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Abstract

Synthetic data is crucial for advancing autonomous driving (AD) systems, yet
current state-of-the-art video generation models, despite their visual realism, suffer
from subtle geometric distortions that limit their utility for downstream perception
tasks. We identify and quantify this critical issue, demonstrating a significant
performance gap in 3D object detection when using synthetic versus real data.
To address this, we introduce Reinforcement Learning with Geometric Feedback
(RLGF), RLGF uniquely refines video diffusion models by incorporating rewards
from specialized latent-space AD perception models. Its core components include
an efficient Latent-Space Windowing Optimization technique for targeted feedback
during diffusion, and a Hierarchical Geometric Reward (HGR) system providing
multi-level rewards for point-line-plane alignment, and scene occupancy coherence.
To quantify these distortions, we propose GeoScores. Applied to models like
DiVE on nuScenes, RLGF substantially reduces geometric errors (e.g., VP error by
21%, Depth error by 57%) and dramatically improves 3D object detection mAP by
12.7%, narrowing the gap to real-data performance. RLGF offers a plug-and-play
solution for generating geometrically sound and reliable synthetic videos for AD
development.

1 Introduction

The rapid progress of autonomous driving (AD) systems [[15, [17} 6] has created a growing need for
high-quality synthetic data. Recent diffusion-based video generation methods [57} 61} 30} 10} 9,
18, [19] have achieved state-of-the-art visual realism, measured by metrics like FVD [49]. However,
we identify a critical yet underexplored limitation: the generated videos often contain subtle yet
impactful incorrect geometric relationships. This flaw not only misleads downstream perception
and planning tasks but also undermines the reliability of models trained or evaluated using such
data, significantly constraining their applicability in essential use cases such as simulation-based
training [30] and system validation [61} 67].

To investigate this geometric limitation, we conduct a series of targeted experiments. Evaluating 3D
object detection on synthetic videos using BEVFusion [26] reveals a substantial performance drop
compared to real data (mAP: 25.7 vs. 35.5). In contrast, 2D object detection using YOLOVS [20]
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Figure 1: (a) Original Video Generation Models, optimized via pixel-level supervision (e.g.,
noise prediction error), often produce visually plausible videos that nonetheless suffer from severe
geometric flaws (misaligned planes/lines, wrong perspective). This can degrade downstream tasks
like 3D object detection (e.g., mAP drop from 35.5 to 25.7). (b) Our RLGF integrates a Hierarchical
Geometry Reward directly into the multi-step denoising process. This reward, derived from perception
models, guides the generation model to produce outputs with aligned planes, correct lane structures,
and accurate perspective. (c) Visualized depth maps from noisy latents at various denoising stages
(from noisy to less noisy) show coarse geometry emerging early and details later. This motivates our
Latent-Space Windowing Optimization for targeted intermediate rewards.

on the same data yields results comparable to real-world samples (mAP: 43.8 vs. 44.7). These
findings suggest that while current diffusion models [57} 0] preserve 2D appearance, indicating
minimal image-level domain gap, yet they fail to capture accurate 3D scene structure. We attribute this
primarily to underlying geometric inconsistencies. To further verify this hypothesis and systematically
quantify these distortions, we introduce GeoScores. This metric suite evaluates geometric fidelity
by applying pre-trained perception models [65] 42]] to both synthetic videos and their corresponding
real-world counterparts, using the outputs from real videos as reference ground truth. Significant
discrepancies between the two highlight geometric errors. GeoScores (details are in appendix [A-T])
reveals three major issues: (1) Vanishing point shifts, indicating incorrect global perspective; (2) Lane
topology inconsistencies, reflecting misaligned road markings and implausible lane structures; and (3)
Depth errors, particularly on road surfaces, signifying incorrect placement. (e.g., for a typical baseline,
an average VP shift of 0.086 normalized units, a Lane F1-Score of only 0.792, and an average depth
error of 1.822). The significant deviations in these scores confirm that current "high-quality" synthetic
data often suffers from pervasive geometric inaccuracies (fig. [[(a)).

Addressing these challenges, we present Reinforcement Learning with Geometric Feedback (RLGF),
a novel framework that injects perception-model-driven geometric spatial constraints directly into the
video generation process. Unlike conventional approaches 57,56} [61} [18]] that primarily rely on pixel-
wise alignment, which often fail to explicitly enforce adherence to complex, underlying geometric
principles, RLGF leverages dedicated, pre-trained AD perception models as reward providers to
ensure geometric fidelity.

RLGF introduces two core technical innovations: Latent-Space Windowing Optimization and Hierar-
chical Geometric Alignment. Frist, we present Latent-Space Windowed Optimization. We observe
that geometric structures in diffusion models emerge progressively across denoising steps: early steps



(e.g., before step 10 in flow matching [27, 28]]) establish coarse global geometry, while later steps
refine local details (fig. [[(c)). Training across the entire sampling process, as done in some prior
RL-diffusion work [[1] struggles to provide targeted guidance for these distinct phases. Therefore,
we propose an efficient latent-space training strategy where rewards are applied directly to noisy
latent features within a randomly sampled sliding window of intermediate diffusion steps. This
approach significantly reduces computational (GPU memory) burden and, more importantly, allows
for effective and targeted corrective feedback during both early (global structure formation) and late
(detail refinement) stages of geometric synthesis.

Secondly, RLGF features Hierarchical Geometric Reward (HGR), a multi-level feedback system
designed to imbue generated videos with robust geometric fidelity and scene coherence. HGA inte-
grates signals from two specialized latent-space perception networks: a Latent Geometry Perception
Model assessing vanishing point, lane, and depth cues, and a Latent Occupancy Prediction Model
inferring 3D scene occupancy. Both operate efficiently on noisy latents, aided by a lightweight
micro-decode module to circumvent costly full decoding. Leveraging these perception models, HGA
then constructs its multi-level reward system. For point-line-plane geometric feedback, we use the
outputs of the perception model to: (1) enforce vanishing point consistency for accurate global
perspective, (2) ensure lane topology validity for realistic road structure, and (3) promote depth
coherence for correct surface and object geometry. For scene-level occupancy feedback, outputs
from the occupancy model are used to: (4) align intermediate semantic features using KL divergence
for plausible scene evolution, and (5) maximize 3D occupancy IoU for accurate volumetric object
layout and dynamics. This structured approach, combining efficient latent-space perception with a
multi-faceted reward design, ensures that comprehensive geometric and occupancy information is
extracted and effectively fed back to guide the video diffusion model towards producing physically
principled and geometrically sound autonomous driving scenarios.

Our contributions are fourfold:

* We are the first to systematically quantify the geometric distortion problem in autonomous
driving video generation and propose the GeoScores metric for its evaluation.

* We introduce RLGF, a novel paradigm that uses reinforcement learning with perception-
based rewards applied efficiently within a sliding window in latent space, enabling plug-and-
play geometric correction.

* We design HGR which addresses geometric distortions by incorporating point-line-plane and
scene-level occupancy multi-level geometric feedback derived from latent representations.

 Extensive experiments on nuScenes demonstrate RLGF’s plug-and-play effectiveness across
two baselines [18} 9], boosting 3D detection mAP by 12.7% absolute while reduce geom-
etry gap (via GeoScores) relative to real data. This work establishes a new paradigm for
geometrically faithful synthetic data generation in autonomous driving systems.

2 Related Work

2.1 Video Diffusion for Autonomous Driving

The development of robust autonomous driving (AD) systems [[15,[17, 6] necessitates large volumes
of diverse and realistic training data. Learned generative model [22, 62| [11] have emerged as a
powerful approach to synthesize such data by capturing the complex distributions of real-world
driving scenarios. Early efforts explored Generative Adversarial Networks (GANs)[ L1} [38] and
Variational Autoencoders (VAEs) [21] for generating driving-related imagery. More recently, diffusion
models [[12} 135} 144} 139} 159, 169, 68! [8], including latent diffusion models [44], have demonstrated
state-of-the-art capabilities in generating high-fidelity images and videos [44, 14, 3 [77} [51} |54} 155}
75, 134]]. Based on this technique, generative models in autonomous driving have greatly advanced.
For example, BEVGen [46] and BEVControl [64] generate controllable street-view imagery from
Bird’s-Eye View (BEV) layouts or other structural conditions. Further advancements, such as
DriveDreamer [53]], Magicdrive [[LO],DriveWM [56]], Panacea [57]], DriveSphere [61] and others [76,
30, 314 158, [18, 23] 32| 73| [72], focus on generating coherent multi-camera driving videos, often
conditioned on textual prompts, historical trajectories, or 3D assets. These models excel at producing
visually compelling outputs that achieve high scores on perceptual metrics like Fréchet Video Distance
(FVD) [49].



Despite achieving high visual realism, leading AD video generation models [57, 19, [18] frequently
introduce subtle geometric and scene-level distortions (e.g., flawed perspectives, depth errors, unreal-
istic motion). These inconsistencies, often overlooked by human assessment, severely undermine
performance on 3D perception tasks like object detection [26] and motion forecasting. RLGF
addresses this critical gap by proposing a novel framework to instill multi-scale geometric and
scene-level consistency within the generation process.

2.2 Reinforcement Learning for Video Generation

Fine-tuning generative models with reward signals, rooted in Reinforcement Learning from Human
Feedback (RLHF) successes in LLMs (e.g., using PPO [45] or DPO [41]), is increasingly applied to
diffusion models. For image generation, methods [2 50,163 160] align models with human preferences,
and approaches [25]] use perception model feedback for content control. This trend extends to video
diffusion, where DPO-based techniques [66, [74} [71] often utilize human preference data. While
improving general video quality, these holistic preference scores typically lack the precise, local
geometric feedback crucial for autonomous driving applications. Other methods [1,,124, 33| (7] employ
explicit reward models for video fine-tuning, offering more detailed signals. However, these rewards
are generally not tailored to the specific multi-scale 3D geometric and physical plausibility demands
of AD simulation, failing to adequately address distortions like incorrect perspective or depth error.

Our RLGF framework advances this by introducing explicit, quantifiable geometric and scene-level
rewards from dedicated AD perception models. This provides targeted, locally-aware feedback to
correct specific geometric inaccuracies, producing data suitable for rigorous AD tasks.

3 Method

3.1 Preliminary: Limitations of Conditional Video Diffusion

Current video diffusion models [3} 57, 18] generate frames by gradually denoising latent variables
through a Markov chain. Formally, given a condition c (e.g., road sketches or bounding boxes), the
model learns to minimize the pixel-level reconstruction error during training:

Epixel - ]Eato,e,tHI6 - 59(1'257 tv C)||2}7 (1)

where x; is the noisy sample at timestep ¢, € is the ground truth noise, and €y is the denoising
network. While effective for visual fidelity, this standard formulation inherently ignores crucial
geometric-semantic correlations due to two limitations: (1) Pixel-wise Independence Assumption:
The MSE loss treats each pixel as independent, failing to model higher-order geometric relationships
(e.g., perspective consistency in 3D space). (2) Conditional Oversimplification: Existing methods
concatenate geometric conditions ¢ with noisy latents, However, this primarily enforces local pixel
alignment corresponding to the condition rather than guaranteeing the global geometric integrity or
plausibility of the underlying 3D scene structure. These limitations motivate the need for explicit
geometric guidance during generation.

3.2 Reinforced Learning with Geometric Feedback (RLGF)

Our primary objective is to enhance the geometric and spatio-temporal consistency of videos generated
by conditional diffusion models, addressing the critical gap left by conventional training objectives
that primarily focus on pixel-level visual fidelity.

To achieve this, we introduce Reinforcement Learning with Geometric Feedback (RLGF). This frame-
work refines a pre-trained video diffusion model, €y, by guiding its generation process towards outputs
that exhibit greater adherence to real-world geometric and physical principles. Unlike RLHF [37}163]],
which typically captures broad subjective preferences, RLGF is designed to incorporate specific,
model-interpretable geometric constraints. The core idea is to leverage dedicated, pre-trained percep-
tion models to evaluate the generated videos x( and provide a reward signal that steers €9 away from
implausible outcomes.

Formally, given a well-trained video diffusion model ¢y, the dataset D,,, the well-designed reward
function R(-), we aim to maximize the objective:

J(0) = Ec 0,20 [R(z0,v)] 2
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Figure 2: Overview of the Reinforcement Learning with Geometric Feedback (RLGF) frame-
work. RLGF fine-tunes a frozen well-trained diffusion model via LoRA using rewards from a "Latent
Space Windowing" scheme. Within this window, intermediate latents z;_,, are evaluated by frozen
perception models Py, (point-line-plane alignment) and P, (scene-level consistency) against a
reference video. The resulting rewards (Rgeo, Rocc) generate gradients (red arrows) to update LoRA,
improving geometric and temporal consistency. Black arrows: feed forward; dashed red: gradients.

where c and v denote the condition and real video from the dataset D,,, z( the the generated sample
by €(+|c) given ¢, and the total reward R(x¢,v) encapsulates assessments from our Hierarchical
Geometric Alignment system, as detailed in Section [3.4]

3.3 Latent-Space Windowing RL Optimization

Directly optimizing Equation 2]by unrolling the entire 7-step diffusion sampling process to obtain
xo and then backpropagating the reward gradient Vg R(x, v) is computationally prohibitive due to
large memory requirements and long sampling chains.

To efficiently apply RLGF, we propose Latent-Space Windowed RL Optimization. This strategy
addresses the computational challenge of full rollouts and leverages insights into the progressive
nature of structure formation in diffusion models.

Visualizations (e.g., fig. Z[c) in Introduction) suggest that coarse global geometry is often established
in earlier denoising steps (e.g. t > T,,;q), While later steps refine details. Training across the
entire sampling chain, as in some prior RL-diffusion work [, may not provide sufficiently targeted
guidance for these distinct phases.

Instead of rewarding only the final output zg, we provide feedback based on noisy latent features
z¢ at intermediate denoising steps ¢, compared against reference latents z, derived from real videos.
Specifically, during the T-step sampling process zp — --- — 2zp, we apply our reward functions
R within a sliding window of w steps (e.g. from random start step ¢’ down to k = ¢’ — w). Our
perception models are designed to take z; and k as input.

This approach is motivated by two factors: (1) Efficiency: It significantly reduces the computational
graph for backpropagation. (2) Effectiveness: It allows targeted corrective signals at different stages
of generation, crucial for both global structure and local detail.

The practical objective then becomes maximizing the expected reward obtained by evaluating the
noisy latent z;, (at step k within the window) against the VAE-encoded latent z,, paired with real



video v:

Jpractica,l(oLoRA) = Ec,u,zk [R(Zk7 Zv)] 3)
where and z,, is the encoded latent feature using VAE ecnoder [44]]. The gradient with respect to the
LoRA parameters 61,4 for a reward at step k is then:

8Rk (Zk, Zv) azk (4)
Oz, 00LorA
Throughout the RLGF fine-tuning, the perception models that constitute the reward function are

pre-trained and their weights remain frozen. ensuring a consistent evaluation standard as €y via
0rorA adapts to maximize geometric fidelity.

Vo,ona Bk (2k, 20) =

3.4 Hierarchical Geometric Reward (HGR)

The Hierarchical Geometric Reward (R) is designed to provide comprehensive, multi-level feedback
on the geometric integrity and scene coherence of generated video latents. It evaluates consistency
across point, line, plane, perceptual feature, and voxel-level representations, derived by applying
specialized perception models to both the generated latent zj, and the reference real-video latent z,,.

3.4.1 Efficient Latent-Space Perception

To avoid computationally expensive full VAE decoding at each step k for perception, our perception
models operate directly on latent features. Given a noisy video latent zj, € REXCXH'xW’ (where I,
is frames, C' channels, H', W' latent dimensions) at diffusion step k, we first employ a lightweight
Micro-Decode Module, F,,;cro. This module, constructed using shallow layers from the VAE
decoder, processes zj, and k to produce enhanced per-frame features:

f;f = ]:micro(Z]J:a k) )

where k is processed by the Fourier Embedding [77. 48]]. f,f is suitable for downstream perception
tasks, significantly reducing memory and computation. The same F,,;.-, is applied to z, (with
k = 0) to obtain reference features f; .

3.4.2 Perception Model Architectures

We train two models that take these micro-decoded features {fkf } or {f/} and timestep k as input.

Latent Geometry Perception Model (P,.,): This multi-task model processes per-frame features f f
to assess static 2.5D geometry. It uses a DINOv?2 [36] backbone followed by task-specific heads:

(1) For vanishing point detection, we reformulate the task as heatmap regression to better capture
positional uncertainty, following [[13]. The network head takes g as input and predicts a probability
heatmap H € R"*%, The ground truth heatmap H9" is constructed as a 2D Gaussian centered at the
annotated VP location, balancing localization precision and learning difficulty. We optimize using
MSE:

Lop=|H—H"|? (©)
(2) The lane parsing branch complements this by detecting road markings through a topology-aware
segmentation head, following [42].

(3) As for the depth estimation task, we fine-tune the weight of [65]] using a scale-invariant logarith-

mic (SiLog) loss:
1 A2
Laepth = - Zd? - = (Z d;)? 0

where d; = logy; — logyft, y; is the predicted results and A € [0, 1]
Finally, we optimize Py, using the total loss Lgco = Lop + Liane + Ldepth-

Latent Occupancy Prediction Model (P,..): This model processes per-frame features f f using an
image backbone followed by a prediction head to infer the intermediate backbone features feat,.
and the 3D occupancy grid O¢ € RX*Y*Z representing the occupied space around the ego vehicle
for that frame. P, is trained based on [16].



3.4.3 Multi-Granularity Reward Signals

The hierarchical geometric reward R = Ry¢,+ o quantifies geometric fidelity and scene coherence
through a multi-scale decomposition.

For Rge,, it addresses vanishing point consistency, lane topology validity, and depth coherence.
Given the outputs {pyp, Lpred; Dprea} from Pyeo(21) and reference conditions {vycf, Lycf, Drer}
from Pyeo(2y ), we define:

Rgeo(zka Zv) = )\vprvp (pvm Uref) + NaneTlane (planea Lref) + /\depthrdepth (pdeptha Dref) 8)

Point- level Line- level Plane-level

where Dy p,Pup,Pup are the predictions from Py, for vanashing point, lanes and depth, respectively.
AuvpsAvp and Ay, weights balancing the contribution of each task. The individual reward functions
r(+) are designed to be high for geometrically accurate samples and low (or negative) for inconsistent
ones:

Tvp(pvp7vref) = _”pvp - Uref”g (9)
where vy is the ground-truth vanishing point in conditions.
Tiane = F1-Score(Lyred, Lref) (10)

where F1-Score indicates the F1-Scores.

rdepth - *(\/(Dpred ®© Mroad - Dref © Mroad)2+ \/(Dpred © Mvehicle - Dref ®© Mvehicle)Q)
(11)

where pixel masks M,.,qq and Mepice are generated from real data and identify road and vehicle
regions, respectively.

After that, we define Roce(2k, 20) = Talign + Tiou- Talign €ncourages similarity in high-level scene
interpretation by aligning distributions of intermediate occupancy features. For each frame f:
Taligny = —Dxkr (p(feat’real ) Hp(featQGH ))a (12)

oce, f oce, f

where feat,., s are backbone features from P,... Distributions p(-) can be estimated (e.g., Gaussian
fit over a batch).

Toce Promotes accurate 3D structure and object layout. For each frame f:

. — IoU Ogen Oreal _ |Og]cen ﬁO;eal| 13
Tiou, = 10U(O$™", OF )*Wa (13)

where Oy are the 3D occupancy grids from Po..

4 Experiments

4.1 Experimental Setup

We conduct comprehensive experiments to validate the efficacy of our proposed Reinforcement
Learning with Geometric Feedback (RLGF) framework. This section details the datasets, baseline
models, evaluation metrics, and implementation specifics used in our evaluation.

Datasets. Our experiments are primarily conducted on nuScenes [3] using the official validation
split. Its multi-camera setup and comprehensive annotations, including 3D object labels and HD
maps, provide a challenging benchmark. For this dataset, conditions c for the diffusion models are
extracted from ground truth annotations, simulating realistic inputs for controllable generation.

Baselines. We demonstrate the plug-and-play nature of RLGF by integrating it with two representative
video diffusion models, referred to as MagicDrive-V2 [9]] and DiVE [18]].

Evaluation Metrics. GeoScores: We use our proposed GeoScores suite: Vanishing Point Error:
NormDist between the predicted VP and the pseudo-ground truth VP derived from real data. Lower
is better. Lane Topology Score: F1-score for semantic segmentation of lane markings against ground



Table 1: Performance of our Latent Geometry Perception Model (P,.,) on the nuScenes
validation split. P ., operates directly on micro-decoded latent features and is compared against
representative pixel-space baselines.

Task Metric Model / Method Input Space Performance
URVP [29] Pixel 0.045
VP Detection NormDist | VPD [14] Pixel 0.032
Pyeo Latent 0.024
LaneATT [47] Pixel 0.822
Lane Parsing F1-Score 1 PriorLane [40] Pixel 0.879
Pyeo Latent 0.865
L DepthAnything-v2 [65] Pixel 1.798
Depth Estimation RMSE | Poeo Latent 7596

Table 2: Comparison with state-of-the-art video generation methods on the nuScenes validation
set. We evaluate visual quality (FVD), 3D Object Detection (3DOD) performance, and geometric
fidelity (GeoScores).

Qualit 3DOD GeoScore

Methods FVD mAP NDS VP Lanc Depth

Real Data - 35.53 41.20 - - -

Panacea [57] 139.0 11.58 22.31 - - -

Drive-WM [57] 122.7 20.66 - - - -
MagicDrive-v2 [18] 101.2 18.95 21.10 0.092 0.787 1.732
DiVE [18] 68.4 25.75 33.61 0.086 0.792 1.822
MagicDrive-v2+Ours 99.8 23.21 27.80 0.079 0.854 0.983
DiVE+Ours 67.6 3142 36.07 0.068 0.879 0.772

truth lane masks. Higher is better. Depth Error: We use RMSE between predicted depth for road
surface regions and pseudo-ground truth depth. Lower is better.

Downstream Task Performance: 3D Object Detection: We employ a strong BEV-based detector,
BEVFusion [26], trained solely on synthetic data generated by different methods or on real data. We
report the standard nuScenes detection score (NDS) and mean Average Precision (mAP).

Visual Realism: We report Fréchet Video Distance (FVD) [49] to ensure RLGF does not degrade the
visual quality achieved by the baseline diffusion models.

Implementation Details are included in the supplemental materials.

4.2 Performance of Pre-trained Perception Models

We first verify the capabilities of our perception models (P, and P,.. which form the basis of our
reward functions. These models operate directly on latent features z; and timestep t. Our goal here is
to demonstrate their competence in extracting meaningful geometric and scene information from the
latent domain.

Latent Geometry Perception Model (P,.,) is a multi-task model responsible for assessing fine-
grained geometric properties from latent features. Table[I|presents its performance on the nuScenes
validation split for vanishing point (VP) detection, lane parsing, and depth estimation, compared
against established pixel-space methods. The results indicate that Py, effectively captures these
geometric cues from latent features. For instance, it achieves a normalized distance error of 0.024 for
VP detection and an F1-score of 0.865 for lane parsing. Although its depth estimation RMSE (2.596)
is higher than the specialized pixel space model DepthAnything-v2, it still provides a consistent
measure of depth relationships.

Latent Occupancy Model (P,..) is tasked with understanding 3D scene layout from sequences of
latent features. Its performance on the Occ3D-nuScenes is shown in TableE} Poece achieves an overall
mloU of 29.96 when operating from latent representations. This level of performance, compared to a
pixel-based method like FlashOcc (32.08 mloU), demonstrates a solid capability to infer volumetric
scene structure from the latent domain.



Baseline Ours Real Data

Figure 3: Qualitative comparison of 3D object bounding box alignment. RLGF-enhanced video
exhibits much-improved 3D box alignment, closely matching the geometry implied by the scene.

Figure 4: Left: Detecf6H Y&lilts on a real nuScenes imageSYRigHit f5etE&8IN Yesults on a corre-
sponding synthetic image generated by the DiVE baseline. Bounding boxes indicate detected objects
(primarily vehicles).

4.3 Main Results: Improving Geometric Fidelity and Downstream Tasks

Table[2]shows RLGF’s impact on the nuScenes validation set. RLGF consistently enhances geometric
integrity (GeoScores) across baselines while maintaining or improving visual quality (FVD). For
instance, DiVE + RLGF significantly improves all GeoScore components (VP error: 0.086 — 0.068;
Lane F1: 0.792 —0.879; Depth RMSE: 1.822 — 0.772).

Crucially, this geometric enhancement translates to substantial 3DOD gains: DiVE + RLGF boosts
mAP from 25.75 to 31.42 and NDS from 33.61 to 36.07, markedly closing the gap to real data
performance. Similar improvements are seen for MagicDrive-v2 + RLGF (mAP: 18.95 — 23.21).
These results underscore RLGF’s effectiveness as a plug-and-play module for improving both
geometric soundness and downstream utility of synthetic videos. We also present the qualitative result
in fig. [B]about the detection results on our synthetic data and baseline [18] and the real data. (More
qualitative visualization results and further analysis are included in the supplementary materials).

4.4 2D Object Detection Results

To illustrate that current diffusion models like DiVE can generate visually realistic data with minimal
2D domain gap for certain tasks, we present qualitative 2D object detection results. Figure @ shows
outputs from a YOLOVS5 [20] detector applied to (a) real nuScenes data and (b) synthetic data
generated by the DiVE baseline. The detector is pre-trained on a large-scale dataset (e.g., COCO)
and then fine-tuned on real nuScenes training data.

As observed in Figure[d] the 2D detection performance on DiVE-generated synthetic data is qualita-
tively very similar to that on real data. Objects are generally detected with comparable confidence
and bounding box accuracy. This visual consistency aligns with our quantitative findings (mAP: 43.8
on synthetic vs. 44.7 on real, as mentioned in the Introduction), suggesting that the semantic content
and 2D appearance features necessary for 2D detection are well-preserved in the synthetic videos.
This further reinforces our hypothesis that the primary limitation of such synthetic data lies in its 3D
geometric fidelity, which is specifically addressed by our RLGF framework.



Table 3: Performance of our Latent Table 4: Ablation study of HGA reward components
Occupancy Prediction Model (P,..) within RLGF on nuScenes.

on the Occ3D-nuScenes. P, predicts D | HGA Rewards | 3DOD

3D occupancy grids from sequences of | Tup  Tiane Tdepth Tatign Tiow | MAPT  NDST
micro-decoded latent features. Vehicle

and Dri. Sur indicate IoU of vehicles DIVE [18] | | 2575 3361
and driving surface. é 5 v %23}; g;gg
Method Vehicle Dri. Sur mloU 1 3 v v v 27.12  34.82
FlashOcc [70] 432 722 32.08 4 v Y 12806 3511
Poce 37.9 65.7 29.96 Full ‘ v v Ve v N ‘ 31.42 36.07

Table 5: Ablation studies on key RLGF hyperparameters.

Hyperparameter Value | 3D Detection mAP
3 30.89
Window Size (w) 5 (Ours) 31.42
8 31.25
. Equal Weights (all 0.2) 30.76
Reward Weights (1) Balanced (Ours) 31.42
Early (Random in [20, 30]) 30.55
Window Range Position (') Mid (Random in [8, 30]) (Ours) 31.42
Late (Random in [1, 15]) 29.91

4.5 Ablation Study
4.5.1 Ablations about HGA Reward Components

We conduct ablation studies on nuScenes using DiVE as the baseline to understand the contributions
of different HGA reward components. Results are shown in Table ] Incrementally adding reward
components (7'yp,"iane,"depth, and occupancy rewards (7q;gn + Tiou) progressively improves 3DOD
performance (Tabled)). For example, adding point-line-plane rewards (ID: 3) boosts DiVE’s mAP
to 27.12. Incorporating only occupancy rewards (ID: 4) yields 28.06 mAP. The full HGA system,
combining all five components, achieves the highest mAP (31.42) and NDS (36.07), highlighting
the synergistic benefits of our comprehensive multi-level feedback. (More qualitative visualization
results and further analysis are included in the supplementary materials).

4.5.2 Ablations about Hyerparameters.

We provide the detailed ablation results in table [5|for clarity, including the RL window size, reward
weights, and the starting step of the sliding window. All ablations are performed on the DiVE baseline
and evaluated with BEVFusion.

5 Conclusion

In this work, we addressed the critical issue of geometric distortions in diffusion-based video
generation for autonomous driving. We introduced GeoScores for quantitative evaluation and
proposed Reinforcement Learning with Geometric Feedback (RLGF), a novel framework to enhance
the geometric integrity of synthetic videos. RLGF, through its Hierarchical Geometric Alignment
(HGA) module which incorporates multi-level geometric and scene occupancy feedback, effectively
injects perception-driven constraints into the generation process by fine-tuning pre-trained diffusion
models. Our experiments demonstrate that RLGF significantly improves geometric fidelity across
multiple baselines and, crucially, boosts downstream 3D object detection performance by up to ,
substantially closing the gap with real-data performance. This work establishes a new direction for
generating more reliable and task-aware synthetic data for autonomous systems.
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Appendix

This supplementary material provides additional details to support the findings presented in our main
paper. We include: (1) comprehensive implementation specifics for our RLGF framework and the
pre-trained perception models; further details on the GeoScores metric computation; (2) additional
experimental results (3) a discussion on the limitations of our current work and potential future
directions.

A Detailed Implementation Details

This section elaborates on the implementation details of our proposed RLGF framework, the pre-
trained perception models (Py¢, and P,..) , and the experimental setup.

A.1 Dataset Preparation

All experiments, including the pre-training of our perception models (Pye, and P,..) and the fine-
tuning of diffusion models with RLGF, are conducted using the nuScenes dataset [5]. We primarily
utilize the official training and validation splits. While nuScenes provides rich annotations like 3D
bounding boxes and HD maps, it does not directly offer ground truth labels for vanishing points (VP),
dense segmentation masks for all relevant classes (like fine-grained lanes beyond HD map polylines),
or per-pixel depth maps required by our Pg.,. Therefore, we generate high-quality pseudo-labels
for these tasks using strong, pre-existing perception models, as detailed below. These pseudo-labels
serve as the training targets for our latent-space perception models.

Depth Pseudo-Labels: To obtain dense depth information for training the depth estimation com-
ponent of Py.,, we utilize Depth Anything V2 (vit-I version) [65]]. This state-of-the-art monocular
depth estimation model is applied to all images in the nuScenes training set to generate per-pixel
depth maps. These output depth maps serve as the pseudo-ground truth for our latent depth estimation
task.

Semantic Segmentation Pseudo-Labels (Lanes, Road Surface, Vehicles): For precise segmentation
masks of various scene elements, we employ Grounded-SAM-2[43| 42]]. For the lanes, the model
is prompted to accurately segment visible lane markings. The resulting binary segmentation masks
are used as pseudo-ground truth for training the lane parsing head of Py.,. For the road surface and
vehicle masks, SAM-2 is also utilized to generate segmentation masks for road surfaces and vehicles.

Vanishing Point Pseudo-Labels from Lane Masks, following [13]]: With accurate lane segmentation
masks obtained via SAM-2 (as described above), we derive vanishing point pseudo-labels through a
geometric procedure. For each detected lane marking in a frame: The center point of the lane marking
is calculated from its left and right edges (derived from the SAM-2 segmentation mask) for every
horizontal image line at 5-pixel intervals. These extracted center points are grouped to represent the
centerline of each individual lane marking. Robust curve fitting (e.g., RANSAC with a line model) is
applied to these centerlines. The intersection point of multiple fitted lane centerlines is then computed
to determine the scene’s vanishing point. This computed VP serves as the pseudo-ground truth for
the VP detection task.

The use of these high-quality pseudo-labels enables us to train effective latent-space perception
models tailored to the nuScenes domain, which subsequently provide the nuanced reward signals for
our RLGF framework. The conditions ¢ for the main diffusion models (e.g., semantic 3D boxes for
some baselines) are derived from the original nuScenes ground truth annotations.

A.2 Perception Model Architectures and Pre-training

Micro-Decode Module(F,,;.): The F, ;0o module is constructed using the first upper block of
the official VAE decoder from the OpenSora [[77] used by our baseline video diffusion models. The
input of F,,,;cro 1S the noisy latent feature z,{ for a frame f with the timestep k. The same F,;cro0
architecture is used when processing the reference real-video latent z, (with & typically set to 0).

Latent Geometry Perception Model(P,.,): We use a pre-trained DINOv2-ViT-S/14 [36] as the
backbone feature extractor and the pre-trained weight from DepthAnything-V2 [65]. Py, is trained
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for 50 epochs on the nuScenes training split using the AdamW optimizer with a learning rate of
5 x 107" and a batchsize of 16. We use 8x NVIDIA A100 GPUs to cover the experiment.

Latent Occupancy Prediction Model(P,..): P, is trained on occ3D-nuscenes dataset for 24
epochs using AdamW optimizer following [70, [16].

A.3 RLGF Fine-tuning Details

Baselines: We used publicly available checkpoints for MagicDrive-V2 [9] and DiVE [18]].

LoRA Configuration: For LoRA, we applied it to the attention layers (Q, K, V projections) of the
DiT backbone in the diffusion models. We used a rank r» = 16 following [1]].

Latent-Space Windowed Optimization: The window size w is set to 5. The starting step ¢’ for the
window was randomly sampled from the range [8, 30], with 7" = 30 is the total number of diffusion
steps.

Reward Weights: We set Ay, = 0.1, Ajgne = 0.1, Agepenn = 0.5. These weights were determined
empirically based on early experiments on a small validation subset, aiming to balance the scale of
individual reward components and their perceived impact on generation quality.

We use AdamW with a learning rate of 1 x 10~ and a batchsize of 1 with 8 frames per video clip.

A.4 GeoScores Metric Details

This section provides further clarification on the computation of our GeoScores components. For
all GeoScores, the "reference ground truth" is derived by applying the corresponding pre-trained
perception model to the real video data, following appendix [A.T] The score then measures the
deviation of the synthetic video’s perception output from this real-data-derived reference.

Vanishing Point Error (VP|): Calculated as the L2 Normalized Distance (NormDist) between the
calculated VP on a synthetic frame and the VP calculated on a real frame. Lane Topology Score
(Lanet): Calculated as the F1 score for semantic segmentation of lane markings. The predictions is
from Grounded-SAM?2 [43]42] on the synthetic frame, and the target is applied to the real frame.
Depth Error (Depth)/: Calculated as the Root Mean Squared Error (RMSE) between the depth map
predicted by Depth Anything V2 [65] for road surface regions on a synthetic frame and the depth
map for the same regions on the real frame. Road surface masks are obtained from SAM-2 [42]].

B Additional Experiment Results

B.1 Extended 3D Object Detection Results on Multiple Detecters

To further demonstrate the generalizability of the improvements conferred by RLGF, we evaluated
the generated synthetic data using an additional state-of-the-art 3D object detector, StreamPETR [52],
alongside the BEVFusion results presented in the main paper. Table [6] presents the performance
(mAP and NDS on nuScenes validation) for StreamPETR and the average performance across both
BEVFusion and StreamPETR. Both detectors were trained from scratch solely on the respective
synthetic data or real data.

B.2 Robustness to Different Downstream Detectors:

To demonstrate generality, we evaluated our method on the stronger StreamPETR detector. RLGF
achieved a substantial +4.75% mAP gain, proving our geometric improvements are robust and benefit
diverse downstream architectures.

C Limitations and Future Work

This section discusses the current limitations of our RLGF framework and GeoScores metric, along-
side potential avenues for future research.

Dependence on Perception Models: RLGF’s performance is inherently tied to the accuracy and
robustness of the pre-trained perception models (Pyeo, Pocc)- Biases or errors in these models could
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Table 6: Detailed 3D Object Detection (3DOD) performance on nuScenes validation using Stream-
PETR [52]. RLGF is applied to MagicDrive-v2 and DiVE.

Quality | BevFusion StreamPETR

Methods FVD | mAP NDS | mAP NDS
Real Data - 35.53 41.20 | 38.01 49.02
Panacea [57]] 139.0 | 11.58 22.31 - -
Drive-WM [57]] 122.7 | 20.66 - - -
MagicDrive-v2 [[18] 101.2 | 18.95 21.10 | 22.77 28.93
DiVE [18]] 68.4 25.75 33.61 | 29.19 36.23
MagicDrive-v2+Ours 99.8 2321 27.80 | 26.01 35.64
DiVE+Ours 67.6 | 3142 36.07 | 33.94 39.68
Method | mAP (BEVFusion)
DiVE [16] (Baseline) 25.75
+ Detector Reward 26.51 (+0.76)
+ Ours (RLGF) 31.42 (+5.67)

Table 7: Comparison of reward signal effectiveness on the DiVE baseline. Our Hierarchical Geometric
Reward (HGR) is significantly more effective than a high-level detector-based reward.

propagate into the reward signal and mislead the generation process. Future work could explore
jointly training or adapting perception models during RLGF, or using ensembles.

Computational Cost: While Latent-Space Windowed Optimization significantly reduces costs
compared to full rollouts, RL-based fine-tuning remains more computationally intensive than standard
diffusion model training. Exploring more sample-efficient RL algorithms or distillation techniques
could be beneficial.

Reward Design and Balancing: The current HGA reward combines five components with manually
tuned weights. Optimizing these weights automatically or learning a more adaptive reward function is
a promising direction. Furthermore, incorporating even more diverse geometric or physical constraints
(e.g., collision avoidance, traffic rule adherence) could further enhance realism.

Generalization: While demonstrated on nuScenes, further investigation is needed to assess RLGF’s
generalization capabilities across diverse datasets, environmental conditions (e.g., adverse weather,
night scenes not well-represented in training), and different diffusion model architectures.

GeoScores Scope: Current GeoScores focus on camera-based geometric aspects. Expanding them
to include LiDAR consistency or multi-modal geometric agreement could provide a more holistic
evaluation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the supplementary materials
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: not include theoretical results
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Detailed implementation details are included in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:
Justification: We will open source the code once we are ready.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details will be included in the included in the supplementary materials.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification:
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:|[NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
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Justification: Only for editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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