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Abstract. Multi-agent unmanned aerial vehicle (UAV) systems have
emerged as a promising solution for complex applications such as in-
dustrial automation, surveillance, and disaster response. However, the
application of multi-agent UAV coordination remains challenging due to
the lack of consideration of real-world constraints such as communica-
tion link degradation, scalability issues, and the need for realistic training
environments. Existing simulation platforms often lack the fidelity and
flexibility required to bridge the gap between simulation and deployment.
To address these limitations, we propose MODIFLY , a scalable, cross-
platform, end-to-end simulation platform tailored for multi-agent UAV
control. MODIFLY introduces dynamic communication modeling, includ-
ing link degradation, to accurately simulate real-world UAV operations.
It supports distributed execution across multiple UAVs, seamless coordi-
nation, real-time monitoring, and user input capture. MODIFLY uniquely
integrates real drones with virtual environments, allowing UAVs to in-
teract with simulated obstacles and peer ones for hybrid reality testing.
Additionally, the platform is designed to facilitate reinforcement learning
(RL) research by providing compatibility with popular libraries like Ope-
nAI Gym and PettingZoo, supporting both single-agent and multi-agent
RL environments. MODIFLY offers an intuitive interface for real-time pa-
rameter tuning and performance analysis, making it a versatile tool for
researchers and practitioners to develop and validate UAV coordination
strategies under realistic conditions.

Keywords: Multi-agent Systems · UAVs · Reinforcement Learning.

1 Introduction

Unmanned vehicles (UVs) [4] have gained a lot of attention over the past decade
due to their wide range of applications from agriculture [7] to law enforce-
ment [14], from military surveillance [10] to disaster management [5]. UVs can
be categorized based on their modes of transportation, including aerial, land,
and aquatic vehicles. Among aerial UVs, quadcopters are the most famous due
to their ability to hover, take off, and land in confined spaces, making them
particularly suitable for surveillance tasks such as industrial inspections, urban
reconnaissance, and structural assessments of unsafe buildings.
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With the increasing complexity of robotic systems, multi-agent coordination
has become an important factor in solving large-scale decision-making systems.
These systems play an important role in our daily lives where agents interact
with each other at operational, tactical, and strategic levels. For example, the
social interactions between humans are essential for many social activities that
lead to sophisticated yet fundamental social structures in various aspects of our
lives. Motivated by the ubiquitous multi-agent systems in social networks, the
creation of similar structures for robotics systems, such as aerial UVs to per-
form tasks autonomously by following their humans’ counterpart, has become
an emergent research topic. One fundamental technical challenge is to uncover
the key principles and ideas behind the multi-agent system’s structure of social
networks, such that multi-agent robotic systems demonstrate human-level intel-
ligence and beyond. Addressing such a challenge can not only replace humans
from tedious and dangerous tasks but also provide more economical and effi-
cient solutions for numerous tasks, such as industrial automation, surveillance,
and emergent response. However, before real-world deployment, these methods
must be evaluated extensively in controlled simulation environments to ensure
reliability, safety, and scalability.

Unmanned aerial vehicles (UAVs), also called drones, have been popular
in various emerging applications, such as delivery, environmental monitoring,
and agriculture. Simulating multi-agent UAV coordination presents significant
challenges due to limited communication, computation, and sensing capabili-
ties. Meanwhile, the scalability is much needed to ensure that multi-agent UAV
coordination is robust to the addition of new UAVs in the team. Hence, these sys-
tems require robust distributed control to enable efficient collaboration among
drones for tasks such as autonomous navigation [18], search, and rescue [17].
However, existing simulation platforms for multi-agent UAVs struggle with scal-
ability, high degrees of freedom, realistic modeling of real-world communication,
and non-stationarity, making it difficult to evaluate their real-world applicability.

There exist several simulation platforms [8, 1, 19, 3, 9]. Gazebo [8], a widely
used open-source simulator, supports multi-agent physics-based simulations and
integrates well with Robot Operating System (ROS). However, it has limited
support for Windows, strong dependencies on ROS, and scalability constraints
when simulating large drone fleets. Although some frameworks address multi-
robot coordination such as Multi-robot Multi-target Potential Field (MMPF)
strategies [19] or Byzantine threat modeling in ROS-based systems [3], they lack
comprehensive end-to-end capabilities for realistic UAV simulations. Recently,
ROS 2, an extension of ROS, has been introduced [9] which expedite the robotics
research with freely available components and a modular framework. However,
its support for UAV-specific simulation is limited. Several UAV-specific simu-
lation efforts have been explored in the literature. Patel et al. [12] simulated
quadcopters using the Euler Lagrange method to investigate its modeling, and
altitude model validation. Kaya et al. [6] simulated a fuel battery hybrid powered
UAV model in MATLAB/Simulink software for actual applications. Despite the
success of these works, most existing simulation platforms, especially for UAVs



MODIFLY : Multi-Agent UAV Simulator 3

remain restrictive. They fail to account for communication link degradation,
real-time multi-agent control, and mixed-reality integration, which are impor-
tant factors for realistic UAV deployment.

To fill this gap, we propose MODIFLY , a scalable, cross-platform, end-to-
end simulation platform for multi-agent UAVs. MODIFLY incorporates dynamic
communication capabilities, including communication link degradation, to pro-
vide a realistic platform for UAV deployment in real-world conditions. It also
supports distributed execution, which allows the coordination of multiple sys-
tems across multiple computers and the ability to monitor these devices easily
in both a training and real-time setting. Each virtual device can capture user
input through the monitoring software and simulate a camera based on the vir-
tual environment. Users can import virtual obstacles and fly a simulated or real
drone through these virtual obstacles, enabling highly dynamic, cost-effective,
real-world testing. Additionally, to enhance the research in multi-agent quad-
copter control, MODIFLY supports single-agent and multi-agent reinforcement
learning (RL) environments based on OpenAI gym [2] and Pettingzoo [16]1.

Our contributions are summarized as:

• We propose MODIFLY , a realistic, scalable, cross-platform, end-to-end sim-
ulation platform for multi-agent quadcopter control.

• Our platform incorporates real-world communication constraints such as de-
graded links to enhance training fidelity.

• MODIFLY enables real drones to interact with virtual environments, includ-
ing simulated obstacles and peer drones, for realistic training and testing.

• We provide an intuitive interface for real-time monitoring, parameter tuning,
and dynamic interaction with UAVs.

• To facilitate RL research, MODIFLY includes wrappers for single and multi
agent RL libraries such as stable-baselines3 [13], and EPyMARL [11] respec-
tively.

2 Preliminaries

2.1 UAV Dynamics and Control

For simplicity of presentation, we here use quadcopters as a representation of
the UAV platform. A quadcopter is an UAV equipped with four motors and
can maneuver in six degrees of freedom (DoF). The maneuverability of quad-
copters makes them particularly useful for control algorithm deployment and
real-world applications. These applications include but are not limited to au-
tonomous package delivery, aerial surveillance, search-and-rescue missions, etc.
The Newton-Euler equations control the dynamics of a quadcopter, where the
thrust, drag, and gravitational forces impact its trajectory. The translational
motion along the x,y, and z axes and the rotational motion (roll, pitch, and
yaw) form the six DoF of a quadcopter.
1 All code and RL environment wrappers will be made publicly available upon paper

acceptance
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Fig. 1: 3D rendering of a multi-agent quadcopter environment with drones oper-
ating under a random policy.

A three-stage proportional-integral-derivative (PID) controller is used to con-
trol the simulated quadcopter. A velocity or position setpoint is the input to the
first stage of the controller, which is then used in the subsequent attitude con-
troller and angular velocity controller. All the communications of this system are
built upon TCP and UDP sockets, where TCP sockets have reliable transmission
and UDP sockets do not.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning where an artifi-
cial agent learns to perform decision-making under uncertainty. In RL, an agent
sequentially interacts with an environment (see Figure 2), which is usually un-
known, and learns about the dynamics of the environment in a trial-and-error
manner [15]. The agent observes the current state, performs an action, receives
a reward signal, and transits to the next state. Formally, an RL problem can be
represented as a Markov Decision Process (MDP) which can be represented as
a tuple (S,A,P,R, γ), where S denotes the state space, A represents the action
space, P(s′|s, a) is the transition probability function that determines how an
agent moves to the next state s′ by taking an action a in the current state s,
R(s, a) represents the reward function that provides feedback for every action
and γ denotes the discount factor [0, 1). In RL or MDP, the reward and state
transition probability functions are usually unknown to the agent. The goal is
to learn an optimal policy π(a|s) that maximizes the expected cumulative re-
ward. The policy is considered Markov if it solely relies on the current state for
action selection. If the same procedure is applied at each time step, the policy
is considered as stationary. A policy can be either deterministic or stochastic.
A deterministic policy, denoted as π(s) = a, returns a single action for a given
state, while a stochastic policy, denoted as π(a|s) = Pπ[A = a|S = a], returns
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Fig. 2: System architecture: Multi-device simulation network with distributed
computing nodes connected to a central controller, including integration with
physical devices such as quadcopters.

a probability distribution of selecting all possible actions in a state s. In this
paper, we consider policies to be stationary, Markov, and stochastic.

3 MODIFLY

MODIFLY is an end-to-end simulation platform designed to work for the devel-
opment and testing of multi-agent UAV applications. It is highly scalable and
compatible across various operating systems without performance degradation.
MODIFLY is modular, which allows its software components to run on a single
device or be distributed across multiple nodes. Moreover, it incorporates realistic
communication constraints present in real-world drone operations. Figure 2 il-
lustrates the overall system architecture. The platform supports multiple clients.
In order to connect each client, there is a custom networking system designed to
take advantage of the clustered architecture. Instead of using ROS, MODIFLY
chooses to use allow users to write their own scripts in Lua instead as Lua is
compatible with a clustered architecture due to its ease of deploying new pack-
ages or updates, along with advantages such as easy updates, configuration, and
dependency management. Additionally, MODIFLY also comes with a monitor-
ing tool that allows the user to load 3D scenes, visualize an entire system of
devices, and record telemetry data. The full monitoring tool window, including
the different views, cockpit, and visualizer, can be seen in Figure 3.

3.1 Architecture

In this section, we describe the system architecture for MODIFLY , which includes
a main control connected to simulated devices, client devices, and workers. Next,
we describe each component of the system.
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Fig. 3: Monitoring software viewing for MODIFLY .

Controller A controller is a central node that manages all client connections
through TCP and UDP servers. Due to the safety and security in real-world oper-
ations, all the clients’ connections to the controller are encrypted. It dynamically
chooses whether a message should be sent through a TCP or UDP socket. Gen-
erally, messages that have tolerance for error will always be sent through UDP
while messages that are dependent on order and have no tolerance for error will
be sent through the TCP socket. This makes sure that all the transmissions are
efficient and error-free.

A Controller also contains a master scene graph where simulated agents can
update objects in this graph or create new objects by notifying the Controller.
The Controller then accumulates and aggregates these update requests and pe-
riodically sends a notification to other agents so they can synchronize with this
graph. Object updates are not instantly reflected on different agents, thereby
simulating a realistic latent effect.

Device The device is the client that connects to the controller and responsible
for providing control inputs to the simulated agents. Each simulated agent is
self-contained, and can only communicate with other agents using the built-
in inter-agent communication system. This allows for the ability to simulate
communication errors between devices and with the controller.

Worker In MODIFLY , workers handle computationally intensive tasks offloaded
from agents, such as inference of trained models. Workers can operate locally or
in the cloud, hence making them highly useful for computationally extensive
tasks. For instance, the inference of AI models especially the LLMs inference
can be computationally challenging. As a consequence, they can be deployed on
local networks or the cloud, addressing power and weight constraints on agents.
All the workers have their own scene graphs that are connected to the controller.
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3.2 Scalability

We now discuss the scalability of MODIFLY . It can be deployed across multiple
end nodes simultaneously and can work with multiple clusters with minimal
effort, equireing a single package file to be copied across nodes.

Networked Scalability MODIFLY is scalable as it allows networking of mul-
tiple computers together running multiple device instances. This is crucial for
large-scale AI systems, such as reinforcement learning, where hardware limita-
tions on a single resource—whether CPU or GPU—raise many challenges. MOD-
IFLY facilitates horizontal scaling by adding new nodes rather than increasing
the capabilities of a single system. This particular feature of MODIFLY creates
an interconnected cluster of devices that efficiently share computational loads.

Packages A package is MODIFLY is a self-contained archive that includes all
necessary scripts and resources to run a model across different environments. It
also contains metadata, dependencies are roles for different devices and workers.
Figure 4a shows the contents of a package. In MODIFLY , packages are par-
ticularly designed to operate without hard library dependencies which enables
homogeneous deployment across the simulation environment. This makes it easy
to push a single archive file to the controller, which then distributes the scripts to
each client based on its role and ensures scaling from a single device to clusters
of multiple computers that can be setup without additional configuration during
updates or deployments. Furthermore, this guarantees that a single piece of code
runs uniformly across all nodes where the runtime is installed and underscores
the scalability, feasibility, and ease of use in complex multi-agent systems.

3.3 Deployment and Real-World Integration

In this section, we discuss how MODIFLY can be extended to real-world UAV
applications through robust communication and mixed-reality simulation.

Communications Communication is an integral part of building real-world
UAV systems. MODIFLY incorporates a simulated bottleneck that can add com-
munications faults in both TCP and UDP connections. These faults have differ-
ent effects based on the underlying systems. In this communication bottleneck, a
simplified stochastic model manages UDP packet loss probabilities, while a delay
model simulates TCP retransmissions in milliseconds. These delay models allow
end users to test control latency in complex environments, video streaming, and
RL under non-ideal conditions, making the development of complex multi-agent
UAV systems more realistic and feasible.
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Fig. 4: System architecture showing package and network communication.

Mixed Reality Simulation MODIFLY bridges the gap between virtual sim-
ulations and physical UAV operations by integrating mixed reality simulation.
In mixed reality simulation, a physical device like a drone operates in an empty
room, while interacting with simulated 3D obstacles and scenarios. This setup
allows the testing of many complex algorithms, such as collision avoidance, with
real flight dynamics. Usually, these algorithms are tested in a simulation envi-
ronment. These environments, however, abstract away important effects of the
real world and provide a best-case-scenario for the demonstration of an algo-
rithm. However, with MODIFLY , our goal is to provide a platform between fully
simulated and physical demonstrations, which we call mixed reality simulations.

These simulations couple a real, physical device (see Figure 5a) operating in
a blank space with a simulated environment. This means that developers can
add simulated obstacles and goals while testing real flight dynamics. To achieve
this, a scene graph is streamed from the controller to all client devices on the
network. These devices then construct a 3D scene using a renderer with camera
position and orientation data being received from the IMU (see Figure 5b).

4 Results

4.1 Scaling

To demonstrate the scalability of MODIFLY by just using CPUs, we performed
analysis on two different computers using single-threaded execution. This analy-
sis demonstrates the performance impact of increasing instances within a shared
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(a) Physical drone running MODIFLY .
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(b) Mixed reality simulation.

Fig. 5: System deployment demonstration: physical drone implementation and
mixed reality simulation framework.

thread. To fairly evaluate the performance, we created an object detection task
where each device ran all scripts, scheduled tasks, and physics simulation while
also rendering a camera frame from a 3D scene. We used the Mobilenet SSD V3
model2 trained on the COCO 2017 dataset 3. The model utilized TensorflowLite
with an XNNPack, integrated through control scripts that connected the camera
feed to the inference engine. The inference pipeline rendered the 3D scene into
an image, scaled this image down, and then pushed this image into the model.

As shown in Figure 6a, the single-threaded performance scales linearly with
an increasing number of instances. While the performance for a single thread
initially looks suboptimal, this is consistent with the computational overhead
from parallel tasks and CPU-only inference. Future works could explore scaling
with respect to a GPU or other accelerator, though our current focus was to as-
sess the CPU performance on differing devices. Similarly, in the Windows-based
system (see Figure 6b), the single instance performance shows higher variance.
This variance is most likely caused by the Window’s Operating System thread
scheduler as MODIFLY yields the thread back to the operating system after each
iteration. With a completely different operating system and CPU architecture,
its performance is largely similar to the M3 Macbook Pro.

Based on these results, the most optimal configuration would require that
each drone has its own dedicated thread. Due to the limited threading capa-
bilities of processors, this demonstrates that clustering of multiple computers is
necessary to achieve any large-scale end-to-end simulation of intelligent devices.

2 https://github.com/chuanqi305/MobileNet-SSD
3 https://cocodataset.org/
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Fig. 6: Single-threaded simulator performance comparison.

4.2 Communications

To demonstrate communications degradation as part of the simulated bottleneck
(see Figure 4b), we analyze the relationship between packet loss percentage and
valid decoded video frame. In this context, a valid frame is defined as a frame
that contains sufficient data for the H.264 decoder to generate an output frame.
Our experimental setup simulates devices that render a 3D scene, encode that
scene using H.264 compression, pushes the frame through the bottleneck to the
controller. The controller then forwards this frame data to the monitoring soft-
ware Figure 3 that measures the frame reception rate. The maximum frames per
second that can be sent by the device has been limited to 15 frames per second.

While H.264 encoding handles packet loss, it generally expects these losses
to be transient. Our results demonstrate that even the low sustained packet loss
rates of 1% start to drop frames and impact the visual artifacts. As shown in
Figure 7b at approximately 30% packet loss the received frame rate fluctuates
between 0 and 8 frames per second. If this video is being streamed to another
device to run any sort of inference or algorithm based on this feed, it would
quickly become unusable after even a small sustained packet loss. As packet loss
increases and fewer key frames are transmitted without error, an H.264 stream
quickly becomes littered with artifacts (see Figure 7a). These degraded frames
become particularly unstable for real-world applications. While utilizing TCP as
a reliable transmission protocol can prevent such artifacts, it presents a funda-
mental trade-off between transmission reliability and performance overhead.



MODIFLY : Multi-Agent UAV Simulator 11

(a) Visual artifacts under 37% packet loss
with H.264 encoding.
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Fig. 7: Impact of packet loss on H.264 video and frame parsing performance.

5 Conclusion and Future Work

In this paper, we presented a scalable, cross-platform, end-to-end simulation
platform MODIFLY for the control of multiple UAVs. The new platform differs
from the existing ones by introducing realistic communication modeling, dis-
tributed execution, easy environment setup and deployment, operational scala-
bility, mixed reality, and RL-compatible. As an illustration of the new platform,
we presented some tests to show that our approach is scalable, supports different
communication features, and is easily deployable.

While MODIFLY provides an abstraction of typical communication features,
the development and optimization of multi-agent RL algorithms considering
these features is significantly lacking. Hence, one interesting research direction
is the development of new multi-agent RL algorithms and approaches to address
the challenge that communication among agents can be noisy, unreliable, and
range-dependent. Meanwhile, testing of these algorithms in simulated and real-
world environments is a must for their deployment. Another interesting direction
is to create benchmark scenarios that can be used to quantify the effectiveness
of both existing and new algorithms.
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