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ABSTRACT

Contrastive learning has emerged as a competent approach for unsupervised rep-
resentation learning. However, the design of an optimal augmentation strategy,
although crucial for contrastive learning, is less explored for time series classifica-
tion tasks. Existing predefined time-domain augmentation methods are primarily
adopted from vision and are not specific to time series data. Consequently, this
cross-modality incompatibility may distort the global semantics of time series
by introducing mismatched patterns into the data. To address this limitation, we
present a novel perspective from the frequency domain and identify three advan-
tages for downstream classification: 1) the frequency component naturally encodes
global features, 2) the orthogonal nature of the Fourier basis allows easier isolation
and independent modifications of critical and unimportant information, and 3) a
compact set of frequency components can preserve semantic integrity. To fully
utilize the three properties, we propose the lightweight yet effective Frequency-
Refined Augmentation (FreRA) tailored for time series contrastive learning on
classification tasks, which can be seamlessly integrated with contrastive learning
frameworks in a plug-and-play manner. Specifically, FreRA automatically sepa-
rates critical and unimportant frequency components. Accordingly, we propose
Identity Modification and Self-adaptive Modification to protect global semantics
in the critical frequency components and infuse variance to the unimportant ones
respectively. Theoretically, we prove that FreRA generates semantic-preserving
views. Empirically, we conduct extensive experiments on two benchmark datasets
including UCR and UEA archives, as well as 5 large-scale datasets on diverse
applications. FreRA consistently outperforms 10 leading baselines on time series
classification, anomaly detection, and transfer learning tasks, demonstrating supe-
rior capabilities in contrastive representation learning and generalization in transfer
learning scenarios across diverse datasets.

1 INTRODUCTION

Time series classification has been an essential problem in a wide range of applications, such as
activity recognition (Qian et al., 2019), speech recognition (Huijben et al., 2023), and industrial
monitoring (Eldele et al., 2023). Despite the promising performance achieved by supervised meth-
ods (Qian et al., 2019), a large number of accurate labels are required to deliver good performance.
However, label annotation for time series without human error is costly and time-consuming. This is
because time series data are not intuitively recognizable or meaningful for humans, unlike images or
language. Given the circumstance, contrastive learning has been attested as a compelling framework
for representation learning in the absence of labels (Meng et al., 2023b; Qian et al., 2022). Specifically,
it learns to solve an instance discrimination pretext task (Wu et al., 2018) that aims to distinguish
different samples (negative pairs) while keeping different views of the same sample (positive pairs)
close, wherein different views are usually generated by a set of augmentation functions.

Despite the prevalence of contrastive learning (Chen & He, 2021; Huang et al., 2023), its efficacy
heavily relies on the proper selection of data augmentation (Luo et al., 2023; Tian et al., 2020).
Existing works in time series contrastive learning often apply carefully hand-picked transformations
such as jitter-and-scale and permutation-and-jitter (Eldele et al., 2023). These
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augmentations are mostly adopted from the vision domain and do not take the intrinsic characteristics
of time series into consideration. Due to the unintuitive nature of time series, it becomes impractical
to painlessly figure out semantically compromised augmented samples, unlike in vision. As a result,
when applying predefined augmentation, the type and degree of transformation need to be carefully
selected to reduce the loss of semantic information. Trials and errors for hand-picked augmentation
make it costly to apply. What’s worse is that there is no single augmentation function that consistently
performs well on all diverse datasets (Qian et al., 2022). As a result, recent works have started
to explore the generalized principle and design of transformation that produce universally optimal
augmentation v∗ for time series contrastive learning. For instance, the latest InfoTS (Luo et al.,
2023) and AutoTCL (Zheng et al., 2024) share a common principle that optimal augmentation should
remain semantically consistent with their anchor samples MI(v∗; y) = MI(x; y), where x and y
are the random variable denoting time series sample and label, and MI(·; ·) represents the mutual
information (MI) quantifying the mutual dependence between two variables. However, we find out
that empirically these proposed augmentation strategies still fail to preserve semantic integrity. To
be more specific, they more or less undermine or disrupt the meaningful patterns with respect to
the global semantics, i.e., MI(v∗; y), of the time series , which will be discussed in detail in the
later sections. The global semantics, whose amount is quantified as MI(x; y) in our analysis, refer
to the information that spans the entire time series and contributes significantly to distinguishing
between different classes. Therefore, it is crucial for view generation in contrastive learning on time
classification tasks.

For a clearer illustration, we plot 6 different MI(v; y) curves in Figure 1, where v ∈
{As(x), x,AAutoTCL(x),AInfoTS(x), TT (x), TF (x)}, denoting the augmented view generated by our
proposed FreRA, identity transformation, AutoTCL, InfoTS and jitter-and-scale and
amplitude-and-phase-perturbation, respectively, and y is the label in the downstream
classification task. The x-axis presents the timestamp of the time series, and the y-axis denotes the
value of MI. We provide more details regarding Figure 1 in Appendix A.1. Intuitively, a higher MI
curve is preferable because it indicates more global semantic information is preserved. We first ob-
serve the proposed FreRA (blue curve) achieves the highest value among all the curves, and it almost
overlaps with MI(x; y) (orange curve), indicating FreRA preserves all the semantic information in
the generated views and there is no major loss of critical information. We then observe the other
3 curves are consistently lower than the first two curves, indicating the semantics are undermined
in the latter three transformations, which agrees with our earlier analysis. Previous work (Xu et al.,
2024) figures out that undermined semantics in the views cause degraded representation and harm the
performance of downstream tasks, which is undesirable.
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Figure 1: Our method (blue curve) achieves the highest MI between
the views generated and the label, enabling better semantic preserva-
tion compared with SOTA. The global semantics are well preserved
to facilitate contrastive representation learning.

Despite strong empirical performance
on certain datasets, existing augmen-
tations undermine global semantics,
which reminds us of the limitations
of time-domain augmentations. Due
to the inter-correlation among times-
tamps, time-domain manipulations
fail to keep the critical global infor-
mation intact while introducing vari-
ation. To overcome such limitations
, we present a novel perspective from
the frequency domain, more specifi-
cally, frequency refinement. We first
identify 3 advantages of the frequency
domain over the time domain: 1) global: each frequency component encapsulates a global feature that
spans all timestamps and is more meaningful in revealing the global semantics for classification tasks;
2) independent: the orthogonal Fourier basis ensures the independence among frequency components,
making it unlikely to contain both critical and noisy information at the same time, which allows clear
separation and independent manipulations on different components; and 3) compact: given the first
two properties, there is a compactly distributed set of frequency components that can well preserve
the semantic integrity. The three advantages of the frequency domain and how they facilitate the
design of FreRA will be elaborated in detail in the latter sections.
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To fully tap into the great potential of the frequency domain, we propose a novel Frequency-Refined
Augmentation (FreRA) for contrastive learning on time series classification. The central idea of
FreRA is to adaptively refine frequency components. Specifically, we learn a lightweight trainable
parameter vector to capture the inherent semantic distribution in the frequency domain. Identity
modification and self-adaptive modification are then proposed to the well-separated critical and
unimportant frequency components respectively, to preserve semantics and infuse variance. This
single-parameter vector adeptly guides the refinement in both the separation and modifications.
FreRA is a generalized transformation that automatically adapts to training data, alleviating manual
efforts in adjusting augmentations. It also ensures that the added variation does not compromise the
global semantics by refining the frequency domain rather than the time domain. FreRA can be easily
adapted to a wide range of contrastive learning models in a plug-and-play manner. In summary, our
main contributions are:

• We identify three advantages of the frequency domain and introduce the novel frequency perspective
to automatic view generation for time series contrastive learning for the first time.

• Building upon these advantages, we design a lightweight and unified automatic augmentation
FreRA for contrastive representation learning on classification tasks, which can be applied in a
plug-and-play manner and jointly optimized with the contrastive learning model.

• Extensive experiments on 135 benchmark datasets demonstrate the competitive performance of
FreRA in contrastive learning and improved generalization in transfer learning scenarios on both
time series classification and anomaly detection tasks.

2 RELATED WORK

Time Series Contrastive Learning. Considering the challenges of data annotation for time series,
contrastive learning achieves great success in time series applications (Yue et al., 2022b; Tonekaboni
et al., 2021; Eldele et al., 2023; Meng et al., 2023a). TS2Vec (Yue et al., 2022b) performs hierarchical
contrastive learning to learn timestamp-wise representations. TNC (Tonekaboni et al., 2021) learns
temporal representations where neighboring and non-neighboring signals are distinguishable. TS-
TCC (Eldele et al., 2023) proposes a novel cross-view prediction task. MHCCL (Meng et al., 2023a)
utilizes hierarchical clustering for temporal contrastive representation learning. Although previous
works introduce various architectures and objectives, the essence of contrastive learning lies in
the attraction of positive pairs and the repulsion of negative pairs (He et al., 2020), making view
generation a crucial component.

Frequency Domain of Time Series. The frequency domain mostly serves as a substitute or
supplementary modality in multiple time-series tasks, e.g., representation learning (Yang & Hong,
2022), domain generalization (Zhang et al., 2022), and time series forecasting (Zhou et al., 2022a;b;
Yi et al., 2023). Those works empirically discover and exploit the frequency domain as an informative
element: BTSF and TF-C (Yang & Hong, 2022; Zhang et al., 2022) encourage time-frequency
consistency in representation learning to enhance generalization; Zhou et al. (2022a) claim that
utilizing low-frequency Fourier components for time series forecasting could undermine noise; Zhou
et al. (2022b) prove that a subset of randomly selected Fourier components preserves most of the
information in the time series. Yi et al. (2023) find that the frequency domain possessed a global
view and compact energy in MLP-based time series forecasting. Those works provide heterogeneous
understandings of identifying essential information in the frequency domain, either from domain
knowledge or heuristics. In contrast, our motivation inspires a unified approach that manipulates
frequency-domain information to facilitate contrastive learning. Wen et al. (2020) explore frequency-
domain transformations for training data enhancement on supervised time series tasks. However, our
focus is on the contrastive learning setting, where the methods therein are not readily applicable.

Augmentations for Contrastive Learning. As a crucial component for contrastive learning,
augmentation functions are either carefully designed or selected from grid search (Qian et al., 2022;
Eldele et al., 2023). The former requires domain knowledge, while the latter is computationally
inefficient. There is no single existing augmentation function enjoying universal optimal perfor-
mance (Qian et al., 2022). The selection is task-dependent (Tian et al., 2020) and subject to data
modality (Jaiswal et al., 2020). Some works try to automate the selection from a predefined set of
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transformations or adapt a well-defined transformation to serve contrastive learning: InfoTS (Luo
et al., 2023) trains a data-driven probabilistic augmentation selector that intends to encourage high
fidelity and variety to select optimal augmentation. Demirel & Holz (2024) introduce tailored mixup
for non-stationary quasi-periodic time series. Another line of work eliminates the use of hand-
designed augmentation: InfoMin (Tian et al., 2020) generates contrastive views with a flow-based
model, guided by the adversarial InfoMin objective. AutoTCL (Zheng et al., 2024) factorizes the
time series instance to informative and noisy parts by timestamps. Self-adaptive augmentation in the
frequency domain is less explored in contrastive learning, and we fill this research gap in this work.

3 METHODOLOGY

3.1 PROBLEM STATEMENT

Let x = [x1, x2, ..., xL]T ∈ RL×D denote an unlabeled time series instance that lasts for L times-
tamps and has D channels where the signal at i-th timestamp xi ∈ RD,∀i ∈ [1, ..., L]. We do not
make assumptions about the dimension or length of the time series. Our problem definition is valid for
both univariate and multivariate time series datasets of varying scales. F(·) and F−1(·) represent the
Fourier transform and its inverse, respectively. We denote xf = [x1

f , x
2
f , ..., x

F
f ]

T = F(x) ∈ CF×D

as the Fourier transform of x, i.e., x = F−1(F(x)), where C stands for the complex space and
F = ⌊L/2⌋+ 1 is the number of frequency components. x1

f and xF
f embed the characteristics of the

lowest and highest Fourier frequency basis functions, respectively.

In the general contrastive learning framework, an encoder fθ is trained to map input samples to a latent
space where the downstream task is performed. Taking SimCLR (Chen et al., 2020) as our contrastive
learning framework, it appends a projector gϕ to the encoder. θ and ϕ denote the sets of trainable
parameters in the encoder and projector respectively. In the mini-batch X ∈ RB×L×D containing B
instances, each anchor x ∈ X associates with its augmented view A(x) as a positive pair, and with
the other (B − 1) samples to form negative pairs. We consider the batch-wise contrastive loss as:
LCL = L(X;A(·), fθ, gϕ), which will be elaborated later.

It is a common belief in existing works (Tian et al., 2020; Luo et al., 2023; Zheng et al., 2024) that
the optimal view generator for contrastive learning is defined as follows.

Definition 1 (Optimal View Generator). Given the random variable x denoting the input in-
stances, its optimal view generator A∗(·) should satisfy A∗(x) = argmin

A
MI(A(x); x), subject to

MI(A∗(x); y) = MI(x; y).

Based on the definition, an optimal view generator should preserve the minimal but sufficient in-
formation with respect to the semantics of its input. Existing works on time series contrastive
learning mainly select an empirically optimal augmentation function T ∗(·) from a set of prede-
fined transformations {T1(·), T2(·), ..., Tm(·)}, such as {scaling, jittering, rotation},
i.e., T ∗(·), θ∗, ϕ∗ = argmin

Ti(·)∈{T1(·),T2(·),...,Tm(·)},θ,ϕ
L(X; Ti(·), fθ, gϕ). Selected from the painstak-

ing trials and errors, T ∗(·) still suffers from loss of semantic information. Other works uti-
lize a trainable network to model the transformation function, denoted as T (·; γ), where γ is
the parameters of the transformation network. They optimize the entire framework as follows:
γ∗, θ∗, ϕ∗ = argmax

γ
argmin

θ,ϕ
L(X; T (·; γ), fθ, gϕ) + Lauxiliary(γ), where T (·; γ∗) is the learned

transformation function and Lauxiliary(γ) is the extra regularization on the transformation network. The
optimization for the min-max objective is done through an alternative update of the transformation
network and the contrastive learning model.

Aware of the selection cost, compromised semantics, and the complex alternative optimization in
previous approaches, we aim to develop a semantic-preserving automatic augmentation A(·) that can
be jointly optimized with the contrastive learning model, with objective formulated as follows:

argmin
A(·),θ,ϕ

L(X;A(·), θ, ϕ) + Lauxiliary(A(·))

subject to MI(A(x); y) = MI(x; y).
(1)
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Figure 2: An overview of the proposed FreRA. The left-hand side presents the detailed design of FreRA: identity
modification on critical components and self-adaptive modification on unimportant components are conducted in
the frequency domain to maintain contextual information and infuse variance respectively. The matching colors
between s and wdist on unimportant components intend to illustrate the adaptive distortion. The independent
manipulations in FreRA ensure the added variance does not impact the critical semantic information. As a
plug-and-play component, FreRA can be jointly trained with any contrastive learning framework, as illustrated
on the right-hand side. The contrastive learning model is pre-trained in the time domain. FreRA encourages
the compactness of critical frequency components and the consistency of positive pairs’ representations. In
evaluation, a classifier is trained on top of the frozen pre-trained encoder to get predictions for downstream tasks.

In the following section, we will present the design of A(·) and prove the fulfillment of Definition 1
as well as the criterion in the objective.

3.2 OVERVIEW OF FRERA

It is a common belief that a good view in contrastive learning should contain both semantic-preserving
information and a considerable amount of variance (Zheng et al., 2024; Luo et al., 2023). The former
ensures strong performance on downstream tasks, while the latter encourages the encoder to learn
generalizable representations. To achieve such a good view, we leverage the global, independent, and
compact properties of the frequency domain to design the frequency-refined augmentation, FreRA as
follows:

As(x) = F−1(

global and compact︷ ︸︸ ︷
wcrit ⊙ xf +wdist ⊙ xf︸ ︷︷ ︸

independent

) ∈ RL×D, (2)

where ⊙ denotes elementwise multiplication and s is the lightweight trainable parameter of FreRA.
Specifically, wcrit = [w1

crit, w
2
crit, ..., w

F
crit] ∈ {0, 1}F applies identity modification on those identified

critical frequency components to preserve the essential information, while wdist ∈ RF
≥0 applies

self-adaptive modification to the unimportant frequency components to introduce diverse distortion.
The two modifications are applied independently to keep the critical global information intact while
introducing variance. There may exist certain component xi

f whose wi
crit and wi

dist are both 0. The
refinement, including the component separation and modifications, is guided by a single vector s.
Figure 2 depicts an overview of the proposed FreRA.

3.2.1 WHY FRERA MAKES GOOD VIEWS?

In this section, we elaborate the three advantages of the frequency domain over the time domain
and elaborate on them in detail. Based on them, we explain why the frequency-domain refinement
produces good views that benefit contrastive representation learning for downstream tasks. To
facilitate our analysis, we introduce a new set of notation for time-domain data x(n), augmented
view xA(n), and frequency-domain data X(m) as follows:

x(n) = xn+1, xA(n) = As(x
n+1) for n ∈ {0, 1, ..., L− 1},

X(m) =

{
xm+1
f , if m+ 1 ≤ F

X(L−m) = xL−m+1
f , otherwise,

for m ∈ {0, 1, ..., L− 1}
(3)
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where xL−m+1
f is the conjugate of xL−m+1

f , x = [x(0), x(1), ..., x(L − 1)]T and xf =

[X(0), X(1), ..., X(F − 1)]T . We present the derivation for the second condition of X(m) in
Appendix A.3.1.

Global. The Fourier component is derived by Discrete Fourier Transform (DFT) (Sundararajan,
2001): X(m) =

∑L−1
n=0 x(n)e

− 2πi
L mn, where each frequency component X(m) encodes all the

timestamps. According to the Dual convolution theorem (Sundararajan, 2001), element-wise multipli-
cation in the frequency domain is equivalent to circular convolution in the time domain. Then we have
F(w̃ ∗ x) = 1

F F(w̃)⊙F(x), where ∗ denotes the circular convolution operator. Let F(w̃) = wcrit,
we can conclude that the frequency modification is equivalent to time-domain convolution with kernel
w̃ = F−1( 1

F wcrit) ∈ CL, which has global receptive field on x. This global perspective is crucial to
the time series classification tasks, as it preserves global semantics across the entire time series and
ensures that all timestamps are altered with distortion applied only to unimportant components.

Independent. The inverse DFT, x(n) = 1
L

∑L−1
m=0 X(m)e

2πi
L mn, offers an alternative perspective

of interpreting the frequency components: they are the coefficients of the orthogonal decomposition of
the time domain. The decomposition basis for X(m) is um = [e

2πi
L mn|n = 0, 1, ..., L− 1]T ∈ CL.

We have ⟨um,uq⟩ = 0 if m ̸= q, where ⟨u,v⟩ = uTv ∈ C is the Hermitian inner product.
The proof is presented in Appendix A.3.2. The zero-valued Hermitian inner product confirms the
orthogonal nature of the decomposition basis. Each coefficient X(m) measures the contribution of its
corresponding basis function independently. Similarly, when FreRA modifies frequency components,
each modified components independently contribute to the augmented views without being affected
by the others. The independence makes it easy to isolate critical and unimportant information by
updating wcrit and wdist and prevent added variance from degrading critical information.

Compact. Parseval’s theorem (Parseval, 1806) states that the total energy of the signal in the time do-
main is equal to the average energy in the frequency domain, i.e.,

∑L−1
n=0 |x(n)|2 = 1

L

∑L−1
m=0|X(m)|2.

This implies that if most energy is concentrated in a small number of frequency components, the
information of the signal is compactly distributed in the frequency domain. Figure 3 in the Appendix
validates this interpretation by showing that most energy is concentrated on the first ten frequency
components for the UCIHAR dataset and the same principle holds for other datasets. This aligns
with our common sense that many natural or man-made processes recorded as time series encode
information in low-frequency components. However, for classification tasks, the semantically rel-
evant bandwidth is normally unknown and the importance of these components varies, making it
hard to automatically rank their contributions and identify critical ones. Moreover, the exception
happens in certain applications, such as audio processing (Virtanen et al., 2015), where both low- and
high-frequency components matter. As critical components that encapsulate the semantic meaning of
the signal are likely a subset of the compactly distributed informative components, their distribution
should also remain compact. This leads us to enforce compactness in identifying the critical compo-
nents in the frequency domain. Notably, the range of the energy in Figure 3 highlights the shared
distribution of the informative components in the frequency domain. It advocates that a single vector
s is sufficient to work across all the samples in the dataset.

Lastly, we demonstrate that FreRA preserves global semantics, i.e., MI(As(x); y) = MI(x; y)
(Proposition 3 in the Appendix with proof) under the reliable assumption that noisy frequency
components are independent to the label. This proposition agrees with our observation in Figure 1
where the blue and orange curves nearly overlap. It also shows that FreRA satisfies the semantic-
preserving constraint in Definition 1, leaving only the minimization objective for optimization.

3.3 TIME SERIES CONTRASTIVE LEARNING WITH FRERA

In this section, we first elaborate on the detailed design of FreRA and propose the objective that
allows the joint training of FreRA and the contrastive learning framework.

Discern the Importance of Frequency Components Both wcrit and wdist are parameterized by a
lightweight trainable vector s = [s1, s2, ..., sF ]

T ∈ RF , where si scores the importance of the i-th
frequency component xi

f for the global semantics. A higher si indicates the contextual importance of
xi
f . On the other hand, si with a negative value suggests xi

f is the noise component.
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Identity Modification on Critical Frequency Components. A simple way to derive a bi-
nary vector like wcrit is to sample from a Bernoulli distribution controlled by the parameter
p = [p1, p2, ..., pF ]

T ∈ RF , i.e., wi
crit ∼ Bernoulli(pi) for i ∈ [1, 2, ..., F ], where pi denotes

the probability that the i-th frequency component is semantically critical. Meanwhile, the Bernoulli
distribution is not differentiable w.r.t. pi. Instead, we apply the Gumbel-Softmax reparameteriza-
tion (Jang et al., 2017), i.e., wi

crit = Gumbel-Softmax(pi). The importance score vector s makes it
possible because its values can be used to reflect the probability, i.e., pi = σ(si), where σ(·) is the
sigmoid function. The reparameterization is formulated as follows:

wi
crit = σ((log ϵ− log(1− ϵ) + log

σ(si)

1− σ(si)
)/τw), (4)

where ϵ ∼ Uniform(0, 1) and τw is the temperature controlling the discretization. As τw → 0,
wi

crit approximates a Bernoulli distribution: P (wi
crit → 0) = 1 − pi if ϵ > pi, and P (wi

crit → 1) =
pi if ϵ < pi. In this way, distinct importance score si is assigned to xi

f to capture varying levels of
contextual relevance within each frequency component.

Self-adaptive Modification on Unimportant Frequency Components. Besides preserving con-
textually relevant information, a good view also requires variance to be infused. Instead of adding
random noise, we deliberately modify the unimportant noisy components identified by s to avoid af-
fecting critical information. As the score si indicates the importance of the i-th frequency component
xi
f for global semantics, frequency components with smaller values are considered unimportant. A

threshold value is required to separate the unimportant components from the rest and handpicking
such a value would be inefficient and troublesome due to its dataset-specific nature. A practical
approach is to determine the value with statistical information of the vector. In this work, we
use the mean value for convenience. We empirically compare the performance using alternative
thresholds in Appendix A.9. Let D = {i|si < min(0, 1

F

∑F
i=1 si)} denote the set of unimportant

components’ indices. Finding the minimum between the mean value and 0 ensures the threshold is
non-positive. This is to prevent components with positive scores from being sampled. The distortion
vector wdist =

1
δs
1{i∈D} ⊙ |s| ∈ RF

≥0 modifies the unimportant frequency components to various

extent. The scaling factor δs = 1
|D|

∑F
i=1 1{i∈D}|si| controls the degree of distortion such that it is

in accordance to each component’s insignificance and no dramatic interference will be introduced.
Because of the absolute value function, the least important frequency component gets amplified
mostly in the distortion step. Lastly, we apply stop-gradient operation, i.e., wdist = stopgrad(wdist)
because back-propagation is not desired for the distortion. Data-driven thresholding and scaling
define the self-adaptive nature of modification on unimportant frequency components. By modifying
these components, variance is infused into all timestamps.

Overall Objective. The Gumbel-Softmax reparameterization makes wcrit differentiable, which
allows the joint training of automatic augmentation and the contrastive learning framework. Specifi-
cally, the contrastive model is optimized by pulling positive pairs together and pushing negative pairs
apart through the InfoNCE loss (van den Oord et al., 2018), given by:

LCL = − 1

B

∑
x∈X

log
exp(sim(hx, ĥx)/τ)∑

x′∈X exp(sim(hx, ĥx′)/τ)
, (5)

where hx = gϕ(fθ(x)), ĥx = gϕ(fθ(As(x))), sim(·, ·) denotes the similarity measurement imple-
mented as the cosine similarity and τ is the temperature coefficient. Minimizing the InfoNCE
loss is equivalent to maximizing the lower bound MICL(x,As(x)) of the mutual information
MI(x,As(x)) (van den Oord et al., 2018), i.e., MI(x,As(x)) ≤ log(B) − LCL = MICL(x,As(x)),
where B denotes the batch size. For As(·), directly applying InfoNCE results in a trivial so-
lution of s that causes wcrit to become an all-one vector 1 ∈ {1}F , leaving the importance of
frequency components ambiguous. This is because x = F−1(1 ⊙ xf ). On the other hand, the
critical components should keep and only keep the critical information, as the name suggests, i.e.,
MI(xcrit; x) = MI(x; y), where xcrit = F−1(wcrit ⊙ xf ). Knowing that DFT is a reversible operation,
we prove MI(xcrit; x) = MI(wcrit ⊙ xf ; xf ) and MI(x; y) = MI(xf ; y) in the Appendix A.4. The
orthogonal property of the Fourier basis reminds us that the frequency components are uncorrelated.
In other words, MI(wcrit ⊙ xf ; xf )) keeps increasing as a higher proportion of frequency components
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are identified as critical ones, as illustrated in Figure 4 in the Appendix, with proof provided in the
Appendix A.4. The trivial solution falls on the right end of the red segment and the optimal proportion
of critical components is pointed by the green arrow. To avoid the trivial solution and to achieve a
good view, we regularize the proportion of critical components in complement to the InfoNCE loss.
Specifically, we employ the L1-norm on wcrit as follows:

Lreg =
1

F

F∑
f=1

|wf
crit|. (6)

The regularization eliminates redundancy from identifying too many critical Fourier components,
leading to compact selection and robust representation learning. The overall optimization problem is
given by:

s∗, θ∗, ϕ∗ = argmin
s,θ,ϕ

(LCL + λ · Lreg), (7)

where λ is a hyper-parameter to balance the two losses. Note that there exists a unique value of critical
component’s proportion that makes MI(xcrit; x) = MI(x; y) happen, as shown in Figure 4. Meanwhile,
as the hyper-parameter regularizes the proportion, λ empirically exhibits stable performance over a
range of values, as shown in the Appendix A.9.

How Does the Learning Objective Benefit View Generation? Optimizing Eq. 7 is equivalent to
maximize the lower bound for MI(x, xcrit) and minimize MI(As(x), x). The former occurs because
optimizing s over the InfoNCE loss only maximizes the lower bound for MI(x, xcrit), due to the
stop-gradient operation applied to the unimportant frequency component. The latter is achieved by
the regularization term and the distortion applied to unimportant components. Combined with the
Proposition 3 we have proved earlier, we prove the view generator trained on objective in Eq. 7 satisfies
the optimality as defined in Definition 1. Moreover, unlike time-domain augmentations that disrupt
the inter-correlations among timestamps and harm the semantics, FreRA independently modifies
critical and unimportant components in the frequency domain, protecting the global semantics intact
while introducing variance.

Distinction to Existing Automatic Augmentation for Time Series Contrastive Learning At
first glance, our method may seem similar to InfoTS (Luo et al., 2023) and AutoTCL (Zheng et al.,
2024), but FreRA fundamentally differs in the view generation process, i.e., how it applies the
reparameterization trick and where it disentangle the information. For detailed explanations, please
refer to the Appendix A.5.

4 EXPERIMENTS

Datasets To fully evaluate the model performance under different scenarios, we conduct extensive
experiments on: (1) 3 large-scale datasets on HAR: UCIHAR (Anguita et al., 2012), MotionSense
(MS) (Malekzadeh et al., 2019), and WISDM (Kwapisz et al., 2010); (2) the UEA archive (Bagnall
et al., 2018): 30 multivariate time series datasets from various applications such as Human Activity
Recognition (HAR), Motion classification, ECG classification, EEG/MEG classification, Audio
Spectra Classification and so on; (3) the UCR archive (Dau et al., 2019): 100 univariate time series
datasets collected from real-world scenarios; (4) a large-scale anomaly detection dataset: Fault
Diagnosis (FD) (Lessmeier et al., 2016) aiming to detect and classify bearing damages from single-
channel current signals of electric motors; (5) a large-scale HAR dataset for transfer learning scenario:
SHAR (Micucci et al., 2016), which contains daily activity signals from 30 persons and is empirically
observed to have large distribution gap among individuals (Qian et al., 2022).

Baselines We compare FreRA against the following related baselines: (1) 11 commonly-used
handcrafted time-domain (T) augmentations (Qian et al., 2022), including jitter, scaling, negation,
permutation, shuffling, time-flipping, time-warping, resampling, rotation, permutation-and-jitter,
jitter-and-scale; (2) 5 handcrafted frequency-domain (F) augmentations (Qian et al., 2022), including
low-pass filter, high-pass filter, phase shift, amplitude and phase perturbation (fully), and amplitude
and phase perturbation (partially); (3) 3 SOTA automatic augmentation for contrastive learning:
InfoMin (Tian et al., 2020), InfoTS (Luo et al., 2023), and AutoTCL (Zheng et al., 2024); (4) 5 SOTA
time series contrastive learning frameworks: TS2Vec (Yue et al., 2022b), TNC (Tonekaboni et al.,
2021), TS-TCC (Eldele et al., 2023), TF-C (Zhang et al., 2022) and SoftCLT (Lee et al., 2024).
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Table 1: The overall performance on all the datasets (unit: %). best(T) and best(F) record the highest perfor-
mances among the selected sets of 11 time-domain augmentations and 5 frequency-domain augmentations. The
best performance is highlighted in bold, and the second-best performance is underlined. ∗ indicates FreRA
significantly outperforms both best(T) and best(F) at the confidence level of 0.05 from paired t-test.

Dataset Metrics FreRA
(ours) best(T) best(F) InfoMin+ InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C SoftCLT

UCIHAR ACC 0.975∗ 0.959 0.960 0.967 0.967 0.697 0.959 0.568 0.924 0.875 0.961

MS ACC 0.982∗ 0.956 0.970 0.971 0.967 0.691 0.945 0.526 0.915 0.811 0.962

WISDM ACC 0.972∗ 0.942 0.950 0.959 0.915 0.760 0.939 0.543 0.889 0.839 0.952

UEA
Archive

Avg. ACC 0.754∗ 0.684 0.686 0.693 0.714 0.742 0.704 0.670 0.668 0.298 0.7511

Avg. RANK 2.133 5.967 5.800 5.500 3.967 2.600 4.967 6.433 6.033 9.276 -

UCR
Archive

Avg. ACC 0.850∗ 0.723 0.744 0.718 0.849 0.598 0.845 0.776 0.780 0.542 0.8501

Avg. RANK 1.940 6.320 5.750 6.470 1.930 8.420 2.670 4.810 4.670 8.330 -

Implementation Details We use the predefined train-validation-test split if the dataset includes
such information. Otherwise, we split each dataset with a ratio of 64%:16%:20%. For time-series
classification datasets with class imbalance issues, we sample training instances with probabilities
inversely proportional to their class sizes. We implement FreRA in PyTorch (Paszke et al., 2019) and
conduct all experiments on an NVIDIA GeForce RTX 3090 GPU with 25 GB memory. Additional
implementation details are included in Appendix A.6.

4.1 MAIN RESULTS ON TIME SERIES CLASSIFICATION TASKS

The overall results on all the datasets are presented in Table 1. Overall, FreRA consistently outper-
forms all the baselines on the three large HAR datasets and achieves the top average accuracy and
ranking on both UEA and UCR archives. The detailed performances of the UEA and UCR archives
are reported in Table 10 and Table 9 in the Appendix. FreRA achieves the best performance on 17
out of 30 datasets in the UEA archive. We credit the surprising performance to the frequency-refined
views generated by FreRA. The empirical performance adequately illustrates that FreRA can ef-
fectively keep the semantic information from critical frequency components intact while infusing
variance, boosting representation learning on all datasets. FreRA achieves leading performances
not only on large-scale HAR datasets but also on extremely small datasets, e.g., AtrialFibrillation,
DuckDuckGeese, and StandWalkJump within the UEA archive, whose training sets contain less than
100 samples, and the improvement over the second-best baselines is up to 8.7% on average. This is
not only credited to the effectiveness of FreRA in maintaining semantics but also to the lightweight
and scalable design where the number of parameters is only half of the sequence length. It also
indicates that FreRA provides robust performance across datasets of varying sizes. Although FreRA
achieves an average ranking 0.01 lower than InfoTS on the UCR archive, when comparing FreRA to
the baselines of the same backbone structure, i.e. best(T), best(F) and InfoTS+, the improvement
brought by the augmentation itself is significantly larger than the difference between InfoTS and
TS2Vec. This indicates that FreRA offers stronger enhancement regardless of the backbone. We
present a detailed analysis in the Appendix A.7. We also evaluate the performance of FreRA on the
anomaly detection task using the Fault Diagnosis dataset and present the result and analysis in the
Appendix A.8

4.2 EVALUATION ON TRANSFER LEARNING

Here, we evaluate the generalizability of the pre-trained encoder, which is crucial when there exists
a misalignment between the per-training data and data from downstream tasks. The encoder is
pre-trained on the source domains and adopted directly to an unseen target domain. Following (Qian
et al., 2022), we conduct transfer learning in data-scarce and data-rich settings, where the number of
source domains for training is 3 and 19 respectively. Table 2 records the results from the two settings.
FreRA is shown to be more effective in learning generalizable encoders than all the baselines. This is
because the views emphasizing the semantic-preserving patterns guide the training of the encoder
and make it sensitive to the inherent global semantic information and robust to the unimportant
information, i.e., distribution shift among different domains. Without effectively identifying critical

1The result is directly adopted from its original paper. As the results across all the datasets in the UEA and
UCR archives are not provided, the ranking is not available.
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Table 2: Classification performance in transfer learning setting on the SHAR dataset under different numbers of
source domains. No. SD denotes the number of source domains for pre-training and TD denotes the index of the
target domain. The best accuracy is highlighted in bold, and the second-best performance is underlined.

No.
SD TD FreRA

(ours) best(T) best(F) InfoMin+ InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C SoftCLT

3

1 0.602 0.599 0.495 0.537 0.367 0.464 0.430 0.133 0.495 0.349 0.505
2 0.467 0.415 0.412 0.359 0.369 0.278 0.317 0.145 0.410 0.252 0.407
3 0.665 0.582 0.599 0.516 0.516 0.414 0.523 0.217 0.464 0.568 0.530
5 0.366 0.332 0.336 0.359 0.081 0.245 0.050 0.143 0.362 0.255 0.339

19

1 0.628 0.555 0.607 0.542 0.599 0.497 0.568 0.117 0.578 0.453 0.581
2 0.652 0.583 0.571 0.563 0.455 0.372 0.640 0.148 0.647 0.456 0.581
3 0.691 0.628 0.665 0.638 0.563 0.408 0.502 0.135 0.592 0.451 0.559
5 0.698 0.617 0.638 0.601 0.638 0.430 0.658 0.204 0.612 0.466 0.567

Table 3: Effects of the two modification modules and the L1-norm regularization of FreRA. Results are averaged
over 30 datasets from the UEA archive. The number in the bracket illustrates the accuracy gap with FreRA.

FreRA
(ours)

w/o modification on
critical components

w/o modification on
noise components

w/o L1-norm regularization
on wcrit

Avg. ACC 0.754 0.690 (-0.064) 0.695 (-0.059) 0.690 (-0.064)

and unimportant information, other SOTA baselines on automatic augmentation and time series
contrastive learning fail to deliver promising performance in the transfer learning scenario.

4.3 ABLATION STUDIES

Effect of Each Component. In Table 3, we evaluate the effect of each component of FreRA, i.e. the
identity modification on critical frequency components, the self-adaptive modification on unimportant
frequency components, and the regularization term. To disallow the identity modification on critical
components, we randomly sample a proportion of critical components instead of identifying their
distribution in a data-driven way. The proportion is the same as Lreg from the last epoch of our
approach to ensure fair comparison. To disallow the self-adaptive modification on unimportant
frequency components, we set wdist as an all-zero vector. To ignore the regularization term, we let
hyper-parameter λ be 0. Overall, removing any component deteriorates performance drastically. The
semantic information and the distortion introduced are both crucial for downstream tasks. Between the
two, the identity modification on critical components is slightly more important than the distortion on
noisy components. It demonstrates the effectiveness of isolating critical and non-critical components
from the frequency domain and applying the respective modifications accordingly. Last but not
least, the L1-norm regularization is as crucial as the two frequency modification modules. The result
demonstrates the importance of maintaining the inherent compact distribution of critical components.

Sensitivity to Hyper-parameter λ. Figure 5 in the Appendix shows the accuracy of FreRA on the
3 HAR datasets under varying λ compared to their second-best baselines plotted in dashed lines
for reference. The result demonstrates that the downstream task performance remains stable across
different values of λ and consistently better than the baseline, indicating FreRA is robust to the
selection of the hyper-parameter’s value. A detailed analysis is presented in the Appendix A.9.

More comprehensive ablation studies investigating the sensitivity to hyper-parameter λ, the perfor-
mance of alternative contrastive learning frameworks, the effect of unimportant component selection
mechanisms, and the robustness to Gaussian noise are presented in the Appendix A.9.

5 CONCLUSION

In this paper, we propose Frequency-Refined Augmentation (FreRA), a lightweight yet effective
augmentation for time series contrastive learning on classification tasks. FreRA leverages the global,
independent, and compact nature of the frequency domain to generate semantic-preserving views
through independent modifications on separated frequency components. Its effectiveness is verified
both theoretically and empirically. Experiments on 135 benchmark datasets from various applications
demonstrate that FreRA is universally effective in contrastive learning and generalizes well in transfer
learning scenarios. In addition, it is robust to hyper-parameter settings, flexible and effective when
applied to various contrastive learning frameworks, and resilient to Gaussian noise added to the input.
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A APPENDIX

A.1 DETAILS REGARDING FIGURE 1

Directly calculating the mutual information between the entire time series and the label is not
trivial due to the curse of dimensionality. To address this, in Figure 1, we calculate the mutual
information between each timestamp and the label. It visualizes the amount of semantic information
preserved across all the timestamps. For instance, the value of the orange curve at timestamp
∀t ∈ [1, ..., L] is MI(xt; y) of the UCIHAR dataset, where xt ∈ RD is the signal at timestamp t,
y is the ground truth label. L = 128 and D = 6 are the length and dimension of the samples.
Estimating the timestamp-wise mutual information, with a dimension of only 6, allows us to avoid
the curse of dimensionality. In this plot, we do not intend to suggest a single timestamp alone is
fully representative of the underlying semantics. Instead, the figure illustrates how the informative
content varies across different augmentation functions. While a single timestamp may not directly
indicate specific semantic meaning, the plot demonstrates the manipulation of the frequency domain
benefits the augmented views. This is attributed to the undeteriorated critical components that are
semantically informative.

A.2 DISCUSSION ON PREDEFINED FREQUENCY-DOMAIN AUGMENTATIONS

Frequency-based predefined augmentations, such as high-pass and low-pass filters, require prior
knowledge, such as the effective bandwidth of the dataset, to determine the selection of appropriate
augmentation functions. Additionally, stochastic frequency-domain augmentations, such as phase-
shift and augmentation in TF-C Zhang et al. (2022), introduce random noise that disrupts the critical
information. As prior knowledge is not always accessible in the contrastive learning paradigm, and
the compromised semantics caused by the frequency-domain augmentation have been observed
from the brown line in Figure 1, predefined frequency-domain augmentations remain suboptimal for
contrastive learning. Existing frequency-based augmentations do not fully leverage the advantages of
the frequency domain. To this end, we reanalyze the benefits of the frequency domain and deliberately
design a frequency-based augmentation to address the aforementioned issues and fully utilize its
advantages.

A.3 PROPERTIES OF THE DISCRETE FOURIER TRANSFORM (DFT)

A.3.1 CONJUGATE SYMMETRIC.

Given a signal x(n) ∈ R, n ∈ {0, 1, ..., L − 1}, its DFT X(m) ∈ C,m ∈ {0, 1, ..., L − 1} is
conjugate symmetric, i.e., X(L−m) = X(m). The proof is as follows:

X(L−m) =

L−1∑
n=0

x(n)e−
2πi
L (L−m)n

=

L−1∑
n=0

x(n)e
2πi
L mn

= X(m).

(8)

Converting back to our notation, X(m) = X(L−m) = xL−m+1
f , which explains the second

condition of X(m) in Eq. 3. The Conjugate Symmetry allows only half of the DFT signal to
recover the entire time series, which also justifies why FreRA manipulates only half of the frequency
components, i.e., F = ⌊L/2⌋+ 1. This property allows FreRA to have a lightweight structure.

A.3.2 ORTHOGONAL OF FOURIER BASIS.

The inverse DFT, x(n) = 1
L

∑L−1
m=0 X(m)e

2πi
L mn decompose the time domain on the Fourier basis

um = [e
2πi
L mn|n = 0, 1, ..., L− 1]T ∈ CL, where frequency components X(m) are the coefficients

with respect to the Fourier basis. The orthogonal property of Fourier basis, i.e., ⟨um,uq⟩ = 0 if
m ̸= q, is proved below.
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⟨um,uq⟩ = uT
muq

=

L−1∑
n=0

e
2πi
L mne−

2πi
L qn

=

L−1∑
n=0

e
2πi
L (m−q)n

(the sum of a geometric series follows:
L−1∑
n=0

rn =
1− rL

1− r
)

=
1− e

2πi
L L(m−q)

1− e
2πi
L (m−q)

(e
2πi
L L(m−q) = 1 and e

2πi
L (m−q) ̸= 1 if m ̸= q)

= 0

(9)

A.4 PROOFS OF PROPOSITIONS

Proposition 1. (Conservation of Entropy) Let x and xf be the random variables denoting the time
series in the time domain and the frequency domain respectively, then we have H(x) = H(xf ).

Proof. Since the DFT is a one-to-one invertible transformation, we have p(x) = p(xf ).

H(x) =
∑
x

p(x) log p(x)

=
∑
xf

p(xf ) log p(xf )

= H(xf )

(10)

Proposition 2. (Conservation of Mutual Information) Let x, xf , and y be the random variables
denoting the time series in the time domain and the frequency domain, and their corresponding label
respectively, then we have MI(x; y) = MI(xf ; y).

Proof. Since the DFT does not alter the label of the time series variable, we have p(x, y) = p(xf , y).

MI(x; y) = H(y)− H(y|x)

= H(y)−
∑
x,y

p(x, y) log
p(x, y)

p(x)

= H(y)−
∑
xf ,y

p(xf , y) log
p(xf , y)

p(xf )

= MI(xf ; y)

(11)

Similarly, we can proof MI(x; x̃) = MI(xf ; x̃f ), where random variable x and x̃ denotes two time
series and xf and x̃f denotes their frequency-domain counterpart.

Proposition 3. With the reliable assumption that the noisy frequency components are independent to
the label, FreRA is a semantic preserving transformation, i.e., MI(As(x); y) = MI(x; y).

Proof. Let xcrit
f = wcrit ⊙ xf and xdist

f = (1 − wcrit) ⊙ xf denote the critical and noisy frequency
components respectively. Knowing xcrit

f and xdist
f are independent, we have

H(xf ) = H(xcrit
f ) + H(xdist

f ). (12)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Then we show that
MI(xf ; y) = H(xf )− H(xf ; y)

= H(xcrit
f ) + H(xdist

f )− H(xcrit
f , xdist

f |y)
(xdist

f , as irrelevant components, is independent to y)

= H(xcrit
f ) + H(xdist

f )− (H(xcrit
f |y) + H(xdist

f ))

= H(xcrit
f )− H(xcrit

f |y)
= MI(xcrit

f ; y).

(13)

Similarly,

MI(As(x); y) = MI((wcrit +wdist)⊙ xf ; y)
= H((wcrit +wdist)⊙ xf )− H((wcrit +wdist)⊙ xf ; y)
= H(wcrit ⊙ xf ) + H(wdist ⊙ xf )− H((wcrit ⊙ xf +wdist ⊙ xf |y)

(wdist ⊙ xf is independent to y)

= H(xcrit
f ) + H(wdist ⊙ xf )− (H(xcrit

f |y) + H(wdist ⊙ xf ))

= H(xcrit
f )− H(xcrit

f |y)
= MI(xcrit

f ; y).

(14)

Applying Proposition. 2, we have MI(As(x); y) = MI(x; y).

Proposition 4. MI(wcrit)⊙ x; x) is monotonically increasing w.r.t the proportion of critical compo-
nents.

Proof.

MI(wcrit ⊙ xf ; xf ) = H(xf )−H(xf |wcrit ⊙ xf )
= H(xf )−H(wcrit ⊙ xf , (1−wcrit)⊙ xf |wcrit ⊙ xf )
(wcrit ⊙ xf and (1−wcrit)⊙ xf are independent since they lie on the orthogonal basis)
= H(xf )−H((1−wcrit)⊙ xf )

= H(xf )−
F∑
i=1

1{1−wi
crit=1}H(xif )

(15)

Since the first term H(xf ) is fixed, and the second term
∑F

i=1 1{1−wi
crit=1}H(xif ) decreases as the

proportion of critical components increases, we prove the monotonic increasing of MI(wcrit ⊙ xf ; xf )
w.r.t the proportion of critical components. As the proportion becomes 1, i.e., all the frequency
components are identified as critical ones, MI(wcrit ⊙ xf ; xf ) = H(xf ), as we plot in Figure 4.

A.5 DISTINCTION TO EXISTING AUTOMATIC AUGMENTATION FOR TIME SERIES
CONTRASTIVE LEARNING

At first glance, our method may seem to resemble InfoTS (Luo et al., 2023), since it also
leverages the same reparameterization trick to facilitate the view generation. However, their
pi indicates the probability of sampling a predefined transformationTi(·), i.e., AInfoTS(x) =
1
m

∑m
i=1 Gumbel-Softmax(pi)Ti(x).It fails to handle the noise and artifacts introduced by predefined

augmentations Ti(·). On the contrary, our approach elegantly eliminates the dependency on Ti(·)
by preserving critical elements and modifying the noise elements in the frequency domain. This
more effectively enables preserving contextual-related information in the generated views while
infusing variance. FreRA also appears similar to AutoTCL (Zheng et al., 2024) in the sense that it
disentangles the informative information of the time series from the noisy ones. However, performing
the disentanglement on the time domain disrupts the periodicity and inter-dependencies among times-
tamps in the real world and hinders the semantics from the input space. Conversely, we disentangle
the information in the frequency domain and leverage its advantages over the time domain: global,
independent, and compact, to better facilitate the view generation.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60
m

0
5

10
15
20
25
30

|X
(m

)|2

Figure 3: Take the UCIHAR dataset as an ex-
ample, the energy in the frequency domain E =
1
L

∑L−1
m=0|X(m)|2 is mostly concentrated in a com-

pact set of frequency components, whose frequency
are the ten lowest. The solid line represents the av-
erage energy for the frequency components in the
UCIHAR dataset, and the shaded area indicates the
range.

Figure 4: We aim to achieve the intersection point
pointed by the green arrow where MI(xcrit; x) =
MI(x; y), meaning the critical frequency components
keep and only keep the semantic information. The
linearity of MI(wcrit ⊙ xf ; xf ) is for illustration pur-
poses only.

A.6 IMPLEMENTATION DETAILS

For the predefined time-domain and frequency-domain augmentations, we follow the parameter
settings from (Qian et al., 2022). For the InfoMin baseline, we apply its adversarial objective
to replace our regularization term. To make it suitable for time series, we use our frequency-
domain refinement to substitute the flow-based view generator which is designed for images. This
implementation makes it benefit from our frequency-enhanced approach and we denote this baseline
as InfoMin+. For other baselines, we adopt the results from (Zheng et al., 2024; Lee et al., 2024) if
they are available. Otherwise, we use the publicly available implementation and fine-tune the model
as suggested in the original papers.

Fully-convolutional Network (FCN) (Wang et al., 2017) with an output dimension 128 is adopted as
the encoder fθ. The batch size is selected from {256, 128, 64, 32, 16, 5} according to the scale of the
dataset, and the maximum training epoch is set to 200 for all the experiments. The learning rate is
selected from {0.03, 0.01, 0.003, 0.001}. We adopt SGD optimizer to train the contrastive model and
Adam optimizer for s. For the hyper-parameter setting, we select discretization temperature τw from
{0.1, 0.2}, and fix temperature coefficient τ to be 0.2. λ is searched from {0.1, 0.3, 1, 3, 10, 30}. The
projector gϕ is a two-layer MLP, with hidden and output dimensions 128.

To evaluate the performance, we employ the commonly used linear evaluation protocol. We first
jointly train FreRA and the contrastive learning model, then we discard other components and keep
only the pre-trained encoder fθ∗ frozen and train a linear classifier on top of it, as illustrated in the
lower right corner of Figure 2. For time series classification tasks, we record the best accuracy (ACC)
as the evaluation metric. For anomaly detection tasks, we record both the best accuracy and the
Macro-F1 score.

A.7 ADDITIONAL ANALYSIS FOR THE MAIN RESULT ON TIME SERIES CLASSIFICATION
TASKS

From Table 1, Table 9, and Table 10, we conclude that frequency-domain augmentations outrun
time-domain augmentations in general. This endorses our motivation that the frequency perspective
is superior to its time-domain counterpart in preserving global semantics. InfoMin+ exceeds other
baselines on the three large HAR datasets, which demonstrates the efficacy of its objective. However,
the performance gap between InfoMin+ and ours indicates that directly applying an adversarial objec-
tive in the frequency domain is not customized for our approach and causes conflict in representation
learning. On the other hand, our specially designed objective better suits the frequency-domain refine-
ment. The 5 SOTA time-series contrastive learning frameworks with carefully designed architectures
and objectives become uncompetitive compared to FreRA.

It is worth noting that our datasets cover multiple applications, diverse data scales, and various types
of sensor modalities. Notably, FreRA receives the best overall performance on them, which proves
that our approach provides a unified view generation approach and can be flexibly applied to various
time-series applications.
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Table 4: Performance on anomaly detection task on the Fault Diagnosis dataset. Each row corresponds to a
setting where the pre-training set includes domains {a, bd, c} \ Target Domain, and the Target Domain is used
for evaluation. The best accuracy is highlighted in bold, and the second-best performance is underlined.

Target
Domain Metrics FreRA

(ours) best(T) best(F) InfoMin+ InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C SoftCLT

a ACC 0.620 0.574 0.519 0.613 0.461 0.496 0.468 0.440 0.296 0.455 0.608
Macro-F1 0.671 0.638 0.508 0.644 0.485 0.484 0.468 0.302 0.353 0.208 0.639

bd ACC 0.859 0.826 0.767 0.807 0.731 0.433 0.802 0.455 0.823 0.455 0.808
Macro-F1 0.895 0.856 0.817 0.853 0.798 0.471 0.848 0.300 0.755 0.208 0.853

c ACC 0.819 0.810 0.736 0.812 0.742 0.482 0.677 0.465 0.557 0.455 0.775
Macro-F1 0.858 0.794 0.755 0.848 0.781 0.456 0.747 0.314 0.617 0.208 0.825

0.0 0.1 0.3 1 3 10 30
Value of 
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Figure 5: Performance of FreRA on the 3 HAR datasets under varying λ, in comparison to their second-best
baselines.

Table 5: The performance of the three large HAR datasets on alternative time series contrastive learning models.

TS2Vec (InfoNCE) TS-TCC (InfoNCE) SoftCLT (InfoNCE)
Dataset FreRA

(ours)
original

augmentation
FreRA
(ours)

original
augmentation

FreRA
(ours)

original
augmentation

UCIHAR 0.970 0.959 0.944 0.924 0.969 0.961
MS 0.968 0.945 0.959 0.915 0.974 0.962

WISDM 0.957 0.939 0.962 0.889 0.956 0.952

Table 6: The performance of the three large HAR datasets on alternative contrastive learning models originally
designed for the vision domain.

SimCLR (InfoNCE) SimCLR (NT-Xent) BYOL (Cosine Similarity)
Dataset FreRA

(ours) best(T) best(F) FreRA
(ours) best(T) best(F) FreRA

(ours) best(T) best(F)

UCIHAR 0.975 0.959 0.960 0.972 0.951 0.955 0.960 0.940 0.937
MS 0.982 0.956 0.970 0.979 0.969 0.965 0.983 0.968 0.954

WISDM 0.972 0.942 0.950 0.966 0.941 0.952 0.952 0.942 0.928

A.8 EVALUATION ON ANOMALY DETECTION TASKS

We evaluate the performance of FreRA on the anomaly detection task using the Fault Diagnosis dataset
and present the results in Table 4. The signals are collected under 4 different operation settings {a, b,
c, d}. Observing the negligible domain gap between signals from settings ‘b’ and ‘d’, we randomly
sample half of the data from each setting and combine them as a new domain ‘bd’. Considering the
highly imbalanced class distribution, we include the Macro-F1 score as another evaluation metric.
FreRA outperforms all the baselines on both evaluation metrics, which demonstrates its strong
performance in applications beyond classification.

A.9 ABLATION STUDIES

Sensitivity to Hyper-parameter λ. In Figure 5, UCIHAR, MS and WISDM achieve peak perfor-
mances at λ = 1, 10, 3 respectively. On the left of the peak, the performance is suboptimal because
redundant frequency components are included in the critical components. On the right of the peaks,
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Table 7: The performance of applying different statistical information to select unimportant components.

Dataset mean
(ours) median mean+std

UICHAR 0.975 0.971 0.972
MS 0.982 0.976 0.975

WISDM 0.972 0.963 0.963

Table 8: Performance comparison of FreRA on different datasets with and without Gaussian noise

Dataset w Gaussian noise w/o Gaussian noise

UCIHAR 0.970 0.975
MS 0.975 0.982

WISDM 0.964 0.972
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Figure 6: Despite the diverse distributions of global semantics across three datasets (Libras, ArticularyWor-
dRecognition, and Epilepsy), as shown in the blue-grey bar plots, the learned vector s, represented by the orange
lines, consistently captures the inherent critical information by assigning higher values to the most semantically
relevant frequency components (those of high values in the bar plots).

incomplete critical information leads to degraded performances. The peak values indicate that FreRA
learns to preserve only critical frequency components and distort the irrelevant components, achieving
the optimal view for representation learning.

On Alternative Contrastive Learning Frameworks. Due to its meticulous design, FreRA can
be seamlessly integrated with different contrastive models in a plug-and-play manner. In Table 5
and Table 6, we apply FreRA to five alternative contrastive learning models: (1) three time-series
contrastive models TS2Vec (Yue et al., 2022a), TS-TCC (Eldele et al., 2023), and SoftCLT (Lee et al.,
2024) with their default augmentations as baselines and (2) two general purpose contrastive learning
models originally designed for the vision domain, BYOL (Grill et al., 2020) and SimCLR (Chen et al.,
2020) with the best time-domain and frequency-domain augmentations as baselines. For SimCLR,
despite the NT-Xent loss originally applied in SimCLR, we also use InfoNCE as the loss function,
which forms the framework we use in our main result. The same usage has been deployed in Yeh et al.
(2022) and Wu et al. (2024) as well. Our current evaluation covers 5 contrastive learning frameworks
and 3 types of contrastive loss functions. All the models differ in network design and optimization
objectives. It is worth noting that the contrastive losses used in TS-TCC, TS2Vec, and SoftCLT are
different variants of InfoNCE, each with its unique formulation. The results presented consistently
demonstrate that FreRA is a plug-and-play method that effectively enhances existing contrastive
learning frameworks. This experiment highlights the flexibility and adaptability of our approach.

Effect of Unimportant Component Selection Mechanisms. To evaluate how the choice of statistical
measurement in D affects the final results, we conduct an ablation study comparing the performances
when using mean, median, and mean+std of vector s as the threshold. The results are shown in
Table 7. All the choices outperform the baseline performances in Table 1 and the mean value achieves
the best performance among them.

Robustness to Gaussian Noise. In Table 8, we present the performance of FreRA on the three
HAR datasets in the presence of Gaussian noise. The Gaussian noise has a mean of 0 and a standard
deviation of 0.8. Despite a slight degradation in performance, FreRA still outperforms all the baselines
shown in Table 1 when there is Gaussian noise in the input time series. Note that Gaussian noise
is absent in all the baselines. It demonstrates the robust performance of FreRA with respect to the
Gaussian noise in the time series.
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Vector s Captures the Inherent Semantic Distribution in the Frequancy Domain. To verify
the effectiveness of FreRA, in Figure 6, we visualize the learned parameter vector s, as compared
to the ground truth semantics distribution in the frequency domain, on three datasets, including
Libras, ArticularyWordRecognition, and Epilepsy. Specifically, we use the mutual information
(MI) between the frequency components with the label to quantify the ground truth importance of
frequency components and presented by blue-grey bar plots. The distribution of important frequency
components varies across datasets. The important components are distributed in low frequencies,
middle frequencies, and across multiple frequencies in these datasets, respectively. The learned vector
s which determines the importance scores of all the frequency components is presented with the orange
line plots. Despite diverse distributions, s consistently captures the inherent critical information by
learning to assign higher values to the most semantically relevant frequency components.

A.10 ADDITIONAL RESULTS

Full results of multivariate time series classification on the UEA archive and univariate time series
classification on the UCR archive are presented in Table 10 and Table 9. The full result of the
commonly used sets of 11 time-domain augmentations and 5 frequency-domain augmentations on
the 3 HAR datasets are shown in Table 11 and Table 12 respectively.
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Table 9: The overall classification result of 100 univariate time series datasets from the UCR archive. The best
performance is highlighted in bold.

Dataset FreRA
(Ours) best(T) best(F) InfoMin InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C

ACSF1 0.760 0.660 0.470 0.580 0.850 0.480 0.910 0.730 0.730 0.100
AllGestureWiimoteX 0.707 0.526 0.561 0.549 0.630 0.517 0.777 0.703 0.697 0.100
AllGestureWiimoteY 0.746 0.620 0.601 0.611 0.686 0.624 0.793 0.699 0.741 0.100
AllGestureWiimoteZ 0.707 0.581 0.573 0.577 0.629 0.576 0.770 0.646 0.689 0.100

BeetleFly 1.000 0.700 0.900 0.800 0.950 0.650 0.900 0.850 0.800 0.450
BirdChicken 1.000 0.750 0.850 0.800 0.900 0.550 0.800 0.750 0.650 0.500

BME 1.000 0.920 0.940 0.967 1.000 0.640 0.993 0.973 0.933 0.630
CBF 1.000 0.997 0.957 0.967 0.999 0.707 1.000 0.983 0.998 0.686

Chinatown 0.988 0.910 0.886 0.939 0.988 0.983 0.968 0.977 0.983 0.904
CinCECGTorso 0.968 0.912 0.968 0.914 0.928 0.305 0.827 0.669 0.671 0.248

Coffee 1.000 0.964 0.964 1.000 1.000 0.750 1.000 1.000 1.000 0.464
Computers 0.776 0.684 0.700 0.676 0.748 0.468 0.660 0.684 0.704 0.644

Crop 0.755 0.569 0.566 0.561 0.766 0.608 0.756 0.738 0.742 0.632
DiatomSizeReduction 0.980 0.817 0.948 0.905 0.997 0.676 0.987 0.993 0.977 0.301

DistalPhalanxOutlineAgeGroup 0.799 0.655 0.755 0.645 0.763 0.640 0.727 0.741 0.755 0.732
DistalPhalanxOutlineCorrect 0.804 0.627 0.670 0.734 0.801 0.583 0.775 0.754 0.754 0.683

DistalPhalanxTW 0.755 0.676 0.719 0.669 0.727 0.597 0.698 0.669 0.676 0.669
DodgerLoopDay 0.600 0.275 0.325 0.388 0.675 0.338 0.562 - - 0.150

DodgerLoopGame 0.942 0.833 0.797 0.855 0.942 0.725 0.841 - - 0.522
DodgerLoopWeeken 0.993 0.935 0.949 0.978 0.986 0.920 0.964 - - 0.739

Earthquakes 0.820 0.748 0.748 0.748 0.821 0.748 0.748 0.748 0.748 0.748
ECG200 0.890 0.830 0.840 0.800 0.930 0.700 0.920 0.830 0.880 0.940
ECG5000 0.948 0.935 0.940 0.926 0.945 0.900 0.935 0.937 0.941 0.938

ECGFiveDays 1.000 0.998 0.987 0.990 1.000 0.821 1.000 0.999 0.878 0.972
ElectricDevices 0.657 0.609 0.599 0.609 0.702 0.562 0.721 0.700 0.686 0.560

EOGHorizontalSignal 0.597 0.434 0.508 0.470 0.572 0.293 0.544 0.442 0.401 0.083
EOGVerticalSignal 0.489 0.320 0.423 0.312 0.459 0.290 0.503 0.392 0.376 0.144

FaceAll 0.888 0.628 0.728 0.658 0.929 0.689 0.805 0.766 0.813 0.714
FaceFour 0.864 0.773 0.773 0.773 0.818 0.205 0.932 0.659 0.773 0.330

FacesUCR 0.866 0.861 0.794 0.760 0.913 0.544 0.930 0.789 0.863 0.779
FordA 0.943 0.905 0.902 0.917 0.915 0.494 0.948 0.902 0.930 0.537
FordB 0.832 0.775 0.794 0.780 0.785 0.493 0.807 0.733 0.815 0.474

FreezerRegularTrain 0.994 0.804 0.856 0.820 0.996 0.717 0.986 0.991 0.989 0.742
FreezerSmallTrain 0.988 0.787 0.735 0.811 0.988 0.721 0.894 0.982 0.979 0.501

Fungi 0.941 0.667 0.667 0.677 0.946 0.263 0.962 0.527 0.753 0.860
GestureMidAirD1 0.638 0.315 0.431 0.308 0.592 0.423 0.631 0.431 0.369 0.038
GestureMidAirD2 0.608 0.292 0.138 0.269 0.492 0.177 0.515 0.362 0.254 0.038
GesturePebbleZ1 0.779 0.581 0.610 0.506 0.802 0.650 0.930 0.378 0.395 0.163
GesturePebbleZ2 0.722 0.614 0.551 0.475 0.842 0.424 0.873 0.316 0.430 0.152

GunPoint 1.000 0.887 0.993 0.933 1.000 0.800 0.987 0.967 0.993 0.573
GunPointAgeSpan 0.984 0.921 0.908 0.908 1.000 0.639 0.994 0.984 0.994 0.927

GunPointMaleVersusFemale 1.000 0.835 0.839 0.832 1.000 0.718 1.000 0.994 0.997 0.987
GunPointOldVersusYoung 1.000 1.000 1.000 1.000 1.000 0.981 1.000 1.000 1.000 1.000

Ham 0.810 0.790 0.705 0.686 0.838 0.533 0.724 0.752 0.743 0.752
HandOutlines 0.900 0.876 0.886 0.881 0.946 0.662 0.930 0.930 0.724 0.641

Haptics 0.487 0.471 0.487 0.406 0.546 0.334 0.536 0.474 0.396 0.208
Herring 0.703 0.594 0.609 0.594 0.656 0.594 0.641 0.594 0.594 0.594

HouseTwenty 0.983 0.891 0.706 0.681 0.924 0.655 0.941 0.782 0.790 0.571
InlineSkate 0.353 0.258 0.318 0.242 0.424 0.193 0.415 0.378 0.347 0.155

InsectEPGRegularTrain 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
InsectEPGSmallTrain 1.000 1.000 0.451 1.000 1.000 1.000 1.000 1.000 1.000 0.474
ItalyPowerDemand 0.976 0.968 0.956 0.969 0.966 0.614 0.961 0.928 0.955 0.934

LargeKitchenAppliances 0.848 0.787 0.784 0.776 0.853 0.416 0.875 0.776 0.848 0.389
Lightning2 0.951 0.672 0.721 0.721 0.934 0.639 0.869 0.869 0.836 0.738
Lightning7 0.840 0.726 0.767 0.712 0.877 0.342 0.863 0.767 0.685 0.616

Mallat 0.954 0.820 0.907 0.722 0.974 0.412 0.915 0.871 0.922 0.123
Meat 0.917 0.333 0.774 0.333 0.967 0.583 0.967 0.917 0.883 0.333

MiddlePhalanxOutlineAgeGroup 0.669 0.610 0.617 0.597 0.662 0.577 0.636 0.643 0.630 0.578
MiddlePhalanxOutlineCorrect 0.842 0.570 0.704 0.570 0.859 0.500 0.838 0.818 0.818 0.653

MiddlePhalanxTW 0.630 0.558 0.578 0.571 0.617 0.552 0.591 0.571 0.610 0.558
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Dataset FreRA
(Ours) best(T) best(F) InfoMin InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C

MixedShapesRegularTrain 0.925 0.878 0.927 0.829 0.935 0.624 0.922 0.911 0.855 0.400
MixedShapesSmallTrain 0.852 0.822 0.842 0.776 0.887 0.525 0.881 0.813 0.735 0.181

MoteStrain 0.891 0.904 0.806 0.849 0.873 0.676 0.863 0.825 0.843 0.815
OliveOil 0.800 0.400 0.752 0.400 0.933 0.600 0.900 0.833 0.800 0.400
OSULeaf 0.909 0.678 0.705 0.554 0.760 0.384 0.876 0.723 0.723 0.467
Phoneme 0.273 0.211 0.200 0.208 0.281 0.158 0.312 0.180 0.242 0.104

PickupGestureWimoteZ 0.860 0.740 0.399 0.680 0.820 0.640 0.820 0.620 0.600 0.100
PigCVP 0.611 0.303 0.667 0.207 0.653 0.130 0.870 0.649 0.615 0.019
PLAID 0.523 0.330 0.269 0.307 0.355 0.451 0.561 0.495 0.445 0.061
Plane 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.952

PowerCons 0.994 0.939 0.933 0.917 1.000 0.861 0.972 0.933 0.961 0.894
ProximalPhalanxOutlineAgeGroup 0.888 0.854 0.883 0.873 0.883 0.715 0.844 0.854 0.839 0.849

ProximalPhalanxOutlineCorrect 0.893 0.722 0.784 0.698 0.927 0.820 0.900 0.866 0.873 0.801
ProximalPhalanxTW 0.849 0.678 0.800 0.780 0.844 0.771 0.824 0.810 0.800 0.795
RefrigerationDevices 0.597 0.549 0.533 0.501 0.624 0.360 0.589 0.565 0.563 0.299

Rock 0.700 0.480 0.480 0.500 0.760 0.400 0.700 0.580 0.600 0.280
ScreenType 0.491 0.368 0.656 0.421 0.493 0.355 0.411 0.509 0.419 0.344

ShakeGestureWiimoteZ 0.980 0.840 0.800 0.840 0.920 0.787 0.940 0.820 0.860 0.100
ShapeletSim 1.000 1.000 0.978 1.000 0.856 0.533 1.000 0.589 0.683 0.467
ShapesAll 0.822 0.368 0.627 0.415 0.852 0.802 0.905 0.788 0.773 0.582

SmoothSubspace 0.987 0.873 0.893 0.860 1.000 0.913 0.993 0.913 0.953 0.653
SonyAIBORobotSurface2 0.957 0.815 0.867 0.807 0.953 0.769 0.890 0.834 0.907 0.846
SonyAIBORobotSurfacel 0.953 0.885 0.906 0.854 0.927 0.778 0.903 0.804 0.899 0.804

StarLightCurves 0.973 0.874 0.964 0.891 0.973 0.849 0.971 0.968 0.967 0.855
Strawberry 0.965 0.835 0.876 0.849 0.978 0.614 0.965 0.951 0.965 0.832

SwedishLeaf 0.950 0.789 0.874 0.787 0.950 0.794 0.942 0.880 0.923 0.891
Symbols 0.980 0.912 0.943 0.847 0.979 0.699 0.976 0.885 0.916 0.174

SyntheticControl 1.000 0.990 0.980 0.997 1.000 0.880 0.997 1.000 0.990 0.760
ToeSegmentation1 0.961 0.943 0.921 0.939 0.934 0.496 0.947 0.864 0.930 0.570
ToeSegmentation2 0.931 0.815 0.800 0.869 0.915 0.692 0.915 0.831 0.877 0.338

Trace 1.000 0.880 1.000 0.920 1.000 0.650 1.000 1.000 1.000 0.690
TwoLeadECG 0.987 0.867 0.984 0.901 0.998 0.565 0.987 0.993 0.976 0.921
TwoPatterns 1.000 0.997 0.999 0.957 1.000 0.264 1.000 1.000 0.999 0.654

UMD 1.000 0.938 0.617 0.979 1.000 0.590 1.000 0.993 0.986 0.778
Wafer 0.996 0.960 0.956 0.959 0.998 0.921 0.998 0.994 0.994 0.994
Wine 0.833 0.500 0.500 0.500 0.963 0.500 0.889 0.759 0.778 0.500

WordSynonyms 0.619 0.350 0.384 0.359 0.704 0.497 0.704 0.630 0.531 0.487
Worms 0.792 0.558 0.636 0.623 0.753 0.403 0.701 0.623 0.753 0.429

WormsTwoClass 0.831 0.753 0.714 0.714 0.857 0.558 0.805 0.727 0.753 0.584
Yoga 0.808 0.693 0.699 0.607 0.869 0.536 0.887 0.812 0.791 0.688

Avg. ACC 0.850 0.723 0.744 0.718 0.849 0.598 0.845 0.776 0.780 0.542
Avg. RANK 1.940 6.320 5.750 6.470 1.930 8.420 2.670 4.810 4.670 8.330

Table 10: The overall classification result of 30 multivariate time series datasets from the UEA archive. The best
performance is highlighted in bold.

Dataset FreRA
(ours) best(T) best(F) InfoMin InfoTS AutoTCL TS2Vec TNC TS-TCC TF-C

Articulary WordRecognition 0.990 0.887 0.947 0.913 0.987 0.983 0.987 0.973 0.953 0.467
AtrialFibrillation 0.467 0.400 0.333 0.267 0.200 0.467 0.200 0.133 0.267 0.040

BasicMotions 1.000 1.000 1.000 1.000 0.975 1.000 0.975 0.975 1.000 0.475
CharacterTrajectories 0.991 0.953 0.976 0.990 0.974 0.976 0.995 0.967 0.985 0.090

Cricket 1.000 0.986 0.986 0.958 0.986 1.000 0.972 0.958 0.917 0.125
DuckDuckGeese 0.760 0.660 0.660 0.700 0.540 0.700 0.680 0.460 0.380 0.340

Eigen Worms 0.863 0.779 0.840 0.794 0.733 0.901 0.847 0.840 0.779 -
Epilepsy 0.993 0.906 0.935 0.920 0.971 0.978 0.964 0.957 0.957 0.217
ERing 0.919 0.885 0.907 0.904 0.949 0.944 0.874 0.852 0.904 0.167

EthanolConcentration 0.323 0.297 0.262 0.243 0.281 0.354 0.308 0.297 0.285 0.247
FaceDetection 0.581 0.564 0.521 0.560 0.534 0.581 0.501 0.536 0.544 0.502

FingerMovements 0.610 0.530 0.500 0.500 0.630 0.640 0.480 0.470 0.460 0.510
HandMovementDirection 0.514 0.378 0.365 0.324 0.392 0.432 0.338 0.324 0.243 0.405

Handwriting 0.593 0.501 0.469 0.569 0.452 0.384 0.515 0.249 0.498 0.051
Heartbeat 0.785 0.741 0.746 0.737 0.722 0.785 0.683 0.746 0.751 0.737

Japanese Vowels 0.965 0.938 0.938 0.938 0.984 0.984 0.984 0.978 0.930 0.135
Libras 0.911 0.761 0.822 0.800 0.883 0.833 0.867 0.817 0.822 0.067
LSST 0.494 0.393 0.391 0.473 0.591 0.554 0.537 0.595 0.474 0.314

MotorImagery 0.550 0.530 0.540 0.530 0.630 0.570 0.510 0.500 0.610 0.500
NATOPS 0.900 0.867 0.872 0.822 0.933 0.944 0.928 0.911 0.822 0.533
PEMS-SF 0.746 0.653 0.671 0.699 0.751 0.838 0.682 0.699 0.734 0.312
PenDigits 0.973 0.946 0.946 0.970 0.990 0.984 0.989 0.979 0.974 0.236

PhonemeSpectra 0.274 0.226 0.226 0.240 0.249 0.218 0.233 0.207 0.252 0.026
RacketSports 0.888 0.816 0.796 0.822 0.855 0.914 0.855 0.776 0.816 0.480

SelfRegulationSCP1 0.908 0.836 0.870 0.867 0.874 0.891 0.812 0.799 0.823 0.502
SelfRegulationSCP2 0.622 0.589 0.594 0.622 0.578 0.578 0.578 0.550 0.533 0.500
SpokenArabicDigits 0.984 0.935 0.871 0.981 0.947 0.925 0.932 0.934 0.970 0.100

StandWalkJump 0.667 0.400 0.333 0.333 0.467 0.533 0.467 0.400 0.333 0.333
UWaveGestureLibrary 0.900 0.794 0.800 0.872 0.884 0.893 0.884 0.759 0.753 0.125

InsectWingbeat 0.462 0.363 0.456 0.443 0.470 0.488 0.466 0.469 0.264 0.108

Avg. ACC 0.754 0.684 0.686 0.693 0.714 0.742 0.704 0.670 0.668 0.298
Avg. RANK 2.133 5.967 5.800 5.500 3.967 2.600 4.967 6.433 6.033 9.276
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Table 11: The performance of the selected sets of 11 time-domain augmentations on the three HAR datasets.
The best performance is highlighted in bold, and the second-best performance is underlined. ‘t flip’, ‘t warp’,
‘perm jit’ and ‘jit scal’ are short for time-flipping, time-warping, permutation-and-jitter
and jitter-and-scale.

Dataset FreRA
(ours) jit scale negation perm shuffling t flip t warp resample rotation perm jit jit scal

UCIHAR 0.975 0.958 0.940 0.892 0.910 0.913 0.917 0.934 0.947 0.596 0.959 0.945
MS 0.982 0.930 0.914 0.813 0.927 0.910 0.915 0.925 0.956 0.887 0.948 0.915

WISDM 0.972 0.942 0.928 0.901 0.932 0.925 0.884 0.910 0.942 0.872 0.932 0.927

Table 12: The performance of the selected sets of 5 frequency-domain augmentations on the three HAR datasets.
The best performance is highlighted in bold, and the second-best performance is underlined.

Dataset FreRA
(ours) lpf hpf p shift ap p ap f

UCIHAR 0.975 0.921 0.939 0.958 0.959 0.960
MS 0.982 0.934 0.838 0.970 0.901 0.952

WISDM 0.972 0.934 0.800 0.943 0.865 0.950
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