built upon fully-convolutional neural networks. In two such
frameworks, Noise2Self and Noise2Same, we replaced conventional convolu-
tional backbones with a state-of-the-art Swin Transformer-based model. In this
paper, we summarize the results of experiments on a range of datasets and exam-
ine the advantages and limitations of transformers in self-supervised denoising.

1 INTRODUCTION AND RELATED WORK

Deep learning solutions for self-supervised denoising are usually based on a fully-convolutional
U-Net architecture (Ronneberger et al., 2015). It was used in Noise2Void (Krull et al., 2019) and
Noise2Self (Batson & Royer, 2019), which concurrently introduced masked pixels reconstruction
as a proxy task for blind-spot denoising. The main limitation of masking was the inability to look
at pixels’ own noisy albeit useful signal. Noise2Same (Xie et al., 2020) addressed this issue with a
dual forward pass of masked and unmasked images through the network.

SwinIR (Liang et al., 2021) is a state-of-the-art model for supervised image restoration, including
denoising, based on Swin Transformer (Liu et al., 2021). Despite the superiority of this architecture,
there was limited research exploring its capabilities in the self-supervised setting. DnT (Liu et al.,
2022) utilized a variant of SwinIR for unsupervised single-image denoising, following R2R (Pang
et al., 2021) to sample pairs of images with independent noise. In this work, we propose a simpler
approach to validate SwinIR performance for self-supervised denoising by directly integrating it into
Noise2Self and Noise2Same frameworks. Additionally, we conduct an ablation study to determine
optimal hyperparameters on a range of datasets.

2 METHODS

Noise2Self uses a blind-spot loss — a mean squared error (MSE) between predicted and hidden val-
ues of masked pixels. Noise2Same makes an additional run through the model when the unchanged
image is passed as input. In this case, the loss consists of two components: reconstruction MSE be-
tween the second output and the noisy input and invariance MSE between the two outputs computed
over the pixel mask. The difference between frameworks is illustrated in Figure 2.

SwinIR model (Figure 3) consists of six groups with six Swin Transformer blocks in each group,
followed by a 3×3 convolution. Two consequent blocks alternate between plain and shifted window
multi-head self-attention. We used window size 16× 16 and patch size 1× 1 pixels, and did not use
the global shortcut (adding input to output). We further discuss training details in Appendix B.

3 EXPERIMENTS AND DISCUSSION

The models were trained and evaluated on three noise datasets: BSD68 — grayscale images of
natural objects (Martin et al., 2001), HanZi — grayscale images of handwritten Chinese charac-
ters (Batson & Royer, 2019), and ImageNet — RGB images of natural objects (Deng et al., 2009;
Xie et al., 2020). We followed Xie et al. (2020) for training settings and data preparation, except for
BSD68, where we used crops of size 128× 128 and batch size 32 instead of 64× 64 and 64.
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Table 1: Denoising results. The best scores are highlighted in bold, and the second-best scores are
underlined. We report the results of our implementation wherever possible and compare them to
those reported in Noise2Same (Xie et al., 2020). † — clipping gradient norm to 1.0.

BSD68 HanZi ImageNet
Method Backbone PSNR SSIM PSNR SSIM PSNR SSIM

Noise2Void U-Net (Xie et al., 2020) 27.71 — 13.72 — 21.36 —

Noise2Self
U-Net (Xie et al., 2020) 26.98 — 13.94 — 20.38 —

U-Net 26.88 0.734 14.16 0.512 21.33 0.574
SwinIR 27.57 0.774 13.57 0.475 20.28† 0.524†

Noise2Same
U-Net (Xie et al., 2020) 27.95 — 14.38 — 22.26 —

U-Net 28.11 0.781 14.85 0.542 22.85 0.625
SwinIR 28.07 0.786 14.35 0.513 23.05 0.635

Figure 1: Image restoration results of U-Net and SwinIR in Noise2Same self-supervised framework.

The evaluation results are given in Table 1. SwinIR backbone improved the peak signal-to-noise
ratio (PSNR) and structural similarity index (SSIM) in several experiments, such as Noise2Same
on ImageNet (+0.20 PSNR) or Noise2Self on BSD68 (+0.69 PSNR). In Noise2Same on BSD68,
SwinIR has a slightly lower PSNR but better SSIM. We hypothesize that SwinIR is more capable
of detailed structure restoration than U-Net. In Figure 1, high-frequency details are better retained
in the output of SwinIR. At the same time, in the picture produced by U-Net, the structure is blurry
and uneven. As an exclusive case, however, HanZi dataset has a clear black background and less
high-frequency signal than natural images — SwinIR did not improve its scores.

Being more computationally expensive than U-Net, SwinIR has its limitations regarding resources
and processing time. We document the details in Appendix C, Tables 3 and 4.

Ablations. By default, SwinIR (Liang et al., 2021) embeds patches of size 1 × 1 px instead of
4 × 4 originally proposed in Swin Transformer (Liu et al., 2021). While this is an essential change
for the image restoration task, it implicitly reduces window resolution from 28× 28 to 7× 7. Such
window size is not computationally efficient, because input should be padded for divisibility (e.g.,
crop 64×64 will increase in size by 19.6%). Also, it may be too small for the image restoration task.
We compared window sizes 8× 8 and 16× 16 and found that the larger one consistently improves
the scores (see Table 6). We have also investigated the importance of larger crop sizes against larger
batch sizes and found that crops of size 128× 128 with batch size 32 are better than 64× 64 and 64
on BSD68 for all backbones and frameworks except U-Net in Noise2Self (see Table 5).

4 CONCLUSION

We replaced a fully-convolutional architecture with a transformer-based model in self-supervised
image denoising frameworks and assessed the results. Our experiments showed that SwinIR demon-
strates competitive performance, being capable of restoring complex high-frequency details ignored
by its convolutional counterparts. However, such improvement comes at a considerable computa-
tional cost. We did not experiment with 3D data, and it is yet unclear if it is feasible to denoise it
with transformers. we leave this question open for further work.

2



Published as a Tiny Paper at ICLR 2023

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of the
ICLR 2023 Tiny Papers Track.

ACKNOWLEDGEMENTS

The authors thank Revvity, Inc. for the financing of this work and High Performance Computing
Center at the Institute of Computer Science of the University of Tartu for providing computational
resources.

REFERENCES

Joshua Batson and Loic Royer. Noise2Self: Blind denoising by self-supervision. In Kamalika
Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 524–533.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/batson19a.
html.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alexander Krull, Tim-Oliver Buchholz, and Florian Jug. Noise2void-learning denoising from single
noisy images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2129–2137, 2019.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. arXiv preprint arXiv:2108.10257, 2021.

Xiaolong Liu, Yusheng Hong, Qifang Yin, and Shuo Zhang. Dnt: Learning unsupervised denois-
ing transformer from single noisy image. In Proceedings of the 4th International Conference on
Image Processing and Machine Vision, IPMV ’22, pp. 50–56, New York, NY, USA, 2022. Asso-
ciation for Computing Machinery. ISBN 9781450395823. doi: 10.1145/3529446.3529455. URL
https://doi.org/10.1145/3529446.3529455.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), 2021.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural im-
ages and its application to evaluating segmentation algorithms and measuring ecological statis-
tics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Con-
ference on, volume 2, pp. 416–423 vol.2, 2001. doi: 10.1109/ICCV.2001.937655. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=937655.

Tongyao Pang, Huan Zheng, Yuhui Quan, and Hui Ji. Recorrupted-to-recorrupted: unsupervised
deep learning for image denoising. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 2043–2052, 2021.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Alex Rogozhnikov. Einops: Clear and reliable tensor manipulations with einstein-like notation. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=oapKSVM2bcj.

3

https://proceedings.mlr.press/v97/batson19a.html
https://proceedings.mlr.press/v97/batson19a.html
https://doi.org/10.1145/3529446.3529455
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=937655
https://openreview.net/forum?id=oapKSVM2bcj
https://openreview.net/forum?id=oapKSVM2bcj


Published as a Tiny Paper at ICLR 2023

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejan-
dro F. Frangi (eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI
2015, pp. 234–241, Cham, 2015. Springer International Publishing. ISBN 978-3-319-24574-4.

Yaochen Xie, Zhengyang Wang, and Shuiwang Ji. Noise2Same: Optimizing a self-supervised bound
for image denoising. In Advances in Neural Information Processing Systems, volume 33, pp.
20320–20330, 2020.

A ARCHITECTURES

Figure 2: Noise2Self (Batson & Royer, 2019) and Noise2Same (Xie et al., 2020) frameworks.

Figure 3: SwinIR (Liang et al., 2021) model architecture.
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B TRAINING DETAILS

We used Adam optimizer (Kingma & Ba, 2014) in all experiments with initial learning rate of
4 · 10−4 and scheduled learning rate decay by half every 5000 iterations. The main training setup
parameters are demonstrated in Table 2. We encountered a problem of exploding gradients in
Noise2Self + SwinIR on HanZi with window size of 8× 8 and on Imagenet. In these cases, we had
to use gradient norm clipping of 1.0.

We implemented all models in Python 3.8.3 and PyTorch 1.12.1 (Paszke et al., 2017), and trained
them on NVIDIA A100 80GB GPUs (driver version: 470.57.02, CUDA version: 11.4). We used
einops (Rogozhnikov, 2022) library to implement transformer blocks in a verbose way.

Table 2: Training configuration.

BSD68 HanZi ImageNet

Batch size 32 64 64
Training crop size 128 64 64

# iterations 80000 50000 50000

C COMPUTATIONAL COSTS

SwinIR is a more computationally expensive model than U-Net, so it was trained longer on multiple
GPUs (see Tables 3 and 4 for details).

Table 3: Number of GPUs utilized in each experiment.

Method Backbone BSD68 HanZi ImageNet

Noise2Self U-Net 1 1 1
SwinIR 4 2 2

Noise2Same U-Net 1 1 1
SwinIR 8 4 4

Table 4: Training time (TT) and average inference time (AIT) in experiments. Inference was done
in a single thread with batch size 1, as for BSD68 and ImageNet it is infeasible to compose batches
due to varying image sizes.

BSD68 HanZi ImageNet
Method Backbone TT (h) AIT (ms) TT (h) AIT (ms) TT (h) AIT (ms)

Noise2Self U-Net 1 7 0.5 5 1 15
SwinIR 20 2632 12 40 14 11565

Noise2Same U-Net 2 8 1 6 1 14
SwinIR 26 3548 22 57 13 5985
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D ABLATION STUDY

Table 5: BSD68 training crop and batch size ablation study. The scores are compared within each
method and backbone combination. The best scores are highlighted in bold.

Method Backbone Crop size Batch size PSNR SSIM

Noise2Self
U-Net 64 64 26.94 0.743

128 32 26.88 0.734

SwinIR 64 64 27.49 0.769
128 32 27.57 0.774

Noise2Same
U-Net 64 64 27.90 0.752

128 32 28.11 0.781

SwinIR 64 64 27.78 0.736
128 32 28.07 0.786

Table 6: Window size ablation study. The scores are compared across window sizes of SwinIR in
each method separately. The best scores are highlighted in bold. † — clipping gradient norm to 1.0.

BSD68 HanZi ImageNet
Method Window size PSNR SSIM PSNR SSIM PSNR SSIM

Noise2Self 8 27.54 0.772 12.18† 0.388† 19.41† 0.470†

16 27.57 0.774 13.57 0.475 20.21† 0.493†

Noise2Same 8 28.00 0.786 14.24 0.510 22.95 0.626
16 28.07 0.786 14.35 0.513 23.05 0.635
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E ADDITIONAL EXAMPLES

Figure 4: Additional examples of images denoised in BSD68 (first pair of rows), HanZi (second
pair of rows), and ImageNet (last pair of rows) experiments. Each pair of rows contains a hard and
a simple example from the dataset with the corresponding PSNR scores.
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