
Breaking the Shield: Analyzing and Attacking Canvas
Fingerprinting Defenses in the Wild

Abstract
Canvas fingerprinting has become one of the most effective tech-
niques for tracking users online, allowing websites to identify and
track visitors without their consent. In this paper, we investigate
four primary defense techniques designed to counter canvas finger-
printing, systematically analyzing their adoption across 18 browser
extensions in Chrome and Firefox, as well as built-in protections
from five major browsers: Chrome, Firefox, Brave, Tor, and Safari.
Our analysis reveals significant disparities in the implementation
and effectiveness of these defenses, with randomization-based tech-
niques being the most widely adopted, particularly across nine
extensions and in the privacy-focused browser, Brave. Despite
their sophistication, we demonstrate successful attacks on all these
randomization mechanisms, revealing that their supposed non-
deterministic behavior can, in fact, be predicted and exploited. In
summary, we demonstrate that, unfortunately, no fully deployable
defense against canvas fingerprinting attacks exists currently. We
conclude by proposing recommendations to strengthen existing
defenses and enhance their resistance to future attacks.

Keywords
Security, Privacy, Online Tracking, Canvas fingerprinting Attack

1 Introduction
The evolution of web technologies, particularly with the introduc-
tion of HTML5 and CSS3, has revolutionized the user experience
on the internet. These technologies enable developers to create
dynamic, interactive, and visually appealing web pages without
relying on third-party plugins. Among the significant features intro-
duced by HTML5 is the <canvas> element, which allows developers
to draw and manipulate graphics directly within the browser using
JavaScript. Canvas is widely used for tasks such as rendering visual-
izations, interactive games, and other complex graphical operations,
making it a powerful tool for web development.

Canvas fingerprinting, first studied by Mowery et al. [16], is a
browser-based tracking technique that exploits subtle rendering
differences in the <canvas> element to generate a high-entropy
fingerprint of a user’s device. This technique collects information
about how a browser draws invisible or subtle content on the can-
vas, which can reveal characteristics specific to a user’s hardware
and software. While canvas fingerprinting alone may not uniquely
identify a user in all cases, its ability to generate consistent, high-
entropy data makes it highly effective when combined with other
fingerprinting methods like fonts, plugins, and screen resolution
[14]. One of the key issues with canvas fingerprinting is its passive
nature, it operates without requiring any direct user interaction
or consent. Trackers can invisibly collect canvas data, making it
a significant privacy concern. Additionally, canvas fingerprinting
poses risks beyond user privacy. As highlighted by Acharya et al.
[2], attackers can leverage canvas fingerprinting to track security
web crawlers, enabling them to deploy cloaking techniques that

hide malicious content from these detection systems. This dual
threat, targeting both users and security services, makes canvas
fingerprinting a critical issue in the broader landscape of online
privacy and security.

Since its inception, canvas fingerprinting has become a widely
adopted tracking method across the web. A large-scale study found
that approximately 14,000 of the top 1 million Alexa-ranked web-
sites actively use canvas fingerprinting to track user [1, 5, 15]. In
response to the growing concerns, both third-party developers and
major browser vendors have started introducing defenses specifi-
cally targeting canvas fingerprinting. These defenses range from
modifying the canvas content, either by randomizing the output
or returning a fixed output, to blocking the canvas API entirely.
Browsers like Firefox and Tor maintain filter lists of known third-
party resources to detect and block canvas fingerprinting scripts,
preventing tracking across websites. Aggressively modifying or
blocking Canvas APIs has consistently led to website breakages and
usability issues, as highlighted by various reports [11]. Meanwhile,
filter lists struggle to keep pace with the rapidly evolving canvas
fingerprinting techniques, allowing new tracking methods to slip
through undetected. Given these challenges, the randomization-
based technique has emerged as a more balanced and effective
solution for mitigating canvas fingerprinting, offering both security
and usability [12]. Brave stands out with its sophisticated ’Farbling’
mechanism [10], which leverages a randomization-based technique
to balance security and usability in defending against canvas fin-
gerprinting. Despite these efforts, the robustness of such defenses
has not been thoroughly tested against potential attacks.

In this paper, we address this gap by proposing the first set of at-
tacks specifically targeting randomization-based defenses. We focus
on 9 popular extensions that implement randomized output tech-
niques and the "Farbling" mode in Brave browser. Our contributions
are as follows:
1.Canvas fingerprinting Defenses.We conduct a comprehensive
investigation of current defense techniques against canvas finger-
printing proposed by researchers, browser vendors, and privacy
advocates.
2.Canvas fingerprinting Defense Adoption. We systematically
analyze 18 extensions from the Chrome and Firefox web stores,
as well as the built-in protections of 5 major browsers (Chrome,
Firefox, Brave, Tor, and Safari), to understand how these techniques
are being adopted in the wild.
3.The Pixel-Recovery and Statistical Attack.We successfully
attack the most effective defenses, the randomization-based tech-
niques, demonstrating vulnerabilities in nine extensions and the
Brave browser’s ’Farbling’ mechanism to our two proposed attack
vectors: the Pixel-Recovery Attack and Statistical Attack.
4.Recommendations.We offer recommendations to strengthen
existing defenses and provide insights into how these techniques
can be made more resilient against sophisticated attacks.



Finally, we plan to release the code implementations for our two
proposed attacks to raise awareness of this issue and encourage
further research in online tracking defenses

2 Background
The introduction of the <canvas> element was a major develop-
ment in web technology, enabling browsers to perform a range of
graphical tasks natively, without external plugins. Introduced by
Apple in 2004 and standardized in HTML5, the canvas provides
a programmable drawing surface for rendering dynamic visual
content [23]. Using JavaScript, developers can create 2D graphics,
animations, interactive visualizations, and even 3D scenes with
WebGL [8]. The canvas operates as a bitmap, allowing developers
to manipulate individual pixels. APIs like getContext() provide
drawing capabilities, while methods like getImageData() extract
pixel data in arrays. Each pixel has four RGBA values (0–255), so
a 500x400 canvas generates 800,000 data points (500 width × 400
height × 4 channels). These extracted values are what enable can-
vas fingerprinting. Minor differences in factors like font rendering,
anti-aliasing, and hardware acceleration produce a unique digital
fingerprint.While it might not be sufficient on its own to track users,
it significantly contributes to the uniqueness of a user’s fingerprint
when combined with other techniques such as User-Agent or Fonts.
Among browser fingerprinting methods, canvas fingerprinting gen-
erates some of the highest entropy, making it a powerful tool for
tracking users across websites [14, 15].

Studies have consistently highlighted its widespread use and
effectiveness. Mowery and Shacham’s "Pixel Perfect" demonstrated
how canvas rendering variations could generate distinct finger-
prints for each device [16]. Subsequent large-scale studies by Acar
et al. and Engelhardt et al. revealed that canvas fingerprinting was
actively exploited by thousands of websites in the Alexa top 100,000
and top 1 million, respectively, showing its persistence and growing
adoption as a tracking mechanism [1, 5]. These findings emphasize
canvas fingerprinting’s resilience and its attractiveness to online
trackers.

The increasing prevalence of canvas fingerprinting has raised
significant privacy concerns. The ability to uniquely identify and
track users when combined with other techniquess without their
consent poses a threat to user privacy. In response, various browser
vendors and privacy-focused communities have developed miti-
gation strategies. For example, the Brave browser has introduced
privacy updates that actively pIn additionrevent canvas fingerprint-
ing by blocking scripts and providing randomized or fixed canvas
outputs [4]. Similarly, Mozilla’s Firefox browser has implemented
fingerprinting protection mechanisms, including prompts for user
consent before allowing the canvas API to be accessed [18]. These
efforts represent a growing recognition of the need to protect users
from the invasive tracking capabilities enabled by canvas finger-
printing.

In addition, security companies frequently rely on web crawlers
to identify and analyze phishing websites and other social engi-
neering attack platforms. These web crawlers serve as automated
tools to detect malicious content and ensure the safety of users.
However, attackers have adapted their strategies by employing
browser fingerprinting techniques, including canvas fingerprinting,

to differentiate between human visitors and security crawlers. This
enables attackers to perform cloaking attacks, where they present
benign content to crawlers while delivering malicious content to
actual users [2]. As a result, canvas fingerprinting not only poses
privacy risks to regular users but also undermines the effective-
ness of security crawlers by allowing malicious websites to evade
detection. This adds an additional layer of complexity to web se-
curity, necessitating more sophisticated countermeasures to detect
cloaking attempts and defend against such evasion tactics.

3 Defense Strategies
Canvas fingerprinting poses a significant privacy threat due to
its wide adoption and effectiveness. Several techniques have been
developed and deployed to mitigate the risks associated with this
tracking method. In this section, we categorize common defense
techniques used by researchers, browser vendors, and privacy ad-
vocates to protect users against canvas fingerprinting.

3.1 Blocking APIs and Access
Blocking access to the Canvas API is a direct method for defending
against canvas fingerprinting. By entirely disabling the Canvas API,
browsers prevent websites from collecting device-specific rendering
data, effectively eliminating the possibility of canvas-based finger-
printing. This approach aims to enhance user privacy by restricting
the data available to trackers.

While effective, blocking the Canvas API presents significant
usability challenges. The API is essential for rendering dynamic
graphics, animations, and real-time visualizations, which are in-
tegral to many websites, including gaming platforms, data visual-
ization tools, and interactive applications. Consequently, disabling
the API can lead to broken features and a degraded user experi-
ence, as critical elements may fail to load or function correctly. For
example, banking websites that rely on the Canvas API for authen-
tication mechanisms may encounter disruptions, compromising
both security and usability [1].

This creates a trade-off between privacy and usability: privacy-
conscious users, such as those using Tor Browser, may accept the im-
pact on website functionality as a necessary compromise. However,
for mainstream users, the disruption caused by blocking canvas
functionality can outweigh the privacy benefits, especially given
the increasing reliance on Canvas in modern web applications. This
tension highlights the need for privacy defenses that protect user
data while ensuring seamless usability across web platforms.

3.2 Modifying the Canvas Content
Modifying canvas pixel data is a widely used technique to counter
canvas fingerprinting while preserving the functionality of the
Canvas API. This defense is typically implemented through two pri-
mary methods: randomizing the canvas output or returning a fixed
canvas. Both techniques aim to prevent trackers from generating
consistent fingerprints, but they do so in fundamentally different
ways.
Randomized Output. The first method introduces subtle, random
variations in the canvas pixel data every time a script accesses
it. This process perturbs pixel values specifically, the RGBA chan-
nels while ensuring that the visual content remains unchanged



Breaking the Shield: Analyzing and Attacking Canvas Fingerprinting Defenses in the Wild

for the user as shown in Figure 2 in the Appendix. The goal is to
make the canvas output undeterministic and irreversible, meaning
each fingerprint is unique across sessions, thus preventing trackers
from correlating user activity. However, this technique requires
thorough implementation to be effective. It requires careful tuning
to avoid noticeable distortions in visual content; too much ran-
domization could degrade legitimate rendering, while insufficient
variation may still allow trackers to identify patterns. Addition-
ally, randomization can sometimes inadvertently signal to trackers
that privacy protections are in place, potentially making the user
more conspicuous. Therefore, to maintain both properties, unde-
terministic and irreversible, it is crucial that randomized output is
implemented correctly. If not executed properly, its effectiveness
may be compromised.
Fixed Output. The second method involves returning a consis-
tent, blank, or fixed canvas output. By fixing the canvas output,
all users appear identical to the tracker, effectively eliminating the
uniqueness that fingerprinting relies upon. Unlike randomization,
where output varies each time, fixed output provides a static fin-
gerprint that is shared by all users. This method ensures that no
session-specific data can be extracted. While it is a simpler and
more consistent defense, it can disrupt the functionality of web-
sites that rely on canvas rendering, potentially leading to broken
elements or reduced interactivity.

3.3 Filter Lists
Filter-list-based blocking mechanisms provide an additional layer
of defense against canvas fingerprinting by targeting known third-
party tracking domains and preventing their fingerprinting scripts
from executing when a webpage is loaded. These filters operate
by identifying and blocking requests to domains associated with
known trackers, effectively stopping many widely-documented
tracking techniques from being deployed [6].

Despite their effectiveness against well-established and frequent-
ly updated scripts, filter lists have inherent limitations. They strug-
gle to detect and block newly developed or obfuscated fingerprint-
ing scripts that haven’t yet been added to the lists. These methods
are inherently reactive, requiring constant updates to remain ef-
fective. As a result, advanced or rapidly evolving fingerprinting
techniques can bypass these defenses until the filter lists are updated
to recognize the new threats. Nonetheless, filter-list-based defenses
remain widely used due to their ease of use, minimal impact on web
performance, and their ability to mitigate many common tracking
methods with little disruption to the user experience.

3.4 Machine Learning Models
Machine learning (ML) models provide adaptive defenses against
canvas fingerprinting by detecting both known and new tracking
methods. Unlike static filters or randomization, ML models are
trained to recognize patterns of fingerprinting attempts. Studies like
FP-Radar by Bahrami et al., and work by Iqbal et al. and Reitinger
and Mazurek, highlight ML’s effectiveness in real-time detection [3,
13, 21]. These models analyze large web traffic datasets, identifying
even unknown scripts. ML’s adaptability is a key strength, but
it requires significant computational resources, may slow page
loading, and risks false positives, limiting widespread adoption.

4 Defense Strategies Adoption
In this section, we investigate the adoption of canvas fingerprinting
defense techniques by examining both third-party browser exten-
sions and the native protections offered by popular browsers. We
analyze the functionality and effectiveness of these defenses, pro-
viding a comprehensive view of the current landscape and how
these methods are being used to combat canvas fingerprinting in
practice.

4.1 Extensions for Canvas Fingerprinting
Defense

We began by conducting an extensive search for canvas fingerprint-
ing defense extensions in the Firefox and Chrome web stores. Using
keyword searches such as "canvas fingerprinting protections" and
"canvas fingerprinting defenses," we identified 18 extensions de-
signed to mitigate canvas fingerprinting attacks. These extensions
are listed and summarized in Table 1. For each extension, we ana-
lyzed its description and code to understand the defense techniques
employed. Of the 18 extensions, 12 implemented techniques that
modify the canvas content, with 9 using randomized output. The
popularity of this method suggests its effectiveness in mitigating
fingerprinting. Only 3 extensions block the Canvas API altogether.
Extensions like uBlock Origin, Adblock Plus, and Privacy Badger use
Filter Lists to block known third-party tracking sites, adding an
extra layer of defense against canvas fingerprinting.

4.2 Built-in Protections in Major Browsers
In addition to third-party extensions, we evaluated the built-in
protections offered by five major browsers: Safari, Chrome, Firefox,
Brave, and Tor. We thoroughly reviewed the official documentation
for each browser to confirm the presence and efficacy of any canvas
fingerprinting defenses. Table 2 summarizes our findings.
Safari. Safari employs randomization as a core defense for tracking,
primarily for fonts and plugins. However, it lacks built-in protec-
tions specifically against canvas fingerprinting [9].
Chrome. Chrome, like Safari, does not offer significant built-in
protections against canvas fingerprinting. Instead, users must rely
heavily on third-party extensions to block tracking attempts.
Firefox. Firefox provides robust anti-fingerprinting protections
through fixed output, blocking, and filter list mechanisms. A no-
table feature is the randomDataOnCanvasExtract setting, which
returns either randomized data or a blank canvas, thwarting finger-
printing attempts by making extracted data unusable. Additionally,
Firefox’s Enhanced Tracking Protection (ETP) allows users to
block access to the Canvas API entirely, preventing websites from
reading canvas data for tracking [7]. Firefox also employs regularly
updated filter lists to block known fingerprinting scripts, preemp-
tively stopping many common techniques.
Tor. Built on Firefox ESR (Extended Support Release), Tor Browser
offers enhanced privacy protections, including canvas fingerprint-
ing defenses like blocking, fixed output, and filter lists. Its primary
defense is fully blocking the Canvas API, preventing websites from
accessing any canvas data and rendering fingerprinting attempts
ineffective. This strong focus on anonymity comes with reduced
functionality on some websites, reflecting Tor’s priority of privacy



over usability [19]. Given its role as a tool for anonymity, even
minor data leaks are treated as significant risks.
Brave. Brave Browser is known for its advanced privacy protec-
tions, particularly in the realm of fingerprinting defenses. One of
its key innovations is the "Farbling" technique, which is Brave’s
implementation of randomized output technique to prevent canvas
fingerprinting. "Farbling" Default mode introduces slight varia-
tions in canvas data during fingerprinting attempts, ensuring that
websites are unable to generate consistent identifiers for tracking
purposes. In addition to randomizing the canvas content, Brave has
also employed a fixed output mechanism in "Farbling" Maximum
mode.

Besides "Farbling" mechanism, Brave offers a strict blocking
mode that prevents any JavaScript code from accessing canvas
elements, effectively blocking the Canvas API. While this strict
blocking provided strong protection, it caused significant usability
issues on many websites that rely on canvas rendering for interac-
tive features. As a result, Brave has announced plans to retire its
strict blocking mode in favor of less intrusive options that balance
usability with privacy. This move reflects Brave’s recognition that
blocking the Canvas API entirely may not be a sustainable solution
for mainstream users who need to access rich, interactive websites
[11, 12]. Instead, Brave has shifted towards "Farbling" as a way to
offer strong fingerprinting defenses without severely disrupting
web functionality.

4.3 Adoption Trends
Our analysis highlights the techniques employed in the defense
against canvas fingerprinting, each with its own strengths and lim-
itations. Blocking the Canvas API, while offering robust protection,
is less commonly adopted due to its disruptive impact on website
functionality. Implemented by three extensions and browsers like
Firefox, Brave, and Tor, this method can break interactive features
on many sites, leading to a frustrating user experience. Brave’s deci-
sion to phase out strict blocking exemplifies the usability trade-offs
inherent in this approach [12].

Fixed output, utilized by three extensions and browsers, offers
a more rigid defense by standardizing canvas output across users.
Although this technique can effectively mitigate some fingerprint-
ing attempts, it often leads to compatibility issues on sites that rely
heavily on canvas elements for interactive content, resulting in a
loss of functionality that can deter users.

Filter lists, popular in extensions such as uBlock Origin, Adblock
Plus, and Privacy Badger, provide a lightweight, user-friendly alter-
native by blocking known fingerprinting scripts. However, their
dependence on predefined lists limits their ability to detect new
or obfuscated techniques, making them less effective against the
constantly evolving landscape of fingerprinting threats.

Amidst these various approaches, the randomized output tech-
nique emerges as the most promising and widely adopted solution,
employed by nine extensions and the privacy-focused broswer
Brave. This technique excels in providing robust protection against
fingerprinting without significantly impacting usability. By intro-
ducing subtle variations in canvas data, randomized output effec-
tively disrupts consistent tracking while allowing websites to func-
tion normally. Brave’s "Farbling" mechanism, which sophisticatedly

randomizing the canvas output, stands out as a particularly effective
implementation of this technique. Brave plans to continue refining
this approach, aiming to enhance privacy protections while main-
taining a seamless user experience [12]. As the landscape of canvas
fingerprinting evolves, the randomized output technique positions
itself as a key player in the fight against tracking, successfully
balancing strong defenses with usability.

5 Experiments
This section describes the experiments conducted to evaluate the
effectiveness of both browser extensions and built-in browser fea-
tures in mitigating canvas fingerprinting. The primary goal was
to determine whether these defenses performed as advertised. The
results, indicating which protections worked as expected and which
failed, are summarized in Tables 1 and 2.

5.1 Experimental Setup
To test these protections, we created a test page with two types of
canvas elements, as illustrated in Figure 1:
A Filled canvas, featuring graphical content inspired by Finger-
printJS [22], a commonly used fingerprinting library.
A Base canvas, with a simple background color of RGBA(150, 150,
150, 0.5), designed to evaluate how defenses handle canvas elements
without complex content.

Figure 1: Example of Filled and Base Canvas

We extracted the content from each canvas using the getImage-
Data() API, which returns an ImageData object containing pixel
data in an array format [17]. To verify the integrity of the protection
mechanisms, we computed a hash for the canvas content and mon-
itored any changes when protections were activated or deactivated.
Each protection was evaluated based on its core technique Random-
ized Output, Fixed Output, Blocking, and Filter Lists. We compared
the canvas content before and after enabling these protections by
observing the corresponding hash values.

5.2 Evaluating Canvas Protection Techniques
Randomized Output: For extensions and browsers using random-
ized output techniques, we examined the base canvas. Without
protection, the Base canvas consistently returned pixel values of
150 for all RGB components. Once randomization was enabled,
we observed that the pixel values and hashes varied across page
reloads, confirming that randomization disrupted consistent finger-
print generation.



Breaking the Shield: Analyzing and Attacking Canvas Fingerprinting Defenses in the Wild

Extension Browser Modifying Blocking Filter List Status

Chrome Firefox RO FO

Canvas Blocker - Fingerprint Protect ✓ ✓ ✓ ✗

Canvas Finger Defender by Ilgur/yubi ✓ ✓ ✓ ✓

CanvasFingerprintBlock ✓ ✓ ✓

Fingerprint Spoofing ✓ ✓ ✓

Trace ✓ ✓ ✓ ✓

CyDec Security Anti-FP ✓ ✓ ✓ ✓ ✗

Browque ✓ ✓ ✓

Canvas Blocker for Google Chrome ✓ ✓ ✗

Don’t Fingerprint Me ✓ ✓ ✗

Privacy Extension ✓ ✓ ✗

Canvas Defender by Multilogin ✓ ✓ ✓

Fingerprint Shield by Francesco De Stefano ✓ ✓ ✓

Canvas Blocker by kkapsner ✓ ✓ ✓

PeyTy’s Browser Privacy by PeyTy ✓ ✓ ✓

WebGL Fingerprint Defender ✓ ✓ ✓

uBlock Origin ✓ ✓ ✓ ✓

Adblock Plus ✓ ✓ ✓ ✓

Privacy Badger ✓ ✓ ✓ ✓

Table 1: Details of Canvas Defender Extensions and Their Supported Techniques. Note: RO = Randomized Output, FO = Fixed
Output. Status indicates whether the extension works as expected.

Technique Safari Chrome Firefox Brave Tor

Blocking ✓ ✓ ✓

RO ✓

FO ✓ ✓ ✓

Filter List ✓ ✓

Status ● ● ✓ ✓ ✓

Table 2: Canvas Fingerprinting Defense Techniques in Major
Browsers. Note: RO = Randomized Output, FO = Fixed Out-
put, Status indicates whether the browser’s fingerprinting
defenses work as expected.

Fixed Output: When testing fixed output protections, we first
captured the base canvas content without defenses and then re-
tested with protections enabled. As expected, the pixel values were
replaced by random values, such as 0 across the entire canvas. We
tested across different devices and browsers, and since all pixel
values were set to 0, the hash remained consistent, indicating that
the protection enforced a stable, unchanging canvas output.

Blocking: For protections that blocked access to the Canvas API,
we used the getImageData(), toDataURL(), and toBlob() APIs to at-
tempt canvas data extraction. When blocking was enabled, these
API calls returned either errors or empty results, effectively pre-
venting the retrieval of canvas content. We were unable to produce
any hashes for both types of canvases.
Filter Lists: Filter-list-based protections were tested by visiting
websites known to use third-party tracking scripts [22]. Addition-
ally, we embedded FingerprintJS within the filled canvas to deter-
mine if these protections could identify and block fingerprinting
attempts.

5.3 Results
The experimental results are detailed in Tables 1 and 2. Out of
the 18 extensions tested, 5 were found to be ineffective, failing to
provide the claimed protection against canvas fingerprinting. These
extensions neither blocked normodified canvas content as expected,
revealing gaps in their functionality and reliability. Conversely,
13 extensions performed as advertised, successfully modifying or
blocking canvas content and providing consistent protection. These
extensions demonstrated robust, reliable functionality, aligning
with their intended privacy goals.



Regarding built-in browser protections, major browsers such
as Firefox, Brave, and Tor worked as expected. These browsers
consistently applied the intended protections, such as randomiza-
tion or blocking, without any significant issues. We also tested
whether Fixed Output and Blocking techniques affected legitimate
website functionality by visiting various canvas-based sites, iden-
tified via source code search engines [20], including YouTube and
web applications for painting or editing. In some cases, these sites
malfunctioned with protections enabled, though the issues were
inconsistent, suggesting that while the impact on usability is un-
predictable, it is not negligible

6 Pixel-Recovery Attack on Browser Extensions
Blocking, Fixed Output, and Filter Lists defenses all have significant
limitations in canvas fingerprinting, often compromising website
functionality or failing to detect advanced fingerprinting scripts. In
contrast, Randomized Output has emerged as the preferred tech-
nique, implemented by nine out of 18 analyzed extensions and
Brave. However, despite its growing popularity, comprehensive
testing of Randomized Output against targeted attacks remains lim-
ited. In this section, we propose the Pixel-Recovery attack aimed
at assessing the effectiveness of Randomized Output techniques
implemented by the browser extensions.

Through an analysis of their published source code and experi-
ments performed as described in Section 5, we observed that none
of these implementations fully realized the intended properties
of the Randomized Output technique. Ideally, this method should
produce unpredictable, non-deterministic outputs that cannot be
reversed. In practice, all nine extensions exhibited patterns that
allowed us to reconstruct the original canvas content.

All nine extensions follow a similar, basic implementation to ran-
domize the output of canvas elements. At the start of each session,
the extension generates a random tuple of RGBA values, denoted
as 𝑃 (𝑅,𝐺, 𝐵,𝐴), representing a perturbation vector for a pixel. This
perturbation is applied to specific sections of the canvas (e.g., a
corner or predefined area), or in some cases, to the entire canvas.
The perturbation process typically involves basic arithmetic op-
erations such as addition, subtraction, or XOR. For example, if a
pixel originally has the value 𝐴(137, 196, 245, 0.5) and the pertur-
bation vector is 𝑃 (3, 4, 5, 0.1), the pixel value is transformed into
𝐴′ (140, 200, 250, 0.6) as illustrated in Figure 2 in the Appendix. This
transformation is applied uniformly across all selected pixels, with
each extension varying the region where the perturbation is ap-
plied. While these extensions differ in how they select regions of
the canvas for perturbation, the underlying randomization pro-
cess is consistent enough across all nine that a generalized attack
can be formulated. We demonstrate that it is possible to recover
the original canvas output by determining the perturbation values
𝑃 (𝑅,𝐺, 𝐵,𝐴) used in the transformation, and then reversing their
effects.

We designed a test page to exploit this flaw by generating two
canvases: a Filled Canvas and a Base Canvas. As shown in Fig-
ure 1, the Base Canvas is initialized with uniform pixel values of
𝑅𝐺𝐵𝐴(150, 150, 150, 0.5) before the page is loaded. This known,
uniform base provides a reliable benchmark for identifying the per-
turbation vector. The Filled Canvas is designed to simulate the kind

Data: Generate one Base Canvas 𝐵 and one Filled Canvas 𝐹
Result: Reconstruct original content of the 𝐹 Canvas
1 - Extract pixel data 𝐹pixels from 𝐹 using getImageData();
2 - Compute the hash value 𝐻 (𝐹 ) for 𝐹pixels;
3 - Activate the extension to modify both 𝐵 and 𝐹 ;
4 - Extract pixel data 𝐵pixels and 𝐹pixels from both 𝐵 and 𝐹

after modification;
foreach pixel 𝑝 in 𝐵pixels do

Compute perturbation as:
𝑃 (𝑅,𝐺, 𝐵,𝐴) = 𝑝modified − 𝑅𝐺𝐵𝐴(150, 150, 150, 0.5);

end
foreach pixel 𝑞 in 𝐹pixels do

Reverse the perturbation:
𝑞original = 𝑞modified − 𝑃 (𝑅,𝐺, 𝐵,𝐴);

end
5 - Compute the hash 𝐻 (𝐹 ′) for the reconstructed canvas
𝐹 ′pixels ;
if 𝐻 (𝐹 ′) = 𝐻 (𝐹 ) then

Reconstruction of the original canvas content is
successful;

end
Algorithm 1: The Pixel-Recovery Attack PseudoCode

of content typically used for tracking purposes, containing more
complex images and a variety of pixel values that are often targeted
by fingerprinting scripts. This allows us to assess the effectiveness
of our attack.

Given that the values in the Base Canvas were predefined and
identical across all pixels, we systematically iterated through the ex-
tracted pixel data to determine the perturbation vector 𝑃 (𝑅,𝐺, 𝐵,𝐴)
applied by the extension. This process involved comparing the ex-
tracted pixel data with the predefined 𝑅𝐺𝐵𝐴(150, 150, 150, 0.5) and
calculating the perturbed differences applied by the extension. Once
the perturbation vector was identified, we applied the reverse oper-
ation to the Filled Canvas, effectively undoing the randomization.

By reversing the perturbations on the Filled Canvas, we were
able to recover the original pixel values and compute a hash that
matched the unperturbed canvas. To further validate the consis-
tency of our attack, we reloaded the page ten times with the exten-
sions enabled. Each time, the hash for the Filled Canvas remained
consistent, demonstrating that our method reliably bypassed the
randomization. The hash of the Base Canvas, however, varied with
each reload, as expected, due to the randomization process reapply-
ing different perturbations on each load. We also describe details
our Pixel-Recovery Attack in the Algorithm 1

This attack reveals that, while the Randomized Output technique
is widely adopted, its current implementations across these nine
extensions fail to achieve the desired non-determinism. By analyz-
ing the perturbation process and reversing it, we demonstrate that
the original canvas content can be reliably recovered, even in the
presence of randomization.



Breaking the Shield: Analyzing and Attacking Canvas Fingerprinting Defenses in the Wild

7 Statistical Attack on Farbling Mechanism
Brave has developed a defense mechanism known as Farbling to
combat browser fingerprinting including canvas fingerprinting, par-
ticularly focusing on the randomization of semi-identifying browser
features such as canvas fingerprints. The goal of Farbling is to make
it challenging for websites to track users based on their browser
fingerprints, while maintaining usability for benign websites. Far-
bling introduces controlled randomness into these browser features,
ensuring that fingerprinting attempts cannot produce consistent re-
sults across sessions or websites. Brave’s Farbling has three modes:
1.Off: No fingerprinting protections are applied.
2.Default: This mode implements a Randomized Output technique
for canvas fingerprinting, designed to minimize the risk of breaking
websites.
3.Maximum: In this mode, Brave uses a Fixed Output technique
that returns the same canvas data for all fingerprinting attempts.
However, due to usability issues and site breakage caused by this
technique, Brave has deprecated this mode in favor of more user-
friendly approaches [11, 12].

For this analysis, we focus on Brave’s Default mode, where
the Farbling Mechanism operates through Randomized Output,
which strikes a balance between security and usability.

7.1 Farbling Mechanism in Brave
Brave’s open-source nature allows for detailed insights into its can-
vas fingerprinting defense mechanism, known as Farbling . Farbling
introduces randomization into canvas data to prevent consistent fin-
gerprinting across browsing sessions, domains, and even different
canvas content within the same session.

When a canvas extraction API like getImageData() is invoked,
Brave generates a unique 32-byte "canvas key". This key is calcu-
lated based on three factors: the session key, the domain name,
and the content of the canvas itself. The session key ensures that
the randomization is consistent within the same session but differs
between sessions, while the canvas content introduces further vari-
ability, even when other factors like the session and domain remain
unchanged. Brave only perturbs one of the color channels—Red,
Green, or Blue—determined by processing the first byte of the do-
main name and taking the result modulo 3. The Alpha channel
(opacity) is left unchanged. For instance, if the result of the modulo
operation is 0, the Red channel is perturbed. The actual perturba-
tion is performed using the canvas key. Brave processes each byte
of the key, starting with the least significant bit (LSB). For each
bit, it selects a pixel and applies an XOR operation between the bit
and the pixel’s preselected color channel. If the bit is 1, the color
channel is changed slightly, while if it is 0, the channel remains the
same.

To ensure the perturbations are spread across the canvas in a
seemingly random but reproducible way, Brave uses a Linear Feed-
back Shift Register (LFSR) to select the next pixel to perturb. The
LFSR ensures that the pixels are chosen in a pseudo-random se-
quence, preventing any easy prediction of which pixels will be
changed. This process repeats across all 32 bytes of the key, affect-
ing up to 256 pixels. The perturbations are scattered across the
canvas in a pseudo-random manner, making it difficult to extract

Data: 𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑘𝑒𝑦, 𝑑𝑜𝑚𝑎𝑖𝑛_𝑘𝑒𝑦, 𝑐𝑎𝑛𝑣𝑎𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡
Result: Perturbed 𝑐𝑎𝑛𝑣𝑎𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡
1 - Extract the first byte of the domain key: 𝑓 𝑖𝑟𝑠𝑡_𝑏𝑦𝑡𝑒;
2 - Select the perturbation channel: 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝑓 𝑖𝑟𝑠𝑡_𝑏𝑦𝑡𝑒%3;
3 - Compute
𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑙𝑢𝑠_𝑑𝑜𝑚𝑎𝑖𝑛_𝑘𝑒𝑦 = 𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑘𝑒𝑦 ⊕ 𝑑𝑜𝑚𝑎𝑖𝑛_𝑘𝑒𝑦;
4 - Compute 32-byte 𝑐𝑎𝑛𝑣𝑎𝑠_𝑘𝑒𝑦 = 𝐻𝑀𝐴𝐶 −
𝑆𝐻𝐴256(𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑝𝑙𝑢𝑠_𝑑𝑜𝑚𝑎𝑖𝑛_𝑘𝑒𝑦, 𝑐𝑎𝑛𝑣𝑎𝑠_𝑐𝑜𝑛𝑡𝑒𝑛𝑡);
5 - Initialize seed 𝑣 = (uint64_t) 𝑐𝑎𝑛𝑣𝑎𝑠_𝑘𝑒𝑦 [0 : 8];
6 - Initialize 𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑎𝑛𝑣𝑎𝑠_𝑤𝑖𝑑𝑡ℎ ∗ 𝑐𝑎𝑛𝑣𝑎𝑠_ℎ𝑒𝑖𝑔ℎ𝑡 ;
foreach byte 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒 in 𝑐𝑎𝑛𝑣𝑎𝑠_𝑘𝑒𝑦 do

for bit position 𝑗 = 7 to 0 do
Extract LSB from 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒: 𝑙𝑠𝑏 = 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒&0𝑥1;
Compute
𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑑𝑒𝑥 = 4 × (𝑣%𝑝𝑖𝑥𝑒𝑙_𝑐𝑜𝑢𝑛𝑡) + 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 ;
Perturb:
𝑝𝑖𝑥𝑒𝑙𝑠 [𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑑𝑒𝑥] = 𝑝𝑖𝑥𝑒𝑙𝑠 [𝑝𝑖𝑥𝑒𝑙_𝑖𝑛𝑑𝑒𝑥] ⊕ 𝑙𝑠𝑏;
Shift 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒 right: 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒 = 𝑘𝑒𝑦_𝑏𝑦𝑡𝑒 >> 1;
Update seed 𝑣 : 𝑣 = 𝑙 𝑓 𝑠𝑟_𝑛𝑒𝑥𝑡 (𝑣);

end
end

Algorithm 2: Brave’s Farbling Mechanism

consistent fingerprints from the canvas across sessions or domains.
For detailed technical steps, refer to Algorithm 2.
Challenge of Attacking Brave’s Farbling. Our Pixel-Recovery
attack on the extensions in Section 6 proves ineffective against
Brave’s Farbling mechanism. This is because Brave’s per-session
canvas key ensures that even within the same domain and session,
each canvas is perturbed differently due to variations in the canvas
content itself. As a result, it is not possible to reverse the pertur-
bations applied to the Filled Canvas by using the Pixel-Recovery
attack.

7.2 Statistical Attack Methodology
This section introduces the Statistical Attack, aimed at evaluat-
ing the resilience of Brave’s Farbling mechanism. While Farbling
introduces random perturbations to canvas data to hinder consis-
tent fingerprinting, this randomness proves insufficient for thwart-
ing fingerprint reconstruction. Our attack exploits this limitation
by carefully designing an experiment involving the generation
of five Filled Canvases, each with dimensions of 500x400 pixels.
To introduce controlled variation across these canvases, we add a
500x10 rectangle with a different color at the top of each canvas as
shown in Figure 3 in the Appendix, ensuring that the perturbation
mechanism in Brave’s Default mode is triggered. Despite these
controlled variations, Brave perturbs each canvas differently as
expected. We focus on the part of the canvas excluding the top rec-
tangle and extract the content using the getImageData() API, re-
sulting in arrays of 800,000 numbers for each canvas (calculated as
500 pixels (width)×400 pixels (height)×4 color channels per pixel).

To reconstruct the original canvas content, we applied a ma-
jority voting technique. For each pixel channel across the five
arrays, we observe which values appear most frequently. Since
Brave’s Farbling mechanism perturbs only one preselected channel



Data: Generate 5 Filled Canvases 𝐹1, 𝐹2, 𝐹3, 𝐹4, 𝐹5
Result: Reconstruct original content of the 𝐹1 Canvas
1 - Add a 500x10 unique-color rectangle to the top of each
canvas;
2 - Extract pixel data 𝐹1pixels from the main canvas 𝐹1
(excluding the top rectangle) using getImageData();
3 - Compute the hash value 𝐻 (𝐹1) for the 𝐹1pixels ;
4 - Activate Farbling to perturb all 5 Filled Canvases;
foreach pixel 𝑝 in the pixel arrays do

foreach channel 𝑐 in 𝑅,𝐺, 𝐵 (channels) do
Count occurrences of 𝑣𝑎𝑙𝑢𝑒 across the 5 canvases;
if value ≥ 3 then

Select as original value for channel 𝑐 of pixel 𝑝;
end

end
end
5 - Compute the hash values 𝐻 (𝐹 ′1) for the reconstructed
canvas 𝐹 ′1pixels ;
if 𝐻 (𝐹 ′1) = 𝐻 (𝐹1) then

Reconstruction of the original content is successful;
end

Algorithm 3: The Statistical Attack PseudoCode

(R, G, or B) for each pixel, the other channels remain consistent.
By counting the number of times each value appears across the
five canvases, we deduce the most common value and infer that
this was the original, unperturbed value. Specifically, if a number
appears three or more times in the five arrays, we confidently select
that value as the original as demonstrated in Figure 4 in the Ap-
pendix. For context, each canvas contains 200,000 pixels, and each
pixel has 4 channels (R, G, B, A), resulting in an array of 800,000
numbers per canvas. Across five canvases, we work with a total of
5 × 800, 000 = 4, 000, 000 numbers. The key assumption here is that
the probability of any pixel channel being perturbed more than half
the time (i.e., appearing in 3 or more canvases) is exceptionally low,
and our majority voting technique allows us to recover the original
values effectively. We detail our Statistical Attack in Algorithm 3.

We also calculate the probability of a specific channel being per-
turbed more than half the time across five canvases to demonstrate
the certainty in our attack. The likelihood of a pixel channel being
selected for perturbation 3 or more times out of the five canvases
is given by the binomial distribution: To determine the probability
of selecting the same pixel channel three or more times across five
canvases, we use the binomial distribution. Given the total number
of canvases 𝑛 = 5 and the probability of selecting a specific pixel
channel 𝑝 = 1

800,000 :

𝑃 (𝑋 ≥ 3) = 1 −
2∑︁

𝑘=0
𝑃 (𝑋 = 𝑘)

Where:

𝑃 (𝑋 = 𝑘) =
(
𝑛

𝑘

)
𝑝𝑘 (1 − 𝑝)𝑛−𝑘

Thus, the probability of selecting the same channel 3 or more
times is:

𝑃 (𝑋 ≥ 3) = 1 − 𝑃 (𝑋 < 3) ≈ 1.953 × 10−17

This probability is extremely close to zero, confirming our in-
tuition that selecting the same pixel channel across five canvases
is unlikely. We also calculate the minimum number of canvases
required to reliably reconstruct the original canvas content without
failure. Using similar binomial probability calculations, we deter-
mine that generating 4 canvases is sufficient to apply majority
voting and recover the original values. However, generating 5 can-
vases provides a stronger guarantee of success, ensuring that even
in worst-case scenarios, our attack remains effective with a proba-
bility of failure that approaches 0, as demonstrated above.

8 Disclosure and Recommendation
Recommendation. Based on our analysis of the attacks on Brave’s
Farbling mechanism and the randomization techniques used by
9 extensions, we offer two recommendations to enhance the ef-
fectiveness of canvas fingerprinting defenses. First and foremost,
any implementation of randomization should ensure two essential
properties: undeterministic and irreversible. Undeterministic ran-
domization means that the output should vary with each execution,
thereby preventing trackers from establishing consistent patterns.
Irreversible randomization entails that the original data cannot be
reconstructed from the modified output. Additionally, it is crucial
for browser vendors and extension developers to implement moni-
toring mechanisms for API calls. By tracking the usage patterns and
frequency of canvas API calls, developers can identify suspicious
behavior indicative of tracking attempts. This could involve setting
thresholds for the number of times a canvas element is accessed
within a certain timeframe, allowing for the detection of potential
fingerprinting attempts.
Disclosure. We disclosed our findings to Brave, which acknowl-
edged that our attack reintroduces some entropy into the browser’s
fingerprinting capabilities. In response, Brave plans to limit the
number of Canvas API read-backs between user activations, align-
ing with our recommendations to mitigate future misuse. Further-
more, Brave recognizes the necessity of staying abreast of emerging
fingerprinting attacks to constantly improve their defenses and im-
plement additional protections for users

9 Conclusion
In this paper, we provide a thorough investigation into canvas fin-
gerprinting defenses, focusing on 18 extensions from the Chrome
and Firefox web stores and the built-in protections of five major
browsers: Chrome, Firefox, Brave, Tor, and Safari. Our analysis
reveals vulnerabilities in widely adopted randomization techniques,
as we successfully attacked nine extensions and the Brave browser’s
"Farbling" mechanism. These findings underscore the need for ongo-
ing enhancements in privacy technologies to counteract evolving
tracking methods. Additionally, we offer targeted recommenda-
tions to strengthen existing defenses, highlighting the importance
of maintaining robust, user-friendly solutions. As canvas finger-
printing continues to rise, our work emphasizes the critical need for
effective privacy measures that empower users to navigate online
without intrusive tracking.



Breaking the Shield: Analyzing and Attacking Canvas Fingerprinting Defenses in the Wild

References
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC conference on
computer and communications security. 674–689.

[2] Bhupendra Acharya and Phani Vadrevu. 2021. {PhishPrint}: Evading phish-
ing detection crawlers by prior profiling. In 30th USENIX Security Symposium
(USENIX Security 21). 3775–3792.

[3] Pouneh Nikkhah Bahrami, Umar Iqbal, and Zubair Shafiq. 2021. Fp-radar: Lon-
gitudinal measurement and early detection of browser fingerprinting. arXiv
preprint arXiv:2112.01662 (2021).

[4] Brave Software. 2024. Privacy Updates. https://brave.com/privacy-updates/
[5] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site

measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. 1388–1401.

[6] Firefox. 2020. Firefox 72 blocks third-party fingerprinting resources. https:
//blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/ Accessed: 2024-
10-09.

[7] Mozilla Foundation. 2024. Enhanced Tracking Protection in Firefox for
desktop. https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-
firefox-desktop. Accessed: 2024-10-02.

[8] Khronos Group. 2018. WebGL—OpenGL ES for the Web. https://www.khronos.
org/webgl/. Accessed: 2024-09-30.

[9] Apple Inc. 2019. Safari White Paper November 2019. https://www.apple.com/
safari/docs/Safari_White_Paper_Nov_2019.pdf. Accessed: 2024-10-02.

[10] Brave Software Inc. 2020. Fingerprinting defenses 2.0. https://brave.com/privacy-
updates/4-fingerprinting-defenses-2.0/. Accessed: 2024-10-02.

[11] Brave Software Inc. 2020. Fingerprinting Protections in Brave - Issue 11067.
https://github.com/brave/brave-browser/issues/11067. Accessed: 2024-10-02.

[12] Brave Software Inc. 2024. Sunsetting Strict Fingerprinting Mode. https://brave.
com/privacy-updates/28-sunsetting-strict-fingerprinting-mode/. Accessed:
2024-10-02.

[13] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. 2021. Fingerprinting the
fingerprinters: Learning to detect browser fingerprinting behaviors. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 1143–1161.

[14] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine. 2020.
Browser fingerprinting: A survey. ACM Transactions on the Web (TWEB) 14, 2
(2020), 1–33.

[15] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
beast: Diverting modern web browsers to build unique browser fingerprints. In
2016 IEEE Symposium on Security and Privacy (SP). IEEE, 878–894.

[16] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. Proceedings of W2SP 2012 (2012).

[17] Mozilla. 2024. HTMLCanvasElement. https://developer.mozilla.org/en-US/docs/
Web/API/HTMLCanvasElement.

[18] Mozilla Support. 2024. Firefox’s Protection Against Fingerprinting. https:
//support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting

[19] Tor Project. 2024. Anti-Fingerprinting Features. https://tb-manual.torproject.
org/anti-fingerprinting. Accessed: 2024-10-02.

[20] PublicWWW. [n. d.]. PublicWWW. https://publicwww.com. Accessed: 2024-10-
09.

[21] Nathan Reitinger and Michelle L Mazurek. 2021. Ml-cb: Machine learning canvas
block. Proceedings on Privacy Enhancing Technologies (2021).

[22] FingerprintJS Team. 2024. FingerprintJS: Browser Fingerprinting Library. https:
//github.com/fingerprintjs/fingerprintjs. Accessed: 2024-10-01.

[23] W3C. 2015. HTML Canvas 2D Context. https://www.w3.org/TR/2dcontext/.
W3C Recommendation 19 November 2015.

A Examples

Figure 2: An example of the pixel perturbation process il-
lustrates how the underlying values of a pixel change after
perturbation is applied, yet these alterations remain visually
imperceptible to users.

Figure 3: A page illustrates the attack on the Farbling mech-
anism, featuring five Filled Canvases, each topped with a
uniquely colored rectangle.

Figure 4: An example illustrates the perturbation of the
Green channel for a specific pixel across five canvases. Three
canvases retain a value of 179, while two show a perturbed
value of 180. By employing a majority voting technique, we
recover the original Green channel value of 179.

https://brave.com/privacy-updates/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://blog.mozilla.org/security/2020/01/07/firefox-72-fingerprinting/
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://support.mozilla.org/en-US/kb/enhanced-tracking-protection-firefox-desktop
https://www.khronos.org/webgl/
https://www.khronos.org/webgl/
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://www.apple.com/safari/docs/Safari_White_Paper_Nov_2019.pdf
https://brave.com/privacy-updates/4-fingerprinting-defenses-2.0/
https://brave.com/privacy-updates/4-fingerprinting-defenses-2.0/
https://github.com/brave/brave-browser/issues/11067
https://brave.com/privacy-updates/28-sunsetting-strict-fingerprinting-mode/
https://brave.com/privacy-updates/28-sunsetting-strict-fingerprinting-mode/
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCanvasElement
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://support.mozilla.org/en-US/kb/firefox-protection-against-fingerprinting
https://tb-manual.torproject.org/anti-fingerprinting
https://tb-manual.torproject.org/anti-fingerprinting
https://publicwww.com
https://github.com/fingerprintjs/fingerprintjs
https://github.com/fingerprintjs/fingerprintjs
https://www.w3.org/TR/2dcontext/

	Abstract
	1 Introduction
	2 Background
	3 Defense Strategies
	3.1 Blocking APIs and Access
	3.2 Modifying the Canvas Content
	3.3 Filter Lists
	3.4 Machine Learning Models

	4 Defense Strategies Adoption
	4.1 Extensions for Canvas Fingerprinting Defense
	4.2 Built-in Protections in Major Browsers
	4.3 Adoption Trends

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluating Canvas Protection Techniques
	5.3 Results

	6 Pixel-Recovery Attack on Browser Extensions
	7 Statistical Attack on Farbling Mechanism
	7.1 Farbling Mechanism in Brave
	7.2 Statistical Attack Methodology

	8 Disclosure and Recommendation
	9 Conclusion
	References
	A Examples

