
A Theory of Optimistically Universal Online
Learnability for General Concept Classes

Steve Hanneke
Department of Computer Science

Purdue University
West Lafayette, IN 47907

steve.hanneke@gmail.com

Hongao Wang
Department of Computer Science

Purdue University
West Lafayette, IN 47907
wang5270@purdue.edu

Abstract

We provide a full characterization of the concept classes that are optimistically uni-
versally online learnable with {0, 1} labels. The notion of optimistically universal
online learning was defined in [Hanneke, 2021] in order to understand learnability
under minimal assumptions. In this paper, following the philosophy behind that
work, we investigate two questions, namely, for every concept class: (1) What are
the minimal assumptions on the data process admitting online learnability? (2) Is
there a learning algorithm which succeeds under every data process satisfying the
minimal assumptions? Such an algorithm is said to be optimistically universal for
the given concept class. We resolve both of these questions for all concept classes,
and moreover, as part of our solution we design general learning algorithms for
each case. Finally, we extend these algorithms and results to the agnostic case,
showing an equivalence between the minimal assumptions on the data process for
learnability in the agnostic and realizable cases, for every concept class, as well as
the equivalence of optimistically universal learnability.

1 Introduction

Just as computability is a core question in computation theory, learnability is now a core question in
learning theory. Intuitively, learnability is trying to ask whether we can predict the future correctly
with high probability by observing enough examples. In order to describe this intuition formally, we
need to define learning models, such as, Probably Approximately Correct (PAC) learning (Vapnik
and Chervonenkis [1974] and Valiant [1984]), online learning (Littlestone and Warmuth [1986])
and query learning (Angluin [1988]). In this paper, we focus on a variant of online learning: online
learning under data processes. In this setting, the learning is sequential: in round t, an instance
Xt is given to the algorithm, and then the algorithm makes the prediction, Ŷt, based on the history
(X≤t−1, Y≤t−1) and the input Xt, i.e., Ŷt = ft(X≤t−1, Y≤t−1, Xt). Next, the target value Yt will be
revealed to the learner such that it can be used to inform future predictions. We model this sequence
as a general stochastic process (X,Y) = {(Xt, Yt)}t∈N (possibly with dependencies across times
t). We say that the algorithm is strongly consistent under (X,Y) if the long-run average error is
guaranteed to be low, i.e., 1

n

∑n
t=1 I

[
Ŷt ̸= Yt

]
→ 0 almost surely, when n→∞.

In our setting, any theory of learning must be expressed based on the properties of, or restriction on,
the data process, as the mistake bound is based on the data process. Thus, following an approach
found in much of the learning theory literature, such as the PAC model of Valiant [1984] and Vapnik
and Chervonenkis [1971] and the online learning model of Littlestone [1988], we introduce the
restriction by an additional component, concept class H ⊆ YX . The role of the concept class is
to restrict the processes we need to face, such that they all are realizable under that concept class.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

If there is a target function h∗ ∈ H, such that Yt = h∗(Xt) for every t, we say the data process
(X,Y) is realizable (though our formal definition below is slightly more general). For a given X, if a
learning rule is strongly consistent under (X,Y) for every Y such that (X,Y) is realizable, we say it
is universally consistent under X in the realizable case.

It is known that we cannot get the low average error guarantee for all concept classes and data
processes [Hanneke, 2021]. Thus, we should make several restrictions on either the data process, the
concept class, or a mixture of both. All three types of restrictions have been investigated: Littlestone
[1988], Ben-David et al. [2009] studied online learning with unrestricted data processes but restricted
concept classes. Haussler et al. [1994], Ryabko [2006] researched the online learning problem
with a mix of both restrictions. There are also substantial amount of papers investigating online
learnability with all measurable functions but restricted data processes. Most of these specifically
consider the case of i.i.d. processes, such as Stone [1977], Devroye et al. [1996], though this has also
been generalized to general stationary ergodic processes [Morvai et al., 1996, Gyorfi et al., 1999] or
processes with certain convergence properties enabling laws of large numbers [Morvai et al., 1999,
Steinwart et al., 2009].

More recently, a general question has been studied: In the case ofH equals the set of all measurable
functions, is there a learning rule guaranteed to be universally consistent given only the assumption on
X that universally consistent learning is possible under X? The assumption that universal consistency
is possible under X is referred to as the “optimist’s assumption” [Hanneke, 2021], and for this reason,
learning rules which are universally consistent for all X satisfying the optimist’s assumption are
said to be optimistically universally consistent. There is a series of works focusing on this question,
starting from Hanneke [2021] and continuing with Blanchard and Cosson [2022], Blanchard [2022],
Blanchard et al. [2022a]. They tackle this question by first characterizing the minimal assumptions
on the data process admitting universally consistent learning and then proposing an online learning
algorithm that is universally consistent for all data processes satisfying that assumption. However,
their works all focus on the situation with no restrictions on concepts in the concept class (i.e.,H as
all measurable functions). Thus, a natural question arises: For which concept classes do there exist
optimistically universal learning rules?

In this paper, we investigate the question mentioned above when the output is binary, i.e. {0, 1}.
We handle this problem by first figuring out the minimal assumptions on the data process admitting
consistent online learning as well. Thus, our results answered that question in the following aspects:

• For which concept classes is optimistically universally consistent learning possible?
• What are the sufficient and necessary conditions for processes to admit universally consistent

online learning for a given concept classH?
• For which concept classes is it the case that all processes X admit universally consistent

online learning?

We first answer these questions in the realizable case. Surprisingly, the answers turn out to be
intimately related to combinatorial structures arising in the work of Bousquet et al. [2021] on
universal learning rates. This suggests a potential connection between the universal consistency of
online learning and universal learning rates, which is of independent interest. We also extend our
learning algorithms for the realizable case to the agnostic setting, where the requirement of low
average loss is replaced by that of having sublinear regret. Interestingly, our answers to the above
questions remain unchanged in the agnostic case, establishing an equivalence between agnostic and
realizable learning in this setting.

In this paper, we first provide some interesting examples in section 3. Then section 4 investigates
question three and question one for those classes and section 5 answers question two and question
one for remaining classes. Finally, in section 6, we extend our algorithm to the agnostic case.

1.1 More Related Work

Starting from Littlestone’s ground-breaking work [Littlestone, 1988], online learning is becoming
more and more important. In this paper, Littlestone [1988] introduces a combinatorial parameter
of the concept class, known as Littlestone dimension, to characterize the online learnable concept
classes in the realizable case. After that, Ben-David et al. [2009] figure out Littlestone dimension is
still the property to characterize online learnability in the agnostic setting. They extend an online

2

learning algorithm for the realizable case to such an algorithm for the agnostic case using the weighted
majority algorithm from Littlestone and Warmuth [1994]. This line of work makes no assumption
on the data process and investigates how restrictions on the concept affect the learnability of the
problem. There are two other categories of assumptions also investigated in history: one is to make
assumptions on both the data process and the concept, and the other is to make assumptions on the
data process but not the concept. Those two categories are discussed in detail subsequently.

First, the works investigating the question of learnability with restrictions on both the data process
and the concept make a variety of assumptions. For example, Haussler et al. [1994] investigate
how the restrictions on the concept will affect learnability given that the data process is i.i.d. This
problem is more similar to a streamlined version of PAC learning and they show that there is a
logarithmic mistake bound with the assumption that the data process is i.i.d. and the concept class
has finite VC dimension. Adams and Nobel [2010] reveal that all stationary ergodic sequences will
uniformly converge under the concept class with finite VC dimension. However, they cannot show
the convergence rate of that learning algorithm. Many other works focus on revealing the rate with
slightly stronger assumptions on the sequences, such as, [Yu, 1994, Karandikar and Vidyasagar,
2002].

Another line of works focuses on the question of learnability with restrictions on the process instead
of the concept, starting from the theory of universally consistent predictors under i.i.d sequences. In
particular, there exists an online learning rule, such that for any i.i.d. sequence (X,Y), and every
measurable function f∗, the long-run average loss is 0 almost surely, such as, [Stone, 1977, Devroye
et al., 1996, Hanneke et al., 2021]. In the meanwhile, people are also interested in the consistency
under non-i.i.d. processes; Gyorfi et al. [1999], Morvai et al. [1996] reveal that there are universally
consistent online learning rules under general stationary ergodic processes. The paper of Morvai et al.
[1999] and the paper of Steinwart et al. [2009] show universal consistency under some classes of
processes satisfying laws of large numbers.

More recently, the work of Hanneke [2021] investigates whether there is a consistent learning
rule given only the assumptions on X that universally consistent learning is possible. This work
generalizes the assumptions on X made by the previous works on universal consistency. The
assumption that universally consistent learning is possible is known as the “optimist’s assumption”, so
the consistency under that assumption is called optimistically universal consistency. Hanneke [2021]
studies three different learning models: inductive, self-adaptive, and online, and proves that there
is an optimistically universal self-adaptive learning rule and no optimistically universal inductive
learning rule. After this beginning, the works of Blanchard and Cosson [2022], Blanchard et al.
[2022a], Blanchard [2022] show that optimistically universal online learning is possible and the
processes that admit strongly universal online learning satisfy the condition called C2 (see condition C
for reference). This problem is also investigated under different models, such as, in contextual bandit
setting Blanchard et al. [2022b, 2023] and general noisy labels Blanchard and Jaillet [2023].

2 Preliminaries and Main Results

In this section, we provide formal definitions and model settings and briefly list the main results
of this paper without proof. For brevity, we provide the high-level proof sketch in the subsequent
sections and proof details are in the appendices.
Model Setting We formally provide the learning model here. Let (X ,B) be a measurable space, in
which X is assumed to be non-empty and B is a Borel σ-algebra generated by a separable metrizable
topology T . We also define a space Y = {0, 1} called label space. Here we focus on learning under
the 0-1 loss: that is, (y, y′) 7→ I [y ̸= y′] defined on Y × Y , where I [·] is the indicator function. A
stochastic process X = {Xt}t∈N is a sequence of X -valued random variables. A stochastic process
Y = {Yt}t∈N is a sequence of {0, 1}-valued random variable. The concept class H, which is a
non-empty set of measurable functions h : X → Y .1

The online learning rule is a sequence of measurable functions: ft : X t−1 × Yt−1 × X → Y ,
where t is a non-negative integer. For convenience, we also define ĥt−1 = ft(X<t, Y<t), here
(X<t, Y<t) = {(Xi, Yi)}i<t is the history before round t.
1We additionally make standard restrictions on H to ensure certain estimators are well-behaved; we omit the
details for brevity, but refer the reader to Bousquet et al. [2021] for a thorough treatment of measurability of
these estimators.

3

There are two ways to define the realizable case: The most common one is that there exists h∗ ∈ H
such that Yt = h∗(Xt). The other is the definition 1 on the realizable data process, which comes
from the universal learning setting. These two definitions are equivalent in the uniform PAC learning
with i.i.d. samples. However, they are different when talking about universal learning. Thus, we
follow the definition from the universal learning setting.

Definition 1. For every concept classH, we can define the following set of processes R(H):

R(H) :=
{
(X,Y) = {(Xi, Yi)}i∈N : with probability 1,∀n <∞, {(Xi, Yi)}i≤n realizable byH

}
.

In the same way, the set of realizable label processes:

Definition 2. For every concept classH and data process X, define a set R(H,X) of label processes:

R(H,X) :=
{
Y = {Yi}i∈N : (X,Y) ∈ R(H) and ∃ a non-random function f s.t. Yi = f(Xi)

}
.

In other words, R(H,X) are label processes Y = f(X) s.t. (X, f(X)) ∈ R(H). Importantly, while
every f ∈ H satisfies f(X) ∈ R(H,X), there can exist f /∈ H for which this is also true, due to R(H)
only requiring realizable prefixes (thus, in a sense, R(H,X) represents label sequences by functions
in a closure ofH defined by X).2

At first, we define the universal consistency under X andH in the realizable case. An online learning
rule is universally consistent under X andH if its long-run average loss approaches 0 almost surely
when the number of rounds n goes to infinity for all realizable label processes. Formally, we have the
following definition:

Definition 3. An online learning rule is strongly universally consistent under X and H for the
realizable case, if for every Y ∈ R(H,X), lim supn→∞

1
n

∑n
t=1 I

[
Yt ̸= ĥt−1(Xt)

]
= 0 a.s.

We also define the universal consistency under X andH for the agnostic case. In that definition, we
release the restrictions that Y ∈ R(H,X), instead the label process Y can be set in any possible way,
even dependent on the history of the algorithm’s predictions. Thus, the average loss may be linear
and inappropriate for defining consistency. Therefore, we compare the performance of our algorithm
with the performance of the best possible Y∗ ∈ R(H,X), which is usually referred to as regret. We
say an online algorithm is universally consistent under X andH for the agnostic case if its long-run
average regret is low for every label process. Formally,

Definition 4. An online learning rule is strongly universally consistent under
X and H for the agnostic case, if for every Y∗ ∈ R(H,X) and for every Y,

lim supn→∞
1
n

∑n
t=1

(
I
[
Yt ̸= ĥt−1(Xt)

]
− I [Yt ̸= Y ∗

t]
)
≤ 0 a.s.

To describe the assumption that universal consistency is possible under the data process X and the
concept classH, we need to define the process admitting universal online learning as follows:

Definition 5. We say a process X admits strongly universal online learning (or just universal online
learning for convenience) if there exists an online learning rule that is strongly universally consistent
under X andH.

If the online learning rule is universally consistent under every process that admits universal online
learning, we call it optimistically universal under the concept class. If there is an optimistically
universal learning algorithm under that concept class, we say that concept class is optimistically
universally online learnable. The formal definition is provided below:

Definition 6. An online learning rule is optimistically universal under concept class H if it is
strongly universally consistent under every process X that admits strongly universally consistent
online learning under concept classH.

If there is an online learning rule that is optimistically universal under concept classH, we sayH is
optimistically universally online learnable.

2For instance, for X = N, for the process Xi = i, and for H = {1{i} : i ∈ X} (singletons), the all-0 sequence
is in R(H,X) though the all-0 function is not in H.

4

Next, we define the combinatorial structures we use to characterize the concept class that makes all
processes admit universal online learning and is optimistically universally online learnable when all
processes admit strongly universally consistent online learning:

Definition 7 (Littlestone tree Bousquet et al. [2021]). A Littlestone Tree forH is a complete binary
tree of depth d ≤ ∞ whose internal nodes are labeled by X , and whose two edges connecting a node
to its children are labeled 0 and 1, such that every finite path emanating from the root is consistent
with a concept h ∈ H. We say that H has an infinite Littlestone tree if it has a Littlestone tree of
depth d =∞.

Definition 8 (VCL Tree Bousquet et al. [2021]). A VCL Tree forH of depth d ≤ ∞ is a collection

{xu ∈ X k+1 : 0 ≤ k < d, u ∈ {0, 1}1 × {0, 1}2 × · · · × {0, 1}k}

such that for every n < d and y ∈ {0, 1}1×{0, 1}2× · · · × {0, 1}n+1, there exists a concept h ∈ H
so that h(xi

y≤k) = yik+1 for all 0 ≤ i ≤ k and 0 ≤ k ≤ n, where we denote

y≤k = (y01 , (y
0
2 , y

1
2), . . . , (y

0
k, . . . , y

k−1
k)), xy≤k

= (x0
y≤k

, . . . , xk
y≤k

)

We say thatH has an infinite VCL tree if it has a VCL tree of depth d =∞.

The characterization is formally stated in the following two theorems:

Theorem 9. If and only if a concept classH has no infinite VCL tree, any process admits strongly
universally consistent online learning underH.

Theorem 10. If and only if a concept class H has no infinite Littlestone tree, any process admits
strongly universally consistent online learning underH, and the concept classH is optimistically
universally online learnable.

According to theorem 9, we know that for those concept classes with an infinite VCL tree, there exist
some processes that do not admit universal online learning. Thus, we need to figure out the sufficient
and necessary conditions that the processes required to admit universal online learning.

First, we define the experts as algorithms that generate predictions only based on the input Xt. Then
we define the following condition (which is a property of a data process) and state the main theorem
formally:

Condition A. For a given concept classH, there exists a countable set of experts E = {e1, e2, . . . },
such that ∀Y∗ ∈ R(H,X), ∃in →∞, with log in = o(n), such that:

E

[
lim sup
n→∞

min
ei:i≤in

1

n

n∑
t=1

I [ei(Xt) ̸= Y ∗
t]

]
= 0 (1)

Theorem 11. A process X admits strongly universally consistent online learning under concept class
H with infinite VCL tree if and only if it satisfies condition A.

Next, the sufficient and necessary conditions (on the concept class) for optimistically universal online
learning:

Condition B. There exists a countable set of experts E = {e1, e2, . . . }, such that for any X admits
universal online learning, and any Y∗ ∈ R(H,X), there exists in → ∞, with log in = o(n), such
that:

E

[
lim sup
n→∞

min
ei:i≤in

1

n

n∑
t=1

I [ei(Xt) ̸= Y ∗
t]

]
= 0 (2)

Notice that these two conditions (condition A and B) only have one major difference: whether the
countable set of experts depends on the process X.

Theorem 12. A concept classH with infinite VCL tree is optimistically universally online learnable
if and only if it satisfies condition B.

We also extend the algorithms for realizable cases to an algorithm for agnostic cases and show that
the same characterization works for agnostic cases.

5

3 Examples

In this section, we provide some interesting examples to help the reader get a sense of what these
conditions are. We first provide an example of the concept class that is universally online learnable
under all processes but not optimistically universally online learnable.

Example 1. We have the instance space X = R and Y = {0, 1}, a binary output. The concept class
H is all of the threshold functions. In other words, Hthreshold = {ha : ha(x) = I [x ≥ a] |a ∈ R}.
This concept class has no infinite VCL tree, as there is no (x1, x2) such that Hthreshold shatters all
possible results. Thus, all processes admit strongly universally consistent online learning under
Hthreshold. However, it has an infinite Littlestone tree. Thus, for any learning algorithm, there exists a
process that is not learnable by that algorithm. So it is not optimistically universally online learnable.

Referring to that line of optimistically universal online learning papers, we know that the concept
class of all measurable functions is optimistically universally online learnable. The sufficient and
necessary condition for processes to admit universal online learning under all measurable functions
is the condition C2 (see below). In the meanwhile, our conditions: A and B vanish to C2 when the
concept classH becomes the class of all measurable functions.

Condition C (C2 in Hanneke [2021]). For every sequence {Ak}∞k=1 of disjoint elements of B,

|{k ∈ N : X1:T ∩Ak ̸= ∅}| = o(T) a.s.

The following example shows that whether a concept class is optimistically universally online
learnable is neither sufficient nor necessary to determine whether its subset is optimistically universally
online learnable or not. Whether a concept class is optimistically universally online learnable will be
sufficient and necessary to determine whether its subset is optimistically universally online learnable,
if and only if the processes that admit universal online learning are the same under those two concept
classes.

Example 2. We have the data which is sampled from input space X = X1 ∪ X2 and here X1 and X2

are disjoint. For example, X1 = R+ and X2 = R\R+. Then we can define the concept class: H1

is the set of all threshold functions on X1 which are 0 on X2, andH2 is a set of all functions on X2

which are constant on X1. Then we can consider the following scenarios:

1. H = H2: It is optimistically universally online learnable. The processes that admit universal
online learning will satisfy C2 if we replace all the Xt ∈ X1 as dummy points.

2. H = H1 ∪ H2: It is not optimistically universally online learnable, as all processes
supported on X1 admit universal online learning under H. However, for every learning
strategy, there exists at least one process on X1 forcing that strategy to make linear mistakes.
(Due to theorem 9 and theorem 10)

3. H are all measurable functions onX . This is also optimistically universally online learnable.

4 Sufficient and Necessary Condition that ALL Processes Admit Universal
Online Learning

In this section, we answer the question: What restrictions on concept classes make ALL processes
admit universal online learning underH? The answer is formally stated as Theorem 9. We show the
sufficiency by providing a universal online learning rule (depending on X) under every process X and
H with no infinite VCL tree.

First, we define the VCL game along with the VCL tree. In this game, there are two players: the
learner, PL, and the adversary, PA and U0 = ∅. Then in each round k:

• PA choose the point X(k) = (Xk,1, . . . , Xk,k) ∈ X k.

• PL choose the prediction gUk−1
((Xk,1, . . . , Xk,k)) ∈ {0, 1}k.

• Update Uk = Uk−1 ∪ {X(k), gUk−1
}.

• PL wins the game in round k ifHUk
= ∅.

6

Here HUk
= {h ∈ H : ∀i, h(X(i)) = gi(X(i))}, which is the subset of H that is consistent on

(X(i), gi(X(i))) for all i ≤ k.

A strategy is a way of playing that can be fully determined by the foregoing plays. And a winning
strategy is a strategy that necessarily causes the player to win no matter what action one’s opponent
takes. We have the following lemma from Bousquet et al. [2021].
Lemma 13 (Bousquet et al. [2021] lemma 5.2). If H has no infinite VCL tree, then there is a
universally measurable winning strategy g for PL in the game.

Notice that the winning strategy g is completely decided by U , we use gU as the winning strategy
induced by the set U . We may use this winning strategy gU to design an online learning algorithm 1.
This algorithm is a combination of the algorithm in the work of Bousquet et al. [2021] and the
algorithm inspired by the learning algorithm for partial concept in the work of Alon et al. [2021].

In order to describe the algorithm, we first provide the definitions of partial concepts. A partial
concept class H ⊆ {0, 1, ∗}X is a set of partial function defined on X , where h(x) = ∗ if and
only if h is undefined on x. And for a set X ′ ⊆ X , X ′ is shattered if every binary pattern y ∈
{0, 1}X′

is realized by some h ∈ H. In this algorithm, we have w(H′, X≤T) = |{S : S ⊆
{xi}i≤T such that S shattered byH′}|, which is the number of the subsequences of the sequence
X≤T that can be shattered by the partial concept class H′. HgU = {h : ∀X1, X2, . . . , Xk ∈
X , (h(X1), h(X2), . . . , h(Xk)) ̸= gU (X1, X2, . . . , Xk)} is the partial concept class induced by
gU , which contains the concepts that are not consistent with gU at more than k − 1 data points, if
U = {(X(i), gi(X(i)))}i≤k−1. We define HgU

{(Xi,Yi)}i≤t
= {h ∈ HgU : ∀i ≤ t, h(Xi) = Yi}. We

also define X[t,t′] = {Xi}t≤i≤t′ and t(m) = m(m+1)
2 .

Algorithm 1: Learning algorithm from winning strategy
k = 1, U = {}, t′ ← 0.
for t = 1, 2, 3, . . . do

if ∃j1, j2, . . . , jk < t such that gU (Xj1 , . . . , Xjk) = (Yj1 , . . . , Yjk) then
Advance the game:
U ← U ∪ {((Xj1 , . . . , Xjk), (Yj1 , . . . , Yjk))}.
k ← k + 1.
L← ∅.
m← 1.
t′ ← t− 1.

end
Predict

Ŷt = argmax
y

Pr

[
w(HgU

L∪(Xt,1−y), X[t,t(m)+t′]) ≤
1

2
w(HgU

L , X[t,t(m)+t′])

∣∣∣∣X≤t

]
if Yt ̸= Ŷt then

L← L ∪ {(Xt, Yt)}.
end
if t ≥ m(m+1)

2 + t′. then
m← m+ 1.

end
end

The following lemma from the work of Bousquet et al. [2021] holds:
Lemma 14 (Bousquet et al. [2021]). For any process {(Xi, Yi)i∈N} ∈ R(H), there exists t0, such
that for all t ≥ t0, algorithm 1 will not update k and U and for all j1, j2, . . . , jk, the winning strategy
gU satisfies

gU (Xj1 , . . . , Xjk) ̸= (Yj1 , . . . , Yjk).

Proof. By the definition of the winning strategy, it leads to a winning condition for the player PL. By
the definition of PL’s winning condition, we know that there exists a k such thatHX1,g1,...,Xk,gk = ∅,
which means for all j1, j2, . . . , jk, gU (Xj1 , . . . , Xjk) ̸= (Yj1 , . . . , Yjk). That finishes the proof.

7

This lemma shows that if the concept classH has no infinite VCL tree, for a sufficiently large t0, the
VCL game will stop advancing after round t0. Once the game stops advancing, we are effectively
just bounding the number of mistakes by a predictor based on a partial concept class of finite VC
dimension. This result is interesting in its own right, we extract this portion of the algorithm into a
separate subroutine, which is stated as Algorithm 2 in AppendixA.1, for which we prove the following
result.

Lemma 15. For any process X andH be a partial concept class on X with VC(H) = d <∞. The
subroutine (Algorithm 2 in AppendixA.1) only makes o(T) mistakes almost surely as T →∞.

For brevity, we put the proof of this lemma in the appendix. The intuition behind the proof is that
every mistake decreases the weight by at least half with more than half probability, so the number of
mistakes is o(T).

Combining the lemmas above, for a concept class H with no infinite VCL tree, for any realizable
sequence, Algorithm 1 satisfies lim supn→∞

1
n

∑n
t=1 I

[
Yt ̸= ĥt−1(Xt)

]
= 0 a.s. Because the

winning strategy only updates finite times, the long-run average number of mistakes is dominated by
the number of mistakes made by the subroutine, which is o(n).

To prove the necessity, we show that for every concept classH with an infinite VCL tree, there exists
at least one process that does not admit universal online learning underH. Formally,

Theorem 16. For every concept classH with infinite VCL tree, there exists a process X, such that X
does not admit universal consistent online learning.

We need the following definition and results from Bousquet et al. [2023] to define the sequence.

Notation 17 (Bousquet et al. [2023]). For any u ∈ ({0, 1})∗, let index(u) ∈ N denote the index of
u in the lexicographic ordering of ({0, 1})∗.

Definition 18 (Bousquet et al. [2023]). Let X be a set andH ⊆ {0, 1}X be a hypothesis class, and
let

T = {xu ∈ X : u ∈ ({0, 1})∗}

be an infinite VCL tree that is shattered byH. This implies the existence of a collection

HT = {hu ∈ H : u ∈ ({0, 1})∗}

of consistent functions.

We say such a collection is indifferent if for every v,u,w ∈ ({0, 1})∗, if index(v) < index(u), and
w is a descendant of u in the tree T , then hu(xv) = hw(xv). In other words, the functions for all
the descendants of a node that appears after v agree on v.

We say that T is indifferent if it has a setHT of consistent functions that are indifferent.

Theorem 19 (Bousquet et al. [2023]). Let X be a set andH ⊆ {0, 1}X be a hypothesis class, and
let T be an infinite VCL tree that is shattered byH. Then there exists an infinite VCL tree T ′ that is
shattered byH that is indifferent.

Here is the proof sketch of Theorem 16

Proof Sketch. First, we can modify the indifferent infinite VCL tree such that it has the property that
the number of elements contained by the k-th node in the Breadth-First-Search (BFS) order is 2k−1.
The data process we are choosing is all the data come in the lexical order in each node and the BFS
order among different nodes. Then we take a random walk on this tree to choose the true label for
each instance. The instances in the node visited by the random walk will be labeled by the label on
the edge adjacent to it in the path. The instances in the node that is off-branch will be labeled by the
label decided by its descendants. (We can do this as the tree is indifferent.) Thus, when reaching a
node on the path, no matter what the algorithm predicts, it makes mistakes with probability 1

2 . Thus,
it makes a quarter mistake in expectation. Then by Fatou’s lemma, for each learning algorithm, we
get a realizable process such that the algorithm does not make a sublinear loss almost surely.

We finish the proof of Theorem 9 here. We then focus on the existence of the optimistically universal
online learner when all processes admit universal online learning.

8

4.1 Optimistically Universal Online Learning Rule

In this part, we show that the condition whether H has an infinite Littlestone tree is the sufficient
and necessary condition for the existence of an optimistically universal online learning rule, when all
processes admit universal online learning. This is formally stated as theorem 10. The sufficiency part
of theorem 10 is proved in Bousquet et al. [2021] as the following lemma:
Lemma 20 (Bousquet et al. [2021] Theorem 3.1, the first bullet). If H does not have an infinite
Littestone tree, then there is a strategy for the learner that makes only finitely many mistakes against
any adversary.
Notice that the online learning algorithm derived from the winning strategy of the learner only makes
finite mistakes against any adversary, so for every realizable data process (X,Y), this online learning
algorithm also only makes finite mistakes, which means the long-run average mistake bound goes to
0. Thus, this is an optimistically universal online learning rule, and the concept classH which does
not have an infinite Littlestone tree is optimistically universally online learnable.

The necessity is restated as the following theorem:
Theorem 21. For any concept class H with an infinite Littlestone tree, for any online learning
algorithm A, there exists a process X that makes A have an average loss greater than a half with
non-zero probability.
Proof Sketch. We can take a random walk on the infinite Littlestone tree to generate the target
function. Thus, no matter what the algorithm predicts, it makes a mistake with a probability of more
than half. Then we can use Fatou’s lemma to get a lower bound of the expected average loss of the
learning algorithm among all random processes and that means for every algorithm there exists a
process that makes its average loss more than a half with probability more than zero.

5 Concept Classes with an Infinite VCL Tree

In this section, we discuss the necessary and sufficient conditions for a process to admit universal
online learning under the concept class H with an infinite VCL tree. Theorem 11 states the an-
swer formally. To prove this theorem, we first prove sufficiency (Lemma 22) and then necessity
(Lemma 23).
Lemma 22. If a process X satisfies condition A, it admits universally consistent online learning
under concept classH.
Proof Sketch. To prove this lemma, we use the weighted majority algorithm with non-uniform initial
weights on the experts defined in condition A. The initial weight of expert i is 1

i(i+1) , where the index
i is the index defined in condition A as well.

Lemma 23. If a process X admits universally consistent online learning under concept classH, it
satisfies condition A.
Proof Sketch. In order to prove this lemma, we need to show the following statement holds:

For a given concept classH, and a data process X, if there is a learning algorithm A that is strongly
universal consistent under X and H, then we have a set of experts E = {e1, e2, . . . }, there is a
sequence {in} with log in = o(n), such that for any realizable sequence (X,Y), for any n ∈ N, there
is an expert ei with i ≤ in such that Yt = ei(Xt) for every t ≤ n.

We modify the construction from the work of Ben-David et al. [2009] to build the experts. The experts
are based on the set of the indexes of the rounds when the algorithm A makes mistakes, so there is a
one-on-one map from the set of the indexes of the mistakes to the experts. Then we can index the
experts based on the set of the indexes of mistakes to show the existence of such a sequence.
Then we can get the theorem for optimistically universal online learnability, which is theorem 12.
Because the proof of lemma 23 and 22 works for any process, we can prove Theorem 12 by reusing
the proof of Theorem 11.

6 Agnostic Case

In this section, we extend the online learning algorithm for realizable cases to an online learning
algorithm for agnostic cases. The basic idea follows the idea of Ben-David et al. [2009]. In other

9

words, we build an expert for each realizable process (X,Y). Then we run the learning with experts’
advice algorithm on those experts and get a low regret learning algorithm.
Theorem 24. The following two statements are equivalent:

• There is an online learning rule that is strongly universally consistent under X andH for
the realizable case.

• There is an online learning rule that is strongly universally consistent under X andH for
the agnostic case.

Proof Sketch. To prove this lemma, we first build the experts ei based on the learning algorithm for
the realizable case by using the construction from lemma 23. We then use the learning on experts’
advice algorithm called Squint from Koolen and van Erven [2015], with non-uniform initial weights

1
i(i+1) for each ei to get sublinear regret. Thus, we can extend the learning algorithm for realizable
cases to a learning algorithm for agnostic cases no matter how the algorithm operates.

An online learning algorithm for the agnostic case is also an online learning algorithm for the
realizable case, by taking Y∗ = Y, the regret becomes the number of mistakes. Thus, the two
statements are equivalent.

Theorem 24 implies that all the characterizations for the realizable case are also characterizations for
the agnostic case. We formally state the following theorems:
Theorem 25. For the agnostic case and any concept classH with no infinite VCL tree, any process X
admits strongly universal online learning underH. However, only the concept class with no infinite
Littlestone tree is optimistically universally online learnable.

For the concept classH with infinite VCL tree:
Theorem 26. For the agnostic case, a data process X admits strongly universal online learning
under concept classH with infinite VCL tree if and only if it satisfies condition A. However, a concept
classH with infinite VCL tree is optimistically universally online learnable if and only if it satisfies
condition B.

References
T. M. Adams and A. B. Nobel. Uniform convergence of Vapnik–Chervonenkis classes under ergodic

sampling. The Annals of Probability, 38(4):1345 – 1367, 2010. doi: 10.1214/09-AOP511. URL
https://doi.org/10.1214/09-AOP511.

N. Alon, S. Hanneke, R. Holzman, and S. Moran. A theory of PAC learnability of partial concept
classes. In Proceedings of the 62nd Annual Symposium on Foundations of Computer Science,
2021.

D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.

S. Ben-David, D. Pál, and S. Shalev-Shwartz. Agnostic online learning. In Annual Conference
Computational Learning Theory, 2009.

M. Blanchard. Universal online learning: an optimistically universal learning rule. In Po-Ling Loh
and Maxim Raginsky, editors, Proceedings of Thirty Fifth Conference on Learning Theory, volume
178 of Proceedings of Machine Learning Research, pages 1077–1125. PMLR, 02–05 Jul 2022.
URL https://proceedings.mlr.press/v178/blanchard22b.html.

M. Blanchard and R. Cosson. Universal online learning with bounded loss: Reduction to binary
classification. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth Confer-
ence on Learning Theory, volume 178 of Proceedings of Machine Learning Research, pages
479–495. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/v178/
blanchard22a.html.

M. Blanchard and P. Jaillet. Universal regression with adversarial responses. The Annals of Statistics,
51(3):1401 – 1426, 2023. doi: 10.1214/23-AOS2299. URL https://doi.org/10.1214/
23-AOS2299.

10

https://doi.org/10.1214/09-AOP511
https://proceedings.mlr.press/v178/blanchard22b.html
https://proceedings.mlr.press/v178/blanchard22a.html
https://proceedings.mlr.press/v178/blanchard22a.html
https://doi.org/10.1214/23-AOS2299
https://doi.org/10.1214/23-AOS2299

M. Blanchard, R. Cosson, and S. Hanneke. Universal online learning with unbounded losses:
Memory is all you need. In Sanjoy Dasgupta and Nika Haghtalab, editors, Proceedings of The
33rd International Conference on Algorithmic Learning Theory, volume 167 of Proceedings
of Machine Learning Research, pages 107–127. PMLR, 29 Mar–01 Apr 2022a. URL https:
//proceedings.mlr.press/v167/blanchard22a.html.

M. Blanchard, S. Hanneke, and P. Jaillet. Contextual bandits and optimistically universal learning,
2022b.

M. Blanchard, S. Hanneke, and P. Jaillet. Adversarial rewards in universal learning for contextual
bandits, 2023.

O. Bousquet, S. Hanneke, S. Moran, R. van Handel, and A. Yehudayoff. A theory of universal
learning. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2021, page 532–541, New York, NY, USA, 2021. Association for Computing Machinery.
ISBN 9781450380539. doi: 10.1145/3406325.3451087. URL https://doi.org/10.1145/
3406325.3451087.

O. Bousquet, S. Hanneke, S. Moran, J. Shafer, and I. Tolstikhin. Fine-grained distribution-dependent
learning curves. In Gergely Neu and Lorenzo Rosasco, editors, Proceedings of Thirty Sixth
Conference on Learning Theory, volume 195 of Proceedings of Machine Learning Research, pages
5890–5924. PMLR, 12–15 Jul 2023.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition. Springer-Verlag
New York, Inc., 1996.

L. Gyorfi, G. Lugosi, and G. Morvai. A simple randomized algorithm for sequential prediction of
ergodic time series. IEEE Transactions on Information Theory, 45(7):2642–2650, 1999. doi:
10.1109/18.796420.

S. Hanneke. Learning whenever learning is possible: Universal learning under general stochastic
processes. Journal of Machine Learning Research, 22(130), 2021.

S. Hanneke, A. Kontorovich, S. Sabato, and R. Weiss. Universal Bayes consistency in metric
spaces. The Annals of Statistics, 49(4):2129 – 2150, 2021. doi: 10.1214/20-AOS2029. URL
https://doi.org/10.1214/20-AOS2029.

D. Haussler, N. Littlestone, and M. Warmuth. Predicting {0, 1}-functions on randomly drawn points.
Information and Computation, 115(2):248–292, 1994.

R. L. Karandikar and M. Vidyasagar. Rates of uniform convergence of empirical means with
mixing processes. Statistics & Probability Letters, 58(3):297–307, 2002. ISSN 0167-7152.
doi: https://doi.org/10.1016/S0167-7152(02)00124-4. URL https://www.sciencedirect.
com/science/article/pii/S0167715202001244.

W. M. Koolen and T. van Erven. Second-order quantile methods for experts and combinatorial games.
In Peter Grünwald, Elad Hazan, and Satyen Kale, editors, Proceedings of The 28th Conference on
Learning Theory, COLT 2015, Paris, France, July 3-6, 2015, volume 40 of JMLR Workshop and
Conference Proceedings, pages 1155–1175. JMLR.org, 2015. URL http://proceedings.
mlr.press/v40/Koolen15a.html.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.
Machine Learning, 2:285–318, 1988.

N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished manuscript,
1986.

N. Littlestone and M.K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994. ISSN 0890-5401. doi: https://doi.org/10.1006/
inco.1994.1009. URL https://www.sciencedirect.com/science/article/pii/
S0890540184710091.

11

https://proceedings.mlr.press/v167/blanchard22a.html
https://proceedings.mlr.press/v167/blanchard22a.html
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1214/20-AOS2029
https://www.sciencedirect.com/science/article/pii/S0167715202001244
https://www.sciencedirect.com/science/article/pii/S0167715202001244
http://proceedings.mlr.press/v40/Koolen15a.html
http://proceedings.mlr.press/v40/Koolen15a.html
https://www.sciencedirect.com/science/article/pii/S0890540184710091
https://www.sciencedirect.com/science/article/pii/S0890540184710091

G. Morvai, S. Yakowitz, and L. Gyorfi. Nonparametric inference for ergodic, stationary time series.
The Annals of Statistics, 24(1):370–379, 1996. ISSN 00905364. URL http://www.jstor.
org/stable/2242624.

G. Morvai, S. R. Kulkarni, and A. B. Nobel. Regression estimation from an individual stable sequence.
Statistics: A Journal of Theoretical and Applied Statistics, 33(2):99–118, 1999.

D. Ryabko. Pattern recognition for conditionally independent data. Journal of Machine Learning Re-
search, 7(23):645–664, 2006. URL http://jmlr.org/papers/v7/ryabko06a.html.

I. Steinwart, D. Hush, and C. Scovel. Learning from dependent observations. Journal of Multivariate
Analysis, 100(1):175–194, 2009.

C. J. Stone. Consistent nonparametric regression. The Annals of Statistics, pages 595–620, 1977.

L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, November
1984.

V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events to
their probabilities. Theory of Probability and its Applications, 16(2):264–280, 1971.

V. Vapnik and A. Chervonenkis. Theory of Pattern Recognition. Nauka, Moscow, 1974.

B. Yu. Rates of convergence for empirical processes of stationary mixing sequences. The Annals of
Probability, pages 94–116, 1994.

12

http://www.jstor.org/stable/2242624
http://www.jstor.org/stable/2242624
http://jmlr.org/papers/v7/ryabko06a.html

A Omitted Proofs

A.1 Proof of lemma 15

In order to help the reader understand, we provide the subroutine here again for reference.

Algorithm 2: Subroutine for learning a partial concept classH with VC dimension d on the data
process X.
L← ∅.
m← 1.
for t = 1, 2, 3, . . . do

Predict

Ŷt = argmax
y

Pr

[
w(HgU

L∪(Xt,1−y), X[t,t(m)]) ≤
1

2
w(HgU

L , X[t,t(m)])

∣∣∣∣X≤t

]
if Yt ̸= Ŷt then

L← L ∪ {(Xt, Yt)}.
end
if t ≥ m(m+1)

2 . then
m← m+ 1.

end
end

Proof. In this proof, we assume that for the partial concept class H with VC dimension ≤ d,
{(Xi, Yi)}i∈N is realizable. As we defined, the weight function, w(H′, X≤T) = |{S : S ⊆
{Xi}i≤T such that S shattered byH′}|, which is the number of the subsequences of the sequence
X≤T that can be shattered by the partial concept classH′.

Consider the k-th batch, consisting of Wk = {X k(k−1)
2 +1

, · · · , X k(k+1)
2
}. Let

Zk =

k(k+1)
2∑

t=
k(k−1)

2 +1

I
[
Ŷt ̸= Yt

]
,

and
Vk = Zk − E

[
Zk

∣∣∣X≤ k(k−1)
2

]
.

Notice that

E
[
Vk

∣∣∣X≤ k(k−1)
2

]
= E

[
Zk − E

[
Zk

∣∣∣X≤ k(k−1)
2

] ∣∣∣X≤ k(k−1)
2

]
= E

[
Zk

∣∣∣X≤ k(k−1)
2

]
− E

[
Zk

∣∣∣X≤ k(k−1)
2

]
= 0.(a.s.)

Thus, the sequence Vk is a martingale difference sequence with respect to the block sequence,
W1,W2, · · · . By the definition of Vk, we also have −k ≤ Vk ≤ k. Then by Azuma’s Inequality, with
probability 1− 1

K2 , we have

K∑
k=1

Zk ≤
K∑

k=1

E
[
Zk

∣∣∣X≤ k(k−1)
2

]
+

√√√√− log

(
1

K2

)
· 2 ·

(
K∑

k=1

k2

)

≤
K∑

k=1

E
[
Zk

∣∣∣X≤ k(k−1)
2

]
+
√
4K3 logK.

13

Then we need to get an upper bound for E
[
Zk

∣∣∣X≤ k(k−1)
2

]
. According to the prediction rule, every

time we make a mistake, we have

Pr

[
w(HgU

L∪(Xt,Yt)
, X

[t,
k(k+1)

2]
) ≤ 1

2
w(HgU

L , X
[t,

k(k+1)
2]

)

∣∣∣∣X≤t

]
≥ 1

2
. (3)

Due to the linearity of expectation, for every k,

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]∣∣∣∣∣∣∣X≤ k(k−1)
2


= E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt , X[t+1,

k(k+1)
2]

) ≤ 1

2
w(HLt−1 , X[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤ k(k−1)
2


+ E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt

, X
[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1

, X
[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 .

Here Lt = {(Xi, Yi)}, where i ≤ t and the algorithm makes a mistake at round i.

Notice the first part is the expected number of mistakes, each of which decreases the weight by half.
For every realization of X

[
k(k−1)

2 ,
k(k+1)

2]
, x

[
k(k−1)

2 ,
k(k+1)

2]
, let

u(k) =

k(k+1)
2∑

i=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt

, x
[t+1,

k(k+1)
2]

) ≤ 1

2
w(HLt−1

, x
[t,

k(k+1)
2]

)

]
.

By the definition of the weight function and the fact that VC(H) = d,
w(HL k(k−1)

2

, x
[
k(k−1)

2 ,
k(k+1)

2]
) ≤ kd. Consider the last round t ≤ k(k+1)

2 that Ŷt ̸= Yt,

we have w(HLt−1,x
[t,

k(k+1)
2

]
) ≥ 1, as the set {xt} must be shattered. Thus, we have

2u(k)−1w(HLt−1
, x

[t,
k(k+1)

2]
) ≤ w(H, x

[
k(k−1)

2 ,
k(k+1)

2]
). Therefore, u(k) ≤ d log k + 1, for

every realization, x
[
k(k−1)

2 ,
k(k+1)

2]
. Thus,

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt , X[t+1,

k(k+1)
2]

) ≤ 1

2
w(HLt−1 , X[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 ≤ 2d log k.

(4)

Then consider the second part, we have

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt , X[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1

, X
[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤ k(k−1)
2


= E

E
 k(k+1)

2∑
t=

k(k−1)
2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt

, X
[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1

, X
[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤t


∣∣∣∣∣∣∣X≤ k(k−1)

2


= E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
E
[
I
[
w(HLt , X[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1 , X[t,

k(k+1)
2]

)

]∣∣∣∣X≤t

]∣∣∣∣∣∣∣X≤ k(k−1)
2


14

This is because Ŷt and Yt only depend on X≤t. Due to the equation 3, we have

I
[
Ŷt ̸= Yt

]
E
[
I
[
w(HLt

, X
[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1

, X
[t,

k(k+1)
2]

)

]∣∣∣∣X≤t

]
= I

[
Ŷt ̸= Yt

]
Pr

[
w(HLt , X[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1 , X[t,

k(k+1)
2]

)

∣∣∣∣X≤t

]
≤ 1

2
I
[
Ŷt ̸= Yt

]
.

Thus,

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]
I
[
w(HLt

, X
[t+1,

k(k+1)
2]

) >
1

2
w(HLt−1

, X
[t,

k(k+1)
2]

)

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 (5)

≤ 1

2
E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]∣∣∣∣∣∣∣X≤ k(k−1)
2


Combining these two inequalities (4 and 5), we have

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 ≤ 2d log k +
1

2
E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 . (6)

Thus, for any k, we have

E

 k(k+1)
2∑

t=
k(k−1)

2

I
[
Ŷt ̸= Yt

]∣∣∣∣∣∣∣X≤ k(k−1)
2

 ≤ 4d log k. (7)

According to the inequality 7 for every k, E
[
Zk

∣∣∣X≤ k(k−1)
2

]
≤ 4d log k. Thus, with probability at

least 1− 1
K2 ,

K∑
k=1

Zk ≤
K∑

k=1

4d log k +
√
4K3 logK ≤ 4dK logK +

√
4K3 logK.

By the definition of Zk, with probability at least 1− 1
K2 ,

K(K+1)
2∑

t=1

I
[
Ŷt ̸= Yt

]
≤ 4dK logK +

√
4K3 logK ≤ (4d+ 2)

√
K3 logK. (8)

Let TK = K(K+1)
2 be the number of instances in the sequence, with probability at least 1− 1

K2

TK∑
t=1

I
[
Ŷt ̸= Yt

]
≤ (4d+ 2)T

3
4

K

√
1

2
log TK . (9)

Define the event EK as the event that in the sequence X≤TK
,
∑TK

t=1 I
[
Ŷt ̸= Yt

]
> (4d +

2)T
3
4

K

√
1
2 log TK . Then we know Pr[EK] ≤ 1

K2 . Notice the fact that for any K ∈ N,∑K
k=1

1
k2 ≤ π2

6 . By Borel-Cantelli lemma, we know that for any TK = K(K+1)
2 large enough,∑TK

t=1 I
[
Ŷt ̸= Yt

]
≤ (4d+ 2)T

3
4

K

√
1
2 log TK happens with probability 1.

Then for any large enough T , we have TK ≤ T ≤ TK+1 ≤ 2T . Thus, with probability 1,
T∑

t=1

I
[
Ŷt ̸= Yt

]
≤ (4d+ 2)T

3
4

K+1

√
1

2
log TK+1 (10)

≤ (4d+ 2)(2T)
3
4

√
1

2
log 2T . (11)

15

Therefore, for any large enough T and a universal constant c, with probability 1,

T∑
t=1

I
[
Ŷt ̸= Yt

]
≤ cT

3
4

√
log T . (12)

Notice that cT
3
4

√
log T is o(T). That finishes the proof.

A.2 Proof of Theorem 16

Proof. In this proof, we first modify the chosen indifferent VCL tree, such that the number of
elements in each node is increasing exponentially. In other words, we hope the k-th node in the
Breadth-First-Search (BFS) order contains 2k−1 elements. We may reach this target by recursively
modifying the chosen VCL tree. Starting from the root of the tree, for each node that does not satisfy
our requirement, we promote one of its descendants to replace that node, such that the number of
elements in that node is large enough.

Then we define the data process as follows: For the modified VCL tree, we define the sequence
{Xi}i∈N as X2k−1+j = Xjk, where Xjk is the j-th element in the k-th node in the BFS order.

Next, we define the target function, in other words, choose the label Yt for each Xt. First, we take a
random walk in the modified VCL tree. Then for the elements in the node on the path we visited
(in-branch node), we let Yt be the label given by the edge adjacent to that node. Then, we need to
decide the label of those elements in the node not on the path we visited (off-branch nodes). For any
off-branch node, we can pick an in-branch node after it in BFS order, as the tree is indifferent, all
descendants of the in-branch node agree on the label of the elements in the off-branch node. Thus,
we can let the label of the elements in the off-branch node be the label decided by the descendant of
that in-branch node. So, every element in the node that is visited by the random walk still may be
wrong with probability 1

2 , when the algorithm sees it the first time. Also, the number of elements that
come before k-th node in the BFS order,

∑k−2
i=0 2i = 2k−1 − 1, is roughly the same as the number

of elements in the k-th node, 2k−1. Thus at the d-th layer of the modified tree, if the random walk
reaches the node Kd, for that node, we have

E

[
1

nKd

nKd∑
t=1

I [ht−1(Xt) ̸= Yt]

∣∣∣∣∣Kd

]
≥ 1

4
. (13)

Here nKd
is the number of elements in the process when we reach the Kd-th node. This inequality

holds for all d.

Then notice that by taking an expectation on the expected mistakes for every deterministic sequence,
we get an expectation of the number of mistakes for this random process. Then we can pick the
sub-sequence, which only contains nKd

= 2Kd − 1 elements, and this decreases the ratio of mistakes
(the third line in the following computations). This is because we can only make mistakes when the
elements are in the Kd-th node and any other n will have a smaller ratio of mistakes than nKd

. Then
notice that the ratio of mistakes is always smaller than or equal to 1, we can use the reversed Fatou’s
lemma and inequality 13 to get the final result (the fourth line and the last line in the following
computations).

16

E

[
E

[
lim sup
n→∞

1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

∣∣∣∣∣ (X,Y)
]]

= E

[
lim sup
n→∞

1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

]

≥ E

[
lim sup
d→∞

1

nKd

nKd∑
t=1

I [ht−1(Xt) ̸= Yt]

]

≥ E

[
lim sup
d→∞

E

[
1

nKd

nKd∑
t=1

I [ht−1(Xt) ̸= Yt]

∣∣∣∣∣nKd

]]

≥ 1

4
.

Thus, there exists a deterministic sequence (X,Y) such that it does not make sublinear expected
mistakes.

A.3 Proof of Theorem 21

Proof. AsH has an infinite Littlestone tree, we can take a random walk on this tree, then for every
step t, take the label of the node as Xt, and no matter what the learning algorithm predicts, uniformly
randomly choose Yt. Thus, we have E [I [ht−1(Xt) ̸= Yt]] ≥ 1

2 for every t. We get

lim sup
n→∞

E(X,Y)

[
1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

]
≥ 1

2
. (14)

According to Fatou’s lemma, notice the ratio of mistakes is smaller than or equal to 1, so we have the
following inequality,

E

[
lim sup
n→∞

1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

]
≥ 1

2
. (15)

Thus, for each learning algorithm, there exists a data sequence {(Xt, Yt)}t∈N such that equation 15
holds. That finishes the proof.

A.4 Proof of Lemma 22

For the completeness, we provide the weighted majority algorithm here:

Algorithm 3: The Weighted Majority Algorithm with Non-uniform Initial Weights

For expert ei, assign w0
i = 1

i(i+1) as its initial weight.
for t = 1,2,. . . do

Predict yt = I
[∑

i
wt−1

i∑
i w

t−1
i

ei(Xt) ≥ 1
2

]
.

Update wt
i =

(
1
2

)I[ei(Xt) ̸=Yt]
wt−1

i .
end

By using this algorithm, we provide the proof of the lemma 22.

Proof. In order to prove this lemma, we use the weighted majority algorithm 3 with initial weight
w0

i = 1
i(i+1) for each expert i. We set MB =

∑n
t=1 I [ht−1(Xt) ̸= Yt], which is the num-

ber of mistakes the algorithm made during n rounds. We also set mi =
∑n

t=1 I [ei(Xt) ̸= Yt].
Next, compute the total weight of all experts after n rounds of the algorithm, Wn. Notice

17

that if the algorithm makes a mistake at round n, there must be a majority of the experts mak-
ing a mistake at round n, so Wn−1 − Wn ≥ 1

2 ·
1
2W

n−1, which means Wn ≤ 3
4W

n−1.
Thus, we have Wn ≤

(
3
4

)MB
W 0 ≤

(
3
4

)MB
. Notice that Wn ≥ wn

i for all i, so it holds for
argmini≤in

∑n
t=1 I [ei(Xt) ̸= Yt]. We have the following inequality for all n,

n∑
t=1

I [ht−1(Xt) ̸= Yt] ≤ 3min
i≤in

n∑
t=1

I [ei(Xt) ̸= Yt] + log

(
1

w0
i

)
(16)

≤ 3min
i≤in

n∑
t=1

I [ei(Xt) ̸= Yt] + 2 log in. (17)

Here 3 comes from the fact that log 2
log(4

3)
≤ 3. Therefore, for a fixed process X, target function h∗ and

a fixed sequence, {in}, we have

E

[
lim sup
n→∞

1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

]
≤ E

[
lim sup
n→∞

1

n

(
3min
i≤in

n∑
t=1

I [ei(Xt) ̸= Yt] + 2 log in

)]
.

(18)
Then by the condition A, we know the right-hand side of the inequality is 0.

Notice that lim supn→∞
1
n

∑n
t=1 I [ht−1(Xt) ̸= Yt] is a non-negative random variable, so we have

E

[
lim sup
n→∞

1

n

n∑
t=1

I [ht−1(Xt) ̸= Yt]

]
= 0. (19)

Therefore, lim supn→∞
1
n

∑n
t=1 I [ht−1(Xt) ̸= Yt] = 0 almost surely.

A.5 Proof of Lemma 23

Algorithm 4: Expert J
Input: set J
for t = 1,2,. . . do

recieve Xt.
compute ỹt = fA

t (X<t, Ŷ<t, Xt).a
if t ∈ J then

predict ŷt = ¬ỹt
else

predict ŷt = ỹt
end

end

aŶ<t = {ŷi}<t

Proof. In this proof, we show how to define a sequence of experts {e1, e2, . . . }, such that the
condition A is satisfied, if X admits universal online learning. Let an online learning rule fA

t be the
algorithm that can learn all realizable label processes Y ∈ R(H,X). Then we can build the experts
by algorithm 4 and represent the experts by the set of the index of mistake rounds. We can define this
set as J . For example, if the algorithm makes mistakes at round 1, 4, 7 then the set J for that expert
is {1, 4, 7}. Thus we have a one-on-one map from J to an expert.

First, we show that for every realizable label process Y ∈ R(H,X) and any n ∈ N, there is an expert
ei such that ei(Xt) = Yt for all t ≤ n. This part of the proof is similar to the proof of lemma 12
in the work of Ben-David et al. [2009]. Consider a subsequence Y≤n of a realizable label process
Y, j ∈ J if and only if fA

j (X<j , Ŷ<j , Xj) ̸= Yj for all j ≤ n. Thus, the history (X<t, Ŷ<t) for all
t ≤ n are the same as (X<t, Y<t), which implies ei(Xt) = Ŷt = Yt for all t ≤ n. Therefore, for
any n ∈ N, there is a set Jin containing all j ≤ n, such that fA

j (X<j , Ŷ<j , Xj) ̸= Yj . Then the
algorithm 4 with input Jin creates an expert ein , such that ein(Xt) = Yt for all t ≤ n.

18

Next, we only need to build the index in for the set Jn to show that log in = o(n). The index of set
J is as follows: For all J ⊆ N, order them by |J |(max J). (If two sets have the same value, we use
|J | as a tie-breaking.) Here |J | is the number of elements in J and max J is the maximal element in
J . After that, index J’s from 1 following this order.

At last, we show the method mentioned above constructed a set of experts satisfying condition A. we
have a set of experts E = {e1, e2, . . . }, there is a sequence {in} with log in = o(n), such that for any
realizable sequence (X,Y), for any n ∈ N, there is an expert ei with i ≤ in such that Yt = ei(Xt)
for every t ≤ n. Therefore, we need to compute the in as follows. Assume |Jin |max Jin = k, we
have

in ≤ |{J : |J |max J ≤ k}| = 1 +

k∑
m=1

|{J : |J | ≤ k

m
,max J = m}|

= 1 +

√
k∑

m=1

2m−1 +

k∑
m=

√
k

(
m− 1

≤ (k
m − 1)

)
≤ 2

√
k +

k∑
m=

√
k

(
em2

k

) k
m

≤ (k + 1)e
√
k.

Notice that k = |Jin |n, we have

lim
n→∞

1

n
log in ≤ lim

n→∞

2
√
|Jin |n
n

= 0. (20)

Thus, we get the set of experts and the corresponding sequence {in} satisfying condition A.

A.6 Proof of Theorem 24

Proof. In order to prove this theorem, we use the procedure based on learning with experts’ advice.
First, we build and index the experts, {e1, e2, · · · }, by using the same method we mentioned in the
proof of lemma 23 (A.5), which satisfies Condition A. Then, to use Squint algorithm from the work
of Koolen and van Erven [2015], we need the initial weight of the experts to be a distribution. We
can set the initial weights πi =

1
i(i+1) for each ei and this forms a distribution, as πi =

1
i −

1
i+1 , the

sum of πi reaches 1 when i goes to infinity.

According to Theorem 3 in the work of Koolen and van Erven [2015], we have the following upper
bound for the regret

T∑
t=1

I
[
ĥt−1(Xt) ̸= Yt

]
−

T∑
t=1

I [ek(Xt) ̸= Yt] ≤ O

(√
Vk log

log Vk

πk
+ log

1

πk

)
. (21)

Here the Vk is the sum of the square of the difference between the algorithm’s mistake and expert k’s
mistake in each round. In other words, we have

Vk =

T∑
i=1

(I [ht−1(Xt) ̸= Yt]− I [ek(Xt) ̸= Yt])
2
. (22)

Notice that (I [ht−1(Xt) ̸= Yt]− I [ek(Xt) ̸= Yt])
2 is either 1 or 0, we have Vk ≤ T . The regret of

this algorithm is upper bounded by:

O

(√
Vk log

log Vk

πk
+ log

1

πk

)
= O

(√
T log log T + T log k + log k

)
. (23)

According to the condition A, we also know

E

[
lim sup
T→∞

min
ei:i≤iT

1

T

T∑
t=1

I [ei(Xt) ̸= Y ∗
t]

]
= 0. (24)

19

Thus, the regret of this algorithm is

lim sup
T→∞

1

T

T∑
t=1

(
I
[
Yt ̸= ĥt−1(Xt)

]
− I [Yt ̸= Y ∗

t]
)

= lim sup
T→∞

1

T

T∑
t=1

(
I
[
Yt ̸= ĥt−1(Xt)

]
− |I [Yt ̸= ek(Xt)]− I [ek(Xt) ̸= Y ∗

t]|
)

≤ lim sup
T→∞

1

T

T∑
t=1

(
I
[
Yt ̸= ĥt−1(Xt)

]
− I [Yt ̸= ek(Xt)] + I [ek(Xt) ̸= Y ∗

t]
)

≤ lim sup
T→∞

1

T

T∑
t=1

(
I
[
Yt ̸= ĥt−1(Xt)

]
− I [Yt ̸= ek(Xt)]

)
+ lim sup

T→∞

1

T

T∑
t=1

I [ek(Xt) ̸= Y ∗
t]

Because log iT = o(T) and log k < log iT we have log k = o(T). Thus, the regret above is o(T).
Therefore, we have an algorithm to extend a universally consistent online learning algorithm for
realizable cases to a universally consistent online algorithm for agnostic cases.

To prove the necessity, notice that a universally consistent online algorithm for agnostic cases can be
used to solve the realizable case and the regret is equal to the number of mistakes.

20

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Theorems 9,10,11,12 provides the full characterization for realizable case.
Theorem 24 provides the method to extend the algorithm for the realizable case to the
agnostic setting
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

21

Justification: In the abstract and the introduction, we both mentioned our work focuses on
binary classification.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs are in the Appendix part.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: There are no experiments in this paper. This work is a learning theory paper.

Guidelines:

22

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This is a learning theory paper. There is no code or data related to this paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

23

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This is a learning theory paper. There is no experiment in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This is a learning theory paper. There is no experiment in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This is a learning theory paper. There is no experiment in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

24

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We are sure we conform with the NeurIPS Code of Ethics. This paper does not
contain any experiments and all of the proofs have been provided in the appendix or cited
appropriately.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a learning theory paper. We are discussing the learnability of the
learning model, which is not directly related to any application.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

25

https://neurips.cc/public/EthicsGuidelines

Justification: This is a learning theory paper and does not release any data or models.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This is a learning theory paper with no experiments or code.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is a learning theory paper. There are no new assets introduced.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

26

paperswithcode.com/datasets

Answer: [NA]
Justification: This is a learning theory paper. There are no experiments or research with
human objects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is a learning theory paper. There are no experiments or research with
human objects in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

	Introduction
	More Related Work

	Preliminaries and Main Results
	Examples
	Sufficient and Necessary Condition that ALL Processes Admit Universal Online Learning
	Optimistically Universal Online Learning Rule

	Concept Classes with an Infinite VCL Tree
	Agnostic Case
	Omitted Proofs
	Proof of lemma 15
	Proof of Theorem 16
	Proof of Theorem 21
	Proof of Lemma 22
	Proof of Lemma 23
	Proof of Theorem 24

